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Analytical Solutions for Impulsive Elliptic
Out-of-Plane Rendezvous Problem via Primer

Vector Theory
Romain Serra, Denis Arzelier and Aude Rondepierre

Abstract—This paper focuses on the fixed-time minimum-fuel
out-of-plane rendezvous between close elliptic orbits of an active
spacecraft, with a passive target spacecraft, assuming a linear
impulsive setting. It is shown that the out-of-plane elliptic relative
dynamics are simple enough to allow for an analytical solution of
the problem reviewed. Indeed, the approach relies on the primer
vector theory by writing down and directly solving the optimality
necessary conditions. After analyzing the characteristics of the
dynamics of the optimal primer vector candidates, the complete
analytical optimal solution is obtained for arbitrary durations of
the rendezvous and arbitrary boundary conditions.

Index Terms—Orbital rendezvous, fuel optimal space trajecto-
ries, primer vector theory, impulsive maneuvers, linear equations
of motion.

I. INTRODUCTION

For the next years, there will be an increasing demand
for the efficient execution of the autonomous rendezvous
between an active chaser spacecraft and a passive target
spacecraft. Therefore, new challenges are met when designing
appropriate guidance schemes for achieving autonomous far
range rendezvous on highly elliptical orbits. Autonomy means
that the simplicity of onboard implementation while preserving
optimality in terms of fuel consumption, is a fundamental
feature of the proposed solution. Hence, obtaining an ana-
lytical closed-form solution for these types of problems is of
paramount interest and induces, in general, a more efficient
and rapid technological solution.

Here, the fixed-time linearized minimum-fuel impulsive
rendezvous problem, as defined in [1], [2], is studied. The
impulsive approximation for the thrust means that instanta-
neous velocity increments are applied to the chaser whereas
its position is continuous. The focus of the paper is on the
elliptic out-of-plane (OOP) rendezvous problem for which no
complete optimal solution exists to the best of our knowledge.
When the eccentricity of the reference orbit is equal to 0,
the out-of-plane rendezvous problem amounts to solving an
optimal impulsive control problem for a simple harmonic
oscillator. A complete characterization of the optimal solutions
for this problem has been given by Prussing in [3]. In [1],
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a complete solution for the circular coplanar case has been
given for every possible boundary condition for a duration of
rendezvous of 2π. As the relative motion between two vehicles
in highly elliptic orbits differs significantly from the relative
motion seen in circular rendezvous, the solution of the elliptic
problem is much more complicated and more recent efforts
have investigated this particular problem (see [4] and [5] and
the references therein). As mentioned in [5], the previous
approaches, including the most recent ones, all suffer from
different shortcomings: limitation to the circular or quasi-
circular cases, numerical complexity of the solution and/or
lack of comprehensiveness. For instance, the results given in
[4] are limited to the 1-impulse strategies while those of [5]
rely on an iterative numerical process highly dependent upon
the choice of an initial guess.

The contribution of the paper is to give a complete analytical
solution of the problem of fuel-optimal impulsive linearized
out-of-plane rendezvous when the reference orbit is elliptic,
whatever the duration of the rendezvous and for all possible
initial and terminal conditions. Despite the number of cases to
be discussed (eight cases strongly depending on the duration
of the rendezvous and the initial and final conditions), this
analytical solution is actually very simple, explicitly expressed
in terms of the data of the rendezvous problem and does not
require time-consuming computations to be obtained. This is
a key point for the onboard implementation and the autonomy
of futures missions.

The solutions are obtained via the analysis of the optimal
conditions expressed in terms of the primer vector as in [1]
and [3]. When eccentricity of the reference orbit is not equal
to 0, the primer vector exhibits particular features that may
be analyzed and which provide the basis for the derivation
of the optimal solution. It is shown that the nature of the
optimal solutions (number and locations of the optimal thrusts)
strongly depends upon the duration of the rendezvous. Indeed,
three ranges of duration are identified and the analytical
closed-form solutions are given for each, with their conditions
of validity expressed in terms of the eccentricity, the bound-
ary conditions, initial and final anomaly of the rendezvous
problem. Every result is rigorously proved by relying on the
necessary and sufficient optimality conditions and working out
these conditions to exhibit the optimal solutions. In addition,
it is shown that the designer has extra degrees of freedom
when the rendezvous lasts more than one revolution. Indeed,
the optimal consumption may be spread over a maximum
number of impulses that may be greater than the known



2

upper-bound given by Neustadt [6] on the optimal number
of impulses. By optimal number of impulses, it is meant
the minimum number of impulses necessary to obtain the
minimum fuel consumption for some instance of the linear
fixed-time rendezvous problem. As a side result, it is also
shown when considering some degenerate cases where the
Lagrange multipliers involved in the computation of the primer
vector are not unique and are underdetermined, that it is
always possible to choose a particular solution for which an
optimal primer vector will be completely defined. Finally,
two realistic examples illustrate these results. Note that a
preliminary version of this paper has been presented at the
IFAC World Congress [7] in which results are stated without
any proof and degenerate cases are not explored.

The outline of the paper is as follows. In the next section,
the problem formulation is given. The Section III. recalls the
optimality conditions expressed in terms of conditions on the
primer vector. The properties of primer vector candidates for
optimality are analyzed in Section IV. The complete set of
optimal solutions for the minimum-fuel out-of-plane linearized
rendezvous problem is given in Section V. As there are many
cases to be considered, two tables are given in this section. The
first one summarizes the 8 different possible solutions with
their velocity increments, the location of the optimal impulses
while the second gives the conditions to be met for each
type of solution depending on the duration of the rendezvous.
Section VI. is dedicated to the presentation of two realistic
numerical examples illustrating different cases. Due to space
constraints, only the proof of the first proposition is given in
the Appendix. The other proofs follow the same lines and may
be found in the technical note [8].

The main notations are defined hereafter: the vectors are
noted with an arrow as in ~zf while matrices are in boldface.
as in Φ.

Notations:

- a: semi-major axis, m
- e: eccentricity
- θ: true anomaly, rad
- Φ(θ, θ0) = φ(θ)φ−1(θ0): the transition matrix of relative

motion
- φ(θ): the Yamanaka-Ankersen fundamental matrix of

relative motion
- R(θ): primer vector reduced matrix
- N : number of velocity increments
- dθ: the duration of the rendezvous, rad
- θi, ∀ i = 1, · · · , N : impulses application locations, rad
- δ(θ − θi): Dirac impulse at θi
- ∆V (θi): velocity increment at θi, m/s
- {bi}i=1,··· ,N : sequence of variables bi, ∀ i = 1, · · · , N ;
- sgn(z): sign of the variable z
- |X|: the absolute value of the scalar X
- ‖~u‖p: p-norm of the vector ~u

- ‖~f(t)‖p =
∫ tf

t0

‖~f(t)‖pdt: L1 norm of the p-norm of the

vectorial function ~f(t)

II. PROBLEM FORMULATION

Let us consider a typical fixed-time minimum-fuel ren-
dezvous situation between elliptic orbits of an active spacecraft
and a passive target spacecraft. The two orbits are assumed
sufficiently close to allow for the linearization of the relative
equations of motion. These equations are written in a moving
Local Vertical Local Horizontal (LVLH) frame, attached to the
gravity center of the passive target and which rotates with its
angular velocity, as illustrated in Figure 1.

Fig. 1. Local Vertical Local Horizontal (LVLH) frame attached to the target
spacecraft: the z-axis is the radial direction, oriented towards the center of the
Earth. The y-axis is perpendicular to the orbital plane of the chaser, pointing
opposite the orbital angular momentum. The x-axis completes the frame.

Under Keplerian and linearizing close-proximity assump-
tions, the complete rendezvous problem may be decoupled
between the out-of-plane rendezvous problem and the coplanar
problem. An analytical solution of the out-of-plane rendezvous
problem may be found in [3] when e = 0 while numerous
studies exist for the coplanar rendezvous problem [9], [10],
[1], [2], [11] and [12], [13] for more recent references. Note
that when the fuel-optimal solutions are obtained indepen-
dently for the coplanar case and the out-of-plane case, the
complete optimal solution for the 3-dimensional, sixth-order
fuel-optimal linearized rendezvous problem is simply obtained
by gathering the two previous planning solutions in a single
planning solution based on a 3-dimensional control vector.
The Tschauner-Hempel equation for the relative out-of-plane
motion is given by:

ÿ(t) = −n2 (1 + e cos(θ))3

(1− e2)3
y(t) +

Fy(t)

m(t)
,

ṁ(t) = −α(t)‖Fy(t)‖p
(1)

where n, 0 ≤ e < 1 and θ are respectively the mean motion,
the eccentricity and the true anomaly of the reference orbit
while m(t) is the vehicle mass, α(t) is a nonnegative known
function of time and Fy(t)/m(t) is the force per unit of mass
(acceleration) applied by the thruster to the active spacecraft.
As has been done in [14], time is replaced by θ as a convenient
independent variable and the simplifying change of variables
ỹ(θ) = (1+e cos(θ))y(θ) is applied to the differential equation
resulting in the simplified equation:

ỹ′′(θ) = −ỹ(θ) + ũy(θ), (2)

where (·)′ = d(·)/dθ and ũy(θ) =
(1− e2)3Fy(θ)

n2m(θ)(1 + e cos(θ))3
.

