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Abstract. Quantum fluids of light merge many-body physics and nonlinear optics, revealing quan-
tum hydrodynamic features of light when it propagates in a nonlinear media. One of the most
outstanding evidence of light behaving as an interacting fluid is its ability to carry itself as a super-
fluid. Here, we report a direct experimental detection of the transition to superfluidity in the flow
of a fluid of light past an obstacle in a bulk nonlinear crystal. In this cavityless all-optical system,
we extract a direct optical analog of the drag force exerted by the fluid of light and measure the
associated displacement of the obstacle. Both quantities drop to zero in the superfluid regime char-
acterized by a suppression of long-range radiation from the obstacle. The experimental capability to
shape both the flow and the potential landscape paves the way for simulation of quantum transport
in complex systems.

Introduction. Superfluidity was originally discovered
in 1938 [1] when a 4He fluid cooled below a critical
temperature flowed in a nonclassical way along a cap-
illary [2]. This was the trigger for the development
of many experiments genuinely realized with quantum
matter, as with 3He fluids [3] or ultracold atomic va-
pors [4, 5]. The superfluid behavior of mixed light-matter
cavity gases of exciton-polaritons was also extensively
studied [6, 7], leading to the emergent field of “quan-
tum fluids of light” [8]. Before being theoretically de-
veloped for cavity lasers [9, 10], the idea of a super-
fluid motion of light originates from pioneering studies
in cavityless all-optical configurations [11] in which the
hydrodynamic nucleation of quantized vortices past an
obstacle when a laser beam propagates in a bulk nonlin-
ear medium was investigated [12]. In such a cavityless
geometry, the paraxial propagation of a monochromatic
optical field in a nonlinear medium may be mapped onto
a two-dimensional Gross-Pitaevskii-type evolution of a
quantum fluid of interacting photons in the plane trans-
verse to the propagation [4]. The intensity, the gradient
of the phase and the propagation constant of the op-
tical field assume respectively the roles of the density,
the velocity and the mass of the quantum fluid. The
photon-photon interactions are mediated by the optical
nonlinearity. It took almost twenty years for this idea to
spring up again [13–16], driven by the emergence of ad-
vanced laser-beam-shaping technologies allowing to pre-
cisely tailor both the shape of the flow and the potential
landscape.

The ways of tracking light superfluidity are manifold.
Recently, superfluid hydrodynamics of a fluid of light has
been studied in a nonlocal nonlinear liquid through the
measurement of the dispersion relation of its elementary
excitations [17] and the detection of a vortex nucleation
in the wake of an obstacle [18]. The stimulated emission
of dispersive shock waves in nonlinear optics was also

studied in the context of light superfluidity [13]. How-
ever, one of the most striking manifestations of superflu-
idity — which is the ability of a fluid to move without
friction [19] — has never been directly observed in a cav-
ityless nonlinear-optics platform. A direct consequence
of this feature is the absence of long-range radiation in a
slow fluid flow past a localized obstacle. In optical terms,
this corresponds to the absence of light diffraction from
a local modification of the underlying refractive index in
the plane transverse to the propagation. On the contrary,
in the “frictional”, nonsuperfluid regime, light becomes
sensitive to such an index modification and diffracts while
hitting it.

Here, we report a direct observation of a superfluid
regime characterized by the absence of long-range radi-
ation from the obstacle. This regime is usually associ-
ated to the cancellation of the drag force experienced by
the obstacle, as studied for 4He [20], ultracold atomic
gases [21–25], or cavity exciton-polaritons [26–29]. In
our cavityless all-optical system, we extract on the one
hand a quantity corresponding to the optical analog of
this force and measure on the other hand the associated
obstacle displacement. For the first time, at least within
the framework of fluids of light, we observe that this dis-
placement is nonzero in the nonsuperfluid case and tends
to vanish while reaching the superfluid regime.

RESULTS.

