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Revisiting the positive DC corona discharge theory: Beyond Peek’s
and Townsend’s law

Nicolas Monrolin, Olivier Praud, and Franck Plouraboue�
Institut de M�ecanique des Fluides de Toulouse (IMFT), Universite� de Toulouse, CNRS, INPT, UPS,
All�ee du Pr. Camille Soula, 31400 Toulouse, France

The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is 
revisited in order to find analytically the influence of gas properties and thermodynamic conditions 
on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. 
Phys. 20, 1490–1495 (1987)] of a simplified but self-consistent problem is performed and explicit 
analytical solutions are derived. The mathematical derivation enables us to express a new positive 
DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formula-

tion. In dimensional variables, the current voltage law and the corona inception voltage explicitly 
depend on the electrode size and physical gas properties such as ionization and photoionization 
parameters. The analytical predictions are successfully confronted with experiments and Peek’s

and Townsend’s laws. An analytical expression of the corona inception voltage uon is proposed, 
which depends on the known values of physical parameters without adjustable parameters. As a

proof of consistency, the classical Townsend current-voltage law I ¼ Cuðu � uonÞ is retrieved by 
linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest 
in this analytical current model, especially for exploring small corona wires or considering various 
thermodynamic conditions. 

I. INTRODUCTION

Corona Discharge (CD) is useful in many valuable appli-

cations such as electrostatic precipitators, ozonizers or micro-

heat coolers and, for this reason, has been quite extensively

studied. CD is a special example of localized gas discharge,

for which, in the vicinity of high-tension wires, the ionization

of various ionic species is generated by electron collisions.

Furthermore, the finite extension of CD in the high-electric

field region is edged by vanishing free-electrons resulting

from secondary processes such as photo-ionizing radiation

produced inside the CD region. The intimate physico-

chemical description of CD is thus quite complex, the details

of which also depend on the gas composition, the temperature

and the physical properties of generated ions. Nevertheless,

albeit this complexity is attested, it did not prevent many sim-

plified models to be successfully compared with experimental

measurements,1–6 to cite only a few. But, all of them derive

only implicit current-voltage laws. In order to investigate the

capabilities of corona discharge for new applications, there is

a growing need for simplified models. For applications

involving small emitting electrodes, such as ionic wind devi-

ces,7,8 an analytical model of the corona discharge current

would be a valuable tool.

The current-voltage characteristic I ¼ f ðVÞ is a key

property of most corona discharge devices. The case of

cylindrical geometry provides a nice configuration for testing

a model’s prediction. It is characterized by two features: the

“starting point,” e.g., onset voltage, and its “shape,” e.g., of

I ¼ f ðVÞ.
The onset voltage is classically computed from the early

phenomenological Peek’s law9 propounding the critical

electric field Ea at the emitter surface, in cylindrical geome-

try, in air. Peek’s law, however, suffers from providing a

purely phenomenological dependency of the critical electric

field Ea on emitter’s radius a, and is restricted to CD in air in

atmospheric conditions for relatively large wires. This is

why many theoretical studies have been dedicated to

improve the basic knowledge about CD in order to predict

the critical electric field and its dependency on the geometri-

cal and physical parameters, in a more general context. More

generally, the critical electric field Ea can be obtained from

numerically solving the implicit breakdown criterion, e.g.,

Refs. 10–12
Ð

a� g ¼ K, in good agreement with experi-

ments. Nevertheless, some analytical solution to this prob-

lem is also interesting since it provides a direct insight into

the influence of each parameter. For example, Lowke

et al.13,14 were able to recover an expression similar to Peek’

law by injecting a quadratic fit of the ionization coefficient

aðE=NÞ � gðE=NÞ at low E/N into the breakdown criterion.

Now, considering the “shape” of the current-voltage

curve, many applications of the corona discharge require

accurate current predictions, and simplified corona models

are crucial for exploring new applications at low computa-

tional cost. Approximations such as two-scale models15,16 or

perturbative approaches17,18 are often confronted by the

widely accepted quadratic law derived by Townsend19 one

century ago. However, according to his own words,20 the

quadratic equation applies only for “small currents,” other-

wise an implicit expression should be used. In order to ana-

lytically derive the current, “compartmental” models were

developed by involving a corona radius ri. It has influenced

many modeling for which this key parameter permits one to
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separate two distinct phenomenological regions: the “glow

discharge” region nearby the emitter and the “drift” region

away from it, at the interface of which the continuity of the

electrical field is prescribed.2,5,21 Even empirically success-

ful and interesting, these “compartmental models” of CD

cannot predict the dependency of the critical electric field Ea

or the total current I without further assumptions on the exact

location of the corona radius ri. The choice of ri affects the

solution.5

On the contrary, in a seminal contribution, Durbin and

Turyn1 re-considered the CD problem in the framework of

matched asymptotic analysis. Their approach has enabled

them to obtain the relationship between the CD region relative

size (relative to some typical length in the drift region) and

some typical ionization electric field Ei to be defined later.

Durbin and Turyn1 also numerically solved the matching con-

dition so as to produce a new theoretical prediction for the

(dimensionless) current-voltage I ¼ f ðVÞ. Unfortunately, their

theoretical predictions have been poorly confronted by experi-

mental measurements. Furthermore, they only solve the match-

ing conditions numerically and did not produce any explicit

results on how their theoretical predictions associated with the

critical electric field or the current-voltage characteristics

depends on physical parameters.

In this contribution, we revisit the Durbin and Turyn1

matched asymptotic approach to a positive CD cylindrical

problem and extend it to a more general framework. An

explicit analytical solution for the matching conditions is

found. This permits us to easily evaluate the impact of each

physical parameter such as effective mobility, ionization,

photo-ionization or electrode size on the corona current and

onset. The analytical current-voltage I ¼ f ðVÞ is found,

which, in the limit of small currents, exactly derives

Townsend’s law I ¼ Cuðu� uonÞ. The theoretical predic-

tions are analyzed in various ways: (i) their ability to predict

current-voltage characteristics in different gases as compared

with experimental measurements, (ii) their validity range as

compared with Townsend’s law, (iii) the quality of the

asymptotic approximation and (iv) the dependency of the

produced current on physical parameters such as thermody-

namic conditions.

This paper is organized as follows: first, the simplified

constitutive equations of CD are presented in Sec. II. Then,

their dimensionless formulation is presented in Sec. II A and

their mathematical asymptotic analysis in Secs. II B and II C.

Section III describes how the theoretical predictions of Sec.

II can be analyzed in a dimensionless (Sec. III A) or dimen-

sional formulation (Sec. III B), so as to assess the quality of

the asymptotic approximation and how they compare with

Peek’s law or other onset criteria for corona onset and

Townsend’s law for current. In Sec. III C, the analytical

solution is compared with current-voltage measurements

under various gas conditions. Section III C 1 discusses the

validity and limits of the analytical shape of the effective

ionization coefficient. Finally, Sec. IV showcases the appli-

cations of the presented analytical model with a brief para-

metric study.