Note also that θ̇ =
dθ

dt
= n(1 − e2)−

3
2 (1 + e cos(θ))2.
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Depending on the geometrical configuration of the thrust
engines mounted to the body axes of the spacecraft, the fuel
consumption is usually defined as the L1-norm of the p-norm
of the acceleration (p = 1 for 6 ungimbaled thrusters and
p = 2 for a single gimbaled thruster). In the particular case of
the out-of-plane rendezvous, the control is one-dimensional,
so that the fuel consumption is in both cases expressed as:

J =

∥∥∥∥Fy(t)

m(t)

∥∥∥∥
1,p

=

∫ tf

t0

‖Fy(t)‖p
m(t)

dt =

∫ tf

t0

|Fy(t)|
m(t)

dt. (3)

Using the independent variable θ and the simplifying change
of variable defined above, the performance index becomes:

J(ūy) = n(1− e2)−3/2

∫ θf

θ0

(1 + e cos(θ)) |ũy(θ)| dθ,

=

∫ θf

θ0

|ūy(θ)| dθ, (4)

where θ0 and θf respectively denote the fixed initial and final
values of the true anomaly during the rendezvous and where
the following change of variables ũy(θ) = (1−e2)3/2

n(1+e cos(θ)) ūy(θ)
is used. In the LVLH frame, the state vector of the active
spacecraft characterizing the relative out-of-plane motion is
composed of its relative position and velocity to the target:
~̃
X(θ) = [ỹ(θ) ỹ′(θ)]

T . The fixed-time out-of-plane fuel-
optimal rendezvous problem is then defined as the following
optimal control problem:

min
ūy∈L1([θ0,θf ],R)

J(ūy)

s.t.

~̃
X
′
(θ) =

[
0 1
−1 0

]
~̃
X(θ) +

 0
(1− e2)3/2

n(1 + e cos(θ))

 ūy(θ),

~̃
X(θ0) =

~̃
X0,

~̃
X(θf ) =

~̃
Xf fixed, θ0, θf fixed,

(5)
where L1([θ0, θf ],R) is the normed linear space of Lebesgue
integrable functions from [θ0, θf ] to R equipped with the norm
defined above. Note that the final value ~Xf for the state
vector may be different from 0 according to the terminology
used by T. Carter for the rendezvous problem [1]. L.W.
Neustadt has proved in [6] that the solution of (5) may be
arbitrarily approximated by a finite linear combination of N

δ(·) functions: ūε(θ)→
N∑
j=1

∆V (θj)δ(θj − θ), ε→ 0, where

∆V (θi) is the velocity increment applied at θi. Only an upper
bound (2 in the out-of-plane case) on the optimal number N
of velocity increments is known [6]. Using the fundamental
matrix φ(θ) of the differential equation in (5) defined as:

φ(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (6)

we get the solution of the equation in (5) for N impulses as:
~̃
Xf = φ(θf )φ−1(θ0)

~̃
X0

+

N∑
i=1

φ(θf )φ−1(θi)

 0
(1− e2)3/2

n(1 + e cos(θ))

∆V (θi)

(7)

Defining the following notations,

R(θ) = φ(θ)−1

[
0
1

]
=

[
− sin(θ)
cos(θ)

]
,

r(θ) = 1 + e cos(θ)
(8)

~zf =

[
zf1
zf2

]
= n(1−e2)−

3
2 (φ−1(θf )

~̃
Xf−φ−1(θ0)

~̃
X0) 6= 0,

(9)
the initial optimal control problem (5) amounts to find the
sequences of optimal impulse locations {θi}i=1,··· ,N and op-
timal velocity increments {∆V (θi)}i=1,··· ,N solution of the
following optimization problem:

min
θi,∆V (θi)

J =

N∑
i=1

|∆V (θi)| s.t. ~zf =

N∑
i=1

R(θi)

r(θi)
∆V (θi).

(10)
The optimization decision variables are the sequence of
thrust locations {θi}i=1,··· ,N and the sequence of thrusts
{∆V (θi)}i=1,··· ,N .

Due to the lack of a priori information about the optimal
number of impulses to be considered, problem (10) is very
hard to solve from both theoretical and numerical points
of view. Therefore, the associated fixed-time minimum-fuel
rendezvous problem for a fixed number N of impulses has
been considered in the literature mainly via geometric methods
near circular [9], [10], [11] or elliptic [2] orbits. These results
are mainly based on the derivation of optimality conditions for
the problem (10) when N is fixed a priori. These optimality
conditions are now recalled in the framework of [2].

III. OPTIMALITY CONDITIONS

Applying the maximum Principle to the original optimal
control problem (5) for a fixed number of impulses and under
the impulsive approximation as described in Lawden [15], or a
Lagrange multiplier rule for the equivalent Problem (10) as in
[2], one can derive necessary conditions of optimality in terms
of the co-state vector associated with the relative velocity and
referred to as the primer vector (see conditions (11) to (14) in
Theorem 1). These conditions are also sufficient in the case
of linear relative motion when strengthening them by adding
the semi-infinite constraint (15) that should be fulfilled on the
continuum [θ0, θf ] [16]. These results are summarized using
the formalism of T. Carter in the following theorem.

Theorem 1 ([15], [6]): (θ1, ..., θN ,∆V (θ1), ...,∆V (θN )) is
an optimal solution of problem (10) if and only if there exists
a non-zero vector ~λ ∈ Rm, m = dim(~zf ) that verifies the
necessary and sufficient conditions: for all i = 1, · · · , N ,

∆V (θi) = −p(θi) |∆V (θi)| , (11)
|∆V (θi)| = 0 or |p(θi)| = 1, (12)

|∆V (θi)| = 0 or θi ∈ {θ0, θf} or
d |p|2

dθ
(θi) = 0, (13)

N∑
i=1

R(θi)

r(θi)
p(θi) |∆V (θi)| = −~zf , (14)

|p(θ)| ≤ 1,∀ θ ∈ [θ0, θf ], (15)
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where p(θ) is the so-called primer vector [17] and is defined,
in the out-of-plane rendezvous problem as:

p(θ) =
R(θ)T~λ

r(θ)
=
−λ1 sin(θ) + λ2 cos(θ)

1 + e cos(θ)
. (16)

These results date back to the seminal work of D.F. Lawden
[15] in the early sixties, where the so-called primer vector
theory has been quoted for the first time and proved rigorously
later by L. Neustadt in [6]. Roughly speaking, when applying
the Pontryagin principle maximum, the primer vector is de-
fined as the part of the costate vector associated to the relative
velocity and indicates the optimal thrusting directions in the
optimality conditions (see the reference [18, Chapter 2] for
more details on primer vector theory).

Obviously a primer vector candidate is completely defined
by the choice of the Lagrange multipliers λ1, λ2.

IV. PRIMER VECTOR CANDIDATE DYNAMICS

In this section, the particular properties of the primer vector
are analyzed such that these characteristics may be used for
the derivation of the optimal solutions.

By (16), p(θ) is obviously a 2π-periodic function. It is a
harmonic oscillator divided by the positive function r(θ) =
1+e cos(θ). As a result, its sign changes every π. Its derivative
may be calculated as follows:

dp

dθ
(θ) = −λ1(e+ cos(θ)) + λ2 sin(θ)

(1 + e cos(θ))2
. (17)

As 0 ≤ e < 1, it is easy to deduce that p(θ) reaches two
global extrema of opposite sign at θe1 and θe2 modulo 2π.

A. Lagrange multipliers as functions of an extremum
If p(θ) has an extremum p(θe) at θe then it follows from

(16) and (17) that:

λ1 = −p(θe) sin(θe), λ2 = p(θe)(e+ cos(θe)). (18)

A primer vector candidate can thus be rewritten as follows:

p(θ) = p(θe)
cos(θ − θe) + e cos(θ)

1 + e cos(θ)
. (19)

B. Extremum ratio
From (18) and remembering that p(θe1) = −p(θe2), it

comes that:
|p(θe2 )|
|p(θe1 )| sin(θe2) = − sin(θe1),

|p(θe2 )|
|p(θe1 )| (e+ cos(θe2)) = −(e+ cos(θe1)).

