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Abstract—Phase noise is one of the major impairments af-
fecting severely performance of millimeter-wave systems. This
paper addresses the problem of link adaption for coherent and
non-coherent phase modulated signals subject to Gaussian and
Wiener phase noise. We first derive closed-form approximations
of the bit error rate. Then, in contrast to usual link adaptation
techniques, we propose a simple scheme exploiting estimations
of not only the signal-to-noise ratio but also of the phase noise
variance, which is essential to achieve reliable communications.

Index Terms—Millimeter wave, Phase noise, Phase shift keying,
Adaptive Systems, Performance analysis, Channel estimation

I. INTRODUCTION

Future 5G millimeter-wave (mmWave) bands should lead to
user throughputs above 1 Gbit/s. However, additional break-
through technologies are necessary to reach this requirement.
Therefore, for the first time in the telecommunication history,
bands above 90 GHz are studied for future communications
[1]. In particular, mmWave systems are critically impacted
by phase noise (PN) due to the poor performance of high
frequency oscillators [2]. This has motivated extensive work
on PN estimation and compensation [3], [4]. Further, achieving
high-rate communications over wireless links in the mmWave
domain demands tremendous amount of power, and so, high-
efficiency and wide-bandwidth power amplifiers [5]. There-
fore, coherent Phase Shift Keying (PSK) modulations are
highly valuable since they demonstrate a constant envelope
property, and thus, offer an efficient use of power amplifiers.
Yet, PSK modulations are highly sensitive to phase related
impairments: Carrier Frequency Offset (CFO), PN. Differential
PSK (DPSK) has been introduced as a more robust scheme.
At the expense of a noise enhancement, DPSK enables non-
coherent communications [6]. Prior work in [7] has confronted
the robustness of PSK and DPSK when affected by a Tiko-
honov PN. Setting the modulation scheme to maximize spec-
tral efficiency while maintaining robustness is correspondingly
the motivation behind link adaption. Such adaptive systems are
now implemented in most of practical systems [8] and rely on
a channel quality estimation to set the modulation.

Contributions: In this paper, we seek to improve the design
of inherently robust communication systems impacted by PN.
First, we assume a high Signal-to-Noise Ratio (SNR) and a
Gaussian PN to derive a closed-form approximation of the
Bit Error Rate (BER) for any M -ary PSK. Considering that
the superposition of a Gaussian and a Wiener process is a
more realistic PN model [9], [10], we derive and confront
the BER performance of PSK and DPSK for such PN. Fur-
thermore, in contrast to usual link adaptation techniques, we
propose a simple scheme exploiting estimations of not only
the SNR but also of the PN variance, which proves to be truly
essential to achieve reliable communications. We hence derive

the appropriate Maximum Likelihood (ML) estimators of the
thermal and phase noise variances. Eventually, we propose
a statistical test to determine whether the coherent or non-
coherent modulation is the most robust one and should be
employed.

Organization: The remainder of this paper is structured as
follows. Section II introduces a brief description of the channel
and PN models. Section III is devoted to the performance anal-
ysis of PSK and DPSK impacted by Gaussian and Wiener PN.
Finally, Section IV derives the appropriate channel estimation
to implement the link adaptation scheme.

II. SYSTEM MODEL

A. Channel model
Considering a single carrier communication system with

a perfectly mitigated channel, the received symbol at time
instant k is defined by

rk = sk · ejφk + nk, (1)

where s is the modulated symbol from constellation C with
average symbol energy Es, φ is the oscillator PN and n
represents independent identically distributed samples of a
zero-mean complex Additive White Gaussian Noise (AWGN)
with variance 2σ2

n. A PSK constellation with modulation order
M is defined by C = {

√
Es exp

(
j 2π
M ·i

)
|i = 1, ...,M}. In the

case of a DPSK, information is encoded in the phase difference
from one symbol to another denoted δθk = sk − sk−1. We
denote by s and |s| the phase and amplitude of a symbol s.

