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CONVERGENCE RATE OF A RELAXED INERTIAL PROXIMAL ALGORITHM

FOR CONVEX MINIMIZATION

HEDY ATTOUCH AND ALEXANDRE CABOT

Abstract. In a Hilbert space setting, the authors recently introduced a general class of relaxed

inertial proximal algorithms that aim at solving monotone inclusions. In this paper, we specialize

this study in the case of non-smooth convex minimization problems. We obtain convergence rates
for the values which have similarities with the results based on the Nesterov accelerated gradient

method. The joint adjustment of inertia, relaxation and proximal terms plays a central role. In doing

so, we put to the fore inertial proximal algorithms that converge for general monotone inclusions,
and which, in the case of convex minimization, give fast convergence rates of the values in the worst

case.

1. Introduction

Throughout the paper, H is a real Hilbert space equipped with the scalar product 〈., .〉 and the
corresponding norm ‖.‖. The Relaxed Inertial Proximal Algorithm (RIPA) was introduced by the
authors in [6]. It aims at solving by fast methods the inclusion A(x) 3 0, where A : H → 2H is a
general maximally monotone operator. (RIPA) is a proximal-based algorithm involving both inertia
and relaxation aspects. In [6], it is shown the weak convergence of the iterates to equilibria under
general conditions on the inertia, relaxation, and proximal coefficients of the algorithm. It extends
the work of Attouch-Peypouquet [9] which concerns the particular case where the inertial coefficient
is of the form 1 − α

k , an important issue because of its connection with the accelerated method of
Nesterov, see [4], [7], [17], [31].

In this paper, we specialize the study of (RIPA) in the case of (nonsmooth) convex minimiza-
tion problems. This corresponds to taking A = ∂Φ where Φ : H → R ∪ {+∞} is a convex lower
semicontinuous proper function. The algorithm is then written

(1) (RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkproxµkΦ(yk),

where the proximal mapping proxµΦ : H → H is defined, for every x ∈ H, and every µ > 0 by the
formula

proxµΦ(x) = argminξ∈H

{
µΦ(ξ) +

1

2
‖x− ξ‖2

}
.

The sequence (αk) of nonnegative numbers reflects the inertial aspects, while (ρk) is the sequence of
positive relaxation parameters. The sequence (µk) of positive numbers makes it possible to consider
the proximal operator with a varying parameter, which is an important issue in this context, see [9].
By using variational methods and well-chosen Lyapunov functions, we obtain convergence rates for
the values. In doing so, we put to the fore inertial algorithms whose iterates converge in the case of
general monotone inclusions, and which, in the case of convex minimization, give fast convergence
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rates of the values (in the worst case). Let’s first recall the main results concerning (RIPA) in the
general maximally monotone framework.

1.1. (RIPA) for general monotone inclusions. Given A : H → 2H a maximally monotone
operator, the Relaxed Inertial Proximal Algorithm, (RIPA) for short, is defined by, for k ≥ 1

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1− ρk)yk + ρkJµkA(yk).

In the above formula, JµA = (I + µA)
−1

is the resolvent of A with index µ > 0. It plays a central role
in the analysis of (RIPA), along with the Yosida regularization of A with parameter µ > 0, which is
defined by Aµ = 1

µ (I − JµA). We denote by zerA the set of zeros of A, and we assume that zerA 6= ∅.
The weak convergence of the sequences (xk) generated by the algorithm (RIPA) is based on a joint
tuning of the sequences (αk), (µk), (ρk). As a crucial ingredient, the analysis of the convergence
properties of (RIPA) involves the sequence (tk) defined by

(2) tk := 1 +

+∞∑
l=k

 l∏
j=k

αj

 .

The sequence (tk) is well defined under the following standing assumption

(K0)

+∞∑
l=k

 l∏
j=k

αj

 < +∞ for every k ≥ 1.

The formula (2) that allows to pass from (αk) to (tk) may seem complicated. By contrast, one can
simply retrieve (αk) from (tk) thanks to the following formula that will prove very useful.

Lemma 1.1. Assume that the nonnegative sequence (αk) satisfies (K0). Then the sequence (tk)
satisfies

(3) 1 + αktk+1 = tk for every k ≥ 1.

Let us first formulate the convergence properties of (RIPA) in the case (ρk) bounded away from zero.

Theorem 1.2. ([6, Theorem 2.6]) Let A : H → 2H be a maximally monotone operator such that
zerA 6= ∅. Suppose that αk ∈ [0, 1], ρk ∈]0, 2] and µk > 0 for every k ≥ 1. Under (K0), let (tk) be
the sequence defined by (2). Assume that there exists ε ∈]0, 1[ such that for k large enough,

(L) (1− ε)2− ρk−1

ρk−1
(1− αk−1) ≥ αktk+1

(
1 + αk +

[
2− ρk
ρk

(1− αk)− 2− ρk−1

ρk−1
(1− αk−1)

]
+

)
.

Then for any sequence (xk) generated by (RIPA), we have

(i)

+∞∑
k=1

2− ρk−1

ρk−1
(1− αk−1)‖xk − xk−1‖2 < +∞, and hence

+∞∑
k=1

αktk+1‖xk − xk−1‖2 < +∞.

(ii)

+∞∑
k=1

ρk(2− ρk) tk+1‖µkAµk
(xk)‖2 < +∞.

(iii) For any z ∈ zerA, limk→+∞ ‖xk − z‖ exists, and hence (xk) is bounded.

Assume moreover that lim supk→+∞ ρk < 2, and lim infk→+∞ ρk > 0. Then the following holds

(iv) limk→+∞ µkAµk
(xk) = 0.

(v) If lim infk→+∞ µk > 0, then there exists x∞ ∈ zerA such that xk ⇀ x∞ weakly in H as
k → +∞.
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Let us now state the convergence results in the case of a possibly vanishing sequence (ρk).

Theorem 1.3. ([6, Theorem 2.14]) Let A : H → 2H be a maximally monotone operator such that
zerA 6= ∅. Suppose that αk ∈ [0, 1], ρk ∈]0, 2] and µk > 0 for every k ≥ 1. Assume moreover that
conditions (K0) and (L) hold true. Then for any sequence (xk) generated by (RIPA),

(i) There exists C ≥ 0 such that for every k ≥ 1, ‖xk+1 − xk‖ ≤ C
∑k
i=1

[(∏k
j=i+1 αj

)
ρi

]
.

Assume morover that lim supk→+∞ ρk < 2, together with

•
∑k
i=1

[(∏k
j=i+1 αj

)
ρi

]
= O(ρktk+1), |µk+1−µk|

µk+1
= O(ρktk+1), ρk−1tk = O(ρktk+1) as k → +∞;

•
∑+∞
k=1 ρktk+1 = +∞.

Then the following holds

(ii) limk→+∞ µkAµk
(xk) = 0. If lim infk→+∞ µk > 0, then there exists x∞ ∈ zerA such that

xk ⇀ x∞ weakly in H as k → +∞.

In particular, the above results provide estimates concerning the rate of convergence to zero of the
discrete velocities. When A is the subdifferential of a convex lower semicontinuous proper function,
we will complete these results by estimating the rate of convergence of the values.

1.2. (RIPA) for convex minimization. Let us now suppose that A is the subdifferential of a
convex lower semicontinuous proper function Φ : H → R ∪ {+∞}, let A = ∂Φ. Then, as a classical
result, A : H → 2H is a maximally monotone operator, and the minimizers of Φ are exactly the zeros
of A. Let us specialize (RIPA) in this framework. We have Jµ∂Φ = proxµΦ, hence the formulation (1)
of (RIPA). Let’s give another useful formulation of (RIPA). By definition of the Yosida approximation

(1− ρk)yk + ρkJµkA(yk) = yk − ρkµkAµk
(yk).