(20)

By denoting X =
|p(θe2 )|
|p(θe1 )| and combining equations in (20),

one can get a second order polynomial equation where the
ratio of the absolute values is a solution to:

X2 − 2e(e+ cos(θe1))

1− e2 X − 1 + 2e cos(θe1) + e2

1− e2 = 0. (21)

This polynomial has two real roots {−1;
1+2e cos(θe1 )+e2

1−e2 } and
only the second one is positive (corresponding to the ratio of
absolute values), so that:

X =
1+2e cos(θe1 )+e2

1−e2 (22)

and
X − 1 =

|p(θe2 )|
|p(θe1 )| − 1 = 2e

e+cos(θe1 )

1−e2 . (23)

Note that |p(θe1)| 6= 0 otherwise p(θ) ≡ 0 by (18). Suppose
now that the maximum norm extremum is given by θe2 , i.e.
|p(θe2 )|
|p(θe1 )| ≥ 1, then θe1 is the minimum norm extremum and it
is deduced from (22) that

|p(θe2)|
|p(θe1)|

− 1 = 2e
e+ cos(θe1)

1− e2
≥ 0. (24)

Therefore, cos(θe1) ≥ −e for the minimum norm extremum
and the maximum norm extremum is such that cos(θe) ≤ −e
which is obtained the same way by assuming that θe2 is the
minimum norm extremum. When |p(θe1)| = 1 it comes that:

|p(θe2)| = 1 + 2e cos(θe1) + e2

1− e2
. (25)

Thus |p(θe2)| > 1 if and only if cos(θe1) > −e.

C. Extremum as a function of the Lagrange multipliers

Using (18), for a given ~λ ∈ R2 such that λ2 6= 0, the
anomalies θe1 and θe2 for which the primer vector reaches its
two extrema are given by the equation:

sin(θe)

e+ cos(θe)
= −λ1

λ2
. (26)

By defining Y = cos(θe) and Q = λ1

λ2
, it follows after taking

the square of (26) that:

(1 +Q2)Y 2 + 2eQ2Y + e2Q2 − 1 = 0. (27)

The roots of (27) are ±
√

1+Q2(1−e2)−eQ2

1+Q2 . So that:

cos(θe) =
±
√

1+Q2(1−e2)−eQ2

1+Q2

sin(θe) = −Q±
√

1+Q2(1−e2)+e

1+Q2 .
(28)

Thus, keeping in mind the restrictions on the maximum and
minimum norm extremum, the maximum and minimum norm
value of the primer vector can be expressed in terms of ~λ.
Inserting the expressions of cos(θe) and sin(θe) of (28) in
(16), the following expression is obtained after noting that
λ1 = Qλ2:

p(θe) =
±λ2(1 +Q2)

√
1 +Q2(1− e2)

1 + (1− e2)Q2 ± e
√

1 +Q2(1− e2)
. (29)

Noting that (by completing the square):

1 + (1− e2)Q2 + e
√

1 +Q2(1− e2)

=
√

1 +Q2(1− e2)(
√

1 +Q2(1− e2) + e)

1 + (1− e2)Q2 − e
√

1 +Q2(1− e2)

=
√

1 +Q2(1− e2)(
√

1 +Q2(1− e2)− e)
and taking the absolute value of (29), the following expressions
are obtained:

max
θ∈R
|p(θ)| = |λ2|(1 +Q2)√

1 +Q2(1− e2)− e
,

min
θ∈R
|p(θ)| = |λ2|(1 +Q2)√

1 +Q2(1− e2) + e
.

(30)
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V. MINIMUM-FUEL OOP OPTIMAL SOLUTIONS

When looking for the complete solution of the minimum-
fuel OOP problem, the primary difficulty lies in the lack
of knowledge of the exact basic structure of the optimal
trajectory. Indeed, the optimal number and optimal locations
of impulses are not a priori given but are instead optimization
variables of the optimization process. The method used to
derive the analytical solution of the problem mainly consists
in exploiting the different features of the optimal primer
vector exhibited in the previous section and in discussing
all its different possible configurations for optimal plan of
maneuvers, depending upon the duration of the rendezvous
dθ = θf − θ0, the eccentricity e of the target orbit, the
initial and final anomalies θ0 and θf and upon the vector ~zf .
Bearing in mind that the upper bound on the optimal number
of impulses given by Neustadt is 2 for the minimum-fuel OOP
problem and that an optimal impulse may be located either at
the interior or at the boundary of the interval [θ0, θf ], it is
then possible to enumerate all the possible optimal solutions
and to derive the conditions linked to their occurence. These
conditions are expressed in terms of the parameters dθ, e,
θ0, θf and ~zf . A preliminary analysis on the duration of
the rendezvous provides a structure to the discussion of the
different cases.
• When the duration of the rendezvous is longer than a

period (i.e. when dθ ≥ 2π), the primer vector p(θ) will
reach its local extrema on [θ0, θf ]. Therefore, only two
possibilities may occur for p(θ) to be optimal since it
must verify (15): one extremum has a unit norm and the
other has a norm strictly less than 1 (one impulse per 2π),
or both extrema of p(θ) have a unit norm (two impulses,
at most, per 2π).

• When the duration of the rendezvous is shorter than a
period (i.e. when dθ < 2π), this dependency may be
quite complicated since an extremum could be at an end
point, as illustrated by the next subsections.

Next, the different cases are discussed in the clearest way
possible. For each type of optimal solution, the associated
conditions involving e, θ0, θf and ~zf are given. The optimal
Lagrange multipliers and related primer vector are then pre-
sented. A summary of all the optimal solutions is then given.
Let us first define some notations needed in the sequel:

ε1 = sgn(zf1), ε2 = sgn(zf2),
ε0 = sgn(cos(θ0)zf1 + sin(θ0)zf2),
εf = sgn(cos(θf )zf1 + sin(θf )zf2).

(31)

A. Two interior impulses solution

In this section, the case of optimal solutions with two
interior impulses per period is investigated. Independently of
the duration of the rendezvous, the optimal primer vector will
reach its two extrema, and both extrema have a unit norm.

θ± = min

{
θ ≥ θ0 s.t.

{
cos(θ) = −e,
sin(θ) = ±

√
1− e2

}
(32)

The notation θ± defines two different locations θ+ and θ−
belonging to the interval [θ0, θ0 + 2π). They are defined

by an identical cosine and by a positive or a negative sine
respectively. Note that when dθ < π, due to (32), the condition
(θ−, θ+) ∈ [θ0, θf ]2 is equivalent to:

sin(θ0) ≥
√

1− e2 and sin(θf ) ≤ −
√

1− e2. (33)

When π ≤ dθ < 2π, the condition (θ−, θ+) ∈ [θ0, θf ]2 is
equivalent to the three possible configurations expressed by:

sin(θ0) ≥
√

1− e2

or

{
sin(θ0) ≤ −

√
1− e2

and sin(θf ) ≤ −
√

1− e2

or

{
| sin(θ0)| <

√
1− e2

and (e+ cos(θ0))(e+ cos(θf )) > 0.

(34)

Proposition 1: An optimal solution for the linearized impul-
sive out-of-plane rendezvous problem is a 2-impulse trajectory
defined by the optimal locations θ± and the optimal directions
of thrust given by:

∆V (θ±) =

√
1− e2

2e
(∓ezf1 −

√
1− e2zf2), (35)

if the following conditions are verified:

e|~zf | > |zf2 | and dθ ≥ 2π (36)

or

e|~zf | > |zf2 | and dθ < π and

sin(θ0) ≥
√

1− e2 and sin(θf ) ≤ −
√

1− e2 (37)

or
e|~zf | > |zf2 | and π ≤ dθ < 2π and (34) (38)

Finally, the optimal Lagrange multipliers and the optimal
primer vector are:

λ1 = −ε1

√
1− e2, λ2 = 0, p(θ) =

ε1

√
1− e2 sin(θ)

1 + e cos(θ)
.

(39)

REMARK 1: As indicated in the proof of Proposition 1
given in the Appendix, when dθ ≥ 2π, the optimal solution
of the planning may be chosen to be spread over N− + N+

impulses verifying (88) and (89), depending on the duration
of the rendezvous and operational constraints while preserving
the optimal consumption.

B. One interior impulse solutions

Consider the case of optimal solutions with only one interior
impulse and no boundary impulse. In this case, two geometri-
cal configurations of the primer vector may occur. When the
rendezvous lasts more than a period (dθ ≥ 2π), the associated
optimal primer vector necessarily reaches one extremum of
unit norm while the other has a norm strictly less than 1.
When the rendezvous lasts less than a period (dθ < 2π), there
is no condition on the other extremum norm and additional
conditions will be needed to ensure |p(θ)| ≤ 1, θ ∈ [θ0, θf ].