B. Phase noise model
Oscillators PN is generated from the transformation of

amplitude fluctuations into phase fluctuations [11], such that
it describes a cumulative random process [9], [12]. If only
white noise sources are considered1, the oscillator PN φ may
thus be modeled by the superposition of a Wiener (Gaussian
random-walk) process φw and a Gaussian one φg [9]. This
may be expressed by

φk = φw,k + φg,k, φg,k ∼ N (0, σ2
g),

φw,k = φw,k−1 + δφw,k, δφw,k ∼ N (0, σ2
w),

(2)

where σ2
w and σ2

g denote respectively the variances of the
Wiener PN increment δφw and the Gaussian PN. Besides
mathematical convenience [13], [14], the Gaussian distribu-
tion is also a relevant PN model. When considering wide
bandwidth systems2, the oscillator noise floor represents the

1Flicker noise is diregarded in this study.
2Typically the case for mmWave systems



greatest contribution to the overall PN [10], such that the
Wiener PN becomes negligible compared to the Gaussian one,
i.e. σ2

g >> σ2
w. Thereby, Section III-A and IV-A use the

Gaussian PN model to pursue a simple analytical analysis
while Section III-B and IV-B extend it to the sum of Wiener
and Gaussian PN.

III. PERFORMANCE ANALYSIS

A. PSK over Gaussian phase noise
To begin with, let us assume that the channel is dominated

by Gaussian PN. Regarding symbol-by-symbol detection, it
is known that the ML criterion minimizes the Symbol Error
Probability (SEP) [6], [15]. In order to design such optimum
receiver, let us derive the likelihood function, which may be
rewritten as

p(rk|sk) = p
(
|rk| , rk

∣∣∣ |sk| , sk

)
. (3)

By definition, the AWGN is invariant under rotation such that,
for simplicity of notation, n may stand for n · ejθ for any
θ fixed. The received symbol should be studied through its
amplitude and phase as

|rk| =
∣∣∣(|sk|+ nk) · ej( sk+φk)

∣∣∣
=
√
(|sk|+ <(nk))2 + =(nk)2

'
√
Es + <(nk)

(4)

rk = arg[(|sk|+ nk) · ej( sk+φk)]

= sk + φk + arctan

(
=(nk)

|sk|+ <(nk)

)
' sk + φk +

=(nk)√
Es

.

(5)

These first-order approximations are tight for a high SNR
scenario [16], [17]. By Eq. (2), the likelihood function follows
a bivariate Gaussian distribution and is thus expressed by

p(rk|sk) =
exp
(
− 1

2

( (|rk| − √
Es)

2

σ2
n

+
( rk − sk)

2

σ2
g + σ2

n/Es

))
2π
√
σ2
n(σ

2
g + σ2

n/Es)
.

(6)
This expression, originally derived in [14], can be exploited
in our study to approximate the BER of a PSK. With respect
to the ML decision rule for a PSK, the detected symbol is

ŝk = argmax
s ∈ C

p(rk|sk)

= argmin
s ∈ C

( rk − sk)
2,

(7)

which enables to derive the SEP as follows
Pse = 1− Pr(ŝk = sk|sk)

= 1− p
(
− π

M
< rk − sk <

π

M

)
= 2Q

( π

M
√
σ2
g + σ2

n/Es

)
.

(8)

To directly relate the BER to the SEP, we shall make two
commonly used assumptions. First, the bit labeling of the con-
stellation satisfies a Gray coding. Furthermore, misdetections
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Fig. 1: Analytical and simulated BER performance of M -ary
PSK affected by Gaussian PN with variance σ2

g

only occur on the nearest neighbors of the sent symbol. Finally,
the BER of a PSK affected by Gaussian PN is approximated
by

P g
be,PSK ' 2

log2(M)
Q

(
π

M
√

σ2
g +

1
2·log2(M)

1
Eb/N0

)
, (9)

where the average bit energy Eb satisfies Es = Eb log2(M)
and the noise power spectral density is defined by N0 = 2σ2

n.
The BER performance of PSK for arbitrary orders of modu-
lation and PN variances are illustrated in Fig. 1. As exhibited,
the closed-form expression holds accurate approximations of
the BER at high SNR.

B. DPSK over Wiener phase noise

DPSK enables a non-coherent demodulation at the receiver.
As a consequence, estimation of the carrier phase is not
required. Moreover, a differential modulation is not subject
to the cumulative nature of the PN, and only slightly to the
CFO. This robustness is achieved at the expense of a BER
performance degradation. Yet, the stronger these impairments,
the more valuable it seems to opt for differential encoding.
The pending question is when DPSK is more robust than
PSK. Therefore, let us derive the performance of PSK and
DPSK when the PN is described by the sum of a Wiener and
a Gaussian PN. The optimum decision for a DPSK receiver
[6] is given by

δ̂θ = argmin
δθ ∈ C

(
( rk − rk−1)− δθ

)2
. (10)

With regard to the PN model in Eq. (2) and to the high SNR
approximation in Eq. (5), we have

rk− rk−1 ' δθk+δφw,k+φg,k−φg,k−1+
=(nk − nk−1)√

Es
,

(11)
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which is directly equivalent to

rk − rk−1 ' δθk + φeq,k ,

where φeq ∼ N (0, σ2
w + 2σ2

g + 2σ2
n/Es).