II. PHYSICAL MODEL AND METHOD

The matched asymptotic method is used to solve equa-

tions with physical processes that are dominant in some

region (a boundary layer) and negligible elsewhere. In their

analysis, Durbin and Turyn1 have mathematically shown that

the corona problem has two distinct regions: an inner and an

outer region. In the inner region, they show that the leading

order of the electrical potential solution is harmonic (no space

charge effects) which greatly simplifies the computation of

the source terms for charge production caused by electronic

impact and attachment. This is the “glow corona” region. The

charge-free potential is often employed at the inception volt-

age,6,10–12 but Durbin and Turyn proved that it still holds at

higher voltages. However, the “boundary condition” at the

edge of the inner region depends on the solution in the outer

region, which make the inner solution not completely inde-

pendent of space charge effects. In the outer region, the con-

centration of electrons is found to be evanescent, the positive

charges are electro-convected, and coupled with the electrical

potential through the classical electrostatic Poisson problem

(not harmonic in this region). This outer region is the “drift”

region. In Fig. 1, an intermediate zone is introduced, to be

discussed in the mathematical matching section.

A. Governing equations

As mentioned in the Introduction, the effective fluid

model of the positive DC corona is considered. The

FIG. 1. Coaxial electrode geometry, asymptotic regions and the correspond-

ing physical processes. (1) Primary electron avalanche, (2) secondary ioniza-

tion, (3) secondary electron avalanche, and (4) ion drift.

TABLE I. Effective ionization aef ¼ a� g coefficient fitted from Bolsigþ
solver.

Air (N2 þO2Þ O2 N2 98N2 þ 2CH4

Cef (V m2) 8:52� 10�19 7:93� 10�19 8:48� 10�19 8:62� 10�19

Bef (m2) 2:93� 10�20 4:60� 10�20 2:54� 10�20 2:90� 10�20



production of positive ions, electrons and negative ions (with

respective densities np, ne and nn) is governed by the impact

ionization coefficient a and the attachment coefficient g. The

ionization coefficient dependency on the electric field will

take the standard Townsend form

a ¼ be�Ei=E; (1)

where b and Ei are two physical parameters which depend

on the gas composition and thermodynamic conditions and

are supposed to be known. The attachment coefficient is

assumed to vanish in low electric fields. Section III C 1 pro-

vides more information about how they were evaluated and

under which conditions relation (1) is accurate and reliable.

Hence, combining the previous effects provides the follow-

ing constitutive model:

r2u ¼ e

�0

ðne þ nn � npÞ; (2)

r � jp ¼ ajjjejj þ S; (3)

r � je ¼ ða� gÞjjjejj þ S; (4)

r � jn ¼ gjjjejj; (5)

where e is the elementary charge, je ¼ leneru, jp ¼ �lpnp

ru, and jn ¼ lnnnru are the local fluxes of the electrons,

positive and negative charges, respectively. One complex

aspect of CD modeling concerns the generation of secondary

electrons. Even if secondary ionization is very small com-

pared to the impact ionization, it is necessary to explain the

onset of the discharge. Here, the photo-ionization is the main

source of secondary electrons

SðrÞ ¼ kc
ð

V

Gðr; r0Þ ðaðr0Þ � gðr0ÞÞjjjeðr0Þjjd3r0: (6)

SðrÞ is the number of photo-ionizing events at position r per

unit time and volume. The coefficient c is the secondary

electron efficiency, identical to the one introduced by

Zheng.22 The effective absorption coefficient is named k
(and not l as in Refs. 1 and 22 to avoid confusion with

mobility) and kGðr; r0Þ is its associated effective absorption

function. The photon absorption function may have different

forms1,11,23 (for now, no particular shape is assumed).

Following Ref. 1, all quantities are rescaled with the

radius of the collector L, the positive ion mobility lp, the

applied voltage ua and the net current I per unit length at the

collector to build the following non-dimensional quantities

(hat stands for non-dimensional):

r̂ ¼ r

L
; û ¼ u

ua

; n̂k ¼
nk

nk;0
; â ¼ a

L
; (7)

with nk;0 ¼ I=ð2plkeuaÞ; k � e; p; n, and a the emitter

radius. As mentioned by Durbin,1 the reaction coefficients

have to scale as follows:

â
e
¼ La ¼ b̂

e
e�

1

eÊ ;

ĝ
e
¼ Lg;

with b̂ ¼ bLe. For conciseness, âef ¼ â � ĝ is the effective

ionization coefficient. The small asymptotic parameter e is

defined by

e ¼ ua

LEi
: (8)

A distinct reference density is chosen for the ions and

the electrons because, physically, their flux only is expected

to match. Hence, the ratio of electron to positive ion density

is merely proportional to the inverse ratio of their respective

mobilities. Positive and negative ions have similar mobilities

lp � ln. Using this non-dimensional formulation, the gov-

erning equations are now expressed in 2D cylindrical axi-

symmetrical configurations. Realizing that the fluxes are

radial, so that ĵe ¼ ĵeer and �rû ¼ Êer , dimensionless gov-

erning equations read as

1

r̂
@r̂ ðr̂@r̂ ûÞ ¼ �Jðn̂p � dln̂e � nnÞ; (9)

1

r̂
@r̂ ðr̂ ĵpÞ ¼ �

â
e

ĵe � Ŝðr̂Þ; (10)

1

r̂
@r̂ ðr̂ ĵeÞ ¼ �

â � ĝ
e

ĵe � Ŝðr̂Þ; (11)

1

r̂
@r̂ ðr̂ ĵnÞ ¼ �

ĝ
e

ĵe; (12)

with Ŝðr̂Þ ¼ k̂c
Ð

Gðr̂; r̂0Þ ½â�ĝ
e ĵe�ðr̂0Þd2r̂

0. Note that the vol-

ume integral was transformed into a surface integral by

integrating along the electrode axis: G2Dðr; hÞ
¼
Ðþ1
�1 G3Dðr; h; zÞdz. The minus sign on the left-hand-side

comes from jĵej ¼ �ĵe, since the voltage gradient is nega-

tive. The dimensionless parameter J, acting as a dimen-

sionless current, or space charge parameter, is defined as

J ¼ n0;pL2

�0u2
a

¼ IL2

2plp�0u2
a

: (13)

Note that contrary to Durbin and Turyn, we differentiate the

adimensionalization for ions and electrons, so that n̂e � n̂p

� 1. This is why the small parameter dl ¼ ne;0=np;0 ¼ lp=le

appears in (9). dl typically takes values smaller than 10�2 in

air.

The mobility of each species can be assumed to be con-

stant without loss of generality. The charge conservation

equations (10) and (11) are indeed written in terms of flux

and the mobility dependence on the electric field is then

transparent for charge conservation equations. Besides, the

upcoming Sec. II B states that in the high electric field

region, where the mobility most likely varies, the species

concentration can be dropped in the potential equation (9).

