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ABSTRACT

General relativity (GR) has been well tested up to solar system scales, but it is much less certain that standard gravity remains an
accurate description on the largest, that is cosmological, scales. Many extensions to GR have been studied that are not yet ruled out
by the data, including by that of the recent direct gravitational wave detections. Degeneracies among the standard model (ΛCDM)
and modified gravity (MG) models, as well as among different MG parameters, must be addressed in order to best exploit information
from current and future surveys and to unveil the nature of dark energy. We propose various higher-order statistics in the weak-
lensing signal as a new set of observables able to break degeneracies between massive neutrinos and MG parameters. We have
tested our methodology on so-called f (R) models, which constitute a class of viable models that can explain the accelerated universal
expansion by a modification of the fundamental gravitational interaction. We have explored a range of these models that still fit current
observations at the background and linear level, and we show using numerical simulations that certain models which include massive
neutrinos are able to mimic ΛCDM in terms of the 3D power spectrum of matter density fluctuations. We find that depending on the
redshift and angular scale of observation, non-Gaussian information accessed by higher-order weak-lensing statistics can be used to
break the degeneracy between f (R) models and ΛCDM. In particular, peak counts computed in aperture mass maps outperform third-
and fourth-order moments.
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1. Introduction
Current observations from the cosmic microwave background
(CMB) anisotropies, baryon acoustic oscillations, and supernova
luminosity distances all support a phase of accelerated cosmic
expansion during the present epoch (e.g. Planck Collaboration
XIII 2016; Planck Collaboration XIV 2016; Anderson et al.
2014; Betoule et al. 2014). The cause of such evolution is still
unknown and should amount to approximately 70% of the total
energy density of the Universe. Whether it is simply a fundamen-
tal constant of nature, a physical fluid, or instead a modification
of general relativity (GR) itself at cosmological scales, the accel-
erated expansion remains one of the biggest puzzles in modern
cosmology.

The simplest cosmological model consistent with the data
assumes a constant contribution (Λ) and a cold dark matter com-
ponent (CDM). The cosmic expansion of a ΛCDM model, how-
ever, can be mimicked by vast range of models, which are also in
agreement with current observations. These scenarios typically
assume either a fluid component, in other words, dark energy
(DE), or a modification of general relativity at large scales. Even
when considering linear perturbations and the impact on CMB,
dark energy and modified gravity (MG) models are still viable
(Planck Collaboration XIV 2016) and may be advocated to solve
tensions currently present between Planck data and late time
probes, such as weak lensing (Hildebrandt et al. 2017; DES Col-
laboration 2018) and, in smaller measure, redshift space distor-
tions (Planck Collaboration XIV 2016).

The recent direct detection of gravitational waves (GW)
with an electromagnetic counterpart has contributed to the
exclusion of a range of MG models in the space of gen-
eral Horndeski scalar-tensor theories (Lombriser & Taylor
2016; Lombriser & Lima 2017; Creminelli & Vernizzi
2017; Baker et al. 2017; Ezquiaga & Zumalacárregui 2017;
Sakstein & Jain 2017). Using measurements in Sakstein (2015),
Dima & Vernizzi (2018) put further constraints on models
beyond Horndeski, which make use of the Vainshtein mecha-
nism to protect high density regions where GR is well tested.
A large range of models is still viable, however, including
those discussed in Planck Collaboration XIV (2016) and in
particular scalar-tensor theories with a universal coupling,
that is the f (R) models discussed in this paper. We refer to
Crisostomi & Koyama (2018; and to references above) for a
general formulation of viable models which assume a universal
coupling. We note also that theories such as coupled DE
(Amendola 2000; Pettorino & Baccigalupi 2008; Pettorino
2013) are still viable after GW constraints. As they do not intro-
duce derivative couplings in the action, they therefore do not
modify the speed of GWs in tensor equations; see for example
Bettoni et al. (2017), where terms leading to anomalous speeds
have been identified.

Distinguishing between ΛCDM and MG scenarios that
mimic ΛCDM at the linear level, but which may be different
at non-linear scales, is the next challenge for future galaxy sur-
veys. In this paper, we investigate whether various observables
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based on statistics of the weak-lensing signal can be used to dis-
criminate among different theoretical models that are strongly
degenerate in the matter power spectrum on linear and possi-
bly also on non-linear scales. In particular, we focus on the
strong degeneracy between f (R) modified gravity and ΛCDM
that occurs when the latter models include the effects of massive
neutrinos (see Motohashi et al. 2013; He 2013; Baldi et al. 2014;
Wright et al. 2017). Given such a degeneracy, we are motivated
to explore non-Gaussian weak-lensing probes that access higher-
order information than two-point correlation functions or their
associated power spectra. Our goal is to determine which statis-
tics are most promising and how the discrimination efficiency
between models depends on redshift and angular scale.

Within ΛCDM, there is evidence that weak lensing alone
can break the degeneracy between σ8 and Ωm by a combina-
tion of higher-order (than second) convergence moments and
shear tomography (Vicinanza et al. 2018). In terms of MG,
Liu et al. (2016) have shown that non-Gaussian statistics, in par-
ticular weak-lensing peak counts, contain significant cosmo-
logical information and can constrain f (R) model parameters.
In addition, Higuchi & Shirasaki (2016), Shirasaki et al. (2017)
have studied the effects of f (R) gravity on statistical properties
of the weak-lensing field, including the convergence power spec-
trum and bispectrum, peak counts, and Minkowski functionals.
Unlike these analyses, the matter power spectrum degeneracy in
our case is facilitated (and the constraining power of WL obser-
vation is challenged) by the presence of massive neutrinos, a
component known to play an important role during structure for-
mation in the real universe.

The deflection of light coming from distant galaxies repre-
sents an important tool to indirectly map the projected matter
density distribution along the line of sight. When light bundles
travel from distant galaxies to an observer, they are continu-
ously deflected by the inhomogeneities of the density field of
the intervening non-linear structures. As a consequence, images
of background galaxies appear slightly stretched and distorted,
the phenomenon known as weak gravitational lensing. Con-
sidering that by definition the weak-lensing effect is small, it
is necessary to average over a large number of background
sources in order to quantify it. Future wide-field experiments like
LSST Science Collaboration (2009) and the ESA space mission
Euclid1 (Laureijs et al. 2011) will both increase the number and
redshift range of the background source population used to mea-
sure the weak-lensing signal.

Given vastly larger datasets and substantially improved
image quality, next-generation surveys will thus permit the most
stringent tests yet on a variety of different theoretical scenarios
(Amendola et al. 2018). In these tests, weak lensing will be a
primary tool in our effort to understand the dark universe, and in
particular the nature of the late-time acceleration phase. In this
work, we present the first high-order moment analysis of weak-
lensing fields of non-standard MG cosmologies with massive
neutrinos. Our aim is to quantify the capability of future galaxy
surveys to distinguish non-standard cosmological features using
weak lensing.

The paper is organised as follows. In Sect. 2 we describe the
theoretical cosmologies used in this paper as a proof of concept
of the methodology we propose. In Sect. 3 we briefly recall the
basic weak lensing definitions that will be needed in the analysis.
In Sect. 4 we discuss the N-body simulations used for the analy-
sis described in Sect. 5. Our results are presented and discussed
in Sect. 6, and we draw our conclusions in Sect. 7.

1 https://www.euclid-ec.org

2. f (R) cosmology: the Hu-Sawicki model

Among the classes of theories that modify gravitational attrac-
tion at large scales in order to have cosmic acceleration, a large
class of (still viable) models is given by f (R) theories. In these
cosmologies, the dependence of the action on the Ricci scalar R
is modified with respect to GR, and depends on a generic func-
tion f of R, such that:

S =

∫
d4x
√
−g

R + f (R)
2κ2

G

+Lm

 , (1)

where Lm is the matter Lagrangian and κ2
G ≡ 8πG. (We use a

subscript G to avoid confusion with the weak lensing conver-
gence κ.) It is possible to show that these theories are a subclass
of scalar-tensor theories, meaning they include a universal fifth
force mediated by a scalar field, that adds to the metric tensor
already present in GR. Since this force is universal, it affects
baryons as well as dark matter: as a consequence, f (R) theories
typically need some screening mechanism that restores GR in
high density regions, such as in the solar system, where obser-
vations show no significant deviation from GR. In addition, the
choice of f (R) should provide a cosmology that is close enough
to ΛCDM in the high-redshift regime (or else it would affect the
CMB in a way that would have already been observed) and pro-
vide cosmic acceleration at late times.

One of the few known functional forms of f (R) able to sat-
isfy solar system constraints is the Hu & Sawicki (2007) model
in which

f (R) ≡ −m2 c1(R/m2)n

c2(R/m2)n + 1
for n > 0, (2)

and

m2 ≡
κ2

G ρ̄0

3
= (8315 Mpc)−2

(
Ωmh2

0.13

)
, (3)

where ρ̄0 is the average density at present time, and c1 and c2 are
dimensionless parameters. The sign of f (R) is chosen such that
its second derivative fRR is positive for R � m2, leading to stable
solutions in the high curvature regime (Hu & Sawicki 2007). It
has been shown that for
c1

c2
≈ 6

ΩΛ

Ωm
, (4)

this model mimics the background evolution of a ΛCDM
model with a cosmological constant relative density of ΩΛ and
a relative matter density of Ωm. In the Hu & Sawicki (2007)
model however, there is no cosmological constant and cosmic
acceleration is given by the modification of gravity. Further-
more, the parameter c2 is usually expressed in terms of fR0 ≡

d f /dR(z = 0).
In these cosmologies, therefore, two additional parameters

are present: n and fR0. This set of functional forms are such
that f (R)/m2 have a transition from zero (for R → 0) to a con-
stant, for R � m2. The sharpness of this transition increases
with n, while fR0 determines when the transition occurs. A
detailed analysis of the impact of such cosmologies at differ-
ent scales has been presented already in the proposal paper
of Hu & Sawicki (2007) and as well in more recent papers
(Koyama 2016; Lombriser 2014). In Hu & Sawicki (2007, see
their Fig. 9), for solar system to galaxy scales, assuming a galac-
tic density ρg = 10−24 g cm−3, the two parameters of the theory
have to satisfy

| fR0| < 74 (1.23 × 106)n−1
[

R0

m2

Ωmh2

0.13

]−(n+1)

. (5)
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Fig. 1. Ratio of the matter power spectra P(k) of different f (R) mod-
els, including neutrinos of different mass, with respect to ΛCDM. The
different f (R) models, labelled as f4(R), f5(R), and f6(R), are described
in the text. f6(R) with any neutrino mass and f5(R) with mν = 0.15 eV
all have a matter power spectrum within 10% of the ΛCDM one. In the
following we illustrate how different statistics can be used (or not) to
discriminate these models, showing complete results in particular for
f5(R) for illustration.

Hu & Sawicki (2007) models have also been shown to
satisfy background observations (Martinelli et al. 2009) and
have been tested against some cosmological constraints (e.g.
Lombriser et al. 2012; Boubekeur et al. 2014; Hu et al. 2016;
see Koyama 2016 and Lombriser 2014 for an overview and
detailed list of constraints). CMB and large-scale structure
provide relatively weak constraints, giving | fR0| < 10−2–10−4.
Solar system constraints typically require | fR0| < 10−4–10−6,
depending on environmental assumptions of the Milky Way,
while galaxy clusters give the slightly stronger bound of | fR0| <
10−5. Strong lenses (Smith 2009) or dwarf galaxies and Cepheids
may reach | fR0| < 10−6–10−7 (Jain et al. 2013; Vikram et al.
2018), with bounds that depend, however, on several assump-
tions and approximations, for example the shape of density pro-
files. Hu & Sawicki (2007) cosmologies automatically satisfy
constraints recently derived by Sakstein (2015) for any choice
of the parameters.

In the following we fix n = 1 and consider different values
of fR0, labelled as follows:

– f4(R) (or equivalently fR4) labels f (R) with fR0 = −10−4,
– f5(R) (or equivalently fR5) labels f (R) with fR0 = −10−5,
– f6(R) (or equivalently fR6) labels f (R) with fR0 = −10−6.

This choice of range allows us to check typical values used in
the literature for f (R) models. A model like f4(R) may be at the
more extreme limit of solar system observations, possibly requir-
ing further screening at those scales, whereas the other models
may instead be more in tension with strong lenses, dwarf galax-
ies and Cepheids, depending on assumptions in deriving the con-
straints. Assuming that a screening mechanism is in place, the
values chosen here may still be viable at cosmological scales,
where much weaker bounds are in place.

