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Abstract
Measurements of Pollution in the Troposphere (MOPITT) satellite and ground-based carbon
monoxide (CO) measurements both suggest a widespread downward trend in CO concentrations
over East Asia during the period 2005–2016. This negative trend is inconsistent with global
bottom-up inventories of CO emissions, which show a small increase or stable emissions in this
region. We try to reconcile the observed CO trend with emission inventories using an atmospheric
inversion of the MOPITT CO data that estimates emissions from primary sources, secondary
production, and chemical sinks of CO. The atmospheric inversion indicates a ∼ −2% yr−1 decrease in
emissions from primary sources in East Asia from 2005–2016. The decreasing emissions are mainly
caused by source reductions in China. The regional MEIC inventory for China is the only bottom up
estimate consistent with the inversion-diagnosed decrease of CO emissions. According to the MEIC
data, decreasing CO emissions from four main sectors (iron and steel industries, residential sources,
gasoline-powered vehicles, and construction materials industries) in China explain 76% of the
inversion-based trend of East Asian CO emissions. This result suggests that global inventories
underestimate the recent decrease of CO emission factors in China which occurred despite increasing
consumption of carbon-based fuels, and is driven by rapid technological changes with improved
combustion efficiency and emission control measures.

1. Introduction

Carbon monoxide (CO) is produced by the incomplete
combustion of carbon-based fuels and atmospheric
oxidation of hydrocarbons. It is the dominant sink
of the hydroxyl radical (OH), which controls the
oxidizing power of the troposphere, and hence influ-
ences the lifetime of most atmospheric pollutants
and reactive greenhouse gases. Each reaction of CO
with OH radicals has a theoretical maximum yield
of one ozone (O3) and one carbon dioxide (CO2)
molecule, which results in an indirect positive radiative
forcing around 0.2 W m−2 (Myhre et al 2013).

The Measurements of Pollution in the Tropo-
sphere (MOPITT) space-borne instrument has been
measuring tropospheric CO since 2000, and shows a
decreasing global trend ∼−1% yr−1 in CO total col-
umn, with stronger trends (−1.42 to −1.60% yr−1)
identified over Europe, the United States, and East Asia
for 2000–2010 (Worden et al 2013). Measurements
of surface concentrations confirm similar declining
trends (Yoon and Pozzer 2014). The reduction of
CO pollution is consistent with bottom-up emission
inventories indicating reduced emissions in Europe
and the United States, and chemical transport model
simulations driven by those inventories reproduce the
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negative trends of observed CO concentrations (Yoon
and Pozzer 2014, Strode et al 2016). This suggests that
emission inventories over these two regions success-
fully track the progress of emission reduction due to
pollution control.

However, global inventory data show increasing
emissions over East Asia, which cannot be reconciled
with observed CO concentrations (Strode et al 2016).
A downward trend ∼ −1.6% yr−1 in CO concentra-
tions is observed by MOPITT (Worden et al 2013)
over East Asia for years 2000–2010, but model simu-
lations using the time-dependent MACCity inventory
(Granier et al 2011) show upward trends. Strode et al
(2016) analyzed possible model biases that contributed
to the model-observation discrepancy, and found that
an overestimate of O3 associated with less O3 break-
up forming less OH played an important role. While
chemistry model biases examined by Strode et al
(2016) cannot explain all aspects of the inconsisten-
cies, their study also questioned the increasing CO
emission trends of the MACCity inventory. Yet other
global bottom-up inventories also show increasing
CO emissions (0.9%–2.9% yr−1) from East Asia over
the past decade (Granier et al 2011, Crippa et al
2016, Zhong et al 2017). Anthropogenic sources are
the major sources of CO in East Asia. The increas-
ing emissions from East Asia reported by global
bottom-up inventories are mainly caused by growing
anthropogenic sources, which include industrial boil-
ers, residential stoves, iron and steel production, and
motor vehicles. Conversely, top-down atmospheric
inversion-based emission estimates assimilating CO
observations (Tohjima et al 2014, Yumimoto et al
2014, Yin et al 2015, Jiang et al 2017) all yield neg-
ative CO emission trends (−2.0 to −3.2% yr−1, for
2005–2015), though the inversion approach cannot
attribute the driving forces.