(12)

Thereupon, the BER for a DPSK subject to Gaussian and
Wiener PN may be approximated by

Pw
be,DPSK ' 2

log2(M)
Q

(
π

M
√
σ2
w + 2σ2

g +
1

Eb/N0

1
log2(M)

)
.

(13)
To establish a comparison with the PSK modulation, we

consider a genie estimation at the PSK receiver. With one
pilot symbol, the receiver is able to estimate and compensate
perfectly the Wiener process. The pilot period is defined by
T , such that if k = n ·T then φw,k+1 = δφw,k. The estimation
problem in presence of Wiener PN exceeds the scope of this
paper, but is addressed in [4]. Though the derivation is not
developed here, the BER for a PSK in this case is given by

Pw
be,PSK ' 1

T − 1

T−1∑
k=1

2

log2(M)

·Q

(
π

M
√
k · σ2

w + σ2
g +

T/(T−1)
Eb/N0

1
2·log2(M)

)
. (14)

Figure 2 confronts the performance of a 16PSK to the ones
of a 16DPSK for Gaussian and Wiener PN. The PSK receiver
presents a pilot density of 10% with a genie estimation. Con-
versely, the DPSK receiver does not implement any channel
estimation. Figure 2 shows that analytical expressions are
tight to the simulation results. Moreover, Fig. 2 confirms an
aforementioned intuition. The DPSK presents a loss in BER
performance, still, when considering stronger Wiener PN then
it is more robust than the PSK.
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Fig. 3: Modulation Scheme Regions for M -ary PSK: highest
modulation order M achieving BER < 10−4 as a function of
Eb/N0 and the inverse of PN variance 1/σ2
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IV. LINK ADAPTION

A. Estimation of thermal and phase noise variances
To improve spectral efficiency, practical communication

systems implement adaptive modulation scheme [8]. Namely,
the modulation order is inferred from a SNR estimation. In the
case of a channel dominated by Gaussian PN, the analytical
approximation of the BER in Eq. (9) enables to determine the
greatest value of M while maintaining the error rate below a
fixed target. Figure 3 depicts the modulation scheme regions
for M -ary PSK, i.e. the highest modulation order M achieving
BER < 10−4 given Eb/N0 and σ2

g . It is shown that the
performance is highly related to the PN variance, which should
necessarily be considered in the link adaptation to maintain
robustness.

Such link adaptation requires an estimation of σ2
n and

σ2
g . This may be realized by inserting N pilot samples

possibly distributed and known from the receiver denoted
s = (s1, s2, ..., sN ) and by deriving the appropriate estimators.
From Eq. (6), the joint likelihood function of the N received
samples r = (r1, ..., rN ) is given by

pN (r|s, σ2
n, σ

2
g) =

N∏
k=1

p(rk|sk, σ2
n, σ

2
g). (15)

We derive the ML estimate of the covariance matrix for the
multivariate normal distribution [15]. It yields here the ML
estimators of σ2

n and σ2
g expressed by

σ̂2
n =

1

N

N∑
k=1

(|rk| −
√

Es)
2,

σ̂2
g =

1

N

N∑
k=1

( rk − sk)
2 − σ̂2

n

Es
.

(16)

Writing these estimators as χ2(N) distributions enables us
to quantify their performance in terms of bias and dispersion



respectively with the means and variances given by{
E[σ̂2

n] = σ2
n

V[σ̂2
n] =

2σ4
n

N

,

{
E[σ̂2

g ] = σ2
g

V[σ̂2
g ] =

2(σ2
g+σ2

n/Es)
2

N +
2σ4

n

NEs

.