We have Aµ = ∇Φµ, where Φµ is the Moreau envelope of Φ with index µ > 0. Recall that, for all
x ∈ H

Φµ(x) = inf
ξ∈H

{
Φ(ξ) +

1

2µ
‖x− ξ‖2

}
,

see Appendix A for its classical properties. It follows that (RIPA) can be rewritten in an equivalent
way

(4) (RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = yk − ρkµk∇Φµk
(yk).

As a distinctive property, Φµ : H → R is a convex differentiable function, whose gradient is Lipschitz
continuous. Thus, when A is the subdifferential of a convex lower semicontinuous proper function, this
property naturally links (RIPA) to the inertial gradient methods, see [1], [4], [8], [10] [13], [17], [18],
[22], [23], [26], [31], [32] for some of the rich literature that has been devoted to this class of algorithms
in recent years. The new aspects of the algorithm (RIPA) are the general inertial coefficients (αk),
the fact that the potential Φµk

varies at each iteration, as well as the step size ρkµk. A helpful
study is [4], where the authors considered inertial forward-backward algorithms for structured convex
minimization problems, and with general inertial coefficients.

1.3. Links with continuous dynamics. Linking (RIPA) to continuous inertial dynamical systems
provides a physical intuition, and enlights the role of parameters entering the algorithm. Following
[5] and [9], let us consider the continuous dynamics

(5) ẍ(t) + γ(t)ẋ(t) +∇Φµ(t)(x(t)) = 0,

where γ(·) is a positive viscous damping parameter, which is time-dependent. It is governed by the
Yosida regularization of the maximally monotone operator ∂Φ, with a time-dependent regularization
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parameter µ(t). Thanks to the Lipschitz continuity property of the Yosida approximation, this
dynamics is relevant owing to the Cauchy-Lipschitz theorem, and the corresponding Cauchy problem
is well-posed. Let us describe successively explicit and implicit discretization of (5).

Take a time step hk > 0, and set tk =
∑k
i=1 hi, xk = x(tk), µk = µ(tk), γk = γ(tk).

1.3.1. Explicit discretization. A finite-difference scheme for (5) with centered second-order variation
gives

(6)
1

h2
k

(xk+1 − 2xk + xk−1) +
γk
hk

(xk − xk−1) +∇Φµk
(yk) = 0,

where yk is an extrapolated point from xk and xk−1 that will be chosen later (because ∇Φµk
is

Lipschitz continuous, there is some flexibility in this choice). After developing (6), we obtain

xk+1 = xk + (1− γkhk)(xk − xk−1)− h2
k∇Φµk

(yk).

Take yk = xk + (1− γkhk)(xk − xk−1), which is the Nesterov choice for the extrapolation term. We
obtain {

yk = xk + (1− γkhk)(xk − xk−1)

xk+1 = yk − h2
k∇Φµk

(yk).

That’s algorithm (RIPA), as formulated in (4) with αk = 1− γkhk and ρk =
h2
k

µk
. Thus ρkµk has the

dimension of the square of a length, and the vanishing viscosity property γk → 0 is related to αk → 1.

1.3.2. Implicit discretization. Implicit discretization of (5) gives

1

h2
k

(xk+1 − 2xk + xk−1) +
γk
hk

(xk − xk−1) +∇Φµk
(xk+1) = 0.

Equivalently, xk+1 + h2
k∇Φµk

(xk+1) = xk + (1− γkhk) (xk − xk−1), which gives

xk+1 =
(
I + h2

k∇Φµk

)−1
(xk + (1− γkhk) (xk − xk−1)) .

Using the resolvent equation (see [6] for more details) we obtain
yk = xk + (1− γkhk) (xk − xk−1)

xk+1 =
µk

µk + h2
k

yk +
h2
k

µk + h2
k

prox(µk+h2
k)Φ(yk).

That’s algorithm (RIPA) with αk = 1− γkhk, ρk =
h2
k

µk+h2
k

, and proximal parameter µk + h2
k.

1.4. Inertia and relaxation. In his pioneering work [30], Polyak introduced the Heavy Ball method
in order to speed up the classical gradient algorithm. Later Alvarez [1] studied the Inertial Proximal
algorithm, which can be viewed as an implicit version of the Heavy Ball method. The extension from
the subgradient case to the maximally monotone case was first considered by Alvarez-Attouch [3]. Re-
cently, an extensive literature has been devoted to inertial methods, in relation with their acceleration
properties.

Relaxation has proven to be an essential ingredient in the resolution of monotone inclusions,
see Bauschke-Combettes [12], Eckstein-Bertsekas [19]. After having reformulated the problem in
the form of a fixed point, it makes it possible to use Krasnoselskii-Mann theorem. Without using
inertia, over-relaxation provides a natural way to speed up the algorithm. By contrast, for the
resolution of monotone inclusions by inertial methods, we will see that under-relaxation allows to
balance the inertial extrapolation effect. This makes it play a crucial role in the convergence of
inertial proximal methods for general monotone inclusions. Let us mention some related contributions:
Alvarez [2], Attouch-Cabot [6], Attouch-Peypouquet [9], Bot-Csetnek [15], Maingé [24]. In [20],
Iutzeler-Hendrickx compare the numerical performances of inertia and relaxation techniques.
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2. Convergence rate of the values for (RIPA)

Throughout this section, we assume that A = ∂Φ, and make the following assumptions on the
function Φ and the sequences (αk), (ρk), (µk):

(H)



• Φ : H → R ∪ {+∞} is a convex lower semicontinuous proper function;

• S := argminΦ 6= ∅;
• (αk) is a nonnegative sequence;

• 0 < ρk ≤ 1 for all k ≥ 1;

• (µk) and (ρkµk) are nondecreasing sequences of positive numbers.

For each k ≥ 1, we write briefly Φk for Φµk
, and set sk = ρkµk. Therefore, (RIPA) is written in an

equivalent way

(7)

{
yk = xk + αk(xk − xk−1)

xk+1 = yk − sk∇Φk(yk).

A key point of our study will be to control the variations of Φk with respect to k. To do this, we will
use the fact that the application µ 7→ Φµ is nonincreasing (a direct consequence of its definition), and
assume that k 7→ µk is nondecreasing (assumption (H)).

2.1. Preliminary results. Let us establish some lemmas concerning the energy sequence (Wk) and
the sequence of anchor terms (hk). They will play a central role in the Lyapunov analysis of (RIPA).

2.1.1. Descent rule. As a key classical ingredient, we use the descent rule for the gradient method,
that we recall below, see [13, Lemma 2.3], [17, Lemma 1].

Lemma 2.1. (descent rule) Suppose that Θ : H → R is a convex, differentiable function, whose
gradient is L-Lipschitz continuous. Then for any 0 < s ≤ 1

L , for all x, y ∈ H, we have

Θ(y − s∇Θ(y)) ≤ Θ(x) + 〈∇Θ(y), y − x〉 − s

2
‖∇Θ(y)‖2.

Note that ∇Φk is Lipschitz continuous with the Lipschitz constant 1
µk

. We have sk = ρkµk ≤ µk,

therefore the descent rule applies for Φk with the step size sk. So, the following inequality is true for
all x, y ∈ H, and all k ≥ 1

(8) Φk(y − sk∇Φk(y)) ≤ Φk(x) + 〈∇Φk(y), y − x〉 − sk
2
‖∇Φk(y)‖2.

2.1.2. Energy sequence (Wk). Let us introduce the sequence (Wk)

Wk := Φk(xk)−min Φ +
1

2sk
‖xk − xk−1‖2.

The term Wk is naturally interpreted as the global mechanical energy (potential + kinetic) at the
stage k. Since inf Φk = inf Φ, we have Φk(xk)−min Φ ≥ 0. Therefore, Wk is nonnegative, as the sum
of two nonnegative terms. Let us evaluate the energy decay. The following result is consistent with
the fact that the friction effect, and hence the dissipation of mechanical energy, is related to αk ≤ 1.

Proposition 2.2. Let us make assumption (H). Let (xk) be a sequence generated by the algorithm
(RIPA). Then, the energy sequence (Wk) satisfies for every k ≥ 1,

(9) Wk+1 −Wk ≤ −
1− α2

k

2sk
‖xk − xk−1‖2.