The ratios of the power spectra for these models with respect
to ΛCDM are shown in Fig. 1. As we see from the figure, the
inclusion of neutrinos suppresses the matter power spectrum on

scales smaller than their free streaming length. This suppression
is degenerate with the value of fR0, which also introduces a tran-
sition scale: the higher the value, the more the linear perturba-
tions grow below the Compton wavelength λ fR and the more the
power spectrum is enhanced. The connection between λ fR and
fR0 can be seen directly by defining λ fR ≡ m−1

f R, where

m2
fR ≡

∂2Veff

∂ f 2
R

=
1
3

(
1 + fR

fRR
− R

)
, (6)

and again fR and fRR are, respectively, the first and second deriva-
tives of f with respect to R. In this expression, the effective
potential Veff is defined in such a way that the equation of motion
for fR can be written as � fR ≡

∂Veff

∂ fR
; specifically, this happens for

∂Veff

∂ fR
= 1

3 (R − fRR) + 2 f = κ2
Gρ, where ρ is the total energy den-

sity. Values of λ fR large enough to be in the non-linear regime
may therefore lead to effects which are observable in structure
formation.

Models such as f4(R) without massless neutrinos would lead
to matter power spectra that are strongly amplified with respect
to ΛCDM (solid red curve in Fig. 1). On the other hand, the
inclusion of massive neutrinos as large as 0.3 eV (crossed red
line) would compensate such a choice of f (R), bringing it back
to within 10% from ΛCDM even down to the smallest scales (see
Baldi et al. 2014, for an early investigation of such degeneracy
in the non-linear regime).

The degeneracy between fR0 and neutrino masses leads sim-
ilar choices to have matter power spectra within about 10% from
ΛCDM, making it difficult to discriminate between f (R) and a
cosmological constant, or between different f (R) models, purely
on the basis of observations of second order statistics. In the fol-
lowing, we will investigate whether higher-order weak-lensing
observables can help to break such degeneracies. Although we
have tested the results for different choices of ( fR0,mν), we will
show results for the f5(R) use case, which is an intermediate one
among the ones shown in the figure and available in simulations.

3. Weak lensing

Weak gravitational lensing describes small distortions in the
observed shapes of distant galaxies induced by the gravitational
fields of massive structures in the universe along the line of sight.
Significant information about the distribution and masses of cos-
mic structures is imprinted on galaxy images as the statistical
alignment of their observed ellipticities. This signal has been
used successfully in the data analysis of numerous galaxy sur-
veys to constrain cosmological parameters (e.g. Heymans et al.
2013; Hildebrandt et al. 2017; DES Collaboration 2018) and is
potentially a key probe to test gravity and models beyond ΛCDM
in future weak lensing surveys such as Euclid (Amendola et al.
2018). For this purpose, the combination of weak lensing with
other probes, such as galaxy clustering (Planck Collaboration
XIV 2016), helps to break degeneracies in measuring the grav-
itational potentials. On the other hand, it is worth investigating
whether one can break degeneracies in parameter space relying
on weak lensing only, independently of other late-time probes.
This is an important test that can help maximise the information
we extract from the large amount of data that is going to be avail-
able for this probe. Furthermore, it can help identify whether
tensions present in the data (Planck Collaboration XIV 2016)
between weak lensing and the CMB will point to a signature of
new physics or rather to systematics.

The basic weak lensing quantities are the shear γ(θ) and con-
vergence κ(θ) fields. Shear is a spin-2 field that quantifies the
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anisotropic distortion of source galaxy images due to the tidal
gravitational fields of foreground structures. The shear measured
at some position θ on the sky depends on the amplitude of den-
sity fluctuations along the line of sight to the source galaxy, as
well as on the relative distances between the observer, deflec-
tors, and source. Convergence, a scalar field, is derivable from
the shear up to a constant (Kaiser & Squires 1993) and reflects
isotropic changes in the observed shapes of galaxies.

The connection with cosmic density fluctuations is straight-
forward with κ, as it can be interpreted as the projected total
matter density along the line of sight:

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′

fK(χ′) fK(χ − χ′)
fK(χ)

δ( fK(χ′)θ, χ′)
a(χ′)

· (7)

In this expression, H0 is the present-day Hubble parameter, c is
the speed of light, a is the universal scale factor, and δ is the 3D
density contrast defined as δ = (ρ− ρ̄)/ρ̄, where ρ̄ is the spatially
averaged matter density. The radial coordinate χ is comoving,
and the geometrical function fK determines the comoving angu-
lar distance, whose form depends on the (constant) curvature of
3D space. We refer to Kilbinger (2015), for example, for a recent
review of weak lensing cosmology that includes an introduction
to the formalism. We deal directly with κ maps in this work as
derived from our simulated cosmologies (cf. Sect. 4.2).

4. Numerical setup

4.1. The DUSTGRAIN-pathfinder simulations

We make use of the DUSTGRAIN-pathfinder simulations (see
Giocoli et al. 2018a for a detailed description), a suite of
cosmological collisionless simulations specifically designed to
sample the joint parameter space of f (R) gravity and massive
neutrino cosmologies in order to investigate their main observa-
tional degeneracies and to devise strategies to break them. These
simulations followed the evolution of 7683 dark matter particles
of mass mp

CDM = 8.1 × 1010 M� h−1 (for the case of mν = 0) and
of as many neutrino particles (for the case of mν > 0) within
a periodic cosmological box of 750 Mpc h−1 per side, under the
effect of an f (R) gravitational interaction defined by Eq. (1).

The simulations were performed with the MG-Gadget code
(Puchwein et al. 2013), which is a modified version of the
GADGET code (Springel 2005) that implements the
extra force and the chameleon screening mechanism (see
Khoury & Weltman 2004) characterising f (R) gravity theo-
ries. As was already done in Baldi et al. (2014), such an MG
solver was combined with the particle-based implementation
of massive neutrinos developed for GADGET by Viel et al.
(2010). Therefore, massive neutrinos were included in the
simulations as a separate family of particles with its specific
transfer function and velocity distribution, so that both CDM
and neutrino particles contributed to the density source term that
enters the calculation of the fR extra degree of freedom.

Initial conditions were produced by generating two sepa-
rate but fully correlated random realisations of the linear den-
sity power spectrum for CDM and massive neutrino particles
as computed by the linear Boltzmann code CAMB (Lewis et al.
2000) at the starting redshift of the simulation zi = 99. Fol-
lowing the approach of, for example, Zennaro et al. (2017) and
Villaescusa-Navarro et al. (2018), we then computed the scale-
dependent growth rate D+(zi, k) for the neutrino component in
order to correctly account for neutrino gravitational velocities.
Apart from these, neutrino particles also received an additional

thermal velocity extracted from the neutrino momentum distri-
bution for each value of neutrino mass under consideration.

In the present work, we use a subset of the full DUSTGRAIN-
pathfinder runs consisting of nine simulations whose parameters
are summarised in Table 1. All simulations share the same stan-
dard cosmological parameters, which are set in accordance with
the Planck 2015 constraints (Planck Collaboration XIII 2016),
namely Ωm = ΩCDM + Ωb + Ων = 0.31345, Ωb = 0.0481,
ΩΛ = 0.68655, H0 = 67.31 km s−1 Mpc−1, As = 2.199 × 10−9,
and ns = 0.9658.

4.2. Map making

For each cosmological simulation, we constructed different lens
planes from the various stored snapshots using the MapSim
pipeline (Giocoli et al. 2015). The particles were distributed
onto different planes according to their comoving distances with
respect to the observer. For each simulation, we used the par-
ticles stored in 21 different snapshots to construct continuous
past-light-cones from z = 0 to z = 4, with a square sky coverage
of 25 deg2. From the stored snapshots, we were able to construct
27 lens planes of the projected matter density distribution.

In MapSim, the observer was placed at the vertex of a pyra-
mid whose square base was set at the comoving distance of z =
4. We constructed 256 different light-cone realisations within
each simulation by randomising the various comoving boxes.
This included changing signs, inverting, as well as redefining
the centre of the coordinate system. By construction, these pro-
cedures preserve the clustering properties of the particle den-
sity distribution at a given simulation snapshot (Roncarelli et al.
2007).

On each pixel of the lens plane, with coordinate indexes (i, j),
we can define the particle surface mass density

Σl(i, j) =

∑
k mk

Al
, (8)

where mk is the mass of the kth particle within the pixel, and
Al represents the comoving pixel area of the l-lens plane. Since
gravitational lensing is sensitive to the projected matter density
distribution along the line-of-sight, we projected onto each lens
plane all particles between two defined comoving distances from
the observer, and in the simulations with massive neutrinos we
consistently also accounted for this component, as well as for the
proper Hubble function and the comoving distance calculation.

As was done by Petri et al. (2016, 2017), Giocoli et al.
(2017, 2018b), Castro et al. (2018), we constructed the conver-
gence maps by weighting the lens planes by the lensing ker-
nel and assuming the Born approximation (Schäfer et al. 2012;
Giocoli et al. 2016; Castro et al. 2018), which represents an
excellent estimation for weak cosmic lensing down to very small
scales (` ≥ 104). From Σl we can write down the convergence
map κ at a given source redshift zs as

κ =
∑

l

Σl

Σcrit,l,s
, (9)

where l varies over the different lens planes with redshift zl
smaller than zs. The critical surface density Σcrit,l,s at the lens
plane zl for sources at redshift zs is given by

Σcrit,l,s =
c2

4πG
Dl

DsDls
, (10)

where c indicates the speed of light, G Newton’s constant, and
Dl, Ds, and Dls the angular diameter distances between observer-
lens, observer-source and source-lens, respectively. We followed
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Table 1. Subset of the DUSTGRAIN-pathfinder simulations considered in this work with their specific parameters.

Simulation name Gravity type fR0 mν (eV) ΩCDM Ων mp
CDM (M� h−1) mp

ν (M� h−1)

ΛCDM GR – 0 0.31345 0 8.1 × 1010 0
fR4 f (R) −1 × 10−4 0 0.31345 0 8.1 × 1010 0
fR5 f (R) −1 × 10−5 0 0.31345 0 8.1 × 1010 0
fR6 f (R) −1 × 10−6 0 0.31345 0 8.1 × 1010 0
fR4-0.3eV f (R) −1 × 10−4 0.3 0.30630 0.00715 7.92 × 1010 1.85 × 109

fR5-0.15eV f (R) −1 × 10−5 0.15 0.30987 0.00358 8.01 × 1010 9.25 × 108

fR5-0.1eV f (R) −1 × 10−5 0.1 0.31107 0.00238 8.04 × 1010 6.16 × 108

fR6-0.1eV f (R) −1 × 10−6 0.1 0.31107 0.00238 8.04 × 1010 6.16 × 108

fR6-0.06eV f (R) −1 × 10−6 0.06 0.31202 0.00143 8.07 × 1010 3.7 × 108

this approach also in constructing the convergence maps in the
MG models, since the definition of the lensing potential in f (R)
gravity models remains unchanged with respect to the GR case
of the standard ΛCDM model. The resulting maps for our anal-
ysis each contain 20482 pixels, giving a pixel scale of approxi-
mately 8.8 arcsec.

5. Analysis

Statistics of the aperture mass Map(ϑ) have been used in
many weak-lensing analyses as a probe of the matter dis-
tribution in the Universe and to constrain cosmological
parameters (e.g. van Waerbeke et al. 2001, Jarvis et al. 2003,
Hamana et al. 2003, Kilbinger & Schneider 2005, Clowe et al.
2006, Hetterscheidt et al. 2007, Schrabback et al. 2010,
Kilbinger et al. 2013). In particular, the variance, or second
central moment 〈M2

ap(ϑ)〉, is commonly used, which at a certain
scale ϑ measures the lensing power spectrum within a narrow
window in l-space. Furthermore, the non-linear evolution of
density fluctuations in the low-redshift Universe gets imprinted
as non-Gaussian features in the weak-lensing signal, which can
be accessed through higher-order moments of the aperture mass.
For example, Pires et al. (2012) have shown that the capture of
weak-lensing non-Gaussianities is able to break the degeneracy
between σ8 and Ωm within ΛCDM.