In the present study, we reevaluate the 2005–2016
trends of CO concentrations over East Asia, and ana-
lyze the underlying drivers of CO changes. Here East
Asia refers to the geographical area covering Mainland
China, Hong Kong, Macau, Taiwan, Japan, Mongo-
lia, North Korea, and South Korea. Our goal is to
understand the inconsistencies between observed and
modeled CO trends over East Asia reported by previous
studies. We first investigate the tropospheric CO col-
umn from the MOPITT version 7 product (Deeter et al
2017). Then, we use a Bayesian inversion technique
(Chevallier et al 2005) jointly assimilating observa-
tions of the main species involved in the oxidation
chain of hydrocarbons to estimate the sources and
sinks of atmospheric CO. Both the diversity of assim-
ilated data and the treatment of the uncertainty in
CO chemical production and sinks are important fea-
tures of our method that permit the reliable estimation
of the trends in CO emissions over East Asia.

Below, we first describe the tools used to ana-
lyze the sources and sinks of atmospheric CO: the
MOPITT satellite measurements, the atmospheric

inversion model that assimilates these data to pro-
vide optimized surface CO emissions, secondary CO
production, and CO destruction by OH in the atmo-
sphere, and the inventories used for comparison with
inversion emissions. Then the observed trends in
MOPITT data are analyzed, inversion CO emissions
trends are discussed and compared with inventories.

We show that the declining trend in CO con-
centrations over East Asia of −0.41± 0.09% yr−1 for
2005–2016 (P< 0.001, 95% confidence interval, two-
tailed) can be explained by a −2.51± 0.94% yr−1

(P< 0.001) decrease in CO emissions from primary
sources in this region, which outweighs increasing sec-
ondary CO production (1.56± 0.56% yr−1, P< 0.001)
due to the rising CH4 concentrations and NMVOC
emissions. Global bottom-up emission inventories fail
to reproduce the negative trend of CO emissions
probably because they underestimate the strength of
emissions control in China, whereas the detailed inven-
tory of Multi-resolution Emission Inventory for China
(MEIC, www.meicmodel.org/) matches the top-down
inversions well. The MEIC data is further analyzed to
investigate sectors and emission factors that drive the
decreasing CO emissions in China, which accounts for
84% of the CO emissions decrease during 2005–2016
in East Asia.

2. Methods and Data

2.1. MOPITT Version 7 CO
The MOPITT instrument was launched aboard the
EOS-Terra satellite platform in December 1999 and
began reporting data in March 2000 (Deeter et al
2003). It measures CO column on the global scale,
which means the number of CO molecules between
the MOPITT instrument and the Earth’s surface per
area of the surface (i.e. molecules cm−2). The MOPITT
retrieval products have been improved continuously, as
confirmed by independent validation data, since 2000.
Retrieval product improvements are the result of radia-
tive transfer model enhancements, updated a priori
information, and bias corrections (Deeter et al 2010,
2013, 2014).

In this study, we use MOPITT Version 7 (V7)
level 2 total column retrievals from the multispectral
TIR-NIR product. First V7 products were released in
August 2016. As demonstrated by comparisons with
CO in-situ vertical profiles measured from aircraft over
North America, MOPITT V7 products exhibit much
improved error characteristics (Deeter et al 2017).
In contrast with the previous V6 product, for exam-
ple, the overall biases for V7 are a few percent or less
at all levels for the TIR-only, NIR-only and TIR-NIR
products. For the period from 2000–2015, analysis of
the long-term bias trends (i.e. bias drift) for the V7
TIR-NIR product indicates a negative bias drift for the
lower-troposphere (e.g. −1.04% yr−1 at 800 hPa) and
an opposing positive bias drift for upper-tropospheric
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retrieval levels (e.g. 1.15% yr−1 at 400 hPa). However,
due to the opposite effects of bias drift in the lower
and upper troposphere, the reported bias drift for the
TIR-NIR total column product is nearly negligible (e.g.
a relative bias drift of less than 0.1% yr−1, thus much
smaller than the CO trend in East Asia). To exclude
retrievals with low information content, we use only
satellite retrievals with solar zenith angle less than 70◦,
surface pressure greater than 900 hPa, and latitude
within 65◦S–65◦N (Fortems-Cheiney et al 2011, Yin
et al 2015).

