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Appendice supplement 1: Evaluation and choice of the model  

 

In the present work, we ran ensemble models as a decision tool to select algorithms that are 

the most appropriate to the type of data to be analysed (Scales et al. 2016). The performance 

of 10 different algorithms was compared using the default parametrization settings proposed 

in the ‘biomod2’ R package (see Thuiller et al. (2016) for calibration details and Marmion et 

al. (2009) for modeling documentation). The compared algorithms include Artificial Neural 

Network (ANN), Boosted Regression Trees (BRT), Classification Tree Analysis (CTA), 

Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized 

Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS), Maximum 

Entropy (MaxEnt), Random Forest (RF), and Surface Range Envelope (SRE).  

Two analyses were realised to compare the respective performance of models. First, for each 

algorithm, AUC values of 100 model replicates were computed. Models were performed 

using all occurrence data available for the species Ctenocidaris nutrix and Sterechinus 

diadema only (Fig S1A, S1C) because there were not enough data to perform the analysis for 

Abatus cordatus and Brisaster antarcticus.  

In a second step, standard deviation of the 100 replicates were compared between models as 

the number of data was progressively increased between runs to represent the improvement of 

sampling effort through time (Fig S1B, S1D).  

Presence-only records associated to non-informative environmental data (NA/, no data 

values) were removed as required to perform the biomod2 analysis. Occurrence duplicates 

located on one single 0.1° grid cell were removed to reduce spatial weighting. 200 pseudo-

absences were selected to perform the analysis. 

 

Results show that Boosted Regression Trees (BRT) and Random Forest (RF) are the 

algorithms that perform best to model the distribution of C. nutrix and S. diadema (Fig. S1), 

with relatively stable (SD < 0.025) and high AUC values varying between [0.976,1] and 

[0.994,1] respectively of the analysis that studies data addition. Unexpectedly, algorithms 

previously shown to be well suited to presence-only data and small datasets (e.g. SRE or 

MaxEnt, see Araújo and Peterson 2012, Yackulic et al. 2013) did not perform well in our case 

study. Low performances of SRE have already been reported (Elith et al. 2006). The low 

number of pseudo-absences used to calibrate the model could explain the low performance of 

MaxEnt (Barbet-Massin et al. 2012, Phillips and Dudik 2008). 
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Figure S1: Compared performances of the different models for the species Ctenocidaris 

nutrix (A-B) and Sterechinus diadema (C-D). (A, C) AUC values of model replicates for each 

algorithm. (B, D) Variation of mean AUC values and Standard Deviation (SD) of model 

replicates with data addition (n=22, n=51 or n=54 occurrences for C. nutrix and n=21, n= 23 

and n=23 for S. diadema). For each analysis, 200 background data were randomly sampled in 

the studied area. Environmental descriptors correspond to [1955-2012]. 

 

The respective performance of BRT and RF (Fig. S1) was tested for spatial transferability 

following a non-random three-fold cross-validation procedure (Fig. S2, Wenger and Olden 

2012). Model transferability is defined as the “extrapolative accuracy” of a model that is, the 

model ability to extrapolate in space and time (Randin et al. 2006, Wenger and Olden 2012). 

Three models were computed simultaneously using three different subsets of occurrences for 
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C. nutrix (Fig. S2) alternatively used as training and test data (50 replicates). The three 

averaged models were compared with each others using the Schoener’s D similarity index. D 

mean and standard deviation values were computed for all comparisons. All analyses were 

performed using time-averaged environmental parameters for the total period under study 

[1955-2012]. We considered that the most similar the distribution maps are the better the 

transferability performance is (Fig. S2).  

 

 
 

Figure S2: (A) Map showing the distribution of presence-only data in the three subsets 

defined for the cross-validation procedure. (B) Non-random three-fold cross-validation 

procedure performed to test for the transferability performance of models. Zones 1, 2 and 3 

refere to (A). 

 

Comparison between maps shows higher similarity values between the different models run 

with BRT (Schoener’s �̅�=0.867± 0.034) than with RF (�̅�=0.761± 0.036), which highlights 

that BRT performs best for spatial transferability. Because transferability performance is a 

central criterion of model selection in our study (Araújo and Guisan 2006, Wenger and Olden 

2012), BRT was selected for the further analyses. This result is in line with previous studies 

that highlight the high performance of BRT for prediction (Elith and Graham 2009, Guo et al. 

2015) and transferability (Heikkinen et al. 2012, Wenger and Olden 2012, Crimmins et al. 

2013) while RF has been shown to generate geographically restricted models with high 

accuracy (Guo et al. 2015, Qiao et al. 2015, Beaumont et al. 2016). 
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Table S1: Overall comparison between Random Forest, Boosted Regression Tree (BRT) and MaxEnt respective performances with reference 

works. 