We explore in this work the ability of various statistics of
Map to break the degeneracy between ΛCDM and f (R) models
that include non-vanishing neutrino mass. We use maps free of
noise throughout most of our analysis; that is, the lensing field
is the true one as derived from the simulations. A discussion of
galaxy shape noise and its impact on our results via a simple
prescription has been included in the Appendix.

5.1. Aperture mass calculation

Given a convergence map κ(θ) for a particular model reali-
sation, we compute the aperture mass map (Schneider 1996;
Schneider et al. 1998) as

Map(θ;ϑ) =

∫
d2θ′Uϑ(|θ′ − θ|) κ(θ′), (11)

where θ is a two-dimensional position vector within the map,
Uϑ(|θ|) is a circularly symmetric filter function, and ϑ is the
aperture radius. The aperture mass is by design insensitive to the
mass-sheet degeneracy, which describes the fact that a shear sig-
nal is unchanged by the presence of a uniform mass sheet along
the line of sight between the observer and the source. To achieve

this, the function U should be compensated in 2D, or in other
words satisfy∫

dθ θUϑ(θ) = 0, (12)

where we have written the angular separation as θ = |θ′ − θ|. It is
also typically assumed that Uϑ has either finite support or goes
to zero smoothly at sufficiently small θ in order that the integral
in Eq. (11) be computable on a finite data field.

Various definitions of the filter function U have been adopted
in previous studies. For example, a useful parameterised family
of polynomial functions was first introduced by Schneider et al.
(1998). Nearly concurrently, van Waerbeke (1998) provided an
alternative definition based on a Gaussian function and resem-
bling wavelets in order to have better Fourier space proper-
ties. This latter U was subsequently used (in slightly modi-
fied form) by, for example, Crittenden et al. (2002), Zhang et al.
(2003) and Jarvis et al. (2004). A third type of filter was derived
in Schirmer et al. (2007) which approximates a Navarro-Frenk-
White (NFW) density profile (Navarro et al. 1996). As it mimics
the shear profile of a spherically symmetric dark matter halo, this
form has been used for the detection of individual mass concen-
trations in real data.

Equation (11) is equivalently expressible in terms of the tan-
gential component of shear γt about the position θ, where the
convolution kernel is then a filter Qϑ derivable analytically from
Uϑ (Kaiser et al. 1994; Schneider 1996). This form is often used
in the literature for convenience (e.g. Dietrich & Hartlap 2010;
Kacprzak et al. 2016; Martinet et al. 2018), since the actual
weak-lensing observable is not the convergence, but instead the
(reduced) shear via galaxy ellipticity measurements. Borders and
missing data due to observational masks are also treated more
accurately in shear space, although at the expense of significantly
reduced algorithm speeds. Because the output of ray-tracing in
our N-body simulations is the convergence field directly, we
compute Map on pixellated κ maps throughout this paper.

For high resolution fields like our 2048 × 2048 maps, the
convolution is typically carried out in Fourier space, since
direct-space convolution can be too time-consuming. We adopt
a slightly different approach here for the practical computa-
tion of aperture mass maps than direct application of Eq. (11).
We instead compute Map by means of the starlet transform
(Starck et al. 2007), which is a wavelet transform that simulta-
neously produces a set of maps filtered at apertures of increas-
ing dyadic (powers of two) scales. In other words, with a sin-
gle wavelet transform of κ(θ) with O(n log n) time complexity,
we obtain {Map(θ;ϑ j)} j=1,2,..., jmax , where ϑ j = 2 j pixels. With
a pixel scale of 8.8 arcsec, this corresponds to filter scales of

A38, page 5 of 20



A&A 619, A38 (2018)

Fig. 2. Example convergence fields (top row) extracted from the three f5(R) simulations with neutrino mass sums of 0 eV, 0.1 eV, and 0.15 eV. Each
map shows the same line of sight for sources at redshift zs = 2.0. Essentially the same structures are seen across all three maps due to identical
initial conditions and the common field of view. Subtle differences, however, due to the different model evolutions can also be detected in the peak
positions and their morphologies. Aperture mass residuals (bottom row) with respect to the ΛCDM map (not shown) at filtering scale ϑ3 = 1.17′
are shown for each corresponding map above. The compensated starlet filter has the effect of highlighting features with an approximate size of ϑ3.
Our aim is to distinguish between these models using differences in the statistics of such aperture mass maps computed at different scales.

0.293, 0.586, 1.17, . . . arcmin for values j = 1, 2, 3, . . . in our
simulated maps. The maximum j is determined by the map size
as log2 N for an N × N map.

It was demonstrated in Leonard et al. (2012) that the aperture
mass is formally identical to a wavelet transform at a specific
scale. Different transforms are associated with different effec-
tive filter functions. The particular transform we adopt is the
isotropic undecimated wavelet transform, also called the starlet
transform, whose wavelet function at a given scale is defined as
the difference between B3-spline functions at neighboring reso-
lutions. We refer to Starck et al. (2007) for more details of the
formalism and to Leonard et al. (2012) for the explicit form of
Uϑ corresponding to this transform.

In contrast to the above mentioned filter functions, the starlet
transform filter presents several significant simultaneous advan-
tages: (i) it is non-oscillatory both in angular space and in Fourier
space, meaning that it can better isolate features of the signal rep-
resented in either domain; (ii) it has compact support in direct
space, which is useful to control the systematics due to a mask
or the image borders; (iii) it is compensated, or has a zero mean,
so it is not sensitive to the mass sheet degeneracy problem (cf.
Eq. (12)); and (iv) it presents an exact reconstruction, meaning
that we can reconstruct the decomposed image from its starlet
coefficients. We do not make use of this last property in this
paper, but it could be very convenient in the case where we need
to fill gaps due to missing data. The aperture mass maps resulting
from the starlet transform then represent only information at a

particular scale, with little leakage from other frequencies.
Finally, we note that although the starlet transform returns maps
filtered only at dyadic scales, which we find sufficient for our
purposes here, this is not a general restriction of the wavelet for-
malism. Alternative wavelet transforms are possible that allow
filtering at any intermediate scale.

As an illustration of the weak lensing fields in our simula-
tions, as well as of our aperture mass computation, we show typ-
ical maps corresponding to three different models in Fig. 2. In
the top row are κ(θ) maps extracted from the three f5(R) simula-
tions with, from left to right, neutrino mass sums of 0 eV, 0.1 eV,
and 0.15 eV. All simulations share the same initial phases in the
random realisation of the matter power spectrum, and these maps
were generated by ray-tracing from the same observer position.
The same physical structures can therefore be seen across the
three convergence fields. Subtle differences in the peak positions
are also apparent by eye, which is due to the different gravita-
tional interaction in MG compared to GR and the presence or
lack of neutrinos affecting structure growth.

Shown in the lower panels of Fig. 2 are aperture mass residu-
als M f5(R)

ap −MΛCDM
ap corresponding to the maps above and filtered

at ϑ3 = 1.17′. The ΛCDM κ and aperture mass maps (not shown)
are hardly distinguishable from any of the f5(R) maps by eye, but
differences in the positions and amplitudes of structures can be
clearly seen among the models by their residuals, especially for
the most prominent peaks. However, it is not a priori obvious that
the statistics of such maps will be significantly different enough
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to distinguish the models from each other. Whether this is pos-
sible, for which statistics and for which filtering scales, are the
questions we seek to answer in the following sections.

We compute all aperture mass maps in this paper using
the mr_transform binary of the publicly available Interactive
Sparse Astronomical Data Analysis Packages (iSAP2). This is
a C++ code with many optional multi-resolution wavelet trans-
forms, which, given the large size of our mass maps, affords
a significant speed increase over direct-space 2D convolution.
Various statistics of the maps, which are discussed in the next
section, are computed using an independent Python code that
we have validated on maps from the CoDECS simulations used
in Giocoli et al. (2015). In particular, we are able to reproduce
Figs. 8 and 9 of that paper using a further independent aper-
ture mass calculation that implements the Schneider et al. (1998)
filter.

5.2. Statistics

We consider the following statistics of aperture mass maps as a
function of filter scale and source galaxy redshift. To avoid edge
effects, we exclude from all calculations pixels whose distance
to the map border is smaller than the filter diameter.

5.2.1. Variance

The aperture mass variance 〈M2
ap〉(ϑ) quantifies fluctuations in

lensing strength along different directions in the sky, meaning
that it also measures the amplitude of fluctuations in the matter
density contrast. As a second-order statistic, it can be expressed
as an integral over the convergence power spectrum Pκ(`)

〈M2
ap〉(ϑ) =

1
2π

∫
d` ` Pκ(`) W2(`ϑ), (13)

where the window function W is the Fourier transform of Uϑ

(Schneider et al. 1998). Aperture mass variance is therefore
mostly sensitive to the Gaussian information in the distribu-
tion of matter. This integral form is convenient when comparing
measurements with theoretical predictions, since Pκ is readily
calculated (at least in ΛCDM) for a given set of cosmological
parameters. Because we have simulated maps for all the models
of interest in this work, we instead compute 〈M2

ap〉 directly on
filtered convergence maps:

〈M2
ap〉(ϑ) =

1
N

∑
k

[
Map(θk;ϑ) − Map(ϑ)

]2
, (14)

where θk refers to the kth pixel position.

5.2.2. Skewness

As a third-order statistic, skewness is complementary to vari-
ance in that it probes non-Gaussian information contained in
the lensing observables. The skewness S is zero if the data are
symmetrically distributed around the mean. If a tail extends to
the right (resp. left), S is positive (resp. negative). In particular,
skewness has been shown to be a sensitive probe of Ωm and can
break the degeneracy with σ8 if combined with two-point statis-
tics (Bernardeau et al. 1997; Jain & Seljak 1997). Analogously
to the variance, skewness can be written as a bandpass filter over
the convergence bispectrum (e.g. Kilbinger & Schneider 2005),

2 http://www.cosmostat.org/software/isap

the Fourier transform of the three-point correlation function. Fol-
lowing Giocoli et al. (2015), we compute skewness as the (non-
standardised) third-order moment of our filtered maps:

〈M3
ap〉(ϑ) =

1
N

∑
k

[
Map(θk;ϑ) − Map(ϑ)

]3
. (15)

5.2.3. Kurtosis

The kurtosis of a distribution is a measure of its symmet-
ric broadening or narrowing relative to a Gaussian. Positive
kurtosis implies a higher peak and larger wings than the
Gaussian distribution with the same mean and variance. Negative
kurtosis means a wider peak and shorter wings. Again fol-
lowing Giocoli et al. (2015), we compute kurtosis as the (non-
standardised) fourth-order moment of the aperture mass:

〈M4
ap〉(ϑ) =

1
N

∑
k

[
Map(θk;ϑ) − Map(ϑ)

]4
. (16)

5.2.4. Peak counts

The number count distribution of lensing peaks provides another
probe of non-Gaussianity. Peaks represent local regions of
high convergence, and their abundance for a given cosmo-
logical model carries significant information about its matter
content and clustering amplitude. The number of cosmologi-
cal studies based on peak statistics in convergence and aper-
ture mass maps, both from simulated and real lensing data,
has surged in the past decade (e.g. Kruse & Schneider 1999,
2000, Dietrich & Hartlap 2010, Kratochvil et al. 2010, Fan et al.
2010, Yang et al. 2011, Maturi et al. 2011, Marian et al. 2012,
Hamana et al. 2012, Shan et al. 2014, 2018, Lin & Kilbinger
2015, Martinet et al. 2015, 2018, Liu et al. 2016, Kacprzak et al.
2016, Peel et al. 2017, Fluri et al. 2018). The highest signal-to-
noise (S/N) peaks are mostly generated by single massive struc-
tures along the line of sight. On the other hand, intermediate
and low S/N peaks can arise from projection effects due to many
smaller structures or filaments along the line of sight, as well as
simply to noise when dealing with real data (Yang et al. 2011;
Liu & Haiman 2016).

In this work, we explore the possibility of peak counts to
distinguish between GR and MG models (with and without neu-
trinos), which are degenerate at the level of second-order statis-
tics. We compute peaks as a function of filter scale ϑ in maps
of Map(ϑ)/σ(ϑ), where σ(ϑ) is the rms of that scale. A peak is
defined as a pixel with larger amplitude than its eight neighbors
and exceeding a given kσ (k = 1, 2, . . .) threshold. Throughout
the rest of the paper, we display results for thresholds of 3σ and
5σ.