2.2. Atmospheric inversion
We use a variational Bayesian approach (Chevallier
et al 2005) to estimate CO emissions from primary
sources, secondary production, and chemical sinks of
CO for 2005–2016 (detailed in text S2–7). Technically,
the Bayesian inference can be solved as a variational
optimizationproblembyminimizing the following cost
function:

𝐽 (𝐱) = (𝐱 − 𝐱𝑏)𝑇 𝐁−1(𝐱 − 𝐱𝑏)+
(𝐻(𝐱) − 𝐲)𝑇 𝐑−1(𝐻(𝐱) − 𝐲)

The variables that we seek to estimate are assem-
bled into the state vector x. Through optimization
we obtain the optimal x given a priori guess x𝑏 and
observation vector y, for which the error statistics are
represented by covariance matrices B and R, respec-
tively. x and y relate to each other through the forward
model H that can be simply understood as an opera-
tor calculating y as a function of x. In this study, the
Bayesian framework is used in the hydrocarbon oxida-
tionchain, consistingofmethane (CH4 ), formaldehyde
(HCHO), CO, CO2 as well as intermediate species,
with chain reactions driven by OH among all chemical
species (Pison et al 2009). Methyl chloroform (MCF)
is also included to constrain OH concentrations.

The state vector x contains OH concentrations,
emission fluxes of CH4, HCHO, CO and MCF, and
the initial concentration fields of these four species.
The a priori CO sources include MACCity anthro-
pogenic emissions (Granier et al 2011, downloaded
from http://eccad.sedoo.fr), GFED 4s biomass burn-
ing emissions (van der Werf et al 2017, downloaded
from www.globalfiredata.org/index.html), MEGAN
biogenic emissions (Sindelarova et al 2014, down-
loaded from http://eccad.sedoo.fr), and POET oceanic
emissions (Olivier et al 2003, Granier et al 2005, down-
loaded from http://eccad.sedoo.fr). These datasets are
selected as a priori emissions input because they rep-
resent the most up-to-date period of CO emission
fluxes freely available on global scales. The MACC-
ity dataset is the only available dataset that provides
monthly anthropogenic emissions that cover 2005–
2016 (data after 2010 are emission projections). The
GFED4s dataset is the latest data on biomass burning
emissions that achieve high accuracy (van der Werf
et al 2017), and the MEGAN and POET dataset are

both the latest emissions data. The a priori informa-
tion for the other variables and covariance matrix B
follow the configurations of Yin et al (2015, 2016).

The observation vector y consists of satellite
CO and HCHO tropospheric columns, and sur-
face concentrations of CH4 and MCF from in-situ
networks. We use CO column retrievals from the
MOPITT V7 product (Deeter et al 2017), HCHO
column retrievals from the Ozone Monitoring Instru-
ment V003 product (González et al 2015), CH4
and MCF surface air-sample measurements from the
World Data Centre for Greenhouse Gases dataset
(WDCGG, http://ds.data.jma.go.jp/gmd/wdcgg/). The
forward model H is LMDz-SACS (1.9◦ lat× 3.75◦

lon× 39 vertical layers), a 3D transport model with
a simplified chemistry scheme. LMDz is a general cir-
culation model (http://lmdz.lmd.jussieu.fr/) which is
nudged towards the European Centre for Medium-
Range Weather Forecasts analyses for horizontal winds.
The LMDz model is coupled with SACS module,
a simplified chemistry module for the oxidation
chain of hydrocarbons, which is developed by Pison
et al (2009) on the basis of the Interaction with
Chemistry and Aerosols (INCA) full chemistry model
(Hauglustaine et al 2004). The LMDz-SACS model is
described in Text S2. Details of y, H and covariance
matrix R refer to Yin et al (2015, 2016).

The inversion solves for emission fluxes of CH4,
CO and MCF in each surface grid cell (1.9◦ lat× 3.75◦

lon) of the transport model over eight day peri-
ods (detailed in Text S3). This inversion system has
been much used and evaluated in the optimization
for sources of CH4, CO and HCHO at both global
and regional scales (Chevallier et al 2009, Pison et al
2009, Fortems-Cheiney et al 2009, 2011, 2012, Yin
et al 2015, 2016). We also collected emission estimates
from two regional inversion systems including China
for comparison. They are from Tohjima et al (2014)
(assimilating surface observations for 1999–2010) and
Yumimoto et al (2014) (assimilating MOPITT Version
5 data for 2005–2010).