Hydrodynamics of light. We make use of a biased
photorefractive crystal which is, thanks to its controllable
nonlinear optical response, convenient for probing the hy-
drodynamic behavior of light [13, 30–32]. As sketched in
Fig. 1a and detailed in Fig. 1c, a local drop of the optical
index is photo-induced by a narrow beam in the crys-
tal and creates the obstacle. Simultaneously, a second,
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larger monochromatic beam is sent into the crystal and
creates the fluid of light. The propagation of the fluid-
of-light beam in the paraxial approximation is ruled by
a two-dimensional Gross-Pitaevskii-type equation (also
known as a nonlinear Schrödinger-type equation):

i∂zEf = − 1

2nekf
∇2Ef − kf∆n(Iob)Ef − kf∆n(If)Ef (1)

The propagation coordinate z plays the role of time. The
transverse-plane coordinates r = (x, y) span the two-
dimensional space in which the fluid of light evolves. The
propagation constant ne kf = ne × 2π/λf of the fluid-of-
light beam propagating in the crystal of refractive in-
dex ne is equivalent to a mass; the associated Lapla-
cian term describes light diffraction in the transverse
plane. The density of the fluid is given by the inten-
sity If ∝ |Ef |2. Its velocity corresponds to the gradi-
ent of the phase of the optical field. At the input, it
is simply given by v ' θin/ne, with θin the angle be-
tween the fluid-of-light beam and the z axis (see Sup-
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FIG. 1. Realization of a fluid of light in a propagating
geometry and nonlinear response of the bulk crystal.
(a) Sketch of the fluid of light (red beam) flowing past an
obstacle (green beam). The input velocity v of the fluid of
light is proportional to the input angle θin. The sound velocity
cs depends on the intensity If of the red beam. (b) Blue curve.
Calculated optical-index variation ∆n with respect to a laser
intensity I for the nonlinear photorefractive response of the
medium. Red dashed curve. Corresponding sound velocity
cs. (c) Experimental setup. The green beam is shaped by the
spatial light modulator (SLM) to create a z-invariant optical
defect acting as a localized obstacle in the transverse plane.
The red beam is a large gaussian beam and creates the fluid
of light. If is controlled by a half-waveplate (HWP) and a
polarizer (P). θin is tuned by rotating a mirror (M) imaged at
the input of the crystal via a telescope. Both are propagating
simultaneously through a biased SBN photorefractive crystal
and imaged on a sCMOS camera. The white light controls
the saturation intensity of the crystal.

plementary Note 1 for more details). The local refrac-
tive index depletion ∆n[Iob(r)] < 0 is induced by the
obstacle beam of intensity Iob(r). The self-defocusing
nonlinear contribution ∆n(If) < 0 to the total refractive
index provides repulsive photon-photon interactions and
ensures robustness against modulational instabilities [33].
From the latter, we define an analog healing length ξ =
[ne kf × kf |∆n(If)|]−1/2, which corresponds to the small-
est length scale for intensity modulations, and an ana-
log sound velocity cs = (ne kf × ξ)−1 = [|∆n(If)|/ne]1/2
for the fluid of light [4, 16] (see Supplementary Note 1).
The photorefractive nonlinear response of the material,
∆n(I), is plotted in blue in Fig. 1b as a function of the
laser intensity I (see the Methods section for details).
In the same figure, the red dashed curve represents the
speed of sound cs(I).

When the obstacle is infinitely weakly perturbing, Lan-
dau’s criterion for superfluidity [19] applies and the so-
called Mach number v/cs mediates the transition around
v/cs = 1 from a nonsuperfluid regime at large v/cs to a
superfluid regime at low v/cs. Generally this condition is
not fulfilled and the actual critical velocity is lower than
the sound velocity cs. [4, 34]. This is the case in the
present work for two main reasons. First, we consider a
weakly but finite perturbing obstacle. It means a small
variation of the refractive index ∆n [Iob(r)] = −2.2×10−4

and a radius of 6 µm comparable to ξ (see Methods and
Supplementary Note 2). Note however that the pertur-
bation is weak enough for the transition not to be blurred
by the emission of nonlinear excitations like vortices or
solitons. Second, remaining within Landau’s picture, the
speed of sound is here defined for If measured at its maxi-
mum value, at z = 0, whereas the latter naturally suffers
from linear absorption and self-defocusing along the z
axis.