5.3. Model discrimination efficiency

For each cosmological model we consider, we produce 256 inde-
pendent convergence maps of 25 deg2 for sources at redshifts
zs = (0.5, 1.0, 1.5, 2.0) by the procedure outlined in Sect. 4. We
have sufficient area therefore to meaningfully study the statistical
distributions of observables as a function of scale and redshift. In
particular, we test the ability of various aperture mass statistics
to distinguish between the models by employing the discrim-
ination efficiency technique introduced and used in Pires et al.
(2009, 2012).

The concept in our context can be understood as follows.
Given the distributions of any two observables, the amount
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of overlap between the distributions is an indicator of how
likely one is to mistake one model for the other, based on
measurements of that observable. Quantification of the over-
lap is facilitated by the notion of a false discovery rate (FDR;
Benjamini & Hochberg 1995). The FDR framework allows one
to set a threshold value for a distribution such that new test sam-
ples (or observations) can be classified as either belonging to
the distribution or not, depending on which side of the threshold
they lie. The threshold is computed according to a desired false
discovery rate α. The formalism then ensures that the fraction of
false positives, or observations which indeed belong to the distri-
bution but are incorrectly classified as detections, is less than or
equal to α. As is common, we set α = 0.05 throughout this work
to ensure that the number of false detections on average does not
exceed 5%.

As an illustration, consider the toy example in Fig. 3. The
probability distributions of some observable, all taken to be
Gaussian for simplicity, are shown for four fictitious models. Let
model 1 serve as the “hypothesis” against which the other mod-
els are tested. To determine the discrimination efficiency of, for
example, model 2 from model 1, we first compute the right tail
threshold tR (dashed line) using FDR based on the samples of
model 1. This is done by first rank-ordering the p-values {pi},
i = 1, . . . , n, of the n model 1 samples, computed with respect to
a right tail event. Next one finds the maximum pm (1 ≤ m ≤ n)
for which pm < m ·α/n, where we have assumed statistical inde-
pendence of the p-values. The threshold tR is the observation
value corresponding to pm, and the discrimination efficiency is
the fraction of model 2 samples greater than tR. Analogous rea-
soning holds for comparing model 3 against model 1 by compu-
tation of threshold tL.

In general, then, suppose we have observations of two mod-
els, M1 = {xi}i=1,...,n1 and M2 = {x j} j=1,...,n2 . If the centre of M2 is
greater than that of M1, the discrimination efficiency of M2 from
M1 is

E2,1 =
N[x j > tR (M1)]

n2
, (17)

where N[C] counts the number of elements satisfying the con-
dition C, and the threshold tR is computed from the M1 samples.
If the centre of M2 lies to the left of that of M1, the condition
C becomes x j < tL(M1). For a more detailed description of this
procedure, we refer to, for example, Appendix A of Pires et al.
(2009).

For the example in Fig. 3, the discrimination efficiencies for
models 2, 3, and 4 from model 1 are, respectively, E2,1 = 77%,
E3,1 = 37%, and E4,1 = 100%. This corresponds with the intu-
ition that models with fully overlapping distributions should not
be considered distinguishable at all, whereas completely disjoint
distributions should be 100% distinguishable.

There is an inherent asymmetry in discrimination efficiency
between any two models that do not share the same width, or
in general are not perfectly symmetric functional forms with
merely different means. Considering model 2 as the hypothesis,
for example, the model 1 discrimination efficiency is close to that
of the reverse case at 75%, which follows from their near sym-
metry. With respect to model 3, however, the model 1 efficiency
drops to 9%. This is consistent with the fact that the support of
the model 1 distribution is a subset of that of model 3, and not
the other way around. To take this into account in our analysis,
we quote the mean of the two possible values for a given pair of
models in all following results, notably in Figs. 10 and 11 and
Table 2. The asymmetry is largest for the third- and fourth-order

Fig. 3. Toy example of discrimination efficiencies computed using the
FDR formalism. Each (Gaussian) distribution represents the histogram
measured for some observable given the model. The amount of overlap-
ping area between any two distributions indicates how distinguishable
the two models are according to this observable: the more the curves
overlap, the more difficult it is to distinguish the corresponding models,
and the higher the discrimination efficiency parameter is. In the example
shown, considering model 1 as the hypothesis against which the others
are tested, models 2, 3, and 4 have computed discrimination efficiencies
of 77%, 37%, and 100%.

moments, where the distributions deviate more from a Gaussian
than do the variance and peak counts.

We have depicted continuous distributions in the example of
Fig. 3. In practice, however, with our simulations, we have 256
samples of each distribution for a given cosmological model,
statistic, filter scale, and source redshift. Given the likelihood of
undersampling, especially at the tails of the distributions that are
important for setting the FDR threshold, we apply a Gaussian
smoothing in each case using kernel density estimation (KDE)
prior to calculating discrimination efficiencies. We find that KDE
smoothing improves results in terms of the agreement between
the observed overlap of the distributions and the computed value.

6. Results

6.1. Second-order Map statistics

The lensing power spectrum, or equivalently the angular two-
point correlation function, accesses the Gaussian information in
the projected matter density. As seen by their 3D matter power
spectra (Fig. 1), there exist f (R) models, both with and without
neutrinos, that can mimic GR to better than 10% at second order.
Our goal is to look beyond second-order statistics to see if it is
possible to distinguish the MG models from ΛCDM. As a check
of consistency, we first compare the lensing power spectra to
verify agreement between the two second-order probes.

In Fig. 4 we show convergence power spectra Pκ(`) com-
puted for various f (R) models along with ΛCDM for zs = 2.0.
The left plot shows the three f (R) models we consider defined
by their different fR0 values (−10−4, −10−5, and −10−6), all with
a neutrino mass sum mν equal to zero. As theory predicts, and as
we have seen by their matter power spectra, f (R) models more
closely mimic ΛCDM the smaller the value of fR0. In particular,
f5(R) agrees with ΛCDM within 17% and f6(R) at better than
3% over three decades in scale.

It is interesting to note the different scales at which the devi-
ation from ΛCDM is maximal. For both f5(R) and f6(R), the
maximum occurs around multipole ` ≈ 104, whereas for f4(R)
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Fig. 4. Convergence power spectra for ΛCDM and various MG models. Left panel: f (R) models with fR0 = (−10−4,−10−5,−10−6) and without
neutrinos. Compared to ΛCDM, each MG model exhibits more lensing power, where the difference increases with the magnitude of fR0. The
discrepancy is most pronounced on smaller scales for f5(R) and f6(R) but shifts towards larger scales for f4(R). Right panel: f5(R) models with
varying neutrino mass sums. Neutrinos have the effect of suppressing structure growth across all scales, which is seen in the damping of the f5(R)
curve with increasing mν. In particular, the combination of parameters ( fR0,mν) = (10−5, 0.15 eV) reproduces ΛCDM in terms of second-order
statistics to within 8% over three decades in scale. The convergent behaviour of the curves near ` = 105 reflects the resolution limit of our maps
and particle noise that affects all of the models.

it is around 103. Power thus moves from small scales to large
scales with increasing fR0. The effect of the modified gravita-
tional interaction is non-trivial and not simply a uniform scaling
of the power spectrum across different modes. We note that all
curves have been computed for sources at zs = 2.0, but very simi-
lar results occur for the other redshift planes, the main difference
being an overall shift in amplitude.

In the right panel we focus on variations among f5(R) mod-
els with different mν. Looking at the relative differences with
ΛCDM, it is clear that the addition of neutrinos has the effect of
damping power at all scales. This is consistent with the expec-
tation that massive neutrinos should suppress structure growth.
With mν = 0.1 eV (0.15 eV), the deviation does not exceed 11%
(9%) within the ` range considered. We see that in terms of
lensing, as well as directly through the matter distribution, f5(R)
models with neutrinos can produce a signal that is significantly
degenerate with ΛCDM.

Figure 5 shows the mean aperture mass variance computed
as a function of aperture scale for the same models as in
Fig. 4. 〈M2

ap〉(ϑ) is plotted at filtering scales (ϑ1, . . . , ϑ7) =
(0.293′, 0.586′, 1.17′, 2.34′, 4.69′, 9.34′, 18.8′) corresponding to
a wavelet transform with jmax = 7. The shaded bands spanning
the ΛCDM curves designate the statistical uncertainty computed
as ±1σ, where σ is the standard deviation measured from the
256 ΛCDM maps at each aperture scale. We include this region
in all plots of Figs. 5–7 to illustrate which models are likely to be
distinguishable from ΛCDM according to the statistical scatter
of the observable at a given scale.

As discussed in Sect. 5, aperture mass variance probes the
lensing power spectrum within a narrow window around the
` mode associated to scale ϑ. In agreement with their power
spectra, the MG models with mν = 0 eV (left), for example,
have larger variance at each scale compared to ΛCDM, with
the difference increasing according to the magnitude of fR0.
Moreover, the variance relative to ΛCDM for f4(R) is largest at

intermediate filtering scales, whereas it is largest at small filter-
ing scales for f5(R) and f6(R).

Plotted in the right panel of Fig. 5 is 〈M2
ap〉(ϑ) for f5(R)

models with varying neutrino mass. The trend in the curves is
the same as for the power spectra seen in Fig. 4, namely the
presence of neutrinos in the model can bring the aperture mass
measurements into agreement with ΛCDM at better than 7%
over the full range of scales considered. We confirm therefore
that by including neutrinos, MG models with importantly differ-
ent gravitational interactions from GR can mimic ΛCDM at the
level of two-point statistics in weak-lensing observations.

We note that the maximum variance shown has been
restricted to less than the value actually attained for ϑ1 in both
plots of Fig. 5. This was done merely for visualisation purposes
to better exhibit the spread of the curves at larger aperture scales.
The variances for all models at the smallest scale are nearly iden-
tical in any case, as the difference plots of the lower panels show.

6.2. Higher-order Map statistics

Given that second-order Map statistics may be insufficient to
distinguish certain MG models from ΛCDM, we present now
results from computing higher-order statistics in these models.
These include skewness, kurtosis, and peak counts, as discussed
in Sect. 5.2.

The aperture mass skewness 〈M3
ap〉 provides a simple third-

order statistic of the lensing field that probes the bispectrum (cf.
Sect. 5.2). Results are shown in the left plot of Fig. 6 for the
same f5(R) models considered in Sect. 6.1. The effect of neutri-
nos is seen as the nearly uniform reduction in skewness at each
aperture scale which varies with mν in an analogous way to the
variance. That is, the curves with mν > 0 are shifted downward
systematically from the curve with mν = 0. This means that the
distribution of κ becomes more Gaussian as mν increases, which
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Fig. 5. Aperture mass variance as a function of filtering scale for ΛCDM and MG models. Data points represent the mean over 256 realisations
of each simulated cosmology and are plotted at scales (ϑ1, . . . , ϑ7) = (0.293′, 0.586′, 1.17′, 2.34′, 4.69′, 9.34′, 18.8′). Shaded areas indicate the one
standard deviation statistical uncertainty around ΛCDM. Left panel: three f (R) models without neutrinos. Differences in MG variance relative to
ΛCDM match those seen for the power spectra in Fig. 4. In particular, the f4(R) variance at large scales exceeds that of ΛCDM by around 30%,
while the maximum deviations of f5(R) and f6(R) occur at small scales at a level of about 16% and 2%, respectively. Right panel: three f5(R)
models with different sums of neutrino masses mν. Trends in the curves again mirror their power spectra, and the effect of neutrinos damping
structure growth is seen in the modulation of f5(R) variance with mν = 0 eV towards the curve for mν = 0.15 eV.

Fig. 6. Higher-order aperture mass statistics for f (R) models with fR0 = −10−5 and a varying sum of neutrino masses mν. Data points represent the
mean over 256 realisations of each simulated cosmology and are plotted at scales (ϑ1, . . . , ϑ7) = (0.293′, 0.586′, 1.17′, 2.34′, 4.69′, 9.34′, 18.8′).
Left panel: aperture mass skewness computed as the third order moment 〈M3

ap〉. Higher neutrino mass leads to a nearly uniform reduction in
skewness across all scales relative to ΛCDM. The maximum discrepancy between each model and ΛCDM is also larger than for the variance.
Right panel: aperture mass kurtosis computed as the fourth-order moment 〈M4

ap〉. Differences from ΛCDM are comparable to the skewness, the
main distinction being that the kurtosis of the mν > 0 models approaches the mν = 0 value at larger scales.

is consistent with a higher neutrino mass more effectively sup-
pressing the generation of the highest matter peaks.