(17)
Since these estimators are unbiased and the regularity con-
ditions clearly satisfied in Eq. (6), we may compare the
estimators to their Cramer-Rao Lower Bounds (CRLB) [18]
written as

V
[
σ̂2
n

]
≥ 2σ4

n

N
, V

[
σ̂2
g

]
≥

2(σ2
g + σ2

n/Es)
2

N
. (18)

It follows easily that the thermal noise variance estimator
is efficient in the sense of achieving the CRLB cf. [15].
As for the PN variance, the estimator is tight to the CRLB
but does not reach it. However, both estimators demon-
strate the smallest Mean Square Error (MSE) among any
unbiased estimators. From Eq. (15), it is straightforward
that the joint density pN belongs to the exponential family
such that S = (

∑N
k=1(|rk| −

√
Es)

2,
∑N

k=1( rk − sk)
2) is

a complete sufficient statistic for parameter (σ2
n, σ

2
g). By the

Lehman-Scheffé theorem, the unbiased estimators (σ̂2
n, σ̂

2
g),

defined upon S, are respectively the unique Minimum-
Variance Unbiased Estimators (MVUE) of σ2

n and σ2
g .

B. Is the phase noise a cumulative process?

As illustrated in Fig. 2, the DPSK should be favored at the
detriment of PSK only if the cumulative nature of the PN
is non-negligible. Hence, the link adaptation problem can be
expressed as a simple detection problem: is the cumulative
process of the phase noise strong enough to advantage a
differential modulation. Let us formulate the corresponding
binary hypothesis test as

H0 : Gaussian PN, if σ2
w/σ

2
g < λ fixed,

H1 : Wiener PN, otherwise.
(19)

The link adaptation decision δ is then expressed by

δ(r) =

{
PSK, if S(r) < ϕ(λ)

DPSK, otherwise
, (20)

where r = (r1, ..., rN ) is a received sequence of N consecu-
tive pilots, S denotes a sufficient statistic of the received pilots
sample and ϕ is a test threshold function of λ. Fortuitously,
this problem has been extensively studied in the financial
field under a different name: the random walk hypothesis
for stock market prices [19]. Numerous statistical tests have
been designed, yet, one in particular has retained most of the
attention: the variance ratio test [19], [20]. This test relies
on the fact that the variance of the random walk increments
increases linearly with p the sampling interval. Applied to our
context, this is expressed by

V [φk+p − φk] = p · σ2
w + 2σ2

g , (21)

which is denoted further by σ2
∆p. Letting σ2

w = λ · σ2
g and

summing over p, the statistical test becomes

S(r) =
M∑
p=1

σ̂2
∆p

σ̂2
∆1

< ϕ(λ) =
λ ·M(M + 1) + 4M

4λ+ 2
, (22)
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Fig. 4: Mean probability of taking decision δ(r) = H1 when
λ = 1/2 for different lengths of pilot sequence N

where σ̂2
∆p is the estimator of σ2

∆p and evaluated by

σ̂2
∆p =

1

N − p

N−p∑
k=1

(
( rk+p− sk+p)− ( rk− sk)

)2
. (23)

The upper bound of summation M satisfies 1 < M < N ,
and is optimized heuristically3. Figure 4 depicts the mean
probability of taking decision δ(r) = H1 and thus use DPSK.
Several pilot lengths are considered and λ is set to 1/2 as in
Fig. 2 . As exhibited, the longer the pilot sequence, the more
accurate the test. The performance degradation caused by an
incorrect decision should be evaluated to properly specify the
length of the training sequence. Due to space limitation, it is
not carried out here but using the proposed framework, it is
straightforward to derive.

V. CONCLUSION

In this paper, we have addressed the problematic of link
adaption for phase modulated signals affected by PN. We
have first considered PSK modulations impacted by a Gaussian
PN and provided the closed-form approximation of the BER.
Optimum ML estimators of thermal and phase noise variances
have been derived to propose a link adaptation scheme. Ex-
ploiting estimations of both the SNR and the PN variance
proved to be essential to maintain robustness. Then, the PN
has been described with a more realistic model: a sum of
a Gaussian and a Wiener process. Performance of PSK and
DPSK were compared in order to determine when the use
of a differential modulation is beneficial. Accordingly, we
proposed a simple detection test, inspired from the financial
field, to perform the link adaptation and exploit the most
robust modulation between PSK and DPSK. Nevertheless,
these results remain an analytical analysis and it is of particular
interest to investigate this adaptation problem under practical
implementation considerations.

3The upper bound M in Eq. 22 must be large enough to yield a robust
test. However, as the sampling interval p gets bigger, the dispersion of σ̂2

∆p in
Eq. 23 increases. Thus, if M is too large, the test is defined upon unreliable
estimations.
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