Probing the transition to superfluidity. The ratio
v/cs is controlled in the experiment both by the inci-
dence angle θin and the input intensity If of the fluid-
of-light beam. Figure 2 presents typical experimental
results for the spatial distribution of the light intensity
observed at the output of the crystal for various input
conditions. Figure 2a displays the output spatial dis-
tributions of intensity for different fluid velocities v at
a fixed speed of sound, cs = 3.2 × 10−3. This allows
to vary v/cs from 0 to 3.1. As v increases, diffraction
appears in the transverse plane, and progressively man-
ifests as a characteristic cone of fringes upstream from
the obstacle [14, 16, 35]. Another way to probe the tran-
sition is to fix the transverse velocity v and to vary the
sound velocity cs by changing the intensity of the fluid-
of-light beam. Although the two ways of varying v/cs
are not equivalent, as we shall discuss later, the results
shown in Fig. 2b are similar with the interference pattern
becoming more and more pronounced as v/cs increases.
Figure 2c represents the intensity distribution at the out-
put of the crystal for v/cs = 0.4. Long-range radiation
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FIG. 2. Spatial distribution of the output intensity of the fluid of light for various input conditions. The fluid of
light flows from left to right. The white crosses at the center of the images indicate the position of the obstacle. Each image
is 330 × 330 µm2. (a) At a fixed input intensity If , the input angle θin of the beam creating the fluid of light is tuned to vary
the Mach number v/cs from 0 to 3.1. (b) Similarly, at a fixed input angle θin, If is progressively decreased to change v/cs from
0.9 to 2.0. (c) For large If , the fluid of light is clearly in the superfluid regime at v/cs = 0.4. The remaining lack of uniformity
upstream from the obstacle is attributed to propagation losses due to linear absorption.

upstream from the obstacle is no longer present in this
case, indicating a superfluid motion of light. The lack of
uniformity of the intensity upstream from the obstacle is
due to the intrinsic linear absorption of the material [29].

Drag-force and obstacle displacement. In the su-
personic regime, the intensity modulation of the fluid of
light flowing around the obstacle induces a local optical-
index modification of the material. This modification
influences the propagation of the beam responsible for
the obstacle, for which a transverse displacement is ex-
pected. On the contrary, in the superfluid regime, the
absence of long-range intensity perturbations implies no
local variation of the optical index and then one does not
await for any displacement of the obstacle beam.

As theoretically investigated in [36] for a material ob-
stacle (here, we rather consider an all-optical obstacle),
the local intensity difference for the fluid of light between
the front (I+) and the back (I−) of the obstacle, I+−I−,
is proportional to the dielectric force experienced by the
obstacle. This force turns out to be closely analogous
to the drag force that an atomic Bose-Einstein conden-
sate exerts onto some obstacle. Figures 3a-e depict the
variation of I+− I−, measured at the output of the crys-
tal, as a function of v/cs for various initial conditions.
As illustrated in the inset of Fig. 3e, both intensities are
integrated over a typical distance of the order of ξ sur-
rounding the obstacle. For all intensities, we observe a
rather smooth, but net transition for v slightly smaller
than cs. The increasing tendency for low Mach num-
bers is associated to linear absorption, as discussed in

the context of cavity quantum fluids of light [26, 27, 29].
The well-known decreasing tendency at large Mach num-
bers is also observed. Indeed, the obstacle can always
be treated as a perturbation at large velocities and the
associated drag force resultingly decreases [37]. As the
intensities increase, one can see that the local intensity
difference sticks to zero for non-zero values of v/cs, as
predicted for the drag fore in a superfluid regime. More-
over, Fig. 3a to Fig. 3e show that the curves with differ-
ent intensities If , although renormalized by the respec-
tive sound velocity cs, do not fall on a single universal
curve. This is due to the fact that changing the inten-
sity also affects crucial quantities like the healing length
ξ and the relative strength of the obstacle with respect to
the nonlinear term, ∆n(Iob)/∆n(If). While the drop of
this force is among the main signatures of superfluidity
in material fluids, so far this is the first experiment on
fluids of light investigating it.