 Random Forest BRT MaxEnt 

DATASET    

● Type of data 

 

Presence-only/ presence-absence Presence-only/ presence-absence Presence-only/ presence-absence 

        •      Missing biological values  

 

        •      Categorical descriptors 

Interpolation required first (Breiman 2001)  allowed allowed 

Biased if different categorical levels (Duan et al. 

2014) 

 

allowed 

 

allowed 

 

 

Robustness to spatially biased data 

 

 

More sensible than BRT to patchy patterns  

(Marmion et al. 2009, Barbet-Massin et al. 2012) 

More adapted to bias correction methods than BRT 

(Barbet-Massin et al. 2012) 

 

 

Not adapted (Royle et al. 2012) 

Unstable predictions (this study)  

 

Overall modelling performance 

    

 

 

 

       

         • Transferability performance 

 

 

 

         • Extrapolation performance 

 

High performance and interpolation accuracy 

(Wenger and Olden 2012, Guo et al. 2015) 

Biological responses often unrealistic (Beaumont 

et al. 2016) 

 

 

Poor (Wenger and Olden 2012, Crimmins et al. 

2013).  

 

 

Not suitable (Qiao et al. 2015, Beaumont et al. 

2016) due to overfitting (Wenger and Olden 

2012, Aguirre-Gutiérrez et al. 2013) 

 

 

Medium performance (Qiao et al. 2015) 

Performed better than RF in previous works on 

benthic marine species (Reiss et al. 2011) 

 

 

 

Good (Heikkinen et al. 2012) 

 

 

 

Good (Heikkinen et al. 2012).  

High prediction performance (Elith et al. 2006, 

Elith and Graham 2009, Guo et al. 2015)  

 

 

 

High performance even with complex 

environmental interactions 

(Elith et al. 2011) 

 

 

 

One of the highest (Heikkinen et al. 2012, 

Duque-Lazo et al. 2016) 

 

 

Perform worse than BRT (this study) 

Tend to overpredict (Duan et al. 2014) 

Required computation time  Long (Elith and Graham 2009, García-Callejas 

and Araújo 2016) 

Medium (this study) Medium (this study) 
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Appendice supplement 2: Spatial autocorrelation (SAC)   

 

Table S2: Moran I SAC index computed from mean residuals of the 100 model replicates and 

the associated significance for each species before and after spatial bias correction. 
 

 Before 

correction 

After 

correction 

 Iobs p-value Iobs p-value 

Abatus cordatus 0.16 1.19e-9 0.06 5.85e-4 

Brisaster antarcticus 0.05 0.04 0.04 0.08 

Ctenocidaris nutrix 0.07 7.37e-8 0.01 0.17 

Sterechinus diadema 0.06 3.90e-3 0.02 0.13 

 

 

 
Figure S3: Maps showing species distribution models computed before and after 
correcting for spatial bias by background sampling.  
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Appendice supplement 3: Testing the influence of chronological addition of occurrences  

 
 

Figure S4: First row: distribution models of Abatus cordatus with increasing number of 

occurrences. Averaged maps of 100 model replicates. Second row: (A) Difference in 

probability distribution between n=76 and n=54, (B) between n=95 and n=76. 
 

 
 

Figure S5: First row: distribution models of Sterechinus diadema with increasing number of 

occurrences. Averaged maps of 100 model replicates. Second row: (A) Difference in 

probability distribution between n=66 and n=54, (B) between n=98 and n=66. 
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Table S3: Effect of chronological addition of new data on model performance. Comparison 

between distribution maps. Upper diagonal: Schoener‘s D correlation between averaged 

maps. Lower diagonal: significance p-value of the associated Schoener‘s D correlation. 
 

Abatus 

cordatus 

←1975] 

n=54 

- ←2010] 

n=76 

←2015] 

n=95 

←1975] n=54 - - 0.972±0.025 0.980±0.021 

- - - - - 

←2010] n=76 0.002 - - 0.981±0.023 

←2015] n=95 0 - 0 - 

Ctenocidaris 

nutrix 

←1975] 

n=46 

←1993] 

n=54 

←2010] 

n=106 

←2015] 

n=114 

←1975] n=46 - 0.964±0.026 0.969±0.020 0.967±0.020 

←1993] n=54 0.017 - 0.960±0.020 0.961±0.020 

←2010] n=106 0.005 0.037 - 0.988±0.013 

←2015] n=114 0.010 0.028 0 - 

Sterechinus 

diadema 

←1975] 

n=54 

- ←2010] 

n=66 

←2015] 

n=98 

←1975] n=54 - - 0.930±0.030 0.928±0.037 

- - - - - 

←2010] n=66 0.369 - - 0.937±0.042 

←2015] n=98 0.411 - 0.262 - 
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