It is important to mention that the original model consid-

ered by Durbin1 does not present a balanced distribution of

the photo-ionization which is only a source term for elec-

trons, but not for positive ions. As a result, the total current

produced at the CD edge is not exactly conserved at the

inner/outer interface. This issue is more benign than first sug-

gested. As a matter of fact, the current inconsistency scales

with the small parameter c (see Sec. II D 2). The small



photo-ionization efficiency (typically c < 10�3) results in a

very weak correction to the overall positive ion current. This

is completely coherent with previous results22 where the

computed positive ion flux is conserved in the outer region,

indicating negligible source terms. So, photo-ions can be

neglected. The number of negative ions is also a small quan-

tity compared to positive ions. First, the negative ion produc-

tion rate is very small nn;max=np;max � g=a	 1 and

secondly, they are produced only in the inner region, where

the space charge will be negligible. For conciseness, the rest

of the analysis focuses on the relevant species: positive ions

and electrons.

B. Inner expansion

In the inner region, the scaling is small r̂ � e. To keep a

O(1) space variable, it is rescaled as R ¼ r̂=e. Every variable

x̂ is then rewritten, so that XðRÞ ¼ x̂ðr̂Þ, where capital letters

denote the inner, whereas the hatted ones, the outer. This

scaling implies a contraction of both derivatives and the

reaction coefficient, i.e.,

@RU ¼ e @r̂ ûJk ¼ e ĵkâðeRÞ ¼ âðr̂Þ:

The set of constitutive equations can then be rewritten as

1

R
@RðR@RUÞ ¼ �e2JðNp � dlNeÞ; (14)

1

R
@RðRJpÞ ¼ �âJe � e2k̂c

ð
G âJe d2R0; (15)

1

R
@RðRJeÞ ¼ �âJe � e2k̂c

ð
G âJe d2R0: (16)

The solution inside the inner region is sought after from the

following double asymptotic expansion resulting from the

balance of various terms

U ¼ U0 þ eU1 þ
1

e
e�ð

1
eÞU2 þ � � � ; (17)

Np ¼ Np;0 þ eNp;1 þ
1

e
e�ð

1
eÞNp;2 þ � � � ; (18)

Ne ¼ Ne;0 þ eNe;1 þ
1

e
e�ð

1
eÞNe;2 þ � � � : (19)

Keeping with the leading order and dropping the index 0 for

notation simplicity (whilst obviously consistently ignoring

the influence of further terms of the expansion in the follow-

ing) leads to the leading order inner problem.

1

R
@RðR@RUÞ ¼ 0; (20)

@RPp ¼ âðeRÞPe; (21)

@RPe ¼ �âef ðeRÞPe; (22)

where we have considered the (normalized) total fluxes

Pk ¼ 1
2p

Ð
CðRÞðJk � nÞRdh ¼ 6JkR, k � e; p.

C. Outer expansion

Let us now consider the outer scaling variable r̂ � 1.

In the outer region, the photoionization term can be devel-

oped into a classical multi-polar expansion, since the main

contribution of the convolution product comes from the

contribution of the inner region (r̂0 ¼ eR0). This non-local

term is expanded with the hierarchy of moments of the

electron flux inside the inner region: a mono-polar leading

order term associated with the zeroth moment of the elec-

tron flux, a bipolar correction associated with the first

moment, etc.ð
G âJe d2R0 ¼

ð
Gðr̂; eR0Þ âef Je

� �
R0

d2R0

¼ Gðr̂; 0Þ
ð

âef Je

� �
R0

d2R0

þerGðr̂; 0Þ �
ð

âef Je

� �
R0

R0d2R0 þ � � � :

In the special case of axi-symmetric solutions, the first order

OðeÞ dipole correction cancels. Using a similar asymptotic

expansion (17)–(19), in outer constitutive equations

(9)–(11), again dropping the index and keeping only the

leading-order set of equations, one finds

1

r̂
@r̂ ðr̂@r̂ ûÞ ¼ �Jðn̂p � dln̂eÞ; (23)

@r̂ p̂p ¼ 0; (24)

@r̂ p̂e ¼ �2pcr̂ k̂Gðr̂ ; 0Þ
ð1

a=e
âef ðeR0ÞPedR0: (25)

The solution for the electron flux p̂e can easily be

obtained from integrating (25), given the radiation kernel

Gðr̂; 0Þ. Following Refs. 1 and 23, an asymptotic cylindrical

radiative kernel Gðr̂; 0Þ ¼ e�kr̂=2pr̂ produces the leading-

order electron flux

p̂e ¼ �ce�k̂ r̂

ð1
a=e

âðeR0ÞPedR0;

which provides an evanescent exponentially decaying sec-

ondary electron flux in the outer region with a typical decay-

ing length 1=k̂. Furthermore, both the photo-ionization

coefficient c and the mobility ratio between the electrons and

the positive charges are small (again, typically dl � 10�2

	 1), so that the back-coupling of photo-emitted induced

electrons into the electrical potential can be neglected. This

issue can be more formally re-casted into searching for a

solution given by a second regular asymptotic expansion in

the mobility ratio

û0 ¼ û00 þ dl ~u01 þ � � �
np;0 ¼ ~np;00 þ dl~np;01 þ � � �
ne;0 ¼ ~ne;00 þ dl~ne;01 þ � � � :

Keeping with the leading order, and again, for notation

simplicity, dropping the index leads to re-formulate

(23)–(25) into the leading order set of equation



@r̂ ðr̂@r̂ ûÞ ¼ �Jn̂p; (26)

@r̂ p̂p ¼ 0; (27)

which are, in fact, the classical “drift” region equations for

which the influence of the electron charges is neglected. This

set of equation can be solved analytically, but some constant

will remain undetermined, like the non-dimensional parame-

ter J. A complete solution can be obtained by matching the

outer and inner sets of solutions.

D. Matching conditions

The resolution of the inner and outer set of equations is

not especially difficult, but for the sake of conciseness, the

reader might refer to previous works.1,2,5,6,21 Whatever, at

this stage, the inner and outer solutions are not fully consis-

tent since they contain four undetermined constants: A, K1

and J for the potential and Pe1 for the electron, to be

defined in the coming section or in Ref. 1. This uncertainty

can be overcome by adjusting the inner and outer solutions

so that they match in the intermediate zone.

1. Matching for electrons

The inner solution for electrons’ total flux can be writ-

ten as

PeðRÞ ¼ Pe1e

Ð1
R

âef ðeR0ÞdR0
� �

:

In the outer region, the total flux of electrons can be writ-

ten as

p̂eðr̂Þ ¼ �ce�k̂ r̂

ð1
â=e

âef ðeR0ÞPedR0:

The matching condition limR!1Pe ¼ limr̂!0 p̂e leads to

Pe1 ¼ c
ð1

â=e
âef PedR0: (28)

The integral term can be expressed as the difference

between the inner and outer fluxes because, using (22),Ð
aef PedR ¼

Ð
�@RðPeÞdR ¼ Pe;a �Pe1. Using the inner

solution, we substitute Pe;a ¼ Pe1eð
Ð

aef dRÞ
, so that the

matching condition finally reads

Pe1 ¼ c Pe1e

Ð1
â=e

âef ðeR0ÞdR0
� �

�Pe1

� 	
;

which can be rearranged into a Townsend’s like onset

criterion

lnð1þ c�1Þ ¼
ð1

â=e
âef ðeR0ÞdR0: (29)

This is an implicit condition on the electric field that can be

solved numerically.10 The accurate prediction of the corona

onset and especially of the constant K ¼ lnð1þ c�1Þ is

still an ongoing issue.11,12 The criterion (29) is nonetheless

widely used and remains satisfying for most applications.