Proposition 2: Provided that cos(θ0)zf1 + sin(θ0)zf2 6= 0
and cos(θf )zf1 + sin(θf )zf2 6= 0, an optimal solution for the
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linearized impulsive out-of-plane rendezvous problem is a 1-
impulse trajectory defined by the optimal locations θi[:

cos(θi[) = −ε[
zf2
|~zf |

, sin(θi[) = ε[
zf1
|~zf |

, (40)

and optimal thrusts are defined by:

∆V (θi[) = −ε[|~zf |+ ezf2 , (41)

with index [ = 0, if the following conditions are verified:

dθ < 2π and e|~zf | ≤ ε0zf2 and εf = −ε0 (42)

or
dθ < 2π and e|~zf | > ε0zf2 and εf = −ε0

and
|~zf |+ (2e|~zf | − ε0zf2) cos(θ0) + ε0zf1 sin(θ0) > 0
|~zf |+ (2e|~zf | − ε0zf2) cos(θf ) + ε0zf1 sin(θf ) > 0
ε0(e+ cos(θ0))zf1 + (ε0zf2 − e|~zf |) sin(θ0) > 0
ε0(e+ cos(θf ))zf1 + (ε0zf2 − e|~zf |) sin(θf ) < 0

(43)
with index [ = 2, if the following conditions are verified:

dθ ≥ 2π and |zf2 | > e|~zf | (44)

or

π ≤ dθ < 2π and e|~zf | ≤ |zf2 | and εf = ε0, (45)

or
π ≤ dθ < 2π and e|~zf | > |zf2 | and εf = ε0

and
|~zf |+ (2e|~zf | − ε2zf2) cos(θ0) + ε2zf1 sin(θ0) > 0
|~zf |+ (2e|~zf | − ε2zf2) cos(θf ) + ε2zf1 sin(θf ) > 0
ε2zf1(e+ cos(θ0))− (e|~zf | − ε2zf2) sin(θ0) > 0
−ε2zf1(e+ cos(θf )) + (e|~zf | − ε2zf2) sin(θf ) > 0.

(46)
Finally, the optimal Lagrange multipliers and the optimal
primer vector are

λ1 = − zf1
|~zf |

, λ2 = ε[e−
zf2
|~zf |

,

p(θ) =
zf1 sin(θ) + (ε[e|~zf | − zf2) cos(θ)

(1 + e cos(θ))|~zf |
.

(47)

REMARK 2: For the case dθ ≥ 2π, a remark similar to the
Remark 1 may be stated. The first true anomaly θi2 in [θ0, θf ]
for which the primer vector reaches its extremum of unit norm,
is defined by:

θi2 = min

{
θ ∈ [θ0, θf ] : |p(θ)| = 1 and

dp

dθ
(θ) = 0

}
From the extremum ratio (25) and (40), it comes that:
cos(θi2) < −e, and: |~zf | − e|zf2 | > 0. In this particular
case, the optimal solution may exhibit, at most, N∗ impulses,
located at:

θi = θi2 + 2(i− 1)π, i = 1, · · · , N∗, (48)

where: N∗ = max {i ∈ N∗ : θi2 + 2(i− 1)π ≤ θf}. These
N∗ optimal impulses may be chosen arbitrarily as long as the
minimum fuel consumption is preserved i.e.:

N∗∑
i=1

|∆V (θi)| = |~zf | − e|zf2 |. (49)

Depending on the operational constraints, the optimal solution
may be reduced to a single impulse at θi2: ∆V (θi2) =
−ε2(|~zf | − e|zf2 |) as stated in Proposition 2, or spread over
N∗ impulses ∆V (θi) located at θi given by (48) and under
the constraint (49).

A particular case of Proposition 2 is when the primer vector
has a unit norm extremum at θ0 (respectively at θf ). The
results in this case are summarized below.

Corollary 1: When cos(θ0)zf1+sin(θ0)zf2 = 0 (resp., when
cos(θf )zf1 + sin(θf )zf2 = 0), the optimal solution comes
down to a one impulse boundary solution:

∆V (θ[) = (− sin(θ[)zf1 + cos(θ[)zf2)(1 + e cos(θ[)),

where [ = 0 (resp. [ = f ), for which there may exist an
infinite number of primer vectors. Without loss of generality,
the primer vector may be chosen as in (47) by replacing ε[
by ε̃[ = −sgn(− sin(θ[)zf1 + cos(θ[)zf2) with [ = 0 (resp.
[ = f ).
An example of the particular case ruled by Corollary 1
may be obtained with the following parameters: e = 0.8,
~zTf =

[
−0.7297 2.0305

]
, θ0 = 3.4866, θf = 5.9998 that

have been chosen to meet the conditions above. In this case,
the optimal Lagrange multipliers are given by: λ1 = 0.3382,
λ2 = −0.1411. The optimal primer vector, as a function of
θ, (dashed line) is depicted at Figure 2 alongside samples of
non optimal primer vectors (solid lines) built from λ1 and λ2

verifying the optimality condition (11):

−λ1 sin(θ0) + λ2 cos(θ0) = ε̃0(1 + e cos(θ0))

but not the optimality condition (15). Corollary 1 states that in

Fig. 2. Optimal (dashed line) and non optimal (solid lines) primer
vector p(θ) in a particular case of Corollary 1

some cases, even if there is a unique optimal one-impulse so-
lution to the OOP rendezvous problem, the optimal Lagrange
multipliers associated to this solution are not unique and so is
the possible primer vector that is not unique either. Even in this
case, there will always exist one optimal primer vector (dashed
curve) complying to all the optimality conditions while the
other primer vectors (solid curves) will violate the optimality
condition |p(θ)| ≤ 1, ∀ θ ∈ [θ0, θf ].

C. Initial (or final) and one interior impulses

The focus is now on optimal solutions with one interior
impulse and at least one boundary (initial or final) impulse.
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In that case, one extremum of the primer vector has a norm
equal to 1 while the other has a norm greater than 1.

Let θi0 denote the extremum anomaly on [θ0, θf ] and ε =
∆V (θi0 )

|∆V (θi0 )| the direction of the impulse located at θi0 . Note that
if the primer vector norm reaches 1 at any other anomaly on
[θ0, θf ], it can only be at θ0 or θf and the directions of the
optimal thrusts at these locations are in the opposite direction
to the interior impulse:

∆V (θ0)

|∆V (θ0)|
=

∆V (θf )

|∆V (θf )|
= −ε. (50)

Combining the optimality conditions (11), (12) and (13), the
Lagrange multipliers are uniquely defined by:

λ1 = ε sin(θi0), λ2 = −ε(e+ cos(θi0)), (51)

and the primer vector is then given by:

p(θ) = −εcos(θ − θi0) + e cos(θ)

1 + e cos(θ)
. (52)

Now, it is needed to determine the location of the interior
impulse. By the primer vector definition (52), having an
impulse at θ0 leads to:

1 + 2e cos(θ0) + cos(θi0 − θ0) = 0. (53)

This equation has a solution θi0 on ]θ0, θ0 + 2π] if and only
if cos(θ0) ≤ 0. If this condition is satisfied, the solutions are:

θ+
0 = θ0 + arccos(−1− 2e cos(θ0)),

θ̂+
0 = θ0 + 2π − arccos(−1− 2e cos(θ0)),

(54)

Note that if θf − θ0 < π, then (53) has a unique solution
on [θ0, θ0 + π], and has a solution on [θ0, θf ] if and only
if condition 1 + 2e cos(θ0) + cos(θf − θ0) ≤ 0 is satisfied.
Otherwise, when θf−θ0 ≥ π, then Equation (53) has a unique
solution on [θ0, θf ] if and only if:

1 + 2e cos(θ0) + cos(θf − θ0) < 0, (55)

and two solutions if condition (55) does not hold.
Similarly, having an interior impulse at θi0 and an impulse

at θf leads to:

1 + 2e cos(θf ) + cos(θi0 − θf ) = 0. (56)

This equation has a solution θi0 on [θf − 2π, θf [ if and only
if cos(θf ) ≤ 0. If this condition is satisfied, the solutions are:

θ−f = θf − arccos(−1− 2e cos(θf )),

θ̂−f = θf − 2π + arccos(−1− 2e cos(θf )).
(57)

As previously explained, if θf−θ0 < π, then (56) has a unique
solution on [θf − π, θf ], and has a solution on [θ0, θf ] if and
only if condition 1+2e cos(θf )+cos(θf−θ0) ≤ 0 is satisfied.
Otherwise, when θf−θ0 ≥ π, then Equation (56) has a unique
solution on [θ0, θf ] if and only if:

1 + 2e cos(θf ) + cos(θf − θ0) < 0, (58)

and two solutions if condition (58) does not hold.
Next, two cases are discussed: θi0 ∈ {θ+

0 , θ
−
f } and

θi0 ∈ {θ̂+
0 , θ̂

−
f }, according to the notations defined by (54)

and (57).

