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Abstract—Millimeter-wave systems appears to be one of the
foremost solutions to face the exponential growth of the data
traffic. Yet, their performance are severely degraded by oscilla-
tors phase noise. This paper addresses the design of optimum
receivers affected by phase noise. We first derive the optimum
decision metric for symbol detection under the assumption of
a Gaussian phase noise and a high signal-to-noise ratio. In
contrast to state-of-the-art approaches, we propose to represent
within a complete metric space the demodulation over the phase
noise channel. The provided framework enables the use of
efficient algorithms to perform the demodulation. Computable
probabilistic demapper values are derived upon the optimum
metric to implement soft channel decoding. This work shows that
knowledge of the channel statistics can be capitalized to enhance
performance of both coded and uncoded systems. Eventually, we
propose the necessary channel estimation scheme and evaluate
the performance degradation due to estimation errors.

Index Terms—Millimeter wave, Phase noise, Maximum likeli-
hood detection, Complete metric space, Channel estimation

I. INTRODUCTION

With regard to the spectrum shortage in the cellular bands,
the millimeter-wave (mmWave) spectrum has aroused lots of
interest in the research domain. With unprecedentedly large
bandwidth, mmWave systems are considered to be one of the
foremost solutions to face the exponential growth of the data
traffic. Within the next couple of years, a requirement of 10+
Gbit/s user throughput is foreseen. Nonetheless, the poor per-
formance of high frequency oscillators [1] plagues mmWave
systems with strong Phase Noise (PN). This has motivated
extensive work on the design of optimum receivers for systems
impacted by PN. Numerous of these optimum receivers are
listed in [2] for the common PN models. Still, most of the
literature’s detectors present complex structures hindering any
analytical study. The development of telecommunications has
proved that simple analytical frameworks are fundamental for
the design of communications systems as they provide means
to pursue comprehensive analyses and thus develop efficient
algorithms.

Contributions: Through this work, we aim at improving
the design of high-rate mmWave communications. This paper
mainly pursues the study of Krishnan [2]. Similarly, we
assume a high SNR and a Gaussian PN to derive the already
known Maximum-Likelihood (ML) decision premetric for
symbol detection. In contrast to [2], we exploit further the
high SNR approximation to properly define the polar metric.
Our metric achieves the same optimum performance of the
ML premetric but enables us to come within the scope of

complete metric spaces. Representing signals upon an appro-
priate metric space allows the use of efficient algorithms to
perform the demodulation. Further, to enhance performance of
coded systems, we propose computable probabilistic demapper
values using the polar metric to implement efficient soft
decision decoding. Though knowledge of the channel statistics
improves the performance, it requires a channel estimation.
Accordingly, we propose ML estimators of the thermal and
phase noise variances. The performance degradation due to
estimation errors of the polar metric are eventually evaluated
and compared to the ML premetric one.

Organization: The remainder of this paper is structured as
follows. Section II introduces a brief description of the channel
and PN models. Section III derives the polar metric decision
rule for optimal symbol detection impacted by Gaussian PN.
Further, Section IV is devoted to the evaluation of probabilistic
demapper values. Finally, an appropriate channel estimation is
proposed in Section V to implement the optimal demodulation.

II. SYSTEM MODEL

A. Channel

We consider the complex Additive White Gaussian Noise
(AWGN) channel impacted by PN. The received signal is then
written as

r = s · ejφ + n, (1)

where s is the modulated symbol, φ is the oscillator PN and
n represents a zero-mean circular complex Gaussian noise
with variance 2σ2

n. The transmitted symbol s belongs to the
constellation C with average energy Es and modulation order
M . We will use the polar representation such that sρ and
sθ stand respectively for the amplitude and phase of symbol s.