2. Matching for ions

The inner solution for ions can be written as

PpðRÞ ¼ �Pe1

ðR

â=e
âðR0Þe

Ð1
R0

â�ĝdR00
dR0;

while in the outer one, the definition of the ion flux
Ð

r̂¼1
p̂pdh

¼ 2p is given by

p̂p ¼ 1:

More precisely, without neglecting photoionization for ions

and negative ions, the outer solution should be

p̂p ¼ 1� p̂e � p̂n: (30)

But, as shown in the previous Sec. II C, the outer electron

flux p̂e is very small since it scales with c. The negative ion

flux is exactly zero because it is zero at the collector

(imposed boundary condition) and there is asymptotically no

electron attachment in the outer region. So, the matching

condition limR!1 Np ¼ limr̂!0 n̂p gives the value of the

incoming electron flux

Pe1 ¼ e

Ð1
â=e

âdR0 � 1�
ð1

â=e
ge
Ð 01

R
â�ĝdR00

" #�1

: (31)

3. Matching for potential

The matching condition for electric potential is more

technical than the previous ones. Integrating the Poisson

equation gives four constants: two in the inner region and

two in the outer. Two constants are determined by applying

the boundary conditions in R ¼ â=e and r̂ ¼ 1, while the

remaining two, J and K1, are provided by matching condi-

tions. Durbin1 applies intuitively conditions on the electric

flux r@ru and on the potential, which leads to an implicit

relationship between the space charge parameter J and the

surface electric field parameter A.ð1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ A2=r2

p
dr ¼ 1: (32)

Finding the relationship J ¼ f ðAÞ is tantamount to finding

the current-voltage law I ¼ f ðVÞ. Here, a more sophisticated,

although classical, intermediate variable matching (see

Hinch24) is applied. The derivation is summarized in the

Appendix. The matching condition is given by

1� A ln
1

â

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ A2

p
� Aþ A ln

2Affiffiffiffiffiffiffiffiffiffiffiffiffi
J þ A2
p

þ A

� �
; (33)

which provides an unambiguous and integrated expression,

with rigorous derivation. This implicit law f ðA; J; âÞ ¼ 0

gives the non-dimensional current J as a function of the non-

dimensional surface field A. Solving this equation and

extracting the dimensional variables will give the current-

voltage law, as shown in Sec. III.



III. RESULTS

The previous matching conditions are further analyzed.

The results of practical interest are derived such as the

current-voltage and the corona inception field as functions of

ionization coefficient and geometry.

A. Non-dimensional results

1. Onset criterion

In order to find an explicit analytical solution for the

matching condition, the effective ionization coefficient is

assumed to behave like a. Taking aef ¼ bef e
�Eief =E is quite

relevant at high electric fields, since a will dominate g, see

Sec. III C 1. From (20), the inner electric field is written as

E ¼ �@RU ¼ A=R with A to be determined. Injecting the

electric field in âef ðeRÞ ¼ bef Lee�eR=eef AÞ and integrating lead

to a condition similar to the one obtained by Durbin1

lnð1þ c�1Þ ¼ Ab=eef e
�â=ðeef AÞ (34)

but with eef ¼ ua=LEief . To obtain an explicit expression for

A, (34) is rearranged as

âb̂
lnð1þ c�1Þ ¼ â=ðeef AÞeâ=ðeef AÞ:

A is then expressed with the Lambert W function,35 see

Fig. 2,

W
âbef L

lnð1þ c�1Þ

!
¼ â

eef A
:

Since âbef L=lnð1þ c�1Þ > 0, the branch 0 of the

LambertW function must be used.

A ¼ â=eef W0

âbef L

lnð1þ c�1Þ

!" #�1

: (35)

In practice, A ¼ �â@r̂ ûjâ is linked to the surface voltage

gradient at the emitter. So, the non-dimensional condition

(35) sets the surface electric field as a function of physical

parameters â; bef L and c as well as the effective asymptotic

parameter eef . The practical consequences of this result are

further developed in Sec. III B 1.

2. Non-dimensional current

The matching condition (33) is still an implicit relation-

ship, which does not bring much advantages compared to the

previous analytical works1,5,25 or numerical methods. It can

be rearranged in two ways.

In the first way, notice that

V ¼ 1=Alnð1=âÞ ¼ ua=aEalnðL=aÞ

which is the ratio between the onset voltage and the applied

voltage and that

C ¼ J=A2 ¼ IL2=ð2plp�0a2E2
aÞ

is proportional to the current I, since Ea is independent of the

applied voltage, see Sec. III B 1. Rearranging the matching

condition, we obtain

V ¼ 1þ 1

lnð1=âÞ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 1
p

�ln 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 1
p� ��

� 2� lnð2Þð Þ�: (36)

This expression gives the reduced voltage V against the

reduced current C. Similar results were originally obtained

by Thompson and Thompson as explained by Jones,5 for

example. Their non-dimensional parameters are slightly dif-

ferent since they involve a corona radius as explained earlier,

but the analytical expressions are very similar. It matches

with the charge injection model such as Zheng et al.,12 as

shown in Appendix B.

The second way is less straightforward but more inter-

esting, since it allows to recover an explicit expression of J.

First, (36) is reorganized using notations Y ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 1
p

and K ¼ lnð1=âÞðV � 1Þ þ 2� lnð2Þ

K ¼ Y � lnðYÞ: (37)

Then, exponentiating and arranging lead to

eK ¼ 1

Y
eY ;

�e�K ¼ �Ye�Y :

The solution is given by the Lambert W function. Applying

the definition ofW gives �Y ¼ Wð�e�KÞ. Re-injecting C in

the expression finally leads to

C ¼ 1þW�1 �e�Kð Þ
� �2 � 1; (38)

or equivalently, using �e�K ¼ �2e�2 ð1=âÞV�1
and injecting

J and A

J

A2
¼ F �2e�2âV�1ð Þ; (39)

with F being given by

FðxÞ ¼ 1þW�1ðxÞ½ �2 � 1: (40)FIG. 2. The real branches of LambertW function.



More properties concerning this function W can be

found in Ref. 26, for example. Three remarks concern this

solution.

• For a particular value Alnð1=âÞ ¼ 1, the space charge

equals zero J ¼ 0. In dimensional variables, the condition

is written as aEalnðL=aÞ=ua ¼ 1 or ua ¼ aEalnðL=aÞ.
This corresponds to the charge free solution for electric

potential which holds only at the corona inception point.
• �e�K < 0 and WðxÞ has two real branches when

x 2 ½�1=e; 0½, see Fig. 2. Only the branchW�1 gives posi-

tive values of J. The branch 0 is also a solution, but pro-

vides negative values of J, which is not relevant to the

case considered here. Nevertheless, this further branch

might be of interest when considering dynamical solutions

associated with the stability of CD, for example.
• This equation admits a real solution, only if �e�K


 �1=e. The solution is complex otherwise. This condi-

tion writes 1
A 
 lnð2=âÞ � 1, which is a condition on the

voltage and the electric field at the emitting electrode in

dimensional variables
ua

aEa

 lnð2L=aÞ � 1. Once again,

obtaining negative values of J, below the inception condi-

tion, is not obvious to interpretation.