Case I: The results in the case where θi0 ∈ {θ+
0 , θ

−
f }, are

summarized in Proposition 3. To make the results clearer to
the reader, it is important to emphasize that + is associated
with # = 0 (initial impulse) while − is associated with # = f
(final impulse) as is indicated by the notations (54) and (57).

Proposition 3: An optimal solution for the linearized impul-
sive out-of-plane rendezvous problem is a 2-impulse trajectory
defined by the optimal locations (θ], θ

±
] ) and the associated

optimal thrusts,

∆V (θ]) = (1 + e cos(θ]))
cos(θ±] )zf1 + sin(θ±] )zf2

sin(θ±] − θ])
,

∆V (θ±] ) = −(1 + e cos(θ±] ))
cos(θ])zf1 + sin(θ])zf2

sin(θ±] − θ])
.

(59)
With ] = 0 if the conditions:

dθ < π and sin(θ0) <
√

1− e2

and 1 + 2e cos(θ0) + cos(θf − θ0) ≤ 0

and ε0 = εf or

 ε0 = −εf
|~zf |+ (2e|~zf | − ε0zf2) cos(θ0)

+ε0zf1 sin(θ0) ≤ 0
(60)

or
π ≤ dθ < 2π

and sin(θ0) <
√

1− e2 and cos(θ0) ≤ 0

and


1− cos(θf − θ0) + 2 sin(θf − θ0)g−(θ0) ≥ 0
|~zf |+ (2e|~zf | − ε0zf2) cos(θ0) + ε0zf1 sin(θ0) ≤ 0
sin(θf − θ0) + e(sin(θf )− sin(θ0))
+2(cos(θf − θ0) + e cos(θ0))g−(θ0) ≤ 0

(61)
are verified.

With ] = f if the conditions

dθ < π and sin(θf ) > −
√

1− e2

and 1 + 2e cos(θf ) + cos(θf − θ0) ≤ 0

and ε0 = εf or

 ε0 = −εf
|~zf |+ (2e|~zf | − ε0zf2) cos(θf )
+ε0zf1 sin(θf ) ≤ 0

(62)
or

π ≤ dθ < 2π

and sin(θf ) > −
√

1− e2 and cos(θf ) ≤ 0
and 1− cos(θf − θ0) + 2 sin(θf − θ0)g+(θf ) ≥ 0

and

 |~zf |+ (2e|~zf |+ εfzf2) cos(θf )− εfzf1 sin(θf ) ≤ 0
sin(θf − θ0) + e(sin(θf )− sin(θ0))
+2(cos(θf − θ0) + e cos(θf ))g+(θf ) ≥ 0

(63)
are verified.

The optimal Lagrange multipliers are given by:

λ1 = ε] (± sin(θ])(1 + 2e cos(θ])

−2 cos(θ])
√
−e cos(θ])(1 + e cos(θ]))

)
,

λ2 = ε] (±e∓ cos(θ])(1 + e cos(θ])

−2 sin(θ])
√
−e cos(θ])(1 + 2e cos(θ]))

)
,

(64)
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while the optimal primer vector is defined by:

p(θ) = p(θ±] )
cos(θ − θ±] ) + e cos(θ)

1 + e cos(θ)
. (65)

Case II: The results in the case where θi0 ∈ {θ̂+
0 , θ̂

−
f }, are

summarized in Proposition 4. To make the results clearer to
the reader, it is important to emphasize that + is associated
with # = 0 (initial impulse) while − is associated with # = f
(final impulse) as indicated by the notations (54) and (57).

Proposition 4: An optimal solution for the linearized impul-
sive out-of-plane rendezvous problem is a 2-impulse trajectory
defined by the optimal locations (θ], θ̂

±
] ) and the associated

optimal thrusts given by (59).
With ] = 0 if the conditions

π ≤ dθ < 2π

and sin(θ0) < −
√

1− e2 and cos(θ0) ≤ 0

and


1− cos(θf − θ0)− 2 sin(θf − θ0)g+(θ0) ≥ 0

1 + 2e cos(θ0) + cos(θf − θ0) ≥ 0
|~zf |+ (2e|~zf |+ ε0zf2) cos(θ0)− ε0zf1 sin(θ0) ≤ 0

sin(θf − θ0) + e(sin(θf )− sin(θ0))
−2(cos(θf − θ0) + e cos(θ0))g+(θ0) ≤ 0

(66)
are verified.

With ] = f if the conditions

π ≤ dθ < 2π

and sin(θf ) >
√

1− e2 and cos(θf ) ≤ 0

and


1− cos(θf − θ0)− 2 sin(θf − θ0)g−(θf ) ≥ 0

1 + 2e cos(θf ) + cos(θf − θ0) ≥ 0
|~zf |+ (2e|~zf | − εfzf2) cos(θf ) + εfzf1 sin(θf ) ≤ 0

sin(θf − θ0) + e(sin(θf )− sin(θ0))
−2(cos(θf − θ0) + e cos(θf ))g−(θf ) ≤ 0

(67)
are verified. The optimal Lagrange multipliers are given by:

λ1 = ε] (∓ sin(θ])(1 + 2e cos(θ]))

−2 cos(θ])
√
−e cos(θ])(1 + e cos(θ]))

)
λ2 = ε] (∓e± cos(θ])(1 + e cos(θ]))

−2 sin(θ])
√
−e cos(θ])(1 + 2e cos(θ]))

) (68)

while the optimal primer vector is defined by:

p(θ) = p(θ̂±] )
cos(θ − θ̂±] ) + e cos(θ)

1 + e cos(θ)
. (69)

D. Boundary solutions

In this section, the case of optimal solutions with no
interior impulse is discussed. In that case, the norm of the
primer vector can reach 1 only at θ0 and θf , which can
occur only if θf − θ0 < 2π. The objective equation given by
the optimality condition (14) leads to make the difference
between two cases: θf − θ0 6= π and θf − θ0 = π.

Case I: θf − θ0 6= π:
Proposition 5: An optimal solution for the linearized impul-

sive out-of-plane rendezvous problem is a 2-impulse trajectory
defined by the optimal locations (θ0, θf ) and the associated
optimal thrusts,

∆V (θ0) = (1 + e cos(θ0))
cos(θf )zf1 + sin(θf )zf2

sin(θf − θ0)
,

∆V (θf ) = −(1 + e cos(θf ))
cos(θ0)zf1 + sin(θ0)zf2

sin(θf − θ0)
,

(70)
if the conditions

dθ < π and ((sin(θ0) <
√

1− e2) or (sin(θf ) > −
√

1− e2))

and

ε0 = εf and


1 + 2e cos(θf ) + cos(θf − θ0) ≥ 0
1 + 2e cos(θ0) + cos(θf − θ0) ≥ 0
cos(θf )zf1 + sin(θf )zf2 6= 0
cos(θ0)zf1 + sin(θ0)zf2 6= 0

(71)

are verified and for which the optimal Lagrange multipliers
are given by:

λ1 = −ε0
cos(θf ) + cos(θ0) + 2e cos(θ0) cos(θf )

sin(θf − θ0)
,

λ2 = −ε0
sin(θf ) + sin(θ0) + e sin(θf + θ0)

sin(θf − θ0)
,

(72)
while the optimal primer vector is defined by:

p(θ) = ε0
(1 + e cos(θf )) sin(θ − θ0)

sin(θf − θ0)(1 + e cos(θ))

−ε0
sin(θf − θ)(1 + e cos(θ0))

sin(θf − θ0)(1 + e cos(θ))
,

(73)

or

π < dθ < 2π and ε0 = −εf

and


cos(θf )zf1 + sin(θf )zf2 6= 0
cos(θ0)zf1 + sin(θ0)zf2 6= 0
|λ2|(1 +Q2)√

1 +Q2(1− e2) + e
< 1

(74)

are verified and for which the optimal Lagrange multipliers
are given by:

λ1 = εf
cos(θf )− cos(θ0)

sin(θf − θ0)
, λ2 = εf

(
sin(θf )− sin(θ0)

sin(θf − θ0)
+ e

)
,

(75)
while the optimal primer vector is defined by:

p(θ) = −εf
sin(θ − θ0) + sin(θf − θ) + e cos(θ0)

sin(θf − θ0)(1 + e cos(θ))
, (76)

or

π < dθ < 2π and ε0 = εf
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and

1 + 2e cos(θf ) + cos(θf − θ0) ≤ 0
1 + 2e cos(θ0) + cos(θf − θ0) ≤ 0
cos(θf )zf1 + sin(θf )zf2 6= 0
cos(θ0)zf1 + sin(θ0)zf2 6= 0
and{
| sin(θ0)| <

√
1− e2

(e+ cos(θ0))(e+ cos(θf )) < 0
or{

sin(θ0) < −
√

1− e2

sin(θf ) > −
√

1− e2

(77)

are verified and for which the optimal Lagrange multipliers
are given by:

λ1 = ε0
cos(θf ) + cos(θ0) + 2e cos(θ0) cos(θf )

sin(θf − θ0)
,

λ2 = ε0
sin(θf ) + sin(θ0) + e sin(θf + θ0)

sin(θf − θ0)
,

(78)

while the optimal primer vector is defined by:

p(θ) = −ε0
(1 + e cos(θf )) sin(θ − θ0)

sin(θf − θ0)(1 + e cos(θ))

+ε0
sin(θf − θ)(1 + e cos(θ0)

sin(θf − θ0)(1 + e cos(θ))
.