2.3. Bottom-up inventories
We use a regional emission inventory, the MEIC ver-
sion 1.2 data (www.meicmodel.org/), to analyze the
drivers of long-run CO emissions in China, which rep-
resents 90% of East Asian CO emissions. The MEIC
model is a technology-based emission inventory frame-
work developed by Tsinghua University (Zheng et al
2014, Liu et al 2015). The main emission sources are
identified and quantified through the product of activ-
ity data and time-dependent emission factors, which
are estimated by technology turnover models that
track the penetration of different combustion tech-
nology used in emission source sectors. As emissions
rates depend on combustion technology, this method
can calculate dynamic emission factors that reflect
technological changes over time (Zhang et al 2009,
Lei et al 2011, Liu et al 2015). The MEIC database
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Figure 1. Tropospheric CO column trends derived from MOPITT V7 data over 0.5◦ × 0.5◦ grid cells. Time series of 2005–2016 data
are analyzed using a curve fitting method (text S1 available at stacks.iop.org/ERL/13/044007/mmedia) to calculate the CO column
trends. The diamonds represent the six WDCGG sites used for trend analysis of CO surface concentrations.

provides time series of emission estimates for China
spanning from 1990–2015. We use MEIC sectoral
changes of CO emissions to investigate the drivers
behind the variations of inversion-based emissions.
To compare with the MEIC data and our inversion
results, we also collected data from six bottom-up
inventories including PKU (2005–2014) (Zhong et al
2017), REAS v2.1 (2005–2008) (Kurokawa et al 2013),
EDGAR v4.3 (2005–2010) (Crippa et al 2016), MIX
(2006, 2008 and 2010) (Li et al 2017), and the data
from Xia et al (2016) (2005–2014) and Zhao et al
(2012) (2005–2009).

3. Observed CO trends over East Asia

MOPITT observes a substantial decrease in tropo-
spheric CO column over East Asia from 2005–2016
(figure 1). Geographically, the pattern of decreasing
linear trends fitted to the data is not evenly distributed.
Western China that is generally upwind of the heav-
ily industrialized areas of China to the east, presents
relatively weak CO trends. Larger decreases generally
occur in industrialized areas with higher CO levels,
such as in eastern China (−1 to −2% yr−1). MOPITT
also observes a strong decrease in CO (∼−1% yr−1)
off the coast of East Asia (figure 1, box II), and
similar decreases over the eastern Pacific, suggestive
of reduced export of CO from East Asia via the
prevailing westerlies.

Monthly average observations reveal the detailed
temporal evolution of CO column (blue curves in fig-
ures 2(a) and (b)). The peak column CO in winter/
spring shows a large, significant decrease (P = 0.003)
of −0.54± 0.31% yr−1 over East Asia (figure 1, box I),
while that in summer/fall exhibits a small, insignifi-
cant decrease (P = 0.131) of −0.33± 0.45% yr−1. The
de-seasonalized monthly CO columnshows a medium,
significant decrease (P< 0.001) of −0.41± 0.09% yr−1

(blue curves in figure 2(c)). The downwind oceanic
region of East Asian continent (figure 1, box II)
exhibits similar decreasing linear trends (blue curves
in figures 2(b) and (d)). We also investigate sur-
face concentrations of CO from the WDCGG dataset,

which includes six remote observing stations (the dia-
monds in figure 1) within East Asia and its downwind
areas. De-seasonalized monthly surface observations
show a significant negative trend (P< 0.001) of
−0.46± 0.14% yr−1 for 2005–2016, driven by a sig-
nificant decrease (P = 0.008) of −1.00± 0.67% yr−1

in winter/spring. The observed decrease of mean
annual surface concentrations (−0.46± 0.14% yr−1,
P< 0.001) is similar to the linear trend of CO col-
umn (−0.41± 0.09% yr−1, P< 0.001) observed by
MOPITT. We note that the time period selected
for the trend calculation is also important due
to significant variability in global CO from large
biomass burning episodes such as the boreal fires in
2002, 2003 (Yurganov et al 2005) and the El Nino
driven fires in Indonesia in September–October 2015
(Field et al 2016, Yin et al 2016).