At the smallest scales, the skewness across all three f5(R)
models is amplified relative to ΛCDM, and more so than for the
variance at the same scale. For example, the mν = 0 eV model
skewness is approximately 25% larger than ΛCDM at ϑ2 com-
pared to 12% for the variance. In addition, for the model with

mν = 0.15 eV, the skewness at certain intermediate scales is
up to 13% different from ΛCDM, whereas the corresponding
variance at the same scale is less than 5%. Each f5(R) model
approaches an approximately constant skewness at scales around
ϑ ≈ 10′ and larger. Given the larger (average) differences among
the models, this suggests that skewness may be a better observ-
able to break degeneracies than the variance.
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Fig. 7. Aperture mass peak counts for f (R) with fR0 = −10−5 and a varying sum of neutrino masses mν. Data points represent the mean over 256
realisations of each simulated cosmology and are plotted at scales (ϑ1, . . . , ϑ7) = (0.293′, 0.586′, 1.17′, 2.34′, 4.69′, 9.34′, 18.8′). The abundance of
peaks above a 3σ threshold is shown in the left panel, and above a 5σ threshold in the right panel. An order of magnitude more peaks are detected
at each scale with the lower threshold, although deviations from ΛCDM, as well as among the different mν cases of f5(R), are more pronounced
with the higher threshold. This indicates that differences between models at this redshift are mostly contained in the highest amplitude peaks.
Compared to the Map moments, peak counts interestingly do not very well distinguish between models with different neutrino mass, but they do
distinguish modified from standard gravity, at least at certain scales.

Fig. 8. Correlation matrices between aperture mass moments and peak
count probes for two models using maps at zs = 2.0 and filtering scale
ϑ2 = 0.586′. Aperture mass moments are strongly positively correlated
with each other, while peak counts show slight to moderate negative
correlation between the two threshold values. The amplitude of cross
correlation between moments and peaks depends on redshift and scale.

We show the aperture mass kurtosis 〈M4
ap〉 as a function of

filter scale in the right plot of Fig. 6. As with the variance and
skewness, the mν = 0 curve is highest and decreases at each
scale as mν increases. Differences with respect to ΛCDM are
of the same amplitude as for the skewness within each f5(R)
model. We see at fourth order, however, that neutrinos cause a
more complex behaviour in the full lensing distribution than was
apparent at lower orders. For example, in the relative deviation
from ΛCDM (lower panel), there exists now a clear local min-
imum at ϑ ≈ 5′ for the models with mν > 0, in addition to the
maximum at smaller scales.

It is interesting to comment on the overall behaviour of the
statistics of Map moments as one varies neutrino mass. The f5(R)
model with mν = 0 eV overpredicts ΛCDM at each filter scale
and for each statistic. Including massive neutrinos in the model,

as we have discussed previously, counteracts the tendency of the
modified gravitational interaction to enhance structure growth –
at least on scales smaller than the neutrino free-streaming length,
which in our case, for each mν, lies above the full range of aper-
ture scales considered. The degeneracy with ΛCDM is gener-
ally strengthened by larger mν, but not without limit, and not
uniformly, as the higher-order Map statistics reveal. We expect
that mν values larger than we have studied would again decrease
the degeneracy with ΛCDM, perhaps measurably at the two-
point level. For reference, the most recent constraints from CMB
data put an upper bound on the sum of neutrino masses at around
0.17 eV (Couchot et al. 2017), however this assumes a ΛCDM
model that does not necessarily apply beyond this framework.

The final non-Gaussian statistics we consider is the abun-
dance of peaks counted above a given kσ threshold (k =
1, 2, . . .). Results for k = 3 and k = 5 are shown in Fig. 7. A
higher peak value cutoff means that in general fewer peaks will
be detected. This is borne out in the two plots of Fig. 7, where the
peak count at a fixed scale is about ten times smaller for k = 5
than for k = 3. In addition, the peak count for the smallest scale
(ϑ1 = 0.293′) relatively close to that of ΛCDM in both cases but
significantly larger than ΛCDM (up to about 15%) by the sec-
ond scale (ϑ2 = 0.568′). This is similar to what we have seen for
all of the Map moments, in particular for f5(R) with mν = 0 and
0.1 eV.

The impact of neutrino mass on the f5(R) models is less obvi-
ous with peak counts compared to the other statistics across most
scales. This is because the variation between models is much
smaller than the range of peak count values between different
aperture scales (up to four orders in magnitude). Peak counts
are therefore much more sensitive to the scale of observation
than the variance, skewness, and kurtosis. We notice as well that
for a given aperture size, the spread among f5(R) models with
different neutrino masses is less pronounced than for the Map
moments. This suggests that peak counts could offer a robust
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Fig. 9. Histograms of aperture mass statistics for ΛCDM and f5(R) models with varying neutrino mass mν. Each histogram, with area normalised to
one, comprises 256 samples of the statistic computed at a filtering scale of ϑ = 0.586′ and for sources at redshift zs = 2.0. Solid lines represent the
result of smoothing the distribution by KDE (cf. Sect. 5.3). The central positions of the histograms correspond to the mean values of each statistic
as seen in Figs. 5–7. Considering the most degenerate case with ΛCDM, f5(R) with mν = 0.15 eV, second- and higher-order moments of Map do
not appear able to distinguish the models. Peak counts, on the other hand, shown here for a 3σ threshold, cleanly separate the two distributions.
Moreover, it is interesting that peak counts separate all f5(R) cases from ΛCDM by approximately the same amount, independent of mν.

test of modified gravity whether or not neutrinos are considered
in the analysis and efficiently break the degeneracy that affects
all other WL statistics.

We have found identical trends to those observed in
Figs. 5–7 for the f4(R) and f6(R) models with mν > 0. This is
also the case for the other source redshift planes across all mod-
els. We further explore the evolution with redshift in Sect. 6.4.

In quantifying the level at which one model is in fact
distinguishable from another, visual inspection of plots is, of
course, not sufficient. We therefore address this question in
detail in the following sections by studying the histograms of
the different observables and by computing their discrimination
efficiencies.

6.3. Distributions of observables

Considering seven filtering scales, four source redshift planes,
and five statistical observables in our simulations (variance,
skewness, kurtosis, and peak counts above two threshold levels),
we have available 7 × 4 × 5 = 140 observables for each simu-
lated cosmology. These observables are not all independent. For
example, correlation matrices between the different probes are
shown in Fig. 8 for the two cases of ΛCDM and f5(R) without
neutrinos; the cases with mν > 0 (not shown) look very similar.

The statistics have been computed for maps at zs = 2.0 and aper-
ture size ϑ2 = 0.586′. We see from the figure that aperture mass
moments are highly positively correlated with each other at this
scale for both models, while peak counts show a slight (mod-
erate) negative correlation for f5(R) (ΛCDM) between the two
thresholds. Correlations between moments and peak counts are
strongest between kurtosis and the 3σ peak threshold, although
this varies with scale and redshift.

We are interested in comparing the histograms of each of
these observables between different models in order to deter-
mine which, if any, is best at breaking degeneracies. We present
here only four representative plots intended to illustrate our
approach and results. Shown in Fig. 9 are the area-normalised
histograms of Map variance, skewness, kurtosis, and peaks
counts for ΛCDM and MG models. To compare with previous
results, we focus on f5(R) models with mν = (0, 0.1, 0.15) eV
and choose a filtering scale of ϑ2 = 0.586′. We will further
investigate in the rest of the paper how results depend on the
filtering scale and redshift, for each statistic. Solid lines indicate
smoothing by KDE (cf. Sect. 5.3). Referring to Figs. 5–7, the
mean value of each statistic corresponds to the central positions
of the histograms. For example, the variance at this scale of the
mν = 0 eV f5(R) model is most distinct from ΛCDM, while the
mν = 0.15 eV is least.
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Fig. 10. Discrimination efficiency with respect to ΛCDM of the MG model f5(R) with mν = 0 eV as a function of statistic, aperture scale, and
source redshift. In each plot, the wedges marked by red lines indicate Map filtering by the aperture ϑ appearing at the outer edge. Numbered
apertures correspond to angular sizes of (ϑ1, . . . , ϑ7) = (0.293′, 0.586′, 1.17′, 2.34′, 4.69′, 9.34′, 18.8′). The radial length of a bar, shaded according
to source redshift, represents the discrimination efficiency (in percent) of the statistic at the filtering scale associated to its wedge. The variance of
this model suffices to distinguish it from ΛCDM at greater than 80% at scales ϑ2 and ϑ3 for sources at zs ≥ 1.5. Peak counts (above a 3σ detection
threshold) achieve similar results, while kurtosis proves to be a poor discriminator, not exceeding 55% at any filter scale or redshift. Skewness
shows comparably good discrimination power to the variance and peak counts only at scale ϑ2.

The histograms allow us to see qualitatively how efficient
each statistic is at distinguishing between models. Considering
f5(R) with mν = 0.15 eV (green), the model most degenerate
with ΛCDM (black) in terms of the matter and convergence
power spectra, higher order moments of Map do not appear able
to break the degeneracy. The skewness and kurtosis histograms
overlap with ΛCDM more than does the variance. On the other
hand, peak counts, shown here for a 3σ threshold, displace the
f5(R) distribution from that of ΛCDM so that they are nearly
disjoint. This is the case as well for f5(R) with the other neutrino
masses, supporting the result seen in Fig. 7.

In this example, we have chosen a combination of source
redshift and filter scale that provides relatively good separa-
tion between the histograms of these models. Sources have been
taken at zs = 2.0 here, compared to zs = 1.0 in Figs. 5–7, as
the contrast between MG models and GR tends to increase with
redshift for each observable. It should be noted as well that for
many of the observables considered, that is for other redshifts
and filtering scales, we find that the f (R) model histogram is
essentially fully coincident with that of ΛCDM, indicating
a negligible discrimination efficiency. Only a relatively small
subset of observables appear able to break degeneracies. We
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Fig. 11. Discrimination efficiency with respect to ΛCDM of the MG model f5(R) with mν = 0.15 eV as a function of statistic, aperture scale, and
source redshift. Plots are analogous to those in Fig. 10. Neutrinos significantly enhance the degeneracy of this model with ΛCDM at the two-point
level compared to the mν = 0 eV case. This can be seen in the variance plot (upper left), where the discrimination efficiency is less than 18% at
all filter scales and redshifts. The higher-order moments show even less discrimination power. On the contrary, peak counts (lower right), again
above a 3σ detection threshold, achieve 100% discrimination efficiency for zs = 2.0 at ϑ2, and above 92% for zs ≥ 1.5 at ϑ3.

therefore further investigate the dependence of discrimina-
tion efficiency on redshift and filtering scale in the next
subsection.

6.4. Discrimination efficiency: variation with statistic, scale,
and redshift

In this section we present the discrimination efficiency with
respect to ΛCDM of two f5(R) models, mν = (0, 0.15) eV, as
a function of Map statistic, filtering scale, and source galaxy red-
shift. Figure 10 shows results for f5(R) without neutrinos. Each
polar plot represents one of the statistics, where for peak counts
(lower right) the threshold has been set to 3σ.

Each plot is divided into seven wedges indicated by the bold
red lines, where each wedge represents a filtering by the aperture
ϑ appearing at the outer edge. Apertures are numbered as before
according to wavelet scale and which correspond to angular sizes
(ϑ1, . . . , ϑ7) = (0.293′, 0.586′, 1.17′, 2.34′, 4.69′, 9.34′, 18.8′).
Each wedge contains four bars, colour coded according to source
redshift, where the height of each bar represents the discrimina-
tion efficiency with respect to ΛCDM (as a percent) at that red-
shift and filtering scale. A bar extending from the centre of the
figure and touching the outer edge expresses a 100% discrimina-
tion efficiency, and the scaling with radius is linear.

As expected from our previous results, we see that the vari-
ance can be a relatively good discriminator between ΛCDM and
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Table 2. Maximum discrimination efficiency Emax with respect to
ΛCDM attained for each MG model according to Map statistic, filter-
ing scale ϑ, and source redshift zs.