As a consequence, the sequence (Wk) is nonincreasing if αk ∈ [0, 1] for every k ≥ 1.
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Proof. By applying formula (8) with y = yk and x = xk, we obtain

Φk(xk+1) = Φk(yk − sk∇Φk(yk)) ≤ Φk(xk) + 〈∇Φk(yk), yk − xk〉 −
sk
2
‖∇Φk(yk)‖2

= Φk(xk)− 1

2sk
‖yk − sk∇Φk(yk)− xk‖2 +

1

2sk
‖yk − xk‖2.

Since xk+1 = yk − sk∇Φk(yk) and yk − xk = αk(xk − xk−1), this implies that

Φk(xk+1) ≤ Φk(xk)− 1

2sk
‖xk+1 − xk‖2 +

α2
k

2sk
‖xk − xk−1‖2.

Equivalently

Φk(xk+1) +
1

2sk
‖xk+1 − xk‖2 ≤ Φk(xk) +

1

2sk
‖xk − xk−1‖2 +

(
α2
k

2sk
− 1

2sk

)
‖xk − xk−1‖2.

By assumption (H), the sequences (sk) = (ρkµk) and (µk) are nondecreasing. These properties
respectively imply that 1

2sk+1
≤ 1

2sk
and Φk+1 ≤ Φk. It follows that

Φk+1(xk+1) +
1

2sk+1
‖xk+1 − xk‖2 ≤ Φk(xk) +

1

2sk
‖xk − xk−1‖2 +

(
α2
k

2sk
− 1

2sk

)
‖xk − xk−1‖2.

This can be equivalently rewritten as

Wk+1 ≤Wk −
1− α2

k

2sk
‖xk − xk−1‖2.

The last assertion is immediate. �

2.1.3. Anchor sequence (hk). Let us now fix x∗ ∈ H, and consider the anchor sequence (hk) which is
defined by hk = 1

2‖xk − x
∗‖2.

Proposition 2.3. Let us make assumption (H). Let (xk) be a sequence generated by the algorithm
(RIPA). We have for every k ≥ 1

(10) hk+1−hk−αk(hk−hk−1) =
1

2
(α2
k+αk)‖xk−xk−1‖2−sk〈∇Φµk

(yk), yk−x∗〉+
s2
k

2
‖∇Φµk

(yk)‖2.

If moreover x∗ ∈ argmin Φ, then

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 − sk(Φµk

(xk+1)−min Φ).

Proof. Observe that

‖yk − x∗‖2 = ‖xk + αk(xk − xk−1)− x∗‖2

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2 + 2αk〈xk − x∗, xk − xk−1〉

= ‖xk − x∗‖2 + α2
k‖xk − xk−1‖2

+ αk‖xk − x∗‖2 + αk‖xk − xk−1‖2 − αk‖xk−1 − x∗‖2

= ‖xk − x∗‖2 + αk(‖xk − x∗‖2 − ‖xk−1 − x∗‖2) + (α2
k + αk)‖xk − xk−1‖2

= 2[hk + αk(hk − hk−1)] + (α2
k + αk)‖xk − xk−1‖2.
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Setting briefly Ak = hk+1 − hk − αk(hk − hk−1) = 1
2‖xk+1 − x∗‖2 − [hk + αk(hk − hk−1)], we deduce

that

Ak =
1

2
‖xk+1 − x∗‖2 −

1

2
‖yk − x∗‖2 +

1

2
(α2
k + αk)‖xk − xk−1‖2

=

〈
xk+1 − yk,

1

2
(xk+1 + yk)− x∗

〉
+

1

2
(α2
k + αk)‖xk − xk−1‖2

= 〈xk+1 − yk, yk − x∗〉+
1

2
‖xk+1 − yk‖2 +

1

2
(α2
k + αk)‖xk − xk−1‖2.

Using the equality xk+1 = yk − sk∇Φµk
(yk), we obtain (10).

Let us now assume that x∗ ∈ argmin Φ. From inequality (8) applied with y = yk and x = x∗

(recall the simplified notation Φk = Φµk
)

Φk(xk+1) = Φk(yk − sk∇Φk(yk)) ≤ Φk(x∗) + 〈∇Φk(yk), yk − x∗〉 −
sk
2
‖∇Φk(yk)‖2.

Since Φk(x∗) = min Φ, we infer that

−sk〈∇Φk(yk), yk − x∗〉+
s2
k

2
‖∇Φk(yk)‖2 ≤ −sk(Φk(xk+1)−min Φ),

which completes the proof of Proposition 2.3. �

2.2. Convergence rates for the values. Given x∗ ∈ argmin Φ, let us define (Ek) by, for each k ≥ 1

(11) Ek = t2k(Φµk
(xk)−min Φ) +

1

2ρkµk
‖xk−1 + tk(xk − xk−1)− x∗‖2.

With our simplified notations Φk = Φµk
, and sk = ρkµk, the energy Ek writes

Ek = t2k(Φk(xk)−min Φ) +
1

2sk
‖xk−1 + tk(xk − xk−1)− x∗‖2.

The next result shows that the sequence (Ek) is nonincreasing, under some suitable condition (K1).
The following statement is an adaptation of [13, Lemma 4.1] to our setting.

Proposition 2.4. Let us make assumptions (H) and (K0). Let (xk) be a sequence generated by the
algorithm (RIPA), and let (Ek) be the sequence defined by (11). Then we have

(12) Ek+1 − Ek ≤ (t2k+1 − t2k − tk+1)(Φµk
(xk)−min Φ).

Under the assumption

(K1) t2k+1 − t2k ≤ tk+1 for every k ≥ 1,

then the sequence (Ek) is nonincreasing.

Proof. Let us write successively formula (8) at y = yk and x = xk, then at y = yk and x = x∗.
Recalling that xk+1 = yk − sk∇Φk(yk), we obtain the two inequalities

Φk(xk+1) ≤ Φk(xk) + 〈∇Φk(yk), yk − xk〉 −
sk
2
‖∇Φk(yk)‖2,(13)

Φk(xk+1) ≤ min Φ + 〈∇Φk(yk), yk − x∗〉 −
sk
2
‖∇Φk(yk)‖2.(14)

Multiplying (13) by tk+1 − 1 ≥ 0, then adding (14), we derive that

tk+1Φk(xk+1) ≤ (tk+1 − 1)Φk(xk) + min Φ(15)

+ 〈∇Φk(yk), (tk+1 − 1)(yk − xk) + yk − x∗〉 −
sk
2
tk+1‖∇Φk(yk)‖2.



8 HEDY ATTOUCH AND ALEXANDRE CABOT

Observe that

(tk+1 − 1)(yk − xk) + yk = tk+1 yk − (tk+1 − 1)xk

= xk + tk+1 αk(xk − xk−1)

= xk−1 + (1 + tk+1 αk)(xk − xk−1)

= xk−1 + tk(xk − xk−1) in view of (3).

Setting zk = xk−1 + tk(xk − xk−1), we then deduce from (15) that

(16) tk+1(Φk(xk+1)−min Φ) ≤ (tk+1−1)(Φk(xk)−min Φ)+〈∇Φk(yk), zk−x∗〉−
sk
2
tk+1‖∇Φk(yk)‖2.

On the other hand, observe that

zk+1 − zk = xk + tk+1(xk+1 − xk)− xk−1 − tk(xk − xk−1)

= tk+1(xk+1 − xk)− (tk − 1)(xk − xk−1)

= tk+1(xk+1 − xk − αk(xk − xk−1)) in view of (3)

= tk+1(xk+1 − yk) = −sk tk+1∇Φk(yk).

It ensues that zk+1 − x∗ = zk − x∗ − sk tk+1∇Φk(yk), which gives

‖zk+1 − x∗‖2 = ‖zk − x∗‖2 − 2sktk+1〈∇Φk(yk), zk − x∗〉+ s2
kt

2
k+1‖∇Φk(yk)‖2.