(79)

Case II: θf − θ0 = π:
Corollary 2: When dθ = π and θ0 = −π2 + kπ, k ∈ Z,

the optimal solution may be concentrated on one boundary
impulse or scattered in two boundary impulses. In that case,
there may exist an infinite number of optimal Lagrange
multipliers (−ε1, λ2), |λ2| ≤ e, and the optimal directions
and amplitudes of thrust are characterized by:

∆V (θ0)

|∆V (θ0)|
= ε1 and

∆V (θf )

|∆V (θf )|
= −ε1, (80)

The optimal consumption is given by: |∆V (θ0)|+|∆V (θf )| =
|~zf |.

E. Summary of solutions and conditions

The solutions derived in the previous subsections are quite
complex due to the different cases and conditions that have
to be considered but a systematic simple procedure may be
defined to compute the optimal solution. Two tables are now
given to help the reader to grasp the essentials of the paper
and to design the associated algorithm providing one optimal
solution in every case. Table I summarizes the conditions to
be met for each type of solution depending on the duration
of the rendezvous. The first parameter to be checked is the
duration dθ of the rendezvous. For a given duration dθ, a
column of the Table I is identified and one has to check
the exclusive conditions involving the parameters θ0, θf , e
and ~zf in the chosen column. These tests involve only simple
algebraic operations (additions and multiplications), evaluation
of trigonometric and inverse trigonometric functions and sign
tests. Once the case to be dealt with is known, Table II gives
the corresponding fuel-optimal closed-form solutions in terms
of their velocity increments and the location of the optimal

impulses. Once again, only simple algebraic operations and
evaluation of trigonometric and inverse trigonometric func-
tions are involved.

In the Table I, n.a. is the abbreviation of not applicable.

VI. NUMERICAL EXAMPLES

In this section, four different examples are presented for
comparison’s sake with two existing results borrowed from the
state of the art: first, the standard 2-impulse solution, where
the two thrusts are located at the beginning and at the end of
the rendezvous. In addition, the optimal solution is compared
to the recent method proposed in [4]. The main ingredients of
the two methods are recalled below.

- Standard 2-impulse solution: The locations of the two
impulses are defined as θ0 and θf and therefore, the
computation of the DVs amounts to solve the linear
system defined by (14):

R(θ0)

r(θ0)
∆V1 +

R(θf )

r(θf )
∆V2 = ~zf ,

and whose solution is given by:

∆V 1 = (1 + e cos(θ0))
cos(θf )zf1 + sin(θf )zf2

sin(θf − θ0)
,

∆V 2 = −(1 + e cos(θf ))
cos(θ0)zf1 + sin(θ0)zf2

sin(θf − θ0)
.

(81)
Note that this solution appears to be optimal when the
conditions on dθ, e, ~zf , θ0 and θf of case D in Table I
are met.

- 1-impulse solution: In [4], a 1-impulse strategy is defined
based on the use of a particular set of relative orbital
parameters. Applying the proposed strategy with the
cartesian relative positions and velocities, the possible
locations of the only impulse are given by:

θk = arctan(−zf1
zf2

) + kπ, k = 0, 1, · · · . (82)

Among all θks computed with (82), choose the one lead-
ing to the minimum-fuel impulse, calculated by solving
the linear system (14):

R(θk)

r(θk)
∆V (θk) = ~zf ,

and whose solution is given by:

∆V (θk) = −zf1
1 + e cos(θk)

sin(θk)
= zf2

1 + e cos(θk)

cos(θk)
.

(83)
If the procedure gives the minimum-fuel 1-impulse so-
lution, there is no guarantee that this solution is optimal
when varying the possible number of impulses except
when the conditions described in Table I for the cases
B1 and B2 are fulfilled.
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XXXXXXXXCase
duration

dθ < π π < dθ < 2π dθ ≥ 2π

A
2 int. imp.

e|~zf | > |zf2 | and sin(θ0) ≥
√

1− e2
and sin(θf ) ≤ −

√
1− e2 e|~zf | > |zf2 | and (34) e|~zf | > |zf2 |

B1

1 int. imp.

e|~zf | ≤ ε0zf2 and εf = −ε0
or

e|~zf | > ε0zf2 and εf = −ε0 and (43)

e|~zf | ≤ ε0zf2 and εf = −ε0
or

e|~zf | > ε0zf2 and εf = −ε0 and (43)
n.a.

B2

1 int. imp. n.a.
e|~zf | ≤ ε0zf2 and εf = ε0

or
e|~zf | > ε0zf2 and εf = ε0 and (46)

e|~zf | < |zf2 |

C1

1 init.
1 int. imp.

sin(θ0) <
√

1− e2 and (60) and
1 + 2e cos(θ0) + cos(θf − θ0) ≤ 0

sin(θ0) <
√

1− e2
and

cos(θ0) ≤ 0 and (61)
n.a.

C2

1 int. imp.
1 final imp.

sin(θf ) > −
√

1− e2 and (62) and
1 + 2e cos(θf ) + cos(θf − θ0) ≤ 0

sin(θf ) > −
√

1− e2
and

cos(θf ) ≤ 0 and (63)
n.a.

C3

1 init. imp.
1 int. imp.

n.a.
sin(θ0) < −

√
1− e2

and
cos(θ0) ≤ 0 and (66)

n.a.

C4

1 int. imp.
1 final imp.

n.a.
sin(θf ) >

√
1− e2

and
cos(θf ) ≤ 0 and (67)

n.a.

D
1 init. imp.
1 final imp.

sin(θ0) <
√

1− e2 and (71)
or

sin(θf ) > −
√

1− e2 and (71)

ε0 = −εf and (74)
or

ε0 = εf and (77)
n.a.

TABLE I
SUMMARY OF THE CONDITIONS/SOLUTIONS DEPENDING ON THE DURATION OF THE RENDEZVOUS

Solutions Velocity Increments Impulse Locations

A
2 int. imp.

∆V (θ+) =

√
1−e2
2e

(−ezf1 −
√

1− e2zf2)

∆V (θ−) =

√
1−e2
2e

(+ezf1 −
√

1− e2zf2)

θ+ = min{θ ≥ θ0 s.t.
cos(θ) = −e
sin(θ) =

√
1− e2 }

θ− = min{θ ≥ θ0 s.t.
cos(θ) = −e
sin(θ) = −

√
1− e2 }

B1

1 int. imp. ∆V (θi0) = −ε0|~zf |+ ezf2 cos(θi0) = −ε0
zf2
|~zf |

, sin(θi0) = ε0
zf1
|~zf |

B2

1 int. imp. ∆V (θi2) = −ε2|~zf |+ ezf2 cos(θi2) = −ε2
zf2
|~zf |

, sin(θi2) = ε2
zf1
|~zf |

C1

1 init. imp.
1 int. imp.

∆V (θ0) = (1 + e cos(θ0))
cos(θ+0 )zf1 + sin(θ+0 )zf2

sin(θ+0 − θ0)

∆V (θ+0 ) = −(1 + e cos(θ+0 ))
cos(θ0)zf1 + sin(θ0)zf2

sin(θ+0 − θ0)

θ0 and
θ+0 = θ0 + arccos(−1− 2e cos(θ0))

C2

1 int. Imp.
1 final imp.

∆V (θf ) = (1 + e cos(θf ))
cos(θ−f )zf1 + sin(θ−f )zf2

sin(θ−f − θf )

∆V (θ−f ) = −(1 + e cos(θ−f ))
cos(θf )zf1 + sin(θf )zf2

sin(θ−f − θf )

θ−f = θf − arccos(−1− 2e cos(θf ))
and θf

C3

1 init. imp.
1 int. imp.

∆V (θ0) = (1 + e cos(θ0))
cos(θ̂+0 )zf1 + sin(θ̂+0 )zf2

sin(θ̂+0 − θ0)

∆V (θ̂+0 ) = −(1 + e cos(θ̂+0 ))
cos(θ0)zf1 + sin(θ0)zf2

sin(θ̂+0 − θ])

θ0 and

θ̂+0 = θ0 + 2π − arccos(−1− 2e cos(θ0))

C4

1 int. imp.
1 final imp.