B. Phase noise

The Gaussian distribution is mathematically convenient and
thus often exploited to pursue simple analytical analyses [3].
In fact, it appears to be an appropriate PN model for mmWave
systems. When considering wide bandwidth systems, the os-
cillator noise floor represents the greatest contribution to the
overall PN [4]. Then the oscillator PN φ is to be described by
a zero-mean Gaussian distribution with variance σ2

p as follows

φ ∼ N (0, σ2
p). (2)



III. MAXIMUM LIKELIHOOD SYMBOL DETECTION

A. Optimum decision metric at high SNR
Regarding symbol-by-symbol detection, the Symbol Error

Probability (SEP) is minimized by the Maximum A Posteriori
(MAP) decision criterion [5]. When transmitted symbols are
equiprobable and mutually independent, this criterion simpli-
fies to the ML decision rule [5]. The optimum receiver decision
is hence defined upon the likelihood function p(r|s). With
regard to the channel model in Eq. (1), it is relevant to rewrite

p(r|s) = p(rρ, rθ|sρ, sθ). (3)

Let us denote by n′ the shifted noise n · e−j(sθ+φ) which is
identically distributed to n as the complex AWGN is circular.
We then study the received symbol through its amplitude and
phase as

rρ =
∣∣∣(sρ + n′) · ej(sθ+φ)

∣∣∣
=

√(
sρ + <(n′)

)2
+ =(n′)2

' sρ + <(n′)

(4)

and
rθ = arg[(sρ + n′) · ej(sθ+φ)]

= sθ + φ+ arctan

(
=(n′)

sρ + <(n′)

)
' sθ + φ+

=(n′)
sρ

.

(5)

These first-order approximations clearly hold under a high
SNR assumption. Further, exploiting the high SNR assumption
enables to derive a simple closed-form expression of the
channel likelihood function [2]. We conclude from the thermal
and phase noise model in Eq. (1) and (2) that

rρ ∼ N (sρ, σ
2
n),

rθ ∼ N (sθ, σ
2
p + σ2

n/s
2
ρ).

(6)

It is straightforward that the likelihood function follows a
bivariate Gaussian distribution defined by

p(r|s) =
exp

(
− 1

2

( (rρ − sρ)2
σ2
n

+
(rθ − sθ)2

σ2
p + σ2

n/s
2
ρ

))
2π
√
σ2
n(σ

2
p + σ2

n/s
2
ρ)

. (7)

This expression has been originally derived in [2] and leads
to the ML detection decision at the receiver given by

ŝ = arg max
s ∈ C

p(r, s)

= arg min
s ∈ C

d2(r, s),
(8)

where d is the ML premetric defined by

d2(r, s) =
(rρ − sρ)2

σ2
n

+
(rθ − sθ)2

σ2
p + σ2

n/s
2
ρ

+ log
(
1 +

1

σ2
p

· σ
2
n

s2ρ

)
. (9)

The ML premetric has proved to yield significant gain in
performance compared to the Euclidean distance detector [2].

This decision rule is the minimization of the Mahalanobis
distance [6]. However, in this case the covariance matrix is
defined upon the amplitude of the sent symbol sρ. Therefore,
considering d is not convenient since it does not define a
metric. Indeed, the map d : C×C 7→ R+ is neither symmetric
nor subadditive - even if the log term is considered negligble
in the decision.

Without loss of generality, we can assume that σ2
p+σ

2
n/s

2
ρ '

σ2
p+σ

2
n/Es, which is a tight approximation at high SNR. This

leads to the polar metric decision rule

ŝ = arg min
s ∈ C

d2γ(r, s),

d2γ(r, s) = (rρ − sρ)2 +
(rθ − sθ)2

γ2
,

(10)

where γ2 = σ2
p/σ

2
n + 1/Es. One of the advantages of

exploiting the polar metric rather than the ML premetric is
that distances are simpler to evaluate on practical systems.
Besides, in doing so, the polar metric dγ is well-defined and
enables us to pursue the analysis within the scope of complete
metric space.