4. Inverse analysis of CO sources trends

The results from the LMDz-SACS inversion
assimilating MOPITT CO and other related tracer
measurement show a linear reduction of −2000 to
−4000 kg km−2 yr−1 in high emission areas such as
East China, South Korea and Japan for 2005–2016
(figures 3(a) and (b)). The anthropogenic sources drive
the downward trend because biomass burning con-
tributes less (figure 3(c)). We also see a linear growth
of< 2000 kg km−2 yr−1 in CO emissions over the areas
adjacent to South Central Siberia due to increased fire
activities (figures 3(b) and (c)). However, compared
with the widespread decline in emissions over high
emission areas, the slight increase of wildfires has little
effect on net emissions due to their small size.

Inversion-based estimates show a decreasing trend
of −2.51± 0.94% yr−1 for CO emissions in East Asia
(P< 0.001) with respect to 2005 (−5.07 Tg year−1)
spanning from 2005–2016 (the red solid curve in fig-
ure 3(d)). This negative trend is not present in the
a priori emission fluxes used in the LMDz-SACS
inversion (the black solid curve in figure 3(d)). For
China specifically, the inversion infers a decrease of
−2.16± 3.40% yr−1 (P = 0.152) for 2005–2010, which
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Figure 2. 2005–2016 observed and simulated changes in monthly CO column over East Asia (a), (c) and (e) and the downwind oceanic
area (b), (d) and (f). The blue curves represent MOPITT CO time series (a) and (b) and its trend data (c) and (d), and red curves are
for LMDz-SACS simulations with optimized emissions (a) and (b) as well as its trend data (c) and (d). The green curves represent
the trend data of sensitivity simulation with primary CO emissions of East Asian countries (China, Mongolia, North Korea, South
Korea, and Japan) held constant at the levels of year 2005 (c) and (d). The effects of East Asian CO emissions change on the trends
in MOPITT CO observations (black curves in (e) and (f)) are estimated as the 2005–2016 emissions run (red curves in (c) and (d))
minus 2005 constant emissions run (green curves in (c) and (d)). The trend data (c)–(f) are calculated using the curve fitting method
that is described in text S1.

is close to the regional inversions of Tohjima et al
(2014) and Yumimoto et al (2014) that show a lin-
ear emission decrease of ∼−2% yr−1 in China for
the same period. Overall, our inversion results for
East Asia change in three successive phases: Phase I
(2005–2007, a slight increase), Phase II (2008–2013, a
drop by 15.55% in 2008 and then a slight decrease of
−0.18± 0.91% yr−1, P = 0.621), and Phase III (2014–
2016, an accelerated decline). The abrupt drop of CO
emissions in 2008 is coincident with a sharp decrease
in MOPITT CO column in the second half of this
year (figure 2(c)) as reported by Witte et al (2009),
Yurganov et al (2010), Worden et al (2012) and Strode
et al (2016). Witte et al (2009) showed CO reduc-
tions of 12% at 700 hPa using the MOPITT data that
was attributed to rapid and strict controls on pollu-
tant emissions in East China for the Beijing Olympics
in August–September 2008. Yurganov et al (2010)
estimated that the upper limit of monthly drop of
CO column could reach 30% at the end of 2008
due to reduced activities during the economic reces-
sion. Therefore, one may think that the abrupt drop
of 2008 CO emissions over East Asia was probably
caused by stringent pollution control for the Beijing

Olympics followed by the subsequent sharp slowdown
in the GDP growth and stalled industrial production.

In Phase I, the inversion-based emissions agree well
with REAS v2.1 and MIX bottom-up inventories, and
exhibit similar growth to other bottom-up invento-
ries. In Phase II, our inversion emissions are consistent
with the MIX data for the years of 2008 and 2010,
but are distinct from the PKU data, MACCity data
and EDGARv4.3. These three global inventories fail to
reproduce both the large and abrupt fall of emissions in
2008 and the slight decrease after that. In Phase III, the
inversion estimate of this work shows an accelerated
decreasing trend in emissions, inconsistent with the
rising emissions of MACCity. The global bottom-up
inventories mentioned above fail to reflect the evolu-
tion of emissions over East Asia during Phases II and
III, thus they cannot capture the declining CO trend for
2005–2016. Over all three phases, China is responsible
for 84% of the decrease (the red bar in figure 3(e)),
suggestive of the dominant role that China plays in the
trend and variability of East Asian CO emissions.

We further evaluate the inversion emissions over
China (the red curve in figure 3(f)) against the
MEIC inventory (the blue curve in figure 3(f)).