Model Emax Statistic ϑ zs

f4(R) [mν = 0 eV] 100% var. mult. mult.
100% all others mult. mult.

f4(R) [mν = 0.3 eV] 19% var. 0.586′ 2.0
38% p.c. (>3σ) 0.586′ 2.0

f5(R) [mν = 0 eV] 99% var. 1.17′ 2.0
100% p.c. (mult.) 0.586′ mult.

f5(R) [mν = 0.1 eV] 76% var. 1.17′ 2.0
100% p.c. (mult.) 0.586′ mult.

f5(R) [mν = 0.15 eV] 17% var. 1.17′ 1.0
100% p.c. (mult.) 0.586′ mult.

f6(R) [mν = 0 eV] 12% var. 1.17′ 1.0
39% p.c. (>5σ) 18.8′ 1.5

f6(R) [mν = 0.06 eV] 4.7% var. 0.586′ 1.5
41% p.c. (>5σ) 0.586′ 2.0

f6(R) [mν = 0.1 eV] 12% var. 2.34′ 2.0
66% p.c. (>5σ) 0.586′ 2.0

Notes. Results for the variance are shown first, along with the best
available statistic underneath. For all models except f4(R) without neu-
trinos, the unique maximum discrimination efficiency is achieved with
peak counts (p.c.), either above the 3σ or 5σ threshold. For f4(R) with
mν = 0 eV, all of the statistics reach 100% discrimination efficiency for
at least one combination of ϑ and zs.

f5(R) without neutrinos. In particular, the discrimination effi-
ciency is at least 80% at scales ϑ2 and ϑ3 for sources at zs ≥ 1.5.
The skewness performs well only for the single aperture of ϑ2
and zs ≥ 1.5, while the kurtosis is a poor discriminator at all fil-
tering scales and redshifts. Considering that the kurtosis of this
model can deviate from ΛCDM by up to 30%, or ∼10% more
than the variance (cf. Figs. 5 and 6), it is somewhat surprising
that this fourth-order statistic does not offer more discrimination
power compared to second order.

The final plot in Fig. 10 reveals that peak counts can discrim-
inate at approximately the same level as the variance or better, at
least for filtering scales ϑ2 and ϑ3. Indeed, peak count discrimi-
nation efficiency even exceeds that of the variance for zs = 1.5,
for example, at these two scales. We have checked that by rais-
ing the peak detection threshold to 5σ, discrimination efficiency
rises to 100% at ϑ2 for sources at zs ≥ 1.0. A consequence, how-
ever, is that the efficiency is reduced at ϑ3 for the higher red-
shift source planes. From the cases we have checked, it appears
that the relationship between discrimination efficiency and peak
count threshold, filtering scale, and redshift is highly non-trivial.

We recall that our peak statistics do not take into account
the full peak distribution but instead constitute a simple survival
function, in other words the number of peaks remaining after a
certain cut. As a result, the signal for a given threshold is domi-
nated by the peaks with amplitudes near that threshold, of which
we have only considered two. The peak information we explore
is therefore sub-optimal, and results would likely improve by
using the full distribution. Nonetheless, it is clear even from
our simple approach that peak counts can outperform standard
moments in breaking degeneracies between MG and GR using
weak lensing.

Figure 11 is analogous to Fig. 10 for the f5(R) model with
mν = 0.15 eV. Comparing to the case without neutrinos, it is

apparent that no aperture mass moments up to fourth order are
capable of distinguishing this model from ΛCDM. On the con-
trary, peak counts again show a promising result. For ϑ2 = 0.586′
filtering, sources at zs = 2.0 give a 100% discrimination effi-
ciency. For ϑ3 = 1.17′ filtering, the efficiency is 93% for zs ≥ 1.5
and 84% for zs = 1.0. We have checked here as well that rais-
ing the detection level to 5σ produces the same effect as it did
for the previous case without neutrinos. Given that this model
was designed to be degenerate with ΛCDM, it is a useful result,
and indeed the main result of the paper, that there exist observ-
ables capable of discriminating between the models with high
efficiency.

We have carried out the same analysis for the other MG
models, namely fR0 = −10−4 with mν = (0, 0.3) eV and fR0 =
−10−6 with mν = (0, 0.06, 0.1) eV. A summary of the results
is presented in Table 2, and f5(R) is included for compari-
son. Shown are the maximum discrimination efficiencies from
ΛCDM attained for each model along with the statistic, aperture
ϑ, and source redshift zs that produces it. To highlight the differ-
ence between second- and higher-order statistics, results for the
variance and for the best discriminating statistic are shown for
each model. For all models except f4(R) [mν = 0 eV], the unique
maximum efficiency is achieved with peaks counted either above
a 3σ or 5σ threshold. On the other hand, the f4(R) case with
mν = 0 eV reaches 100% with all of the statistics for multiple
combinations of ϑ and zs. This is expected given that this model
diverges from ΛCDM most significantly already at the power
spectrum level.

7. Conclusion

The cosmological data do not yet point to a unique model within
which all observations can be explained, with several cosmolo-
gies still fitting the data. The standard ΛCDM model indeed
accommodates the broad range of current observational probes
that measure structure growth and the universal expansion across
cosmic time. The fundamental nature of the late-time acceler-
ation, however, remains unclear – in particular whether it is
caused by a fluid (dark energy) component, a cosmological con-
stant Λ, or instead by a modification to general relativity at large
scales. Many modified gravity models, such as the f (R) family,
are still viable given the data.

We have explored in this paper several particular f (R) mod-
els that mimic ΛCDM in terms of their background evolution
and their matter power spectra at z = 0. The models can be writ-
ten in terms of two free parameters, n and fR0, which determine
the density and scale at which the modified gravitational interac-
tion takes effect. We fixed n = 1 throughout and considered | fR0|

values within the range 10−4–10−6.
By design, the models we chose are difficult to distinguish

from ΛCDM based on observations at linear scales. Further-
more, using N-body simulations, we showed that the amplitude
of the matter power spectrum is larger relative to ΛCDM with
increasing | fR0|, but this can be in turn reduced by the inclusion
of massive neutrinos (up to mν = 0.3 eV) in the model. This
is because massive neutrinos suppress the growth of structure
on scales smaller than their free-streaming length, thereby com-
pensating the increased clustering due to larger | fR0|. For cer-
tain combinations then of fR0 and mν, the model well reproduces
ΛCDM not only on linear scales, but also into the non-linear
regime.

Our primary goal has been to determine whether there are
weak-lensing observables that are more efficient than standard
second-order statistics in discriminating between GR and MG.
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We first verified that the convergence power spectrum Pκ(`) and
aperture mass variance 〈M2

ap〉, both two-point measurements, of
our simulated cosmologies behaved as expected and consistently
with each other. As with the matter power spectra, deviations
from ΛCDM of the MG models decreased as | fR0| decreased.
Then, focusing on f5(R), we showed that the discrepancy dimin-
ished further by including mν up to 0.15 eV over the angular
scales considered.

The non-Gaussian weak-lensing observables we have stud-
ied are the aperture mass skewness (third order), kurtosis (fourth
order), and peak counts as a function of map filtering scale and
source galaxy redshift. We considered redshifts up to z = 2.0
and aperture scales in the range from 0.293′ up to 18.8′. Pro-
vided that noise is properly taken into account, a full treat-
ment of which is beyond the scope of this work (though see the
Appendix), our results may be potentially interesting for future
wide-field galaxy surveys like Euclid.

For f5(R) with mν = 0.15 eV, the f5(R) model most closely
mimicking ΛCDM, there exist filtering scales for which the
skewness and kurtosis measurements deviate more from ΛCDM
compared to the variance, indicating a greater chance of using
these observables to discriminate between the models. This was
also the case for peak counts above thresholds of 3σ and 5σ.
However, a further study of the discrimination efficiency based
on the false discovery rate (FDR) formalism showed that only
peak counts offered any reliable power to distinguish the MG
model from ΛCDM. The discrimination efficiency calculation
does this by quantifying the overlap between the actual distribu-
tions of observables computed over the 256 model realisations.
We conclude therefore that we are less likely to mistake a true
MG model for ΛCDM by measuring peak counts compared to
second- and higher-order moments of the aperture mass.

A particularly interesting feature of peak counts we have
found is that they can be less sensitive to differences in neutrino
mass than to the model of gravity. The example in Fig. 9 demon-
strates this in the significant overlap among the three f5(R) his-
tograms which are each in turn nearly fully disjoint from the
ΛCDM histogram. This behaviour was seen as well for the other
sets of models with the same value of fR0 but differing mν.
In addition to offering more discrimination power compared to
aperture mass moments, at least for the models we have con-
sidered, peaks may generally be a more robust observable for
distinguishing between standard and modified gravity.

To better understand the sensitivity of peak counts to neu-
trinos, it would be useful to systematically study variations in
the halo mass function as a function of mν and redshift for
the same f (R) model. As high S/N weak-lensing peaks are
thought to trace the most massive DM halos in the universe,
peak counts can probe the high-mass tail of the mass func-
tion. Some results in Hagstotz et al. (2018), who used the same
DUSTGRAIN-pathfinder simulations as we have here, are already
instructive on this front (cf. their Figs. 8 and 9). For example,
at z = 0, the f5(R) model without neutrinos shows an increase
in DM halo abundance of between 10% and 20% relative to
GR over the mass range 13.3 ≤ log10(M200 m h /M�) ≤ 15.0,
where M200 m (M�) is the halo (solar) mass. The same model
with mν = 0.15 eV shows a maximum increase of only up to
about 12% over the same mass range, a reduction we expect
from the MG–neutrino degeneracy, but interestingly the halo
abundance prediction becomes consistent with GR for the most
massive halos around 1015 M� h−1. This is not the case for f4(R)
with mν = 0.3 eV, where the GR abundance is recovered a
low but not high masses, and results for all models evolve with
redshift as well. A detailed study of the mass function and its

correlations with the peak count signal over the full parameter
space we have considered would therefore be enlightening, how-
ever it is beyond the scope of this work.

In terms of source redshift dependence, we have found gen-
erally that higher zs observations tend to provide greater discrim-
ination efficiencies between models for every statistic, although
we did find exceptions for particular filtering scales. In no case,
however, did zs = 0.5 outperform zs = 2.0, which we can
understand as the high redshift convergence maps carrying more
significant cosmological information that is accessible by these
statistics. Physically, since light travels through (and is distorted
by) more structures along the line of sight, we expect better sen-
sitivity for higher redshift sources. Moreover, as we considered
the different redshift planes independently, we have not exploited
the evolution of observables with z, which likely constitutes a
further signal that could be used to distinguish the models.

We found similar but not precisely equivalent results for the
f4(R) and f6(R) models (both with mν = 0 and mν > 0) compared
to f5(R) (cf. Table 2). They are similar in the sense that peak
counts remain the best observable tested for breaking degenera-
cies with ΛCDM for any model with mν > 0. On the other hand,
no filtering scale nor source galaxy redshift provided a larger
discrimination efficiency than 66% when mν > 0, significantly
lower than was seen for f5(R) models. This reflects the strong
degeneracy that can persist for suitably chosen combinations of
MG parameters and neutrino mass sums. Without neutrinos, the
f4(R) model is easily distinguishable from ΛCDM, while f6(R)
is not.

As we have not sought in this paper to find an optimal statis-
tic, one may reasonably wonder whether there exist other Map
observables (e.g. derived from different filter functions, filtering
scales, statistics, etc.) that would be better at breaking degenera-
cies not only between MG and GR, but also within MG models
themselves. A likely way to improve results would be to use the
full distribution of peaks as a function of S/N, rather than the
simple threshold cut we have employed. We leave a dedicated
study of this question to future work.

Acknowledgements. AP acknowledges support by an Enhanced Eurotalents
Fellowship, a Marie Skłodowska-Curie Actions Programme co-funded by the
European Commission and Commissariat à l’énergie atomique et aux énergies
alternatives (CEA). AP wishes to thank M. Kilbinger, S. Pires, D. Elbaz, and
S. Casas for many useful discussions while preparing this paper. VP and MB
thank L. Lombriser and K. Koyama for useful discussions on f (R) models. CG
and MB acknowledge support from the Italian Ministry for Education, Univer-
sity and Research (MIUR) through the SIR individual grant SIMCODE, project
number RBSI14P4IH, from the grant MIUR PRIN 2015 “Cosmology and Fun-
damental Physics: illuminating the Dark Universe with Euclid” and from the
agreement ASI n.I/023/12/0 “Attività relative alla fase B2/C per la missione
Euclid”. The authors wish to acknowledge the European Community through
the grant DEDALE (contract no. 665044) within the H2020 Framework Pro-
gramme of the European Commission, the Euclid Collaboration, the European
Space Agency and the support of the Centre National d’Etudes Spatiales. The
DUSTGRAIN-pathfinder simulations discussed in this work have been per-
formed and analysed on the Marconi supercomputing machine at Cineca thanks
to the PRACE project SIMCODE1 (grant nr. 2016153604) and on the comput-
ing facilities of the Computational Center for Particle and Astrophysics (C2PAP)
and of the Leibniz Supercomputer Centre (LRZ) under the project ID pr94ji.