By using this equality in (16), we find

tk+1(Φk(xk+1)−min Φ) ≤ (tk+1 − 1)(Φk(xk)−min Φ) +
1

2sktk+1
(‖zk − x∗‖2 − ‖zk+1 − x∗‖2),

which is equivalent to

(17) t2k+1(Φk(xk+1)−min Φ) +
1

2sk
‖zk+1− x∗‖2 ≤ (t2k+1− tk+1)(Φk(xk)−min Φ) +

1

2sk
‖zk − x∗‖2.

By assumption (H), the sequences (sk) = (ρkµk) and (µk) are nondecreasing. These properties
respectively imply that 1

sk+1
≤ 1

sk
and Φk+1 ≤ Φk. Therefore, we deduce from (17) that

t2k+1(Φk+1(xk+1)−min Φ) +
1

2sk+1
‖zk+1 − x∗‖2 ≤ (t2k+1 − tk+1)(Φk(xk)−min Φ) +

1

2sk
‖zk − x∗‖2.

Using the expression of the sequence (Ek), we obtain

Ek+1 ≤ Ek + (t2k+1 − t2k − tk+1)(Φk(xk)−min Φ).

The last assertion is immediate. �

We can now state our main result concerning the rate of convergence of the values for (RIPA).

Theorem 2.5. Under (H), assume that the nonnegative sequence (αk) satisfies (K0)-(K1). Let (xk)
be a sequence generated by the algorithm (RIPA). Then we have

(i) For every k ≥ 1,

Φµk
(xk)−min Φ ≤ C

t2k
,

with C = t21(Φµ1
(x1)−min Φ) + 1

ρ1µ1
(d(x0, S)2 + t21‖x1 − x0‖2).

As a consequence, setting pk = proxµkΦ(xk), we have

Φ(pk)−min Φ = O
(

1

t2k

)
and ‖xk − pk‖2 = O

(
µk
t2k

)
as k → +∞.
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(ii) Assume moreover that there exists 0 ≤ m < 1 such that

(K+
1 ) t2k+1 − t2k ≤ mtk+1 for every k ≥ 1.

Then we have
+∞∑
k=1

tk+1(Φµk
(xk)−min Φ) < +∞.

Proof. (i) By Proposition 2.4, the sequence (Ek) is nonincreasing. It ensues that Ek ≤ E1 for every
k ≥ 1. Recalling the expression of Ek, we deduce that

t2k(Φµk
(xk)−min Φ) ≤ E1 = t21(Φµ1

(x1)−min Φ) +
1

2ρ1µ1
‖x0 + t1(x1 − x0)− x∗‖2

≤ t21(Φµ1(x1)−min Φ) +
1

ρ1µ1
(‖x0 − x∗‖2 + t21‖x1 − x0‖2).

Since x∗ can be taken arbitrarily in S = argminΦ, we obtain t2k(Φµk
(xk)−min Φ) ≤ C, with

C = t21(Φµ1
(x1)−min Φ) +

1

ρ1µ1

(
d(x0, S)2 + t21‖x1 − x0‖2

)
.

(ii) By summing inequality (12) from k = 1 to n, we find

En+1 +

n∑
k=1

(tk+1 − t2k+1 + t2k)(Φµk
(xk)−min Φ) ≤ E1.

Since En+1 ≥ 0 and since t2k+1 − t2k ≤ mtk+1, this implies that

(1−m)

n∑
k=1

tk+1(Φµk
(xk)−min Φ) ≤ E1.

The expected estimate is obtained by letting n tend to infinity. �

Remark 2.6. By contrast with the classical inertial gradient methods, the rate of convergence of the
values for (RIPA) is expressed in terms of the proximal sequence (pk), with pk = proxµkΦ(xk), and
not directly in terms of (xk). This has some analogy with the convergence properties of the shadow
sequence in the Douglas-Rachford algorithm.

Remark 2.7. Let us assume that x1 belongs to the domain of Φ, that is Φ(x1) < +∞. Then
Φµ1

(x1) ≤ Φ(x1) < +∞, and Theorem 2.5 gives, for every k ≥ 1

Φµk
(xk)−min Φ ≤ E1(x0, x1)

t2k

where

E1(x0, x1) = t21[Φ(x1)−min Φ] +
1

ρ1µ1
‖x0 − x∗ + t1(x1 − x0)‖2.

As a function of (x0, x1), E1 achieves its minimum when x1 ∈ argmin Φ and x1 − x0 = 1
t1

(x∗ − x0).
Of course, taking x1 ∈ argmin Φ is not realistic, since this would mean that the problem is already
solved. But this suggests taking the initial direction x1 − x0 as a multiple of an approximation of
x∗ − x0, such as the opposite of the gradient ∇Φµ0

(x0). This amounts to take a gradient step at the
first stage.
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2.3. Convergence rate of the velocities to zero. Let us first show estimates in a summation
form.

Proposition 2.8. Under (H), assume that the sequence (αk) satisfies (K0)-(K+
1 ). Let (xk) be a

sequence generated by the algorithm (RIPA). Then we have

(18)

+∞∑
k=1

tk
sk
‖xk − xk−1‖2 < +∞.

Moreover
+∞∑
k=1

tk+1

sk
‖xk − xk−1‖2 < +∞,

and hence
+∞∑
k=1

tk+1Wk < +∞.

Proof. Let us recall the inequality (9) from Proposition 2.2

Wk+1 −Wk ≤ −
1− α2

k

2sk
‖xk − xk−1‖2.

Multiplying this inequality by t2k+1 and summing from k = 1 to n, we obtain

n∑
k=1

t2k+1(Wk+1 −Wk) +

n∑
k=1

1

2sk
t2k+1(1− α2

k)‖xk − xk−1‖2 ≤ 0.

By rearranging the terms (we perform a discrete form of the integration by parts formula), we find

t2n+1Wn+1 +

n∑
k=1

(t2k − t2k+1)Wk +

n∑
k=1

1

2sk
t2k+1(1− α2

k)‖xk − xk−1‖2 ≤ t21W1.

Recalling the expression of Wk, we deduce that

n∑
k=1

1

2sk
[t2k − t2k+1 + t2k+1(1− α2

k)]‖xk − xk−1‖2 ≤ t21W1 +

n∑
k=1

(t2k+1 − t2k)(Φk(xk)−min Φ).

Since tk+1αk = tk − 1 and t2k+1 − t2k ≤ tk+1 by assumption (K1), this implies

n∑
k=1

1

2sk
[t2k − (tk − 1)2]‖xk − xk−1‖2 ≤ t21W1 +

n∑
k=1

tk+1(Φk(xk)−min Φ).

Observing that tk ≥ 1, we have

t2k − (tk − 1)2 = 2tk − 1 ≥ tk.

Hence,
n∑
k=1

1

2sk
tk‖xk − xk−1‖2 ≤ t21W1 +

n∑
k=1

tk+1(Φk(xk)−min Φ).

By letting n tend to infinity in the above inequality we obtain

+∞∑
k=1

tk
sk
‖xk − xk−1‖2 ≤ 2t21W1 + 2

+∞∑
k=1

tk+1(Φk(xk)−min Φ) < +∞,
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which gives the conclusion (18). Let us complete this result by observing that assumption (K1)
implies

tk+1 − tk ≤
tk+1

tk+1 + tk
≤ 1.

Since tk ≥ 1, we deduce that tk+1 ≤ 2tk for every k ≥ 1. The estimate (18) then yields

+∞∑
k=1

tk+1

sk
‖xk − xk−1‖2 < +∞.

Recalling from Theorem 2.5 that
∑+∞
k=1 tk+1(Φk(xk)−min Φ) < +∞, we obtain

∑+∞
k=1 tk+1Wk < +∞.

�

Let us now establish pointwise estimates for the rate of convergence of the velocities.