5
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Figure 3. CO emissions for 2005–2016 estimated by the inversion. The emission map of 2005 (a) are downscaled from 1.9◦ × 3.75◦ to
0.5◦ × 0.5◦ following the spatial pattern of a priori emission fluxes in the same large grid. Emission trends (b) are represented by the
slope of linear regression lines through annual emissions between 2005 and 2016. Percentages of biomass burning emissions averaged
for 2005–2016 (c) are derived from the a priori emission fluxes. We review previous studies on CO emissions trends over East Asia (d)
and China (f), and compare them with our inversion results. (e) CO emission change relative to that of 2005 by country.

The MEIC data shows a decreasing linear trend
of −2.16± 0.79% yr−1 (P< 0.001) which agrees well
with our inversion estimates (−1.86± 0.92% yr−1,
P = 0.001) for 2005–2015, while the bottom-up emis-
sion inventories developed by Xia et al (2016) and
Zhao et al (2012) both show flattening emissions.
Still, none of these regional bottom-up inventories can
capture the abrupt drop of CO emissions in 2008.

5. Drivers of the decline in CO concentrations
and emissions

We use the LMDz-SACS forward model to check
the contributions of primary CO emissions trends
(−2.51± 0.94% yr−1, P< 0.001) to the observed 2005–
2016 trend of CO concentrations (−0.41± 0.09% yr−1,
P< 0.001). Using the optimized emissions, opti-
mized OH concentrations, and initial concentration
fields inferred from the inversion, the forward model
reproduces the absolute magnitude and temporal

evolution of MOPITT observations well (red curves
in figures 2(a)–(d)), indicating that the inversion fits
the CO concentrations well.

To quantify the impacts of East Asian CO source
change on the trends in MOPITT CO observations,
we conduct a sensitivity simulation with primary CO
emissions held constant at the levels of year 2005 in
East Asian countries (green curves in figures 2(c) and
(d)) and other factors—emissions in other regions, OH
concentrations, and initial concentration fields—being
variable and taken from the inversion. The modeling
results for this sensitivity simulation show a positive,
insignificant trend of CO column (0.03± 0.08% yr−1,
P = 0.474) over East Asia (figure 2(c)), indicating that
the other factors in the model do not explain the
decrease of CO concentrations, and thus that only
a reduction of primary CO emissions in East Asia
can match the MOPITT trends (−0.41± 0.09% yr−1,
P< 0.001). These results are consistent with the find-
ings of Strode et al (2016), whose simulation with
constant CO emissions showed a positive trend in
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Figure 4. Driving forces of the declining CO emissions in China. (a) China’s energy consumptions by fuel type (bar charts) and the
inversion CO emissions (black curve). (b) China’s fuel mix (stacked bar charts) and the average emission factor of CO on fuel base
(black curve). (c) Comparison of CO emissions change relative to 2005 derived from the MEIC data (by source sector, bar charts) and
that derived from the inversion results (black curve). The construction materials industry includes the industries of brick, lime, and
cement. (d) Changes of CO emission factors with respect to the year 2005 by source in China. The numbers with brackets displayed
along the y axis represent the emission shares of 2015 estimated using the MEIC data.

CO concentrations for 2000–2010 over East China.
Worden et al (2013) also suggests a decrease of primary
CO emissions over East China to match the declining
CO concentrations in this region for 2000–2011.

We subtract the model run driven by constant
2005 emissions from the simulation with variable
2005–2016 emissions (black curves in figures 2(e)
and (f)). The 2005–2016 emission update results in
a decrease of −0.42± 0.04% yr−1 (P< 0.001) in CO
column (figure 2(e) that matches the MOPITT obser-
vations well (−0.41± 0.09% yr−1, P< 0.001, figure
2(c)). The same holds true in areas downwind (figures
2(d) and (f)). These results show that primary emis-
sions change over East Asian countries can account
for the entire declining trend of CO concentrations
observed in this region.

As China dominates the East Asian emission
budget, and because of the good match between
inversion-based emission estimates and the indepen-
dent bottom-up MEIC inventory, we use the MEIC
data to understand the drivers behind the declin-
ing trends of Chinese emissions (figure 4). In MEIC,
China’s CO emissions keep falling because decreas-
ing emission factors totally offset the increasing use
of carbon fuels (figures 4(a) and (b)). Generally,
all important source sectors (e.g. residential, iron,
gasoline-powered vehicles, and industrial boilers) are
improving combustion efficiency and strengthening
air pollution control in the last decade, which ulti-
mately leads to the steady decline in emission factors

spanning from−7% to−86% across sources for 2005–
2015 (figures 4(c) and (d)).