The corona inception point J¼ 0 is of particular interest.

Since the Taylor expansion of W is rather fastidious,26 soft-

ware Maple is used to compute the first five orders. The

expansion of J around the point A ¼ 1=lnð1=âÞ with X
¼ A� 1=lnð1=âÞ is then written as

J ¼ �4X þ 2 lnðâÞð2þ lnðâÞÞX2 þ 2

3
lnðâÞ4X3

þ 1

6
lnðâÞ5ð5 lnðâÞ þ 4ÞX4 þ 1

30
lnðâÞ6ð41 lnðâÞ2

þ 50 lnðâÞ þ 20ÞX5 þ OðX6Þ: (41)

The consecutive expansion orders are plotted in Fig. 3.

Increasing the order of expansion does not provide much

progress, since the high order terms strongly diverge far

from J¼ 0. It is interesting that J(A) can be linearly approxi-

mated with the universal slope �4. The validity range of the

linearized law, Fig. 4, decreases as â decreases. This is

because the second order term of the Taylor expansion scales

as lnðâÞ2. This has practical consequences concerning the

well-known Townsend law, as further discussed in Sec.

III B 2.

B. Dimensional laws

1. Onset electric field expression

Injecting the dimensional variables â ¼ a=L and A
¼ aEa=ua into (35) gives the inception voltage as a function

of the gas ionization properties and the emitter radius

Ea ¼ Eief W0

abef

lnð1þ c�1Þ

!" #�1

: (42)

It is quite interesting to note that, for the leading order solu-

tion considered here, the surface electric field Ea does not

depend on the applied voltage ua, but only on the gas proper-

ties and geometry. Equation (42) is similar to the well-

known Peek’s law, since it provides the value of the surface

electric field versus the emitter diameter. As a reminder,

Peek’s law is written as9

Ea ¼ 3:1� 106d 1þ 0:0308ffiffiffiffiffiffi
d a
p

� �
V=mð Þ; (43)

with a density correction factor d ¼ N=N0 and N0 ¼ 2:5
�1025 m�3 with the standard air density at 298 K and

1013.25 hPa. Since (42) relies on the electron matching

condition, similar to the classical onset criterion, it directly

involves the ionization coefficient. By fitting aef in air, see

Sec. III C 1, and we obtain the critical surface electric field.

The comparison, Fig. 5, shows that the matching condition

is very similar to Peek’s law for relatively large corona

wires (0:1mm < a < 1cm) with an agreement of less than

5%. This corresponds to the range covered by the experi-

mental data used by Peek9 to fit the well-known empirical

law (Fig. 5).

FIG. 3. Matching condition for J and A for â ¼ 10�2 and the first terms of

the Taylor expansion (41).

FIG. 4. Analytical solution J ¼ f ðAÞ for various emitter diameters:

â 2 ½10�6; 10�3; 10�2; 10�1�.



Outside this range, sensible variations are noticeable.

For big wires, typically a > 1 cm, the asymptotic solution

loses accuracy because it is a OðeÞ approximation. The

value of e at the corona inception point can be used to

assert the precision of the asymptotic approach as shown in

Fig. 6. Using (42) and uon ¼ aEalnðL=aÞ give the value

eon ¼ uon=ðLEiÞ

eon ¼ â=lnð1=âÞ W0

âLbef

lnð1þ c�1Þ

!" #�1

: (44)

But, the main reason probably relies in the approxima-

tion made concerning the functional form of aef at a low

electric field (see Sec. III C 1).

In the submillimeter range, the general criterion (29) is

more relevant than Peek’s law for two reasons. First,

Peek’s empirical law was calibrated with experiments for

relatively large emitters (see Fig. 5). Second, Peek’s law

can be theoretically retrieved by quadratically approximat-

ing the ionization coefficient aef ðEÞ.13 This approximation

fails for small wires because of the particular shape of aef

at a high electric field. This is confirmed by the Naidis

onset criterion11 for a < 10 lm. Since expression (35)

relies on a direct integration, it takes full consideration of

the non-linear behavior of aef, especially at high E/N.

Hence, (42) matches very well with the Naidis onset crite-

rion, despite the fact that a slightly different value of aef

was used. Besides, (42) can easily be applied to other gases

and various densities N, since b ¼ BN and Ei¼CN with B
and C gas constants. This statement must be tempered by

the fact that the value of c is not well established.

However, in air, Naidis11 provides the integral K ¼
lnð1þ c�1Þ for various thermodynamic conditions.

One limitation comes from the evaluation of the sec-

ondary electron emission coefficient c which is poorly

documented. This coefficient can encapsulate several phys-

ical processes such as wall ion-bombardment (for high

energy positive ions in negative coronas), photoelectric

emission at the surface of the collector, and photoioniza-

tion or detachment from negative ions.2,27 For large elec-

trode gaps L, we assume that photo-ionization is dominant.

For small gaps, of the same order as the absorption length

1=k, the secondary emission process could change because

the collector surface would be exposed to radiation and

strong ion flux. In such a case, c could depend on the col-

lector material work function. A typical value of k ¼ N
�8:02� 10�18 cm�1 (Ref. 27) gives a typical absorption

length around 1=k � 500 lm at atmospheric pressure in air

(N ¼ 2:5� 1019 cm�3). In more recent publications,11,22

multiple ionizing radiation is considered, with a typical

maximum absorption length of up to 1 mm.

2. I-V curve

Using (39), (13), and (A2) and rearranging the solution

give the dimensional current-voltage I–V law

I ¼ k u2
on

L2ln
L

a

� �2
F �2e�2 a

L

� � ua
uon
�1
!
; (45)

with k ¼ 2plp�g and uon ¼ aEalnðL=aÞ F given by (40).

This law gives the evolution of current per unit length I (A/

m) with the applied voltage ua. The condition of zero current

is still written as ua ¼ uon. It is interesting to compare this

law with the Townsend law19 I ¼ Cguaðua � uonÞ, where

Cg is an empirical constant depending on the gas and the

electrode geometry. For coaxial cylinders in the low current

approximation, Townsend’s law is written as4

FIG. 5. Reduced onset field versus emitter radius in air at different densities

d ¼ N=N0, with N0 ¼ 2:5� 1025. Comparison between Peek9 and Naidis11

and Eq. (42) with Eief ¼ CN and bef ¼ BN, B and C from Table I, and K
¼ lnð1þ c�1Þ given in Ref. 11.

FIG. 6. Asymptotic parameter eon versus emitter radius â ¼ a=L at the

corona inception point.



Cg ¼
8plp�0

L2 lnðL=aÞ : (46)

In some works,28 the prefactor is halved, but obviously,

using 4p instead of 8p does not match with experiments.

Figure 8 shows that the asymptotic expression (45) matches

Townsend’s law at low voltages. However, at high voltages,

the Townsend law underestimates current. This is not sur-

prising since it is a “low current” approximation. To our

knowledge, the “low current” condition is not well defined.