To go one step further, we probe the corresponding
transverse displacement of the obstacle, independently on
the measurement of I+−I−. By assuming that the trans-
verse component of the fluid-of-light beam is non-zero
only along the x axis, we denote by 〈x〉 =

∫
x|Eob|2 dx

the position of the centroid of the obstacle beam. Using
an optical equivalent of the Ehrenfest relations, one can
derive the following equation of motion (see Supplemen-
tary Note 3 for full derivation):

ne ∂zz〈x〉 = ∂x[∆n(If)]. (2)

This means that the all-optical obstacle is sensitive to
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FIG. 3. Optical analog of the drag force exerted by the fluid and associated displacement of the obstacle. (a-e)
Local intensity difference I+ − I− extracted from the experimental images of the intensity of the fluid-of-light beam measured
at the crystal’s output for various input conditions (If ranging from 44 (a) to 349 (e) mW.cm−2 and v/cs ranging from -0.41
to 4.10). Inset of (e): the original image is cropped around the optical defect and integrated over two regions, downstream
(I−) and upstream (I+). The typical integration area is of the order of ξ. The grey dotted line corresponds to v/cs = 0. (f-j)
Measurement of the transverse displacement of the obstacle induced by the local modulation of the intensity of the fluid of light
for the same input conditions as for figures (a) to (g). Grey boxes define the typical uncertainty in the measured quantities,
the white points in (f) corresponding to the displacement along the y axis for If = 44 mW.cm−2, which is expected to be zero.

the surrounding refractive index potential that mainly
results from the spatial distribution of intensity of the
beam creating the fluid of light. It thus might move of
a distance d = 〈x〉 − x0 from its initial position x0 in
the transverse plane. The measurement of d for various
conditions in the case of an obstacle evolving in a fluid
of light at rest allows to validate such an experimental
approach and to extract experimental parameters as Isat
and ∆nmax (see Methods and Supplementary Note 3).

Figures 3f-j show the transverse displacement mea-
sured in a moving fluid of light varying the Mach number
v/cs for different initial conditions. To take into account
the gaussian shape of If , we subtract, for each data point,
the displacement measured when the influence of the ob-
stacle on the fluid of light is negligible (i.e. very low Iob),
as illustrated in Supplementary Note 3. The white points
in Fig.3f correspond to the displacement along the y axis
and is expected to be zero. The grey boxes thus define
the typical uncertainty in the measured quantities. The
fluctuation are attributed to the inherent imperfections
of the fluid-of-light beam. We observe that the trans-
verse displacement of the obstacle behaves very similarly
to the intensity difference I+− I− displayed in Fig. 3a-e.
That is, an increasing displacement from almost zero in
the deeply subsonic regime to maximum signal, and then
a decreasing tendency in the supersonic regime. We also
measured an opposite transverse displacement for nega-
tive v/cs. Note that in this case, due to cavity effects,
large interference patterns blurred the signal and did not
allow to perform quantitative analysis (see Supplemen-
tary Note 4). The fact that the displacement is not purely

zero in the superfluid regime is likely due to the dis-
placement acquired during the non-stationary regime at
early stage of the propagation (see Supplementary Note 5
for qualitative discussion supported by numerical simu-
lations). This is, to the best of our knowledge, the first
observation of the displacement of an all-optical obstacle
in a fluid of light.

DISCUSSION

We reported a direct experimental observation of the
transition from a “frictional” to a superfluid regime in
a cavityless all-optical propagating geometry. We per-
formed a quantitative study by extracting an optical
equivalent of the drag force that the fluid of light ex-
erts on the obstacle. This result is in very good agree-
ment with an independent measurement that consists in
studying the transverse displacement of the obstacle sur-
rounded by the fluid of light. We restricted the present
study to the case of a weakly perturbing obstacle but our
experimental setup allows to reach the turbulent regime
associated to vortex generation through the induction of
a greater optical-index depletion. On the other hand, a
different shaping of the beam creating the obstacle will
allow to generate any kind of optical potential and to
extend the study to imaging through disordered environ-
ments.
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METHODS