Four source sectors dominate the downward trends
of China’s emissions, including iron and steel indus-
tries, residential sources, gasoline-powered vehicles,
and construction materials industries (figure 4(c)).
These four sectors are responsible for 92% of China’s
emissions cut, and can explain 76% of the emissions
decrease for East Asia. In iron and steel industries,
CO is an unavoidable byproduct released from blast
furnace and basic oxygen furnace. Industry opera-
tors have reduced gas leaks, so the amount of CO
emitted to the atmosphere is decreasing (−62% for
iron production and −84% for steel making in 2005–
2015 estimated by the MEIC data). Residential sources
contribute half of CO emissions in China due to
the extensive use of low-efficiency fuels and stoves.
China has started to promote the use of clean stoves
and phase out traditional biofuels (i.e. wood and
crop residual) since 1990s (World Bank 2013), which
helps lower CO emission rates of the residential sector
(−12% for 2005–2015). The emissions from gasoline-
powered vehicles are controlled successfully with the
increasingly more stringent emission standards from
stage 2 (equivalent to Euro 2/II standards) to stage
5 (equivalent to Euro 5/V standards) implemented
since 2005 (Wu et al 2017). Consequently, the fleet
average CO emission factor has been reduced by 76%
from 2005–2015 according to the MEIC emission
factors. The construction materials industries reduce
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emissions through using high efficiency kilns. For
example, the cement industry replaces low-efficiency
shaft kilns with a new type of rotary kiln, called the
new dry process in China, in the last decade (Lei
et al 2011). The percentage of cement produced by the
new kilns increase from 44% in 2005 to 99% in 2015,
which reduces the CO emission factor by 86%. These
four sectors show a much larger decline of emissions
since 2013, because China accelerated the air pollution
control at the end of 2013 to fight against severe haze
pollution (State Council of the People’s Republic of
China 2013).

6. Conclusions and implications

In this study, we have analyzed the main sources
of inconsistency between 2005–2016 CO trends from
MOPITT column observations and from global emis-
sion inventories in East Asia. The most important
findings are that (1) the decreasing linear trend
of −0.41± 0.09% yr−1 (P< 0.001) in CO concentra-
tions over East Asia is due to a −2.51± 0.94% yr−1

(P< 0.001)decrease inemissions fromprimary sources
in this region, that is a cumulativedeclineof−32%from
2005 to 2016 and (2) 76% of the emissions decline
over East Asia can be explained by emissions control of
four source sectors in China, i.e. iron and steel indus-
tries, residential sources, gasoline-powered vehicles,
and construction materials industries. This emis-
sion decrease is enough to counterbalance the effect
of rising concentrations of CH4 (0.38± 0.01% yr−1,
derived from WDCGG observations) and increasing
emissions of NMVOC (4.59± 0.44% yr−1, estimated
by MEIC data) in East Asia, that increase the sec-
ondary CO formation at a rate of 1.56± 0.56% yr−1

(P< 0.001) according to our multispecies inversion
(Text S7). Global bottom-up emission inventories
were less successful in capturing the negative emis-
sion trends than the MEIC inventory, probably because
they underestimate the strength of emissions con-
trol in East Asia, especially in China. The MACCity
inventory since 2010 are emission projection data
so they cannot reflect the recent trends in China
CO emissions, and changes in emission factors. As a
fast-growing economy with rapid technology changes,
emission factors vary so fast that capturing the CO
emissions variation remains a big challenge. More-
over, multi-instrument space-borne observations also
verified recent (2005–2015) reductions in air pol-
lution loadings of sulfur dioxide, nitrogen dioxide
and aerosols over East Asia (Krotkov et al 2016,
Liu et al 2016, Zhang et al 2017, Zhao et al 2017).
It is difficult to predict these changes using models and
conservative estimates. Our research method incorpo-
rating observations, inverse modeling and technology
based bottom-up inventory provides an opportu-
nity to better understand what happened recently
as well as the underlying drivers. Though all data

and methods are subject to their own uncertain-
ties, the final results are considered robust given the
consistency between observations from MOPITT satel-
lite and ground-based CO measurements (section 3),
between our inversion analysis and other inversion
results (section 4), and between our inversion results
and the latest bottom-up emissions data (section 5).
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