B. Framework

Lemma 1. Let the complex number s be represented by its
polar coordinates (sρ, sθ) ∈ P = [0,∞)× [−π, π]. Then the
space PN - of sequences s = {sρ,k, sθ,k}1≤k≤N of N numbers
in P - is a complete metric space when equipped with the
metric dγ : PN × PN 7→ R+ defined by

d2γ(x,y) =

N∑
k=1

(xρ,k − yρ,k)2 +
(xθ,k − yθ,k)2

γ2
, γ2 ∈ R+

∗ ,

(11)
for every x,y vectors of PN .

Proof: It is sufficient to demonstrate that PN is a closed
subset of the complete metric space (R2N , dγ). First, it is triv-
ial that the map dγ is a weighted Euclidean distance on R2N .
It follows immediately that (R2N , dγ) is a complete metric
space. Ultimately, the metric space (PN , dγ) is complete as
PN is clearly a closed subset of R2N .

From now on, we will abbreviate by p2 the metric
space (PN , dγ) providing the framework to study the
Gaussian PN channel. Metric spaces, by generalizing the
notion of distances, provide a fundamental framework for
telecommunications. Lemma 1 ensure that efficient algorithms
may be designed for the demodulation of signals over the
Gaussian PN channel. By way of example, the Nearest
Neighbor (NN) search to realize the symbol detection in
Eq. (10) or to compute the probabilistic demapper values -
later defined in Eq. (17) - may be performed very efficiently
within p2 using projections or sphere decoding. However,
design of such algorithm exceeds the scope of this paper and
is to be addressed in a future dedicated one.

To conclude, it is important to highlight the strong similarity
of the Gaussian PN channel and the complex AWGN one. This
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is well illustrated by the fact that the system model in Eq. (1)
and (2) can be approximated within P by

(rρ, rθ) ' (sρ + nρ, sθ + nθ), (12)

where nρ and nθ follows Gaussian distributions with respect
to Eq. (6). In fact, we entitled the space p2 by analogy to
the space l21, usually exploited to study discrete signals over
linear channels.

C. Application: demodulation of uncoded M -QAM

We depict in Fig. 1 the BER performance of an uncoded 16-
QAM with detection based either on the Euclidean distance,
or on the ML premetric, or on the polar metric. First, it should
be highlighted that the error floor, due to PN, is significantly
reduced by using an appropriate decision rule. These simula-
tions also demonstrate that performance achieved by the polar
metric, with a simpler expression, are identical to the ML
premetric one at high SNR. Fig. 1 is an illustration of the
performance maximization through Channel-State-Information
(CSI) capitalization. It is worth mentioning that using channel
statistics to properly represent the signal and hence optimize
the communication performance is a well-known scheme,
implemented for instance in the Orthogonal Time Frequency
Space (OTFS) waveform [7].

IV. PROBABILISTIC DEMAPPER

Channel coding is indivisible of modern communication
systems, for it provides a means to achieve robust com-
munications over noisy channels. Furthermore, it is usually
complemented with soft decision decoding, which is known
to improve significantly the performance of channel decoders.

1The set of complex-valued sequences equipped with the Euclidean inner
product

Namely, soft decision decoding exploits the reliability in-
formation of the encoded bits. Nevertheless, it may be too
complex for practical systems to evaluate directly the exact
values of a probabilistic demapper. Still, they can be closely
approximated in order to be efficiently computed.