References
Amendola, L. 2000, Phys. Rev. D, 62, 043511
Amendola, L., Appleby, S., Avgoustidis, A., et al. 2018, Liv. Rev. Relativ., 21, 2
Anderson, L., Aubourg, É., Bailey, S., et al. 2014, MNRAS, 441, 24
Baker, T., Bellini, E., Ferreira, P. G., et al. 2017, Phys. Rev. Lett., 119, 251301
Baldi, M., Villaescusa-Navarro, F., Viel, M., et al. 2014, MNRAS, 440, 75
Benjamini, Y., & Hochberg, Y. 1995, J. R. Stat. Soc. Ser. B, 57, 289
Bernardeau, F., van Waerbeke, L., & Mellier, Y. 1997, A&A, 322, 1

A38, page 16 of 20

http://linker.aanda.org/10.1051/0004-6361/201833481/1
http://linker.aanda.org/10.1051/0004-6361/201833481/2
http://linker.aanda.org/10.1051/0004-6361/201833481/3
http://linker.aanda.org/10.1051/0004-6361/201833481/4
http://linker.aanda.org/10.1051/0004-6361/201833481/5
http://linker.aanda.org/10.1051/0004-6361/201833481/6
http://linker.aanda.org/10.1051/0004-6361/201833481/7


A. Peel et al.: Breaking degeneracies in MG with higher-order WL statistics

Betoule, M., Kessler, R., Guy, J., et al. 2014, A&A, 568, A22
Bettoni, D., Ezquiaga, J. M., Hinterbichler, K., & Zumalacárregui, M. 2017,

Phys. Rev. D, 95, 084029
Boubekeur, L., Giusarma, E., Mena, O., & Ramírez, H. 2014, Phys. Rev. D, 90,

103512
Castro, T., Quartin, M., Giocoli, C., Borgani, S., & Dolag, K. 2018, MNRAS,

478, 1305
Clowe, D., Schneider, P., Aragón-Salamanca, A., et al. 2006, A&A, 451,

395
Couchot, F., Henrot-Versillé, S., Perdereau, O., et al. 2017, A&A, 606, A104
Creminelli, P., & Vernizzi, F. 2017, Phys. Rev. Lett., 119, 251302
Crisostomi, M., & Koyama, K. 2018, Phys. Rev. D, 97, 084004
Crittenden, R. G., Natarajan, P., Pen, U.-L., & Theuns, T. 2002, ApJ, 568, 20
DES Collaboration (Abbott, T. M. C., et al.) 2018, Phys. Rev. D, 98, 043526
Dietrich, J. P., & Hartlap, J. 2010, MNRAS, 402, 1049
Dima, A., & Vernizzi, F. 2018, Phys. Rev. D, 97, 101302
Ezquiaga, J. M., & Zumalacárregui, M. 2017, Phys. Rev. Lett., 119, 251304
Fan, Z., Shan, H., & Liu, J. 2010, ApJ, 719, 1408
Fluri, J., Kacprzak, T., Sgier, R., Réfrégier, A., & Amara, A. 2018, ArXiv e-prints

[arXiv:1803.08461]
Giocoli, C., Metcalf, R. B., Baldi, M., et al. 2015, MNRAS, 452, 2757
Giocoli, C., Jullo, E., Metcalf, R. B., et al. 2016, MNRAS, 461, 209
Giocoli, C., Di Meo, S., Meneghetti, M., et al. 2017, MNRAS, 470, 3574
Giocoli, C., Baldi, M., & Moscardini, L. 2018a, MNRAS, 481, 2813
Giocoli, C., Moscardini, L., Baldi, M., Meneghetti, M., & Metcalf, R. B. 2018b,

MNRAS, 478, 5436
Hagstotz, S., Costanzi, M., Baldi, M., & Weller, J. 2018, ArXiv e-prints

[arXiv:1806.07400]
Hamana, T., Miyazaki, S., Shimasaku, K., et al. 2003, ApJ, 597, 98
Hamana, T., Oguri, M., Shirasaki, M., & Sato, M. 2012, MNRAS, 425, 2287
He, J.-H. 2013, Phys. Rev. D, 88, 103523
Hetterscheidt, M., Simon, P., Schirmer, M., et al. 2007, A&A, 468, 859
Heymans, C., Grocutt, E., Heavens, A., et al. 2013, MNRAS, 432, 2433
Higuchi, Y., & Shirasaki, M. 2016, MNRAS, 459, 2762
Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454
Hu, W., & Sawicki, I. 2007, Phys. Rev. D, 76, 064004
Hu, B., Raveri, M., Rizzato, M., & Silvestri, A. 2016, MNRAS, 459, 3880
Jain, B., & Seljak, U. 1997, ApJ, 484, 560
Jain, B., Vikram, V., & Sakstein, J. 2013, ApJ, 779, 39
Jarvis, M., Bernstein, G. M., Fischer, P., et al. 2003, AJ, 125, 1014
Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338
Kacprzak, T., Kirk, D., Friedrich, O., et al. 2016, MNRAS, 463, 3653
Kaiser, N., & Squires, G. 1993, ApJ, 404, 441
Kaiser, N., Squires, G., Fahlman, G., & Woods, D. 1994, in Clusters of Galaxies,

Proc. of the XIVth Moriond Astrophysics Meeting, 269
Khoury, J., & Weltman, A. 2004, Phys. Rev. D, 69, 044026
Kilbinger, M. 2015, Rep. Prog. Phys., 78, 086901
Kilbinger, M., & Schneider, P. 2005, A&A, 442, 69
Kilbinger, M., Fu, L., Heymans, C., et al. 2013, MNRAS, 430, 2200
Koyama, K. 2016, Rep. Prog. Phys., 79, 046902
Kratochvil, J. M., Haiman, Z., & May, M. 2010, Phys. Rev. D, 81, 043519
Kruse, G., & Schneider, P. 1999, MNRAS, 302, 821
Kruse, G., & Schneider, P. 2000, MNRAS, 318, 321
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints

[arXiv:1110.3193]
Leonard, A., Pires, S., & Starck, J.-L. 2012, MNRAS, 423, 3405
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Lin, C.-A., & Kilbinger, M. 2015, A&A, 576, A24
Liu, J., & Haiman, Z. 2016, Phys. Rev. D, 94, 043533

Liu, X., Li, B., Zhao, G.-B., et al. 2016, Phys. Rev. Lett., 117, 051101
Lombriser, L. 2014, Annal. Phys., 526, 259
Lombriser, L., & Lima, N. A. 2017, Phys. Lett. B, 765, 382
Lombriser, L., & Taylor, A. 2016, J. Cosmol. Astropart. Phys, 3, 031
Lombriser, L., Schmidt, F., Baldauf, T., et al. 2012, Phys. Rev. D, 85, 102001
LSST Science Collaboration (Abell, P. A., et al.) 2009, ArXiv e-prints

[arXiv:0912.0201]
Marian, L., Smith, R. E., Hilbert, S., & Schneider, P. 2012, MNRAS, 423, 1711
Martinelli, M., Melchiorri, A., & Amendola, L. 2009, Phys. Rev. D, 79, 123516
Martinet, N., Bartlett, J. G., Kiessling, A., & Sartoris, B. 2015, A&A, 581,

A101
Martinet, N., Schneider, P., Hildebrandt, H., et al. 2018, MNRAS, 474, 712
Maturi, M., Fedeli, C., & Moscardini, L. 2011, MNRAS, 416, 2527
Motohashi, H., Starobinsky, A. A., & Yokoyama, J. 2013, Phys. Rev. Lett., 110,

121302
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
Peel, A., Lin, C.-A., Lanusse, F., et al. 2017, A&A, 599, A79
Petri, A., Haiman, Z., & May, M. 2016, Phys. Rev. D, 93, 063524
Petri, A., Haiman, Z., & May, M. 2017, Phys. Rev. D, 95, 123503
Pettorino, V. 2013, Phys. Rev. D, 88, 063519
Pettorino, V., & Baccigalupi, C. 2008, Phys. Rev. D, 77, 103003
Pires, S., Starck, J.-L., Amara, A., Réfrégier, A., & Teyssier, R. 2009, A&A, 505,

969
Pires, S., Leonard, A., & Starck, J.-L. 2012, MNRAS, 423, 983
Planck Collaboration XIII. 2016, A&A, 594, A13
Planck Collaboration XIV. 2016, A&A, 594, A14
Puchwein, E., Baldi, M., & Springel, V. 2013, MNRAS, 436, 348
Roncarelli, M., Moscardini, L., Borgani, S., & Dolag, K. 2007, MNRAS, 378,

1259
Sakstein, J. 2015, Phys. Rev. Lett., 115, 201101
Sakstein, J., & Jain, B. 2017, Phys. Rev. Lett., 119, 251303
Schäfer, B. M., Heisenberg, L., Kalovidouris, A. F., & Bacon, D. J. 2012,

MNRAS, 420, 455
Schirmer, M., Erben, T., Hetterscheidt, M., & Schneider, P. 2007, A&A, 462,

875
Schneider, P. 1996, MNRAS, 283, 837
Schneider, P., van Waerbeke, L., Jain, B., & Kruse, G. 1998, MNRAS, 296, 873
Schrabback, T., Hartlap, J., Joachimi, B., et al. 2010, A&A, 516, A63
Shan, H. Y., Kneib, J.-P., Comparat, J., et al. 2014, MNRAS, 442, 2534
Shan, H., Liu, X., Hildebrandt, H., et al. 2018, MNRAS, 474, 1116
Shirasaki, M., Nishimichi, T., Li, B., & Higuchi, Y. 2017, MNRAS, 466, 2402
Smith T. L. 2009, ArXiv e-prints [arXiv:0907.4829]
Springel, V. 2005, MNRAS, 364, 1105
Starck, J.-L., Fadili, J., & Murtagh, F. 2007, IEEE Trans. Image Process., 16,

297
van Waerbeke, L. 1998, A&A, 334, 1
van Waerbeke, L. 2000, MNRAS, 313, 524
van Waerbeke, L., Mellier, Y., Radovich, M., et al. 2001, A&A, 374, 757
Vicinanza, M., Cardone, V. F., Maoli, R., Scaramella, R., & Er, X. 2018, Phys.

Rev. D, 97, 023519
Viel, M., Haehnelt, M. G., & Springel, V. 2010, J. Cosmol. Astropart. Phys., 6,

015
Vikram, V., Sakstein, J., Davis, C., & Neil, A. 2018, Phys. Rev. D, 97, 104055
Villaescusa-Navarro, F., Banerjee, A., Dalal, N., et al. 2018, ApJ, 861, 53
Wright, B. S., Winther, H. A., & Koyama, K. 2017, J. Cosmol. Astropart. Phys.,

10, 054
Yang, X., Kratochvil, J. M., Wang, S., et al. 2011, Phys. Rev. D, 84, 043529
Zennaro, M., Bel, J., Villaescusa-Navarro, F., et al. 2017, MNRAS, 466, 3244
Zhang, T.-J., Pen, U.-L., Zhang, P., & Dubinski, J. 2003, ApJ, 598, 818