Theorem 2.9. Under (H), assume that the sequence (αk) satisfies (K0)-(K+
1 ), and αk ∈ [0, 1] for

every k ≥ 1. Then for any sequence (xk) generated by the algorithm (RIPA), the following holds true

(19) Φµk
(xk)−min Φ = o

(
1∑k
i=1 ti

)
and ‖xk − xk−1‖ = o

(
sk∑k
i=1 ti

)1
2

as k → +∞,

thus implying

(20) Φ(pk)−min Φ = o

(
1∑k
i=1 ti

)
and ‖xk − pk‖ = o

(
µk∑k
i=1 ti

)1
2

as k → +∞.

As a consequence, we have

Φ(pk)−min Φ = o

(
1

t2k

)
, ‖xk − pk‖ = o

(√
µk

tk

)
and ‖xk − xk−1‖ = o

(√
sk
tk

)
as k → +∞.

Proof. According to Proposition 2.2 and αk ∈ [0, 1] for all k ≥ 1, we deduce that the energy se-

quence (Wk) is nonincreasing. By Proposition 2.8, we have that
∑+∞
k=1 tk+1Wk < +∞. Since (Wk)

is nonincreasing, this implies that
∑+∞
k=1 tk+1Wk+1 < +∞, hence

∑+∞
k=1 tkWk < +∞. Let us apply

Lemma B.2 in the Appendix, with the sequences (tk) and (Wk), respectively in place of (τk) and (εk).
We obtain that

Wk = o

(
1∑k
i=1 ti

)
as k → +∞.

The estimates (19) follow immediately. From the definition of Φµk
, we clearly deduce (20). In view

of assumption (K1), we have t2i+1 − t2i ≤ ti+1 for every i ≥ 1, hence by summing from i = 1 to k − 1

t2k ≤ t21 +

k−1∑
i=1

ti+1 = t21 − t1 +

k∑
i=1

ti.

We easily deduce the last estimates. �

2.4. Convergence of the sequence of iterates (xk).

Theorem 2.10. Under (H), assume that the sequence (αk) satisfies (K0)-(K+
1 ), together with αk ∈

[0, 1] for every k ≥ 1. Assume moreover that

sup
k

µk∑k
i=1 ti

< +∞ and sup
k
ρkµk < +∞.

Then, for any sequence (xk) generated by algorithm (RIPA), the following holds

(i) limk→+∞ ‖xk − pk‖ = 0, where pk = proxµkΦ(xk);



12 HEDY ATTOUCH AND ALEXANDRE CABOT

(ii) (xk) converges weakly, as k → +∞, to some x∗ ∈ argmin Φ.

Proof. (i) By the second estimate of (20) we have

‖xk − pk‖ = o

(
µk∑k
i=1 ti

)1
2

−→ 0 as k → +∞,

because supk
µk∑k
i=1 ti

< +∞ by assumption.

(ii) Let us verify successively the items (i) and (ii) of the Opial lemma, see Lemma B.1 in the
Appendix. Take S = argmin Φ. From the first estimate of (20), the sequence (pk) is minimizing,
which implies that any weak cluster point of (pk) belongs to S. Since lim ‖xk − pk‖ = 0, the same
property holds true for the sequence (xk), which completes item (i) of Opial’s lemma. Let us fix
x∗ ∈ S, and show that limk→+∞ ‖xk − x∗‖ exists. For that purpose, let us set hk = 1

2‖xk − x
∗‖2. By

Proposition 2.3, the sequence (hk) satisfies the following inequalities

hk+1 − hk − αk(hk − hk−1) ≤ 1

2
(α2
k + αk)‖xk − xk−1‖2 − sk(Φµk

(xk+1)−min Φ)

≤ 1

2
(α2
k + αk)‖xk − xk−1‖2

≤ ‖xk − xk−1‖2 since αk ∈ [0, 1].

Taking the positive part, we find

(hk+1 − hk)+ ≤ αk(hk − hk−1)+ + ‖xk − xk−1‖2.

By Proposition 2.8 we have
∑+∞
k=1

tk+1

sk
‖xk − xk−1‖2 < +∞. Since (sk) has been supposed to be

bounded from above, this implies
∑+∞
k=1 tk+1‖xk − xk−1‖2 < +∞. By applying Lemma B.3 (given in

the Appendix) with ak = (hk − hk−1)+ and ωk = ‖xk − xk−1‖2, we obtain

+∞∑
k=1

(hk − hk−1)+ < +∞.

Since (hk) is nonnegative, this classically implies that limk→+∞ hk exists. The second point of the
Opial lemma is shown, which ends the proof. �

2.5. Geometrical aspects. The results obtained in the previous section deal with general convex
lower semicontinuous proper functions Φ : H → R∪{+∞}. They give convergence rates for values in
the worst case. It is a well-documented fact that under additional geometric properties on Φ, one can
expect better convergence rates. Let us mention [4], [7], [31] for results based on strong convexity,
[23] for results based on partial smoothness, and [14, 21] for results based on the Kurdyka-Lojasiewicz
property. For the Nesterov acceleration (vanishing damping coefficient of the form α

t ), [11] gives a
recent account on these issues with optimal convergence rates.

Since (RIPA) is governed by ∇Φµk
at iteration k, a natural question is to ask whether such

geometric assumptions about Φ, are preserved by taking the Moreau envelopes. We will examine
several cases for which we will answer this question affirmatively. This suggests that in these cases,
it is likely that one can improve the rate of convergence that we obtained for (RIPA) in the worst
case. This is an interesting question for future studies.

2.5.1. Strong convexity. We recall that Φ : H → R ∪ {+∞} is strongly convex with constant β > 0

if Φ − β
2 ‖ · ‖

2 is convex. One can consult [12, Section 10.2] for classical results concerning strong
convexity. First, as a direct consequence of Theorems 2.9 and 2.10, we obtain the strong convergence
of the iterates in this case.
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Proposition 2.11. Let’s make the hypotheses of Theorem 2.10, and suppose that Φ : H → R∪{+∞}
is a convex lower semicontinuous proper function that is strongly convex. Then, for any sequence (xk)
generated by (RIPA), (xk) and (pk) converge strongly, as k → +∞, to the unique minimizer x∗ of Φ.

Proof. By Theorem 2.9, we have Φ(pk) − min Φ = o
(

1
t2k

)
. Since tk ≥ 1, this implies Φ(pk) →

min Φ. Hence, (pk) is a minimizing sequence of the strongly convex function Φ. This classically
implies that (pk) converges strongly to the unique minimizer x∗ of Φ. By Theorem 2.10, we have
limk→+∞ ‖xk − pk‖ = 0, which implies that, likewise, (xk) converges strongly, as k → +∞, to the
unique minimizer x∗ of Φ. �

Proposition 2.12. Suppose that Φ : H → R ∪ {+∞} is a convex lower semicontinuous proper
function. Then, the following implications hold: for any β, γ > 0 and µ > 0

(i) Φ strongly convex with constant β =⇒ Φµ strongly convex with constant
β

1 + βµ
.

(ii) Φµ strongly convex with constant γ <
1

µ
=⇒ Φ strongly convex with constant

γ

1− γµ
.

Proof. (i) If Φ is strongly convex with constant β > 0, we have Φ = Ψ + β
2 ‖ · ‖

2 for some convex
function Ψ. Elementary calculus (see [12, Exercise 12.6] for example) gives, with θ = µ

1+βµ ,

Φµ(x) = Ψθ

(
1

1 + µβ
x

)
+

β

2(1 + βµ)
‖x‖2.

Since x 7→ Ψθ

(
1

1+µβ x
)

is a convex function, the above formula shows that Φµ is strongly convex

with constant γ = β
1+βµ . Note that γµ = βµ

1+βµ < 1, which gives γ < 1
µ .

(ii) Conversely, suppose that Φµ = G + γ
2 ‖ · ‖

2 for some convex function G and some γ > 0 such

that γµ < 1. Since the Moreau envelope Φµ is of class C1, the function G is also of class C1. Taking

the Legendre-Fenchel conjugate, we obtain (Φµ)∗ =
(
G+ γ

2 ‖ · ‖
2
)∗
. Using classical calculus rules, we

have

(Φµ)∗ =

(
Φ #

1

2µ
‖ · ‖2

)∗
= Φ∗ +

µ

2
‖ · ‖2, and

(
G+

γ

2
‖ · ‖2

)∗
= G∗#

1

2γ
‖ · ‖2 = (G∗)γ ,

where # denotes the infimal convolution (also called epi-addition). It ensues that Φ∗ = (G∗)γ− µ
2 ‖·‖

2.