A. Bit LLR values

Let us here consider a Bit-Interlaved-Coded-Modulation
(BICM) architecture such that the symbol s maps the binary
word b = (b1, ..., blog2(M)). The optimum hard decision on
the simple detection problem regarding bit bi is achieved by
the ML criterion [6]

b̂i(r) =

{
1, if Li(r) > 0

0, otherwise
, (13)

where Li, the Log-Likelihood-Ratio (LLR) of decision b̂i, is
defined by

Li(r) = log

(
p(bi = 1|r)
p(bi = 0|r)

)
. (14)

While the sign of the LLR supplies the decision to be taken,
its absolute value quantifies the reliability of this decision. By
applying Bayes’ rule and assuming equiprobable symbols, the
LLR may be written as

Li(r) = log

(∑
s1∈Ci1 p(r|s1)∑
s0∈Ci0 p(r|s0)

)
, (15)

where Ciβ denote the subset of the constellation symbols satis-
fying bi = β. This expression are tedious to evaluate directly.
However, simplified but suboptimal LLR can be obtained
through the commonly used max-log sum approximation [8],
viz. log(

∑
k xk) ' maxk log(xk). This approximation is tight

at high SNR and leads to

Li(r) ' max
s1∈Ci1

log
(
p(r|s1)

)
− max
s0∈Ci0

log
(
p(r|s0)

)
. (16)

In addition, most of implemented decoder algorithms are not
sensitive to normalization, e.g. the min-sum decoder for LDPC.
Such that, we can express the LLR upon the polar metric
defined in Eq. (10) by

Li(r) ' min
s0∈Ci0

d2γ(r, s0)− min
s1∈Ci1

d2γ(r, s1). (17)

Several comments should be pointed out. First, this expression
is identical to the LLR of an AWGN channel if d denoted
the Euclidean distance [8]. Furthermore, the bit LLR values
in Eq. (17) can be computed simply - which is not the case
for the ML premetric - since the polar metric dγ is no more
than a weighted Euclidean distance within p2. Although the
proposed demodulation is applied to QAM constellation in
the following, it is valid for any modulation scheme.
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B. Application: demodulation of LDPC coded M -QAM

To the best of our knowledge, performance gains provided
by an appropriate decision metric for demodulation of coded
systems over the Gaussian PN channel have never been
evaluated. Besides, in the high-rate communications context,
Low-Density-Parity-Check (LDPC) codes are recognized as
a foremost solution for error-correcting codes. Due to their
excellent performance and highly parallelizable decoders, they
have been adopted in several recent communication standards,
e.g. 5G-NR [9]. Therefore, a LDPC code appears as the most
sensible choice to evaluate the proposed LLR expression. To
be specific, the implemented code follows the specifications
of the IEEE 802.11 standard [10] with a min-sum decoder, a
block length of 1944 bits and a coding rate of 2/3. Fig. 2
presents the BLock Error Rate (BLER) performance of a
16-QAM for arbitrary values of PN variance. In particular,
it is shown that the polar metric yields significant gain in
performance compared to the Euclidean distance. If the SNR is
low and the PN variance is minor, then the Euclidean detector
slightly outperforms (< 0.1 dB) the polar metric demodulation
- as expected since the polar metric relies on the high SNR
assumption. Yet, as PN gets stronger, the performance gain
becomes more and more significant. Eventually for strong
PN scenarios, the polar metric is the only one exhibiting the
waterfall feature of LDPC, while the iterative decoder never
converges with the Euclidean distance. Performance of the ML
premetric are not shown as they are strictly identical to the
ones of the polar metric, even though they are more complex
to evaluate.

V. CHANNEL ESTIMATION FOR OPTIMAL DEMODULATION

In previous sections, it has been emphasized that knowledge
of the CSI is highly valuable to maximize the performance
of communication systems affected by PN. Conversely to the

Euclidean distance, the ML premetric and the polar metric are
directly defined upon the thermal and phase noise variances.
Greatly improving the performance, both decisions rules hence
require an estimation of the values σ2

n and σ2
p.