∆V (θf ) = (1 + e cos(θf ))
cos(θ̂−f )zf1 + sin(θ̂−f )zf2

sin(θ̂−f − θf )

∆V (θ̂−f ) = −(1 + e cos(θ̂−f ))
cos(θf )zf1 + sin(θf )zf2

sin(θ̂−f − θf )

θ̂−f = θf − 2π + arccos(−1− 2e cos(θf ))
and θf

D
1 init. imp.
1 final imp.

∆V (θ0) = (1 + e cos(θ0))
cos(θf )zf1 + sin(θf )zf2

sin(θf − θ0)
,

∆V (θf ) = −(1 + e cos(θf ))
cos(θ0)zf1 + sin(θ0)zf2

sin(θf − θ0)

θ0 and θf

TABLE II
SUMMARY OF FUEL-OPTIMAL SOLUTIONS FOR EACH CASE
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A. Example 1

The first numerical example is based on the PROBA-3
mission whose main goals are to demonstrate the technologies
required for Formation Flying of two spacecraft in highly
elliptical orbit [19]. The necessary orbital elements and con-
ditions for the out-of-plane rendezvous definition are given in
Table III. Two different initial state vectors ~X01 , ~X02 and two
different final time of rendezvous θf1 , θf2 are considered while
the other parameters defining the conditions of the rendezvous
remain unchanged.

a [m] 37039887
e 0.80621

θ0 [rad] 2.042
~XT
01

[m m/s] [ −5000 0.5 ]
~XT
02

[m m/s] [ −5000 0 ]

θf1 [rad] 3π
θf2 [rad] 4π
~XT
f [m m/s] [ 20 0.2 ]

TABLE III
RENDEZVOUS PARAMETERS FOR PROBA-3 EXAMPLE: CASES 1 AND 2

Case 1: ~X0 = ~X01
and θf = θf1 : the duration of the

rendezvous dθ is greater than 2π and therefore the conditions
to be checked in order to identify which case will lead to
the optimal solution, are given in the last column of Table I.
Here, using the values of the parameters given in Table III, it
is computed that: zf = 103 [ 3.400 2.879 ], so that: e|~zf | >
|zf2 |, corresponding to the case A. The optimal solution is a
2-impulse solution with their location strictly in the interior of
[θ0, θf ]. According to the first line of Table II, this solution is
defined by its velocity increments and their optimal locations:

∆V 1 =

√
1− e2
2e

(−ezf1 −
√

1− e2zf2) = 0.6975 [m/s],

∆V 2 =

√
1− e2
2e

(+ezf1 −
√

1− e2zf2) = 0.1639 [m/s],

θ1 = min{θ ≥ θ0 s.t.
cos(θ) = −e,
sin(θ) =

√
1− e2 } = 2.5085 [rad],

θ2 = min{θ ≥ θ0 s.t.
cos(θ) = −e,
sin(θ) = −

√
1− e2 } = 3.7747 [rad].

(84)
Applying respectively (84) for the proposed optimal solution
(o.s.), (81) for the 2-impulse solution (2-i) and (82) and (83)
for the 1-impulse strategy leads to the numerical optimal
solution in Table IV. Figures 3(a), 3(b) and 4 respectively
depict the three out-of-plane trajectories in the phase plane,
the corresponding position and velocity trajectories and the
primer vector attached to these particular solutions.

(a) Optimal (blue), 1-impulse (green)
and standard 2-impulse (black) trajec-
tories in phase plane.

(b) Position and velocity vs true
anomaly.

Fig. 3. Numerical Example: PROBA-3 (case 1). Note that the blue and green
trajectories partially overlap.

Fig. 4. Optimal (blue) and nonoptimal 2-impulse (black) and 1-impulse
(green) primer vectors: PROBA-3 (case 1)

θ1 [rad] ∆V 1 [m/s] θ2 [rad] ∆V 2 [m/s] Cost [m/s]
o.s. 2.5085 −0.6975 3.7747 0.1639 0.8614
2-i. 2.042 −1.0348 3π −0.095 1.1298
1-i. 2.27 −0.9128 - - 0.9128

TABLE IV
OPTIMAL SOLUTION WITH A MINIMUM NUMBER OF IMPULSES, STANDARD

2-IMPULSE SOLUTION AND 1-IMPULSE SOLUTION FOR CASE 1 OF
PROBA-3 EXAMPLE.

Note that, since dθ > 2π, it is always possible to choose
a different optimal solution with the same cost but scattered
over the maximum number of impulsive maneuvers while
preserving the optimal consumption as indicated by Remark
1. One 3-impulse optimal solution is given in Table V. Note
also that θ3 = θ1 + 2π.

θ1 [rad] ∆V1 [m/s] θ2 [rad] ∆V2 [m/s]
2.5085 −0.34875 3.7747 0.1639

θ3 [rad] ∆V3 [m/s] Cost [m/s]
8.7917 −0.34875 0.8614

TABLE V
OPTIMAL SOLUTION SCATTERED OVER 3 IMPULSES FOR PROBA-3

EXAMPLE: CASE 1.

The choice between two equivalent minimum-fuel solution
with a different number of thrusts (2-impulse solution and
3-impulse solution) may be justified by different operational
constraints. For instance, considering that a maximum velocity
increment for this type of mission is set to 0.5 m/s, it is
easily seen that the 2-impulse optimal solution would not be
eligible when the 3-impulse optimal solution would be. On
the contrary, if some operational constraint has to be met in
the second part of the rendezvous, preventing to fire again the
engine, the 2-impulse mission could be preferable if it respects
the maximum Delta-V allowed by the designer.

Case 2: ~X0 = ~X02
and θf = θf2 : When ~X0 = ~X02

and
θf = θf2 , the duration of the rendezvous is still such that dθ >
2π. One has now: zf = 103 [ 1.797 4.714 ] and: e|~zf | < |zf2 |,
corresponding to the case B2 in Table I. Table II indicates that
the optimal solution is an interior 1-impulse solution defined
by:

∆V 1 = −ε2|~zf |+ ezf2 ,

cos(θ1) = −ε2
zf2
|~zf |

, sin(θ1) = ε2
zf1
|~zf |

.
(85)

Here, applying the method from [4] leads to an identical
solution and the comparison is made with the standard 2-
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impulse approach. The corresponding numerical solutions are
given in Table VI.

θ1 [rad] ∆V 1 [m/s] θ2 [rad] ∆V 2 [m/s] Cost [m/s]
o.s. 2.777 −0.5322 - - 0.5322
2-i. 2.042 −0.5470 4π 2.9341 3.481

TABLE VI
OPTIMAL SOLUTION WITH A MINIMUM NUMBER OF IMPULSES, STANDARD

2-IMPULSE SOLUTION FOR CASE 2 OF PROBA-3 EXAMPLE.

The out-of-plane trajectory in the phase plane and relative
position and velocity for each solution are given respectively
in Figures 5(a) and 5(b) while the two corresponding primer
vector histories is depicted in Figure 6.

(a) Optimal (blue) and standard 2-
impulse (black) trajectories in phase
plane.

(b) Position and velocity vs true
anomaly.

Fig. 5. Numerical Example: PROBA-3 (case 2). Note that the blue and green
trajectories partially overlap.

Fig. 6. Optimal (blue) and nonoptimal 2-impulses (black) primer vectors:
PROBA-3 (case 2).

B. Example 2

Let us consider the numerical example borrowed from the
reference [20], for which the target spacecraft is in the geosta-
tionary orbit transfer (GTO). It is a highly elliptical Earth orbit
with apogee of 42.164 km. The rendezvous characteristics are
summarized in Table VII.

a [m] 24616000
e 0.73074

θ0 [rad] 0.1π
~XT
0 [m m/s] [ 10000 −3 ]
θf1 [rad] 5.2
θf2 [rad] 3
~XT
f [m m/s] [ 0 0 ]

zf 104 [ − 1.788 0.018 ]
TABLE VII

RENDEZVOUS PARAMETERS: [20]

Two different durations of rendezvous are considered. The
first case is directly the one presented in [20] with π <
dθ1 < 2π while the duration of the second rendezvous has
been shortened, dθ2 < π, when the initial and final conditions
remain unchanged.

Case 1: θf = 5.2 rad.: In this case, the optimal out-of-plane
solution is a 2-impulse solution with initial and final coasting
defined again as the case A in Table I. Here, the final coasting
may be considered as a degenerate one since the chaser has
reached the final conditions after the second maneuver.

θ1 [rad] ∆V 1 [m/s] θ2 [rad] ∆V 2 [m/s] Cost [m/s]
o.s. 2.3902 3.1060 3.8930 -3.1668 6.2728
2-i. 0.1π 7.5533 5.2 −11.8696 19.4229
1-i. 1.5604 −9.1196 - - 9.1196

TABLE VIII
OPTIMAL SOLUTION, STANDARD 2-IMPULSE SOLUTION AND 1-IMPULSE

SOLUTION FOR CASE 1 OF GTO EXAMPLE.