Since Φ is convex lower semicontinuous and proper, we have Φ = Φ∗∗ =
(
(G∗)γ − µ

2 ‖ · ‖
2
)∗
.

By definition of the Legendre-Fenchel conjugate and the infimal convolution, this gives

Φ(x) = sup
ξ

sup
u

{
〈x, ξ〉 −G∗(u)− 1

2γ
‖ξ − u‖2 +

µ

2
‖ξ‖2

}
.

Elementary calculus (switch order of supremum in the above expression) gives Φ = J + γ
2(1−γµ)‖ · ‖

2,

where J is convex lower semicontinuous and proper. Hence Φ is strongly convex with constant
γ

1−γµ . �

2.5.2. Growth condition. Let us consider Φ : H → R ∪ {+∞} a convex lower semicontinuous proper
function that satisfies the growth condition: there exists some positive constant β such that for all
x ∈ H

Φ(x) ≥ min Φ +
β

2
d(x, S)2,

where S = argminΦ. When Φ is convex, which is our case, it is equivalent to a Kurdyka-Lojasiewicz
inequality. This makes it play an important role in the mathematical analysis of continuous and
discrete dynamical systems. It is also called conditioning or Hölderian error bounds. Note that



14 HEDY ATTOUCH AND ALEXANDRE CABOT

1
2d(x, S)2 = (δS)1 where δS is the indicator function of the set S. The resolvent equality (semi-group
property) gives (

1

2
d(·, S)2

)
µ

= ((δS)1)µ = (δS)1+µ =
1

2(1 + µ)
d(·, S)2.

From this, it is an easy exercise to verify that for such a function Φ, the Moreau envelope Φµ satisfies

Φµ(x) ≥ min Φ +
β

2(1 + βµ)
d(x, S)2.

Since min Φ = min Φµ, we deduce that Φµ satisfies a similar growth condition (with another constant).

2.6. Related algorithms. The analysis of (RIPA) performed in the previous sections is based on
its formulation as an inertial gradient algorithm

(21)

{
yk = xk + αk(xk − xk−1)

xk+1 = yk − sk∇Φk(yk),

where, as a distinctive feature, the potential function Φk varies at each iteration. A careful inspection
at the proofs shows that the results listed in section 2 up to the first part of Theorem 2.9 are valid
in a more general context than that of Moreau-Yosida regularization. As part of the algorithm (21),
these results remain true for sequences (Φk) and (sk) that meet the following conditions:

• (Φk) is a nonincreasing sequence of differentiable convex functions;

• ∇Φk is Lk-Lipschitzian;

• argminΦk is not empty and min Φk ≡ m for all k ≥ 1;

• sk is a nondecreasing sequence such that sk ≤ 1
Lk

for all k ≥ 1.

This suggests a natural extension, which consists of replacing the quadratic regularization term of
the Moreau envelopes with a general Bregman distance. This is another direction for future research.

3. Application to particular classes of parameters αk, µk and ρk

We will now specialize the parameters αk, µk and ρk in order to obtain inertial proximal-based
algorithms whose iterations converge in the case of general monotone inclusions, and which, in the
case of convex minimization, give fast convergence rates of values (in the worst case).

Theorem 1.3 provides convergence of the iterates for general maximally monotone operators, and
Theorem 2.5 gives fast convergence of the values for convex minimization. So, each of them meets
one of the two above objectives, and we just need to synthesize them. This amounts to finding
assumptions about the data (αk), (ρk), (µk) for which both results are valid. Note that apart from
the (K0) assumption common to both, and which is basic to define the sequence (tk), each of these
results is based on a specific set of assumptions. For general monotone inclusions, we use Theorem
1.3, which concerns the case ρk → 0. Indeed, when αk → 1, which is the situation for which one
can expect rapid convergence results of the values for convex minimization, a direct inspection of the
condition (L) shows that we must have ρk → 0. The assumptions of Theorem 1.3 and Theorem 2.5
are expressed in terms of the sequences (αk), (ρk), (µk), and (tk). Only the sequence (tk) is not
given explicitly from the data. The following proposition provides a criterion for simply obtaining an
asymptotic equivalent of (tk), see [4, Propositions 14 and 15]. It also guarantees that the property
(K0) is satisfied.

Proposition 3.1. Let (αk) be a sequence such that αk ∈ [0, 1[ for every k ≥ 1. Assume that

(22) lim
k→+∞

(
1

1− αk+1
− 1

1− αk

)
= c,
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for some c ∈ [0, 1[. Then the property (K0) is satisfied, and tk+1 ∼
1

(1− c)(1− αk)
as k → +∞.

The following result gives a practical form of Theorem 1.3 that relies on Proposition 3.1. The
conditions are now expressed simply and directly in terms of the sequences (αk), (ρk), (µk).

Theorem 3.2. [6, Theorem 3.6] Let A : H → 2H be a maximally monotone operator such that
zerA 6= ∅. Suppose that the sequences (αk) and (ρk) satisfy αk ∈ [0, 1[ and ρk ∈]0, 2[ for every k ≥ 1.
Let us assume that there exist α ∈ [0, 1], ρ ∈ [0, 2[, c ∈ [0, 1[ and c′′ ∈ R, with −(1 − ρ/2) < c′′ ≤
−(1− ρ/2)c such that

lim
k→+∞

αk = α and lim
k→+∞

ρk = ρ;(23)

lim
k→+∞

(
1

1− αk+1
− 1

1− αk

)
= c;(24)

lim
k→+∞

ρk+1 − ρk
ρk+1(1− αk)

= c′′;(25)

lim inf
k→+∞

(1− αk)2

ρk
>

α(1 + α)

2− ρ+ 2c′′
.(26)

Then for any sequence (xk) generated by (RIPA), we have

(i) ‖xk+1 − xk‖ = O
(

ρk
1− αk

)
as k → +∞.

Assume additionally that
|µk+1 − µk|

µk+1
= O

(
ρk

1− αk

)
as k → +∞, together with

+∞∑
k=1

ρk
1− αk

= +∞.

Then the following holds

(ii) limk→+∞ µkAµk
(xk) = 0. If lim infk→+∞ µk > 0, then there exists x∞ ∈ zerA such that

xk ⇀ x∞ weakly in H as k → +∞.

3.1. The case αk = 1− α

k
. In a seminal paper [25], Nesterov considered the accelerated gradient

method {
yk = xk + αk(xk − xk−1)

xk+1 = yk − λk∇Φ(yk),

which aims at minimizing a differentiable convex function Φ : H → R. It is assumed that Φ has
a L-Lipschitz gradient, and that the parameters satisfy λk ≡ 1/L, and αk = tk−1

tk+1
with t1 =

1 and tk+1 =

√
4t2k+1+1

2 (this corresponds to the case of equality in (K1)). This choice leads to an

increasing sequence of extrapolated coefficients (αk), that behaves like 1 − 3
k as k → +∞. This

scheme exhibits the convergence rate for the values Φ(xk) −min Φ = O( 1
k2 ) as k → +∞, which, for

gradient methods, is known to be optimal among all first-order methods having only information about
the gradients and functions at previous iterates [26]. Then, Beck-Teboulle [13] extended Nesterov’s
method to inertial proximal-gradient methods for solving structured minimization problems, that’s
(FISTA). Other choices of the extrapolation factors αk have been recently considered in [7, 8, 10,
17, 31]. Notably, the case αk = 1 − α

k , with α > 3 offers many advantages. First, it ensures the
convergence of the sequences (xk), as proved by Chambolle and Dossal [17], see also [7]. Let us
recall that the convergence of the sequences generated by (FISTA) has not been established so far.
Second, as proved by Attouch and Peypouquet in [8], it provides the better rate of convergence
Φ(xk) −min Φ = o

(
1
k2

)
. A unified point of view on these methods has been lately brought to light

by Attouch-Cabot [4], where a general extrapolation coefficient αk is considered.