A. Thermal and phase noise variances estimation

Estimation of thermal and phase noise variances σ2
n, σ

2
p

can be performed by transmitting N pilot symbols. These
pilot samples are known from the receiver and denoted s =
(s1, s2, ..., sN ). The joint likelihood function may be derived
from Eq. (7) and is expressed by

pN (r|s, σ2
n, σ

2
p) =

N∏
k=1

p(rk|sk, σ2
n, σ

2
p), (18)

where r = (r1, ..., rN ) stands for the received samples. We
consider in the following that pilots have a constant amplitude2

of
√
Es. The ML estimate [6] of the covariance matrix yields

the ML estimators expressed by

σ̂2
n =

1

N

N∑
k=1

(rρ,k −
√
Es)

2,

σ̂2
p =

1

N

N∑
k=1

(rθ,k − sθ,k)2 −
σ̂2
n

Es
.

(19)

We can write such estimators as χ2(N) distributions to quan-
tify their bias and dispersion from the means and variances:{

E[σ̂2
n] = σ2

n

V[σ̂2
n] =

2σ4
n

N

,

{
E[σ̂2

p] = σ2
p

V[σ̂2
p] =

2(σ2
p+σ

2
n/Es)

2

N +
2σ4
n

NEs

.

(20)
Both of these estimators are unbiased. Therefore, it is relevant
to compare their dispersions to the Cramer-Rao Lower Bounds
(CRLB) [6]. Since Eq. (18) satisfies the regularity conditions,
the CRLBs are given by

V
[
σ̂2
n

]
≥ 2σ4

n

N
, V

[
σ̂2
p

]
≥

2(σ2
p + σ2

n/Es)
2

N
. (21)

Since the variance of σ̂2
n equals the CRLB, the estima-

tor is efficient cf. [6]. Regarding the PN variance, the es-
timator σ̂2

p is close to the CRLB but does not perfectly
achieves it. Still, both estimators demonstrate the small-
est Mean Square Error (MSE) among any unbiased esti-
mators. From Eq. (18), it is straightforward that the joint
density pN belongs to the exponential family such that
T = (

∑N
k=1(rρ,k −

√
Es)

2,
∑N
k=1(rθ,k − sθ,k)2) is a com-

plete sufficient statistic for parameter (σ2
n, σ

2
p). By the

Lehman-Scheffé theorem, the unbiased estimators (σ̂2
n, σ̂

2
p),

defined upon T , are respectively the unique Minimum-
Variance Unbiased Estimators (MVUE) of σ2

n and σ2
p.

2The average symbol energy Es is considered perfectly known as it can
be estimated blindly through all sent symbols.
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B. Performance degradation due to estimation errors
Though we have been able to evaluate the performance

of the estimators. Yet, definitions of the ML premetric and
the polar metric are subject to estimation errors. So that, the
performance degradation due to such estimation errors has
to be quantified to specify the required number of pilots.
Therefore, Fig. 3 and 4 present respectively the performance
of an uncoded and a LDPC coded 16-QAM for different
number of pilots symbols. We may remark that the polar
metric is significantly more resilient than the ML premetric to
estimation errors for hard symbol detection, and only slightly
in the case of soft decision decoding. A rather low number of
pilots is required to achieve near optimal performance.

VI. CONCLUSION

In this paper, we have addressed the problem of demodu-
lation in the presence of PN. We have assumed a high SNR
and a Gaussian PN to derive the optimum symbol detection
decision rule. This ML decision premetric significantly reduces
the BER error floor due to PN. Besides, it is possible to define
a simpler metric, entitled polar metric, upon this decision
rule without any loss in performance. Thereupon, we have
proposed a framework to properly represent signals upon
the Gaussian PN channel. Further, computable probabilistic
demapper values have been defined upon the polar metric,
which is not direct from the ML premetric. It has been
shown that the polar metric, in comparison to the Euclidean
distance, greatly enhances performance of coded systems.
Since optimum demodulation requires the knowledge of CSI,
we have proposed ML estimates of the thermal and phase noise
variances. By evaluating the performance degradation due to
estimation errors, we are able to state that a low number of
pilots is sufficient to achieve near optimal performance. It is
also worth mentioning that these results could be extented to
non-mmWave applications and Rayleigh fading channels.
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