Experimental setup. The nonlinear medium consists
in a 5× 5× 10 mm3 strontium barium niobate (SBN:61)
photorefractive crystal additionally doped with cerium
(0.01%) to enhance its photoconductivity [38] albeit it
induces linear absorption (3.2 dB/cm). The basic mech-
anism of the photorefractive effect remains in the pho-
togeneration and displacement of mobile charge carri-
ers driven by an external electric field E0. The in-
duced permanent space-charge electric field thus implies
a modulation of the refractive index of the crystal [39],
∆n(I, r) = −0.5n3er33E0/ [1 + I(r)/Isat], where ne is the
optical refractive index and r33 the electro-optic coeffi-
cient of the material along the extraordinary axis, I(r) is
the intensity of the optical beam in the transverse plane
r(x, y), and Isat is the saturation intensity which can be
adjusted with a white light illumination of the crystal.
The blue curve in Fig. 1b shows the saturable nonlinear
response of the material ∆n(I) against the laser intensity
I. The red dashed curve represents the sound velocity
cs(I) for the saturable nonlinear response of the material
∆n(I). The maximum value of the optical index varia-
tion is theoretically ∆nmax = −2.32× 10−4 for E0 = 1.5
kV.cm−1.

Shaping the fluid of light and obstacle beams.
Making use of a spatial light modulator, we produce a
diffraction-free Bessel beam (λob = 532 nm, Iob = 7.6
W.cm−2� Isat, green path in Fig. 1c). The latter creates
the obstacle with a radius of 6 µm (comparable to ξ = 6.2
µm obtained for If = 349 mW.cm−2) that is constant all
along the crystal and aligned with the z-direction. From
Fig. 1b, the propagation of the obstacle beam into the
crystal induces a local drop ∆n(Iob) = −2.2 × 10−4 in
the refractive index. A second laser (λf = 633 nm, red
path in Fig. 1c) delivers a gaussian beam whose radius is
extended to 270 µm and which corresponds to the fluid-
of-light beam. Both laser beams are linearly-polarized
along the extraordinary axis to maximize the photore-
fractive effect. We vary the flow velocity v by chang-
ing the input angle θin of the fluid-of-light beam with
respect to the propagation axis z (see Fig. 1a). The ac-
cessible range, tuned by rotating a mirror imaged at the
input of the crystal via a telescope, goes from θin = 0
to ±23 mrad, corresponding to v ranging from v = 0 to
v = ±1.3× 10−2. The sound velocity cs is controlled by
the input intensity of the beam which can be tuned from
If = 0 to 350 mW.cm−2 via a half-waveplate and a polar-
izer. The maximum value for cs is 6.8× 10−3, as plotted
in Fig. 1b. For the detection part, a ×20 microscope
objective and a sCMOS camera allow to get the spatial
distribution of the near-field intensity of the beams at
the output of the crystal.

Displacement of the obstacle beam in the fluid of
light beam at rest. In order to validate our experi-

mental approach, we consider the linear propagation of
the green beam creating the obstacle in the optical po-
tential ∆n(If) photo-induced by the fluid-of-light beam
at rest (θin = 0). In the paraxial approximation, the
propagation equation reads

i∂zEob = − 1

2nekob
∇2Eob − kob∆n(If)Eob , (3)

with notations similar to the ones used in eq. (1). By
assuming that the transverse component of the fluid-of-
light beam is non-zero only along the x axis, we denote
by 〈x〉 =

∫
x|Eob|2 dx the position of the centroid of the

obstacle beam. Using an optical equivalent of the Ehren-
fest relations (see Supplementary Note 3 for full deriva-
tion), one can derive from eq. (3) the following equation
of motion: (ne kob) ∂zz〈x〉 = −∂x[−kob ∆n(If)]. Assum-
ing that that ∆n is z-independent, which is valid in the
here-considered linear propagation of the obstacle beam,
we readily obtain

d = 〈x(z)〉 − x0 =
1

2
[∂x∆n(If)/ne] z

2 (4)

where x0 is the initial position of the obstacle. This dis-
placement is interpreted as the consequence of a force de-
riving from the optical potential −kob ∆n(If), and acting
on the obstacle.
The experimental measurement of d, for various intensi-
ties If and positions x0, is presented in Supplementary
Figure 2. The experimental data are fitted, using the
above expression, the saturation intensity and the max-
imum refractive index modification being the fitting pa-
rameters. We extract Isat = 380 ± 50 mW.cm−2 and
∆nmax = 2.5 ± 0.4 × 10−4. It is worth mentioning that
the value of Isat is used for the calculation of ∆n(I) and
its deriving quantities (i.e., cs and ξ).

Data availability. The data supporting the findings
of this study are available within the article and the as-
sociated Supplementary Information. Any other data is
available from the corresponding author upon request.
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