Here, we propose a simple justification of this approximation

and assess its validity range. Consider the first term of the

Taylor expansion (41). This linearized non-dimensional law

is written as J ¼ �4ðA� 1
lnð1=âÞÞ. By substituting J ¼ IL2

2p�0lpu2
a

and A ¼ a Ea

ua
, it is remarkable that the resulting approximated

current-voltage law exactly matches the Townsend

expression

I ¼
8plp�0

L2lnðL=aÞua ua � uonð Þ; (47)

with uon ¼ aEalnðL=aÞ. In other words, Townsend’s law is

the first order approximation of the asymptotic solution and

its validity range can be assessed with the second order term

in (41), which scales as lnða=LÞ2. The smaller the reduced

emitter radius, the weaker the Townsend approximation.

C. Comparison with experimental results

1. Estimation of effective ionization

In order to derive the analytical expression (35), it is

tempting to neglect the attachment g in the matching condi-

tion (29). In the following, it is shown that it is an acceptable

approximation for the calculation of Ea at very low density

and for small corona wires only. The matching condition

(29) is rewritten as

K ¼
ð1

a

adr 1� f ða;EaÞ½ �; (48)

with f ða;EaÞ ¼
Ð1

a gdr=
Ð1

a adr. f ða;EaÞ is a priori small

quantity because g	 a in a high reduced electric field. And,

the smaller the corona wire, the higher, the onset reduced

electric field En ¼ E=N. By changing the integration variable

to EnðrÞ ¼ aEna=r, and because it is in the inner region, f is

then written as a function of the surface electric field only

f Enað Þ ¼

ðEna

0

gðEnÞ=E2
ndEnðEna

0

aðEnÞ=E2
ndEn

: (49)

From the measured ionization and attachment coefficients, it

is now obvious that f will be small for large Ena. Now, writ-

ing this in non-dimensional variables (N̂ ¼ L3N), the asymp-

totic gives the scaling Êna ¼ A=ðN̂ âÞ � 1=ðN̂ âÞ. So, f can be

rewritten as f � dNagðEnaÞ with g � Oð1Þ an order one quan-

tity and

dNa ¼

ð1=N̂ â

0

gðÊnÞ=Ê
2
dÊnð1=N̂ â

0

âðÊnÞ=Ê
2

ndÊn

: (50)

This parameter is a measure of the dominance of a over g
in the inner region. It should be small when Na! 0, because

the ionization coefficient dominates the attachment in a high

electric field. In air, CO2 or pure N2 is in the limit Na¼ 0, it

is equal to d0 � 10�2, while for pure O2, the attachment is

larger and d0 � 0:1. Performing the asymptotic analysis by

injecting Êa ¼ Êa0 þ dNaÊa1 þ � � � into (48) gives

K ¼
ð1

â

âðÊa0Þdr̂ þ dNa

ð1
â

dâ
dE
jÊa0

Êa1dr̂ � gðÊa0Þ
� 	

þOðd2
NaÞ:

The leading order term is exactly condition (29) without

attachment. This simplified condition gives the parameter

Êa0, which is an approximation of the exact Êa with accu-

racy OðdNaÞ. In a nutshell, neglecting the attachment is rele-

vant if L2Na! 0, e.g., very small wires at low density

discharge. In practice, this is not often the case, in typical

corona experiments, dNa ’ 0:5 is not small enough.

As a consequence, we need to find a functional form for

the effective ionization. It is assumed that it takes the form

aef =N ¼ Bef e
�

Cef
E=N; (51)

with N being the gas number density. This formulation is

quite convenient because knowing Bef and Cef allows to easily

compute the value of aef for any gas density with the simple

conversion bef ¼ Bef � N and Eief ¼ Cef � N. The ratio E/N
is given in Townsend (Td) units with 1 Td ¼ 10�21V m2.

Even though other analytical forms exist in low or high elec-

tric fields,11,12,29 this form has the advantage to cover a wide

range of E/N and is justified by the fact that a dominates g.

The coefficients are obtained by linearly fitting the data

obtained with the Bolsigþ solver.30 The calculations were

run from the online cross-section databases.36 Figure 7 shows

that in the range 150 and 700 Td, the effective ionization

coefficient is well described by an equation similar to (51).

This approximation and the chosen fitting range are satisfying

for the experiment presented in Table II. In practice, even

when the electric field is higher than 700 Td, it remains a

good approximation. From (42), we can see that the correct

evaluation of the constant Eief is most critical.

2. Experimental current-voltage curves

The cylindrical symmetry simplifies the mathematical

resolution, but in the experimental point of view, it is quite

sensitive to emitter centering and makes the optical access

difficult. Hence, most corona experiments focus on point-to-

plane, wire-to-plate or parallel wire-to-cylinder geometries.

Some studies did, however, use the coaxial geometry to char-

acterize the corona discharge since theoretical implicit laws

are available.1,2,5,19,21 These theoretical laws are used to



recover effective parameters, such as mobility or onset elec-

tric field. Given the complex corona ion chemistry, making

mobility predictions is uncertain. Indeed, lp depends on the

gas composition, humidity, and more generally on vapor

contaminant.31–33 That is why, it is often retrieved by fitting

experimental current-voltage curves34 with Townsend’s

expression (29). While being rather simple, this method

tends to overestimate the mobility value.3 A more advanced

method5 relies on implicit laws with the concept of the ioni-

zation radius, but then the fitted mobility depends on the cho-

sen radius definition.

In the following, expression (45) is compared to experi-

mental and numerical results. Since the effective ionization

coefficient is relatively well known for a given gas, see Sec.

III C 1, and the only adjustable parameters are l and

K ¼ lnð1þ c�1Þ. The mobility determines the “slope,” while

the secondary efficiency controls the inception voltage uon.

The particular case of corona discharge in air has already been

extensively studied. In a recent investigation, Zheng et al.12

numerically solved the three species corona model, which they

call it the “general fluid model,” for cylindrical axisymmetric

electrodes. For the positive corona, they find that the mobility

lp ¼ 1:9 cm2 V�1 s�1 and the surface electric field Ea

¼ 65:478 kV/cm are in excellent agreement with experiment.

Now, in order to assess the validity of the analytical

solution, the previous parameters were injected into Eq. (45).

The electric field prescribed by Zheng corresponds to

an inception voltage uon ¼ 22:878 kV. The comparison

between Zheng’s experimental data (and so the numerical

solution of the model) is shown in Fig. 8 and shows excellent

agreement. Furthermore, this value of the mobility is close to

the precise ion mobility measurement made by Stearn3 in a

positive DC corona lp ¼ 1:8 cm2 V�1 s�1. The small differ-

ence is very probably due to different temperature and pres-

sure conditions between Zheng and Stearns setups. Fitting

the values of Zheng et al.12 gives l ¼ 1:86 cm2 V�1 s�1.

For the experiments in pure oxygen gas, shown in Fig.