The following result is a direct application of Theorem 3.2 to the case αk = 1− α
k .
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Corollary 3.3. [6, Corollary 3.8] Let A : H → 2H be a maximally monotone operator such that

zerA 6= ∅. Suppose that αk = 1− α

k
and ρk =

β

kr
for k ≥ 1, where the parameters α, β, r are

supposed to satisfy:
r ≥ 2, α > r and β > 0 is such that β < α(α− 2) if r = 2 (no condition on β if r > 2).

Then for any sequence (xk) generated by (RIPA), we have

(i) ‖xk+1 − xk‖ = O
(

1

kr−1

)
as k → +∞.

Assume additionally that r = 2 and that
|µk+1 − µk|

µk+1
= O

(
1

k

)
as k → +∞. Then the following

holds

(ii) limk→+∞ µkAµk
(xk) = 0.

(iii) If lim infk→+∞ µk > 0, then there exists x∞ ∈ zerA such that xk ⇀ x∞ weakly in H as
k → +∞.

Proof. Let’s verify that, with this choice of parameters, the assumptions of Theorem 3.2 are satisfied.

• Assumption (23) is clearly satisfied, with α = 1 and ρ = 0 respectively.
• Observe that 1

1−αk+1
− 1

1−αk
= 1

α (k + 1) − 1
αk = 1

α , hence assumption (24) is verified with

c = 1
α .

• We have ρk+1−ρk
ρk+1(1−αk) =

(
1

(k+1)r −
1
kr

)
(k + 1)r kα → − r

α as k → +∞. This shows that

assumption (25) is fulfilled with c′′ = − r
α . The hypothesis −(1 − ρ/2) < c′′ ≤ −(1 − ρ/2)c

amounts to −1 < − r
α ≤ −

1
α , which is in turn equivalent to 1 ≤ r < α.

• Assumption (26) can be rewritten as lim inf
k→+∞

(1− αk)2

ρk
>

1

1− r/α
=

α

α− r
.

We have (1− αk)2/ρk = (α2/k2)(kr/β) = α2

β k
r−2. Therefore

limk→+∞
(1−αk)2

ρk
=

{
+∞ if r > 2
α2/β if r = 2.

Hence, assumption (26) is satisfied if r > 2, while it is equivalent to α(α− 2) > β if r = 2.

• Condition
∑+∞
k=1

ρk
1−αk

= +∞ amounts to r ≤ 2, which boils down to r = 2.

• |µk+1−µk|
µk+1

= O
(

ρk
1−αk

)
is equivalent to |µk+1−µk|

µk+1
= O

(
1
k

)
.

�

Let’s now check the assumptions of Theorem 2.5. Since condition (22) is satisfied with c = 1
α ,

Proposition 3.1 shows that the property (K0) holds true when α > 1, and tk+1 ∼ k
α−1 . Indeed one can

easily verify that equality holds, that is, tk+1 = k
α−1 . We then obtain that condition (K1), namely,

t2k+1 − t2k ≤ tk+1 for every k ≥ 1, is equivalent to α ≥ 3. A similar calculation gives that condition

(K+
1 ) is equivalent α > 3. Thus when α ≥ 3, and under assumption (H), we obtain the following

convergence rate of the values for (RIPA) Φ(pk)−min Φ = O
(

1
k2

)
, where pk = proxµkΦ(xk).

The previous results are summarized in Figure 1. In the general maximally monotone case, weak
convergence of the iterates is ensured by the assumptions of the first column. When A = ∂Φ, the
convergence rate of the values O

(
1
k2

)
is guaranteed by the hypotheses of the second column. The last

column provides assumptions that ensure the weak convergence of the iterates in the case A = ∂Φ.
In this case, it is not necessary to assume ρk → 0 to get convergence of iterates.
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(RIPA)

A maximally monotone A = ∂Φ, Φ : H → R ∪ {+∞} convex lsc.

αk αk = 1− α

k

α > 2 α ≥ 3 α > 3

ρk ρk =
β

k2
, β < α(α− 2) 0 < ρk ≤ 1

µk
|µk+1−µk|
µk+1

= O
(

1
k

)
(µk) and (ρkµk) nondecreasing

lim inf µk > 0

sup ρkµk < +∞

sup µk

k2 < +∞

weak convergence of iterates Φ(pk)−min Φ = O
(

1
k2

)
weak convergence of iterates

‖xk+1 − xk‖ = O
(

1
k

)
with pk = proxµkΦ(xk)

Figure 1: Summary of the convergence results for (RIPA) with αk = 1− α
k .

We can now easily deduce a set of assumptions for which both types of results are satisfied.

Corollary 3.4. Take the parameters αk, ρk, µk of (RIPA) as follows: for each k ≥ 1

• αk = 1− α

k
, α ≥ 3; ρk =

β

k2
, β < α(α− 2); µk = c kr

′
for some r′ ≥ 2 and c > 0.

Then, we have both
a) the weak convergence of the iterates (xk) generated by (RIPA) when A is a general maximally

monotone operator. Moreover, ‖xk+1 − xk‖ = O
(

1
k

)
.

b) the rate of convergence of the values O
(

1
k2

)
for (RIPA) when A = ∂Φ and Φ : H → R∪{+∞} is

convex, lower semicontinuous, proper. Precisely, Φ(pk)−min Φ = O( 1
k2 ) where pk = proxµkΦ(xk).

Proof. It is an immediate consequence of the results contained in Figure 1. Concerning the choice of
µk just notice that, when taking µk = ckr

′
for some r′ ≥ 2, the sequences (µk) and (ρkµk) = cβ kr

′−2

are nondecreasing. Moreover |µk+1−µk|
µk+1

∼ r′

k = O
(

1
k

)
. �

The case r = r′ = 2 has been studied by Attouch and Peypouquet [9] with αk = 1 − α
k , ρk =

s
λk+s and µk = λk + s, where α, s > 0 and λk = (1 + ε) s

α2 k
2, for some ε > 0. With this choice,



18 HEDY ATTOUCH AND ALEXANDRE CABOT

the sequence (sk) with sk = ρkµk is constant, equal to s. This particular situation naturally occurs
when deriving the algorithm from a dynamical system with constant step size, see section 1.3.2.

3.2. The case αk = 1− α

kq
. The following result is a direct application of Theorem 3.2 to the case

αk = 1− α/kq and ρk = β/kr, for some α, β > 0, q ∈]0, 1[ and r > 0.

Corollary 3.5. [6, Corollary 3.7] Let A : H → 2H be a maximally monotone operator such that

zerA 6= ∅. Suppose that αk = 1− α

kq
and ρk =

β

kr
for k ≥ 1, where the parameters α, β, q and r are

supposed to satisfy:
(q, r) ∈]0, 1[×R∗+, r ≥ 2q, and (α, β) ∈ R∗+×R∗+ satisfies α2/β > 1 if r = 2q (no condition if r > 2q).

Then for any sequence (xk) generated by (RIPA), we have

(i) ‖xk+1 − xk‖ = O
(

1

kr−q

)
as k → +∞.

Assume additionally that r ≤ q + 1 and that
|µk+1 − µk|

µk+1
= O

(
1

kr−q

)
as k → +∞. Then the

following holds

(ii) limk→+∞ µkAµk
(xk) = 0.

(iii) If lim infk→+∞ µk > 0, then there exists x∞ ∈ zerA such that xk ⇀ x∞ weakly in H as
k → +∞.

Proof. Let’s verify that, with this choice of parameters, the assumptions of Theorem 3.2 are satisfied.