The optimal solution may be compared to the standard 2-
impulse and 1-impulse solutions in Table VIII. It clearly shows
the non-optimality of the last two plans of maneuvers. The
standard 2-impulse solution is three times more expansive than
the optimal one, when the 1-impulse plan uses up 45% more
fuel than the optimal one. The phase plane, relative position
and velocity trajectories may be compared in Figures 7(a) and
7(b). Finally, Figure 8 shows the three different primer vectors.

(a) Optimal (blue), 1-impulse (green)
and standard 2-impulse (black) trajec-
tories in phase plane.

(b) Positions and velocities vs true
anomaly.

Fig. 7. Numerical Example: GTO (case 1). Note that the blue and green
trajectories partially overlap.

Fig. 8. Optimal (blue) and nonoptimal 2-impulses (black) primer vectors:
GTO (case 1)

Case 2: θf = 3 rad.: The particular nature of the previous
optimal solution is further illustrated by the following case
where the duration of the rendezvous has been shortened re-
sulting in a 2-impulse optimal solution with an initial coasting



13

and a final impulse and detected as case C2 in Table I. For
this case, using formulae given in Table II in the corresponding
row, the results given in Table IX are obtained and may be
compared to the two other approaches. The reduction of the
duration of the rendezvous obviously results in increasing the
consumption for all methods but it is important to notice
that the consumption of the standard 2-impulse is particularly
sensitive to the change of the duration of the rendezvous.

θ1 [rad] ∆V 1 [m/s] θ2 [rad] ∆V 2 [m/s] Cost [m/s]
o.s. 1.8924 7.8311 3 -0.9261 8.7572
2-i. 0.1π 35.0842 3 5.4730 40.5572
1-i. 1.5604 9.2591 - - 9.2591

TABLE IX
OPTIMAL SOLUTION, STANDARD 2-IMPULSE SOLUTION AND 1-IMPULSE

SOLUTION FOR CASE 2 OF GTO EXAMPLE.

The phase plane, relative position and velocity trajectories
may be compared in Figures 9(a) and 9(b). Finally, Figure 10
shows the three different primer vectors.

(a) Optimal (blue), 1-impulse (green)
and standard 2-impulse (black) trajec-
tories in phase plane.

(b) Positions and velocities vs true
anomaly.

Fig. 9. Numerical Example: GTO (case 2). Note that the blue and green
trajectories partially overlap.

Fig. 10. Optimal (blue), nonoptimal 2-impulse (black) and 1-impulse (green)
primer vectors: GTO (case 2)

VII. CONCLUSION

The problem of time-fixed fuel-optimal out-of-plane elliptic
rendezvous between spacecraft in a linear setting was still an
open problem. This paper presents a new complete analytical
closed-form solution to address this problem. It is mainly
based on the so-called primer vector theory which is used
to capture all possible optimal solutions for any duration and
any boundary conditions of the rendezvous. The derivations
of these results are based on the particular properties of the
primer vector and on the thorough analysis of the possible
primer vector candidates that have to meet the optimality
conditions. Depending upon the duration of the rendezvous,
conditions are derived to identify if the optimal solutions
consist in one interior impulse, two interior impulses, one

interior and one boundary impulses or one single boundary
solution. In addition, it is shown that when the rendezvous
may last more than one revolution, the designer has extra
degrees of freedom allowing to split the optimal consumption
over a maximum number of impulses that may be greater
than the usual upper-bound of Neustadt. Despite its apparent
complexity (high number of different cases and conditions),
this analytical solution paves the way for onboard implemen-
tation in order to develop operational autonomy of future
missions. Indeed, the optimal solutions are directly expressed
in terms of the data of the problem (eccentricity, initial and
final anomaly, boundary conditions) and do not require time-
consuming computations to be obtained.

In addition, it is worth noticing that similar analytical results
are likely to be provided for non elliptic Keplerian reference
orbits (parabolic e = 1 and hyperbolic e > 1) using identical
derivations and might be an interesting topic in the future.

APPENDIX

The case where the rendezvous lasts more than 2π is first
considered. Consistent with the notation for the true anomalies
θ+ and θ−, let

N± = max {i ∈ N>0 : θ± + 2(i− 1)π ≤ θf} .

Due to optimality conditions (12) and (13), the optimal im-
pulses could only occur at the extrema locations in [θ0, θf ] of
the primer vector. From the extremum ratio (22), it is observed
that θ+ and θ− are necessarily the locations in [θ0, θ0 +2π) of

the extrema of the primer vector |p(θ±)| = 1 and
dp

dθ
(θ±) = 0.

Any optimal solution with two interior impulses per period, is
composed of at most N+ + N− optimal impulses, located at
θi ∈

{
θ+
i : i = 1, · · · , N+

}
∪
{
θ−i : i = 1, · · · , N−

}
where

θ±i = θ±+ 2(i− 1)π, i = 1, · · · , N±. By the way, from (18)
and the conditions on the primer vector and its derivative,
the second optimal Lagrange multiplier is obtained as λ∗2 = 0.

Hence, p(θ+) = −p(θ−) = − λ1√
1− e2

due to the definition of

θ+ and θ− given by (32). The optimality condition (11) leads
to the optimal directions of thrust: for all i = 1, · · · , N+,

∆V (θ+
i )∣∣∆V (θ+
i )
∣∣ =

∆V (θ+)

|∆V (θ+)|
= − λ1√

1− e2
= ε. (86)

and for all i = 1, · · · , N−,

∆V (θ−i )∣∣∆V (θ−i )
∣∣ =

∆V (θ−)

|∆V (θ−)|
=

λ1√
1− e2

= −ε. (87)

(86) and (87) indicate that the optimal directions are alternat-
ing between θ+

i and θ−i . Condition (14) leads to the following
system of equations:

[ √
1− e2

e

] N+∑
i=1

|∆V (θ+
i )|+

[ √
1− e2

−e

] N−∑
i=1

|∆V (θ−i )|

= ε~zf (1− e2),
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from which may be easily computed the optimal consumption:
N+∑
i=1

|∆V (θ+
i )| = ε

√
1− e2

2e

(
ezf1 +

√
1− e2zf2

)
, (88)

N−∑
i=1

|∆V (θ−i )| = ε

√
1− e2

2e

(
ezf1 −

√
1− e2zf2

)
, (89)

N+∑
i=1

|∆V (θ+
i )|+

N−∑
i=1

|∆V (θ−i )| = εzf1
√

1− e2. (90)

From the positive sign of (88) and (89), it is deduced
that ε = sgn(zf1) = ε1. Then, (ezf1 +

√
1− e2zf2) and

(ezf1 −
√

1− e2zf2) are necessarily not equal to 0 and have
the same sign which is equivalent to e|~zf | > |zf2 |. Indeed,
if e|~zf | = |zf2 |, the optimal solution comes down to one
interior impulse solution as described in the next section, with
at most one positive or negative impulse per period. The first
optimal Lagrange multiplier is then obtained from (11) as
λ∗1 = −ε1

√
1− e2. In conclusion, when dθ ≥ 2π, the optimal

solution of the planning may be chosen to be concentrated
over two impulses, as is presented in Proposition 1 or spread
over N− + N+ impulses verifying (88) and (89), depending
on the duration of the rendezvous and operational constraints.
Finally, the optimal consumption is defined by |zf1 |

√
1− e2.

Let now consider the case where the rendezvous lasts less
than 2π i.e. dθ < 2π. The discussion is very similar to the case
where θf − θ0 ≥ 2π and leads to the conditions e|~zf | > |zf2 |
and (θ+, θ−) ∈ [θ0, θf ]2.

• Case dθ < π. There exists θ+, θ− ∈ [θ0, θf ] such that
cos(θ±) = −e and sin(θ±) = ±

√
1− e2 if and only if:

sin(θ0) ≥
√

1− e2, sin(θf ) ≤ −
√

1− e2 (91)

• Case π < dθ < 2π. There exists θ+, θ− ∈ [θ0, θf ] such
that (91) if and only if

sin(θ0) ≥
√

1− e2 or

{
sin(θ0) ≤

√
1− e2

sin(θf ) ≤ −
√

1− e2

or

{
| sin(θ0)| <

√
1− e2

(e+ cos(θ0))(e+ cos(θf )) > 0.

Under these conditions, the optimal solution is a 2-impulse
solution defined by the optimal locations θ+ and θ− and

∆V (θ±) =

√
1− e2

2e
(∓ezf1 −

√
1− e2zf2),

λ∗1 = −ε1

√
1− e2, λ∗2 = 0.

(92)

In both cases the optimal primer vector is given by:

p∗(θ) = ε1

√
1− e2 sin(θ)

1 + e cos(θ)
. (93)
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