A38, page 17 of 20

http://linker.aanda.org/10.1051/0004-6361/201833481/8
http://linker.aanda.org/10.1051/0004-6361/201833481/9
http://linker.aanda.org/10.1051/0004-6361/201833481/10
http://linker.aanda.org/10.1051/0004-6361/201833481/10
http://linker.aanda.org/10.1051/0004-6361/201833481/11
http://linker.aanda.org/10.1051/0004-6361/201833481/11
http://linker.aanda.org/10.1051/0004-6361/201833481/12
http://linker.aanda.org/10.1051/0004-6361/201833481/12
http://linker.aanda.org/10.1051/0004-6361/201833481/13
http://linker.aanda.org/10.1051/0004-6361/201833481/14
http://linker.aanda.org/10.1051/0004-6361/201833481/15
http://linker.aanda.org/10.1051/0004-6361/201833481/16
http://linker.aanda.org/10.1051/0004-6361/201833481/17
http://linker.aanda.org/10.1051/0004-6361/201833481/18
http://linker.aanda.org/10.1051/0004-6361/201833481/19
http://linker.aanda.org/10.1051/0004-6361/201833481/20
http://linker.aanda.org/10.1051/0004-6361/201833481/21
http://arxiv.org/abs/1803.08461
http://linker.aanda.org/10.1051/0004-6361/201833481/23
http://linker.aanda.org/10.1051/0004-6361/201833481/24
http://linker.aanda.org/10.1051/0004-6361/201833481/25
http://linker.aanda.org/10.1051/0004-6361/201833481/26
http://linker.aanda.org/10.1051/0004-6361/201833481/27
http://arxiv.org/abs/1806.07400
http://linker.aanda.org/10.1051/0004-6361/201833481/29
http://linker.aanda.org/10.1051/0004-6361/201833481/30
http://linker.aanda.org/10.1051/0004-6361/201833481/31
http://linker.aanda.org/10.1051/0004-6361/201833481/32
http://linker.aanda.org/10.1051/0004-6361/201833481/33
http://linker.aanda.org/10.1051/0004-6361/201833481/34
http://linker.aanda.org/10.1051/0004-6361/201833481/35
http://linker.aanda.org/10.1051/0004-6361/201833481/36
http://linker.aanda.org/10.1051/0004-6361/201833481/37
http://linker.aanda.org/10.1051/0004-6361/201833481/38
http://linker.aanda.org/10.1051/0004-6361/201833481/39
http://linker.aanda.org/10.1051/0004-6361/201833481/40
http://linker.aanda.org/10.1051/0004-6361/201833481/41
http://linker.aanda.org/10.1051/0004-6361/201833481/42
http://linker.aanda.org/10.1051/0004-6361/201833481/43
http://linker.aanda.org/10.1051/0004-6361/201833481/44
http://linker.aanda.org/10.1051/0004-6361/201833481/44
http://linker.aanda.org/10.1051/0004-6361/201833481/44
http://linker.aanda.org/10.1051/0004-6361/201833481/45
http://linker.aanda.org/10.1051/0004-6361/201833481/46
http://linker.aanda.org/10.1051/0004-6361/201833481/47
http://linker.aanda.org/10.1051/0004-6361/201833481/48
http://linker.aanda.org/10.1051/0004-6361/201833481/49
http://linker.aanda.org/10.1051/0004-6361/201833481/50
http://linker.aanda.org/10.1051/0004-6361/201833481/51
http://linker.aanda.org/10.1051/0004-6361/201833481/52
http://arxiv.org/abs/1110.3193
http://linker.aanda.org/10.1051/0004-6361/201833481/54
http://linker.aanda.org/10.1051/0004-6361/201833481/55
http://linker.aanda.org/10.1051/0004-6361/201833481/56
http://linker.aanda.org/10.1051/0004-6361/201833481/57
http://linker.aanda.org/10.1051/0004-6361/201833481/58
http://linker.aanda.org/10.1051/0004-6361/201833481/59
http://linker.aanda.org/10.1051/0004-6361/201833481/60
http://linker.aanda.org/10.1051/0004-6361/201833481/61
http://linker.aanda.org/10.1051/0004-6361/201833481/62
http://arxiv.org/abs/0912.0201
http://linker.aanda.org/10.1051/0004-6361/201833481/64
http://linker.aanda.org/10.1051/0004-6361/201833481/65
http://linker.aanda.org/10.1051/0004-6361/201833481/66
http://linker.aanda.org/10.1051/0004-6361/201833481/66
http://linker.aanda.org/10.1051/0004-6361/201833481/67
http://linker.aanda.org/10.1051/0004-6361/201833481/68
http://linker.aanda.org/10.1051/0004-6361/201833481/69
http://linker.aanda.org/10.1051/0004-6361/201833481/69
http://linker.aanda.org/10.1051/0004-6361/201833481/70
http://linker.aanda.org/10.1051/0004-6361/201833481/71
http://linker.aanda.org/10.1051/0004-6361/201833481/72
http://linker.aanda.org/10.1051/0004-6361/201833481/73
http://linker.aanda.org/10.1051/0004-6361/201833481/74
http://linker.aanda.org/10.1051/0004-6361/201833481/75
http://linker.aanda.org/10.1051/0004-6361/201833481/76
http://linker.aanda.org/10.1051/0004-6361/201833481/76
http://linker.aanda.org/10.1051/0004-6361/201833481/77
http://linker.aanda.org/10.1051/0004-6361/201833481/78
http://linker.aanda.org/10.1051/0004-6361/201833481/79
http://linker.aanda.org/10.1051/0004-6361/201833481/80
http://linker.aanda.org/10.1051/0004-6361/201833481/81
http://linker.aanda.org/10.1051/0004-6361/201833481/81
http://linker.aanda.org/10.1051/0004-6361/201833481/82
http://linker.aanda.org/10.1051/0004-6361/201833481/83
http://linker.aanda.org/10.1051/0004-6361/201833481/84
http://linker.aanda.org/10.1051/0004-6361/201833481/85
http://linker.aanda.org/10.1051/0004-6361/201833481/85
http://linker.aanda.org/10.1051/0004-6361/201833481/86
http://linker.aanda.org/10.1051/0004-6361/201833481/87
http://linker.aanda.org/10.1051/0004-6361/201833481/88
http://linker.aanda.org/10.1051/0004-6361/201833481/89
http://linker.aanda.org/10.1051/0004-6361/201833481/90
http://linker.aanda.org/10.1051/0004-6361/201833481/91
http://arxiv.org/abs/0907.4829
http://linker.aanda.org/10.1051/0004-6361/201833481/93
http://linker.aanda.org/10.1051/0004-6361/201833481/94
http://linker.aanda.org/10.1051/0004-6361/201833481/94
http://linker.aanda.org/10.1051/0004-6361/201833481/95
http://linker.aanda.org/10.1051/0004-6361/201833481/96
http://linker.aanda.org/10.1051/0004-6361/201833481/97
http://linker.aanda.org/10.1051/0004-6361/201833481/98
http://linker.aanda.org/10.1051/0004-6361/201833481/98
http://linker.aanda.org/10.1051/0004-6361/201833481/99
http://linker.aanda.org/10.1051/0004-6361/201833481/99
http://linker.aanda.org/10.1051/0004-6361/201833481/100
http://linker.aanda.org/10.1051/0004-6361/201833481/101
http://linker.aanda.org/10.1051/0004-6361/201833481/102
http://linker.aanda.org/10.1051/0004-6361/201833481/102
http://linker.aanda.org/10.1051/0004-6361/201833481/103
http://linker.aanda.org/10.1051/0004-6361/201833481/104
http://linker.aanda.org/10.1051/0004-6361/201833481/105


A&A 619, A38 (2018)

Appendix A: Impact of galaxy shape noise

We are not able to measure the true shear field in practice;
instead we measure galaxy ellipticities ε, which in the absence
of systematic errors, represent an unbiased measurement of the
reduced shear field g(θ) = γ(θ)/[1 − κ(θ)] when averaged over
many galaxies. A primary source of noise in weak lensing analy-
ses is therefore due to the non-circular intrinsic shapes of galax-
ies. In this Appendix, we study the effect of galaxy shape noise
on our results by reproducing Figs. 9 and 10 with such represen-
tative noise included.

Given that we work with convergence maps directly from our
simulations, we generate noisy versions of these maps by simply
adding a noise term: κN(θ) = κ(θ) + N(θ). The noise N(θ) is
modelled as a Gaussian random field with zero mean and vari-
ance given by (van Waerbeke 2000)

σ2
pix =

σ2
ε

2
1

ngal Apix
, (A.1)

where σ2
ε = σ2

ε1
+ σ2

ε2
is the total galaxy ellipticity variance,

ngal is the number density of galaxies, and Apix is the pixel
area. Upcoming weak lensing surveys should achieve ngal ≈

30 arcmin−2 and σε ≈ 0.4, corresponding to a standard devia-
tion of about 0.28 per component of ellipticity.

Our methodology produces lensing maps for sources at fixed
redshift, namely zs = 0.5, 1.0, 1.5, and 2.0. In real observa-
tions, of course, galaxies are distributed in redshift, and the
effective number density of a survey reflects this distribution.
We can imagine that our lines of sight come from a survey in
which the galaxies have been divided into four bins such that
each contains the same number of galaxies and that our source
planes lie at the centres. Assuming an overall galaxy number
density of 30 arcmin−2, this gives ngal = 7.5 arcmin−2 per bin
and σpix = 0.7.

Histograms corresponding to those in Fig. 9 of the noisy
observables under the above conditions are shown in Fig. A.1.
In terms of the variance (upper left), the distributions have all
shifted towards larger mean values compared to their noiseless
versions. They also now exhibit a prominent leftward skew-
ness, in contrast to the approximately Gaussian distributions
for the noiseless case. The skewness and kurtosis distributions
(upper right and lower left, respectively) deviate significantly
from Gaussians, the kurtosis especially now exhibiting strong
asymmetry. Peak counts above 3σ (lower right) for the four
models now have fully overlapping distributions, converging to a

central value of around one third of that found in the noiseless
case. Overall, the effect of shape noise is to wash out the distinc-
tions between the models seen previously at this scale.

Discrimination efficiencies E corresponding to Fig. 10 for
the noisy maps of f5(R) are shown in Fig. A.2. As the overlap
of the histograms suggest for ϑ2 = 0.586′, the skewness and
peak counts lose all discrimination power not only at this fil-
tering scale, but at all others as well. The noise dominates the
signal for these statistics such that neither is capable of distin-
guishing f5(R) from ΛCDM any longer. In contrast, the vari-
ance and kurtosis retain some discrimination power (although
nowhere exceeding 55%), in particular for filter scales ≥ ϑ3.
The noisy variance plot is qualitatively similar to its counter-
part in Fig. 10 except that each bar has been scaled towards the
centre. The kurtosis exhibits a somewhat different behaviour in
that while ϑ1 and ϑ2 give lower E values, scales ≥ ϑ3 actually
gain in discrimination power compared to the noiseless case.

What is not directly apparent from these figures is the way
that the discrimination power changes as a function of noise
level. We have verified that lower noise values, for example
σpix = 0.2 and 0.4, produce discrimination efficiencies at inter-
mediate values between the noiseless case and σpix = 0.7. The
tendency of E to decrease monotonically with increasing noise
holds for scales ϑ1 and ϑ2 across all statistics we have consid-
ered. On the other hand, for scales ≥ ϑ3 and for the non-Gaussian
statistics, E can achieve a maximum with increasing noise before
eventually decreasing again to zero for large enough σpix. What
is seen in Fig. A.2 is that the noise level is not high enough to
fully suppress E using kurtosis as it is for skewness and peak
counts. However, both these latter statistics have scales at which
the maximum discrimination efficiency is largest with some non-
zero noise level σpix < 0.7. To summarise, some amount of
Gaussian noise can actually improve the distinction between
models on some scales, but it depends sensitively on the initial
shapes and separations of the noiseless histograms.

We have considered here one important source of noise
present in any weak-lensing analysis, but many others exist as
well in real data. We leave a more complete and realistic treat-
ment of noise for future work. We also recall that we have not
attempted to denoise the maps before computing statistics, a step
which would likely compensate to some extent the loss of dis-
crimination power seen in Figs. A.1 and A.2. Finally, we do not
show noisy results for f5(R) with mν = 0.15 eV that would cor-
respond to Fig. 11, since the discrimination efficiency does not
exceed 10% for any statistic at any scale or source redshift.
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Fig. A.1. Histograms of aperture mass statistics corresponding to the distributions in Fig. 9 with galaxy shape noise included. The filtering scale
is again ϑ = 0.586′, and sources are at redshift zs = 2.0. The profiles of the noisy distributions have all changed compared to their noiseless
counterparts. Overall, the f5(R) distributions are much more difficult to distinguish from ΛCDM, as well as from each other, than in the noiseless
case at this scale. In particular, this level of noise washes out the discrimination power of peak counts above 3σ.
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Fig. A.2. Reproduction of Fig. 10 including galaxy shape noise for the f5(R) model without neutrinos. The effect of such noise is to reduce the
discrimination efficiency from ΛCDM across all aperture scales, source redshifts, and statistics shown (with the exception of certain kurtosis scales
as discussed in the text). In particular, the noise dominates the measured skewness and peak count distributions at each scale so that both statistics
essentially lose all previous discrimination power between f5(R) and ΛCDM, although this would likely be mitigated by a denoising procedure.
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