• Assumption (23) is clearly satisfied, with α = 1 and ρ = 0.
• Observe that 1

1−αk+1
− 1

1−αk
= 1

α ((k+ 1)q − kq) ∼ q
αk

q−1 → 0 as k → +∞, where we have

used q ∈]0, 1[. Hence assumption (24) is verified with c = 0.

• We have ρk+1−ρk
ρk+1(1−αk) =

(
1

(k+1)r −
1
kr

)
(k + 1)r k

q

α ∼ −
r
αk

q−1 → 0 as k → +∞.
Therefore, assumption (25) is fulfilled with c′′ = 0.

• Assumption (26) amounts to lim infk→+∞
(1−αk)2

ρk
> 1. We have

(1− αk)2/ρk = (α2/k2q)(kr/β) = α2

β k
r−2q, hence limk→+∞

(1−αk)2

ρk
=

{
+∞ if r > 2q
α2/β if r = 2q.

It ensues that assumption (26) is satisfied if r > 2q, while it is equivalent to α2 > β if r = 2q.

• Condition
∑+∞
k=1

ρk
1−αk

= +∞ amounts to
∑+∞
k=1

1
kr−q = +∞, that is, r ≤ q + 1.

• |µk+1−µk|
µk+1

= O
(

ρk
1−αk

)
is equivalent to |µk+1−µk|

µk+1
= O

(
1

kr−q

)
.

�

Let’s now check the assumptions of Theorem 2.9. We have 1
1−αk+1

− 1
1−αk

→ 0 as k → +∞. Hence,

c = 0 in Proposition 3.1, which implies that (K0) is satisfied, and tk+1 ∼ 1
1−αk

= 1
αk

q. Since c < 1
3 , it

follows from [4, Proposition 14] that (K+
1 ) is satisfied. Note that

∑k
i=1 ti ∼

1
α(1+q) k

1+q. According to

Theorem 2.9, under (H), the following holds true Φµk
(xk)−min Φ = o

(
1

k1+q

)
and ‖xk−xk−1‖ =

o
(
sk
k1+q

)1
2 . Therefore, Φ(pk) − min Φ = o

(
1

k1+q

)
, where pk = proxµkΦ(xk). Under the additional

assumptions sup µk

k1+q < +∞ and sup ρkµk < +∞, Theorem 2.10 shows the weak convergence of the
iterates (xk).

The previous results are summarized in the table of Figure 2.
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(RIPA)

A maximally monotone A = ∂Φ, Φ : H → R ∪ {+∞} convex lsc.

αk αk = 1− α

kq
, q ∈]0, 1[, α > 0

ρk =
β

kr
, β > 0

ρk 0 < ρk ≤ 1

r = 2q, β < α2 r ∈]2q, q + 1]

µk
|µk+1−µk|
µk+1

= O
(

1
kr−q

)
(µk) and (ρkµk) nondecreasing

lim inf µk > 0

sup ρkµk < +∞

sup µk

k1+q < +∞

weak convergence of iterates Φ(pk)−min Φ = o
(

1
k1+q

)
weak convergence of iterates

‖xk − xk−1‖ = O
(

1
kr−q

)
‖xk − xk−1‖ = o

(
ρkµk

k1+q

)1
2

Figure 2: Summary of the convergence results for (RIPA) with αk = 1− α
kq , q ∈]0, 1[.

We can now easily deduce a set of assumptions for which both types of results are satisfied.

Corollary 3.6. Take the parameters αk, ρk, µk of (RIPA) as follows: for each k ≥ 1

• αk = 1− α

kq
, α > 0, q ∈]0, 1[;

• ρk =
β

kr
, β > 0, r ∈ [2q, q + 1], and β < α2 if r = 2q (no condition if r > 2q);

• µk = c kr
′

for some r′ ≥ r and some positive constant c.

Then, we have both
a) the weak convergence of the iterates (xk) generated by (RIPA) when A is a general maximally

monotone operator. Moreover, ‖xk − xk−1‖ = O
(

1
kr−q

)
.

b) the rate of convergence of the values o
(

1
k1+q

)
for the algorithm (RIPA) when A = ∂Φ and

Φ : H → R ∪ {+∞} is convex, lower semicontinuous, proper. Precisely, Φ(pk) − min Φ = o( 1
k1+q )

where pk = proxµkΦ(xk). Moreover, ‖xk − xk−1‖ = o
(
kr
′−r

k1+q

)1
2

.
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Proof. It is an immediate consequence of the results contained in Figure 2. Concerning the choice of
µk just notice that, when taking µk = c kr

′
for some r′ ≥ r, the sequences (µk) and (ρkµk) = cβ kr

′−r

are nondecreasing. Moreover |µk+1−µk|
µk+1

∼ r′

k = O
(

1
kr−q

)
, since r ≤ q + 1. �

Remark 3.7. As a general rule, we can observe a balance between the inertial effect and the re-
laxation effect. As αk gets closer to one, the relaxation parameter ρk gets closer to zero. As well,
there is a balance between the relaxation and the regularization parameters. As ρk tends to zero, the
regularization parameter µk tends to infinity. A typical situation is µk = C

ρk
, for some C > 0.

Appendix A. Moreau envelopes

Recall some basic facts concerning the Moreau envelope. Let Φ : H → R ∪ {+∞} be a convex
lower semicontinuous proper function. For any µ > 0, and any x ∈ H,

(27) Φµ(x) = inf
ξ∈H

{
Φ(ξ) +

1

2µ
‖x− ξ‖2

}
.

The infimum in (27) is achieved at a unique point proxµΦ(x), which gives

Φµ(x) = Φ(proxµΦ(x)) +
1

2µ
‖x− proxµΦ(x)‖2.

Writing the optimality condition for (27), we get

proxµΦ(x) + µ∂Φ
(
proxµΦ(x)

)
3 x,

that is proxµΦ(x) = (I + µ∂Φ)
−1

(x). Thus, proxµΦ is the resolvent of index µ > 0 of the maximal
monotone operator ∂Φ. Consequently, the mapping proxµΦ : H → H is firmly nonexpansive. For any
µ > 0, the function x 7→ Φµ(x) is continuously differentiable, with

∇Φµ(x) =
1

µ

(
x− proxµΦ(x)

)
.

Thus ∇Φµ = 1
µ

(
I − (I + µ∂Φ)

−1
)

= (∂Φ)µ is the Yosida approximation with index µ of the maxi-

mally monotone operator ∂Φ. As such, ∇Φµ is Lipschitz continuous, with Lipschitz constant 1
µ , and

Φµ ∈ C1,1(H). See [12, 16, 28, 29], for further results.

Appendix B. Auxiliary results

Let us present some auxiliary lemmas that are used throughout the paper. To establish the weak
convergence of the iterates of (RIPA), we apply Opial’s Lemma [27], that we recall in its discrete
form.

Lemma B.1. Let S be a nonempty subset of H, and (xk) a sequence of elements of H. Assume that

(i) every sequential weak cluster point of (xk), as k → +∞, belongs to S;
(ii) for every z ∈ S, limk→+∞ ‖xk − z‖ exists.

Then (xk) converges weakly as k → +∞ to a point in S.

The next lemma provides an estimate of the convergence rate of a sequence that is summable with
respect to weights.

Lemma B.2 ([4, Lemma 22]). Let (τk) be a nonnegative sequence such that
∑+∞
k=1 τk = +∞. Assume

that (εk) is a nonnegative and nonincreasing sequence satisfying
∑+∞
k=1 τk εk < +∞. Then we have

εk = o
(

1∑k
i=1 τi

)
as k → +∞.
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The following result allows us to establish the summability of a sequence (ak) satisfying some
suitable inequality.

Lemma B.3 ([4, Lemma 23]). Given a nonnegative sequence (αk) satisfying (K0), let (tk) be the

sequence defined by tk = 1 +
∑+∞
i=k

∏i
j=k αj. Let (ak) and (ωk) be two sequences of nonnegative

numbers such that ak+1 ≤ αkak + ωk, for all k ≥ 0. If
∑+∞
k=0 tk+1ωk < +∞, then

∑+∞
k=0 ak < +∞.
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