9, performed by Yanallah et al.,6 lp and c are obtained by fit-

ting to experimental data. The mobility is much larger than

in air, probably because there is less ion clustering in a high

purity gas resulting in small ions such as Oþ2 . The corona

inception field is higher in pure oxygen, resulting in a lower

secondary ionization efficiency. The comparison of those

results would be fully relevant to pressure and temperature

corrections, but the experimental conditions are not always

given in the published works.

Horvath et al.34 investigated the influence of a small

amount of CH4 in N2 gas, shown as Fig. 10. Once again, the

theoretical law can be adjusted to the experimental data. The

presence of a small amount of CH4 results in a smaller

mobility value and a smaller secondary coefficient. The

lower mobility is consistent with the larger ions generated by

ionized CH4 molecules. The theoretical curves very favor-

ably compare with experiments, even if a small discrepancy

is observed for pure N2 gas at high voltages.

The experimental parameters and fitted values are gathered

in Table II. They favorably compare with experimental mobil-

ity values.37 In those experiments, the parameter â ¼ a=L is

rather small, between 0.005 and 0.008, which illustrates the low

accuracy of Townsend’s law far from the inception point.

IV. DISCUSSION

A. Practical example

The previous simplified model of the corona discharge

allows to quickly investigate the influence of each parameter.

In planar gas discharge, a figure of merit is Paschen’s law.

This law governs the breakdown voltage as a function of the

parameter N� d (or classically P� d), for parallel plates sep-

arated by a distance d at gas number density N (or classically

TABLE II. Experimental conditions and fitted values of c and lp. When experimental pressure and temperature are not given, standard conditions are used:

P0 ¼ 1013 hPa and T0 ¼ 293 K.

Air12 O2 (Ref. 6) N2 (Ref. 34) 98N2 þ 2CH4 (Ref. 34)

P0 (Pa) 1010� 102 … … …

T0 (K) 298 … … …

Ei (V m�1) 2:09� 107 1:99� 107 2:12� 107 2:16� 107

b (m�1) 7:20� 105 1:15� 106 6:35� 105 7:26� 105

L (m) 1:03� 10�1 1:10� 10�2 8:00� 10�3 8:00� 10�3

a (m) 7:00� 10�4 6:25� 10�5 6:25� 10�5 6:25� 10�5

c (-) 2� 10�3 1� 10�6 5� 10�4 4� 10�5

lp (m2 V�1 s�1) 1:86� 10�4 2:47� 10�4 2:25� 10�4 1:56� 10�4

FIG. 7. Linear fit of lnðaef ) in synthetic air 80N2 þ 20O2.



pressure PÞ. Paschen’s law directly derived from

Townsend’s criterion applies to planar electrodes28

Vb;plate ¼
C� Nd

lnðB� Nd=lnð1þ c�1ÞÞ ; (52)

with Vb;plate being the voltage at which the Townsend break-

down criterion is fulfilled. The onset of corona discharge can

be seen as a local gas breakdown, or partial breakdown, nearby

the emitter. Injecting the condition Vb;cyl ¼ EaalnðL=aÞ into

expression (42) gives the corona onset law for cylindrical

electrodes

Vb;cyl

lnðL=aÞ ¼
C� Na

W0ðB� Na=lnð1þ c�1ÞÞ : (53)

The analogy with the classical Paschen’s law is striking. The

parameter Nd is changed to Na, the logarithm by the

Lambert W function and a geometric correction factor

lnðL=aÞ appears. But, the corona onset curve in cylindrical

geometry shown in Fig. 11 fundamentally differs from the

planar Paschen curve. Indeed, for a corona discharge in air,

the secondary electron emission process depends on the

quenching of emitting states of nitrogen molecules, which

breaks the dependency on Na.11 In other words,
Vb;cyl

lnðL=aÞ
depends on a and N separately.

No minimum is apparently visible for the corrected

breakdown voltage Vb;cyl=lnðL=aÞ. But, there is a minimum

for Vb;cyl as a decreases. The radius for the minimum break-

down voltage amin can be obtained by differentiating (53)

with respect to a and looking for zero. In practice, at atmo-

spheric pressure, amin is around a few microns. When Na is

very small, the expression can be approximated by lineariz-

ing the Lambert functionW0ðxÞ � x, when x! 0

Vb;cyl

lnðL=aÞ �
C

B
lnð1þ c�1Þ: (54)

The condition to reach this regime is written as Na
	 lnð1þ c�1Þ=B � 1020, which corresponds at atmospheric

FIG. 10. Current voltage characteristic in pure N2 gas and the N2-CH4 (98:2)

mixture from Horvath et al.34
FIG. 11. Corona onset curve for cylindrical Eq. (53) and spherical (29) elec-

trodes in air at N=N0 ¼ 1.

FIG. 8. Current voltage characteristic in ambient air from Zheng.12

FIG. 9. Current voltage characteristic in pure oxygen from Yanallah.6



pressure in air to an emitter smaller than 5 lm. Figure 11

illustrates this asymptote and the position of a typical experi-

mental corona realized at atmospheric pressure. In practice,

this regime could concern miniaturized corona devices, such

as ionic wind cooling devices.

It is tempting to extrapolate the asymptotic approach to

the spherical case. But, despite our efforts, no explicit analyt-

ical solution was found for the matching conditions. In Fig.

11, we solve numerically the onset criterion (29) with an

inner voltage gradient of type @RU ¼ A=R2.

Another parametric use of the asymptotic model is illus-

trated in Fig. 12. It shows the evolution of current, voltage

and power consumption with gas density for a small corona

wire. The input parameters are L¼ 10 cm and a¼ 10 lm,

and the mobility is assumed to be inversely proportional to

air density lp ¼ lp0N0=N. The applied voltage is assumed to

depend on the inception voltage, so that the voltage ratio is

constant ua ¼ 1:5uon. But power consumption and net

corona current both exhibit minima at different locations.

The two previous applicative examples of this analytical

model illustrate its interest when exploring the parameter

space with the two matching equations (42) and (45). Some

limitations of the model can be anticipated:

1. The validity range of shape (51) for aef. In the previous

example at low gas density N=N0 ¼ 0:1, the reduced elec-

tric field at the wire surface was E=CN � 6, far above typ-

ical values for CD under standard conditions.

2. The asymptotic parameter e ¼ ua=LEi should remain small.

3. In practice, the secondary ionization process K
¼ lnð1þ c�1Þ is mainly documented in air, but not in

other gases.

V. CONCLUSION

We revisit the theoretical analysis of the positive DC

corona using asymptotic matching without much noticeable

changes to Ref. 1, but to get some clarification in the

derivation, including attachment, and much more impor-

tantly, explicit analytical solutions for the matching condi-

tions. These dimensionless formulations are then

transformed into the dimensional onset electric field (42),

expressed as explicit functions of the gas ionization proper-

ties and electrode size and dimensional current (45),

expressed as an explicit function of mobility, onset voltage

and electrode size. Both results are independent of each other

and can be used separately. This is, to our knowledge, the

first time that an explicit analytical expression of the current

voltage law is derived.

First, concerning the onset criterion:

• Despite the simplified form of aef, the onset field matches

well with the more sophisticated onset criterion in air.
• The analytical onset voltage for cylindrical electrodes is

recovered. A surprising analogy is found with Paschen’s

law for breakdown between plane electrodes.

Then, concerning the “shape” of the current voltage

curve:

• The analytical model successfully predicts corona cur-

rent in air. It perfectly matches the numerical solution

performed by Zheng for the very same equations and

experiments.
• The low current approximation of the non-dimensional

analytical solution is linear with a universal slope of �4

and is written as J ¼ �4ðAþ 1=lnðâÞÞ. In dimensional

variables, it exactly matches Towsend’s expression.
• The validity range of Townsend’s law is assessed depend-

ing on the parameter lnða=LÞ2. Townsend’s approximation

loses accuracy for small emitting corona electrodes.

This analytical approach can easily be used to determine

the onset voltage and ion mobility. It also provides a good

reference for testing new numerical algorithms dedicated to

corona current predictions with much better accuracy than

Townsend’s law. The analytical solution is helpful for

exploring new corona applications, especially with small

corona wires. Finally, we would like to mention that, regard-

ing the (rather complete) present state-of-the-art of corona

discharge modeling, the advantage of the presented asymp-

totic approach over previously cited (more phenomenologi-

cal) models might not seem obvious. From the practical view

point, the presented theoretical development is mainly sup-

porting previous approaches rather than challenging them,

although it can be applied to any thermodynamic conditions

and gases. However, we would like to stress that the general-

ity of the presented theoretical framework encompasses the

hereby studied example. It has potential to model the com-

plex coupling between corona discharges and drift regions in

much more complex configurations. This is the perspective

of future research efforts.
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FIG. 12. Current, voltage and power normalized with their value at N0

¼ 2:5� 1025 m�3 (lines, left axis) and the asymptotic parameter e ¼ ua=
LEi (crosses, right axis).



APPENDIX A: DETAILS OF THE ASYMPTOTIC
MATCHING FOR THE ELECTRICAL POTENTIAL

The matching on potential is performed with an interme-

diate variable g. It is a three-step procedure:

(i) Expressing the inner and outer solutions in an inter-

mediate zone g ¼ r̂=ej ¼ Re1�j with 0 < j < 1.

(ii) Expanding UðgÞ and ûðgÞ in the limit e! 0, which

corresponds to R!1 and r̂ ! 0.

(iii) Comparing the inner and outer expansions term by

term. The equalization of each term gives a matching

condition.

(i) The inner solution is written as

UðRÞ ¼ 1� Aln
R

â=e

� �
: (A1)

The inner boundary condition Ua ¼ 1 has already been

applied and A is a constant to determine by the electron

matching condition, see (35). A can be interpreted as the

non-dimensional surface electric field

A ¼ �â=eð@RUÞja ¼ �âð@r̂ ûÞja ¼
aEa

ua

: (A2)

The outer solution is obtained in two steps. First, integration

of (23) with p̂p ¼ n̂pr̂@r̂ û ¼ 1 gives the electric field flux

ðr̂@r̂ ûÞ2 ¼ Jr̂2 þ K1: (A3)

Integrating again gives the electric potential in the outer

region

ûðr̂Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jr̂2 þ K1

p
þ

ffiffiffiffiffiffi
K1

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jr̂2 þ K1

p
þ

ffiffiffiffiffiffi
K1

pffiffiffiffiffiffiffi
Jr̂2

p
!
þ K2:

The constant K2 can be determined by the outer boundary

condition ûð1Þ ¼ 0

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
�

ffiffiffiffiffiffi
K1

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
þ

ffiffiffiffiffiffi
K1

pffiffiffi
J
p

!
: (A4)

The outer solution is written as

ûðr̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jr̂2 þ K1

q

þ
ffiffiffiffiffiffi
K1

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jr̂2 þ K1

p
þ

ffiffiffiffiffiffi
K1

p

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
þ

ffiffiffiffiffiffi
K1

p� �
!
: (A5)

Now, rewriting the previous expressions with the intermedi-

ate variable g ¼ r̂=ej ¼ Re1�j with 0 < j < 1 leads to

uðgÞ ¼ 1� Aln
gej

a

� �
þ eu1 þ � � �

UðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Je2jg2 þ K1

p
þ

ffiffiffiffiffiffi
K1

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Je2jg2 þ K1

p
þ

ffiffiffiffiffiffi
K1

p

ejg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
þ

ffiffiffiffiffiffi
K1

p� �
!
þ eU1 þ � � � :

(ii) The previous expression is expended in the limit

e! 0 at fixed g. To perform the matching, it is more

convenient to reorganize the terms from the dominant

one in lnðeÞ to the weaker one e0

U �
e!0
�

ffiffiffiffiffiffi
K1

p
jlnðeÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
�

ffiffiffiffiffiffi
K1

p

þ
ffiffiffiffiffiffi
K1

p
ln

2
ffiffiffiffiffiffi
K1

p

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ K1

p
þ

ffiffiffiffiffiffi
K1

p� �
 !

þ OðelneÞu �
e!0
�Ajln eð Þ

þ1� Aln
g
a

� �
þ OðelneÞ:

The OðelneÞ term comes from the first order terms û1 and Û1

which are not further detailed here because they are not needed

for the leading order solution. (iii) The two series have to

match term by term. Matching dominant terms in OðlneÞ givesffiffiffiffiffiffi
K1

p
¼ A: (A6)

Then, matching the terms in e0, while injecting (A6) and

simplifying gives

1� Aln
1

â

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ A2

p
� Aþ A ln

2Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
J þ A2
p

þ A

� �
:

APPENDIX B: COMPARISON WITH THE CHARGE
INJECTION MODEL OF ZHENG ET AL.

Usually, the relation between current and voltage is

retrieved with a charge injection model such as the “ion flow

model” described by Zheng et al.12 In the following, the pre-

cise comparison with the hereby developed asymptotic

model is discussed. In the charge injection model, the elec-

tric field can be analytically expressed as

EðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

2p�0l
1� a2

r2

� �
þ aEa

r

� �2
s

(B1)

and the current I is then given by the condition on electric

potential

uðaÞ � uðLÞ ¼
ðL

a

EðrÞdr: (B2)

The non-dimensional expression of condition (B2)

1 ¼
ð1

â

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 1� â2

r̂2

� �
þ A2

r̂2

s
dr (B3)

or equivalently

V ¼ 1

lnð1=âÞ

ð1

â

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 1� â2

r̂2

� �
þ 1

r̂2

s
dr (B4)

is similar to the matching condition of Durbin and Turyn,

but with an additional term Jâ2=r̂2. This additional term,

which is small since it scales as â2, is the consequence of the



charge injection directly at the surface of the emitter, while

for the asymptotic approach, the “injection” occurs at the

edge (intermediate zone) of the ionization layer. Both

approaches give similar results for small values of â, typi-

cally for most corona applications. Indeed, performing the

integration of Eq. (B4) leads to

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2C

p
þ 1

lnð1=âÞ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 1� â2C

p"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2C

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2C

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� â2C
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 1� â2C

p
 !#

; (B5)

which exactly match the asymptotic result given by Eq. (36),

for â ! 0. The reduced current voltage curves are compared

in Fig. 13. No difference is visible for reasonably small

corona wires â�0:01.
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