
HAL Id: hal-01806833
https://hal.science/hal-01806833

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revising Return Periods for Record Events in a Climate
Event Attribution Context

Philippe Naveau, Aurélien Ribes, Francis Zwiers, Alexis Hannart, Alexandre
Tuel, Pascal Yiou

To cite this version:
Philippe Naveau, Aurélien Ribes, Francis Zwiers, Alexis Hannart, Alexandre Tuel, et al.. Revising
Return Periods for Record Events in a Climate Event Attribution Context. Journal of Climate, 2018,
31 (9), pp.3411 - 3422. �10.1175/JCLI-D-16-0752.1�. �hal-01806833�

https://hal.science/hal-01806833
https://hal.archives-ouvertes.fr


Revising Return Periods for Record Events in a Climate Event
Attribution Context

PHILIPPE NAVEAU, AURÉLIEN RIBES,a FRANCIS ZWIERS,b ALEXIS HANNART,c

ALEXANDRE TUEL,d AND PASCAL YIOU

LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France

(Manuscript received 19 October 2016, in final form 6 December 2017)

ABSTRACT

Both climate and statistical models play an essential role in the process of demonstrating that the distri-

bution of some atmospheric variable has changed over time and in establishing the most likely causes for the

detected change. One statistical difficulty in the research field of detection and attribution resides in defining

events that can be easily compared and accurately inferred from reasonable sample sizes. As many impacts

studies focus on extreme events, the inference of small probabilities and the computation of their associated

uncertainties quickly become challenging. In the particular context of event attribution, the authors address

the question of how to compare records between the counterfactual ‘‘world as it might have been’’ without

anthropogenic forcings and the factual ‘‘world that is.’’ Records are often the most important events in terms

of impact and get much media attention. The authors will show how to efficiently estimate the ratio of two

small probabilities of records. The inferential gain is particularly substantial when a simple hypothesis-testing

procedure is implemented. The theoretical justification of such a proposed scheme can be found in extreme

value theory. To illustrate this study’s approach, classical indicators in event attribution studies, like the risk

ratio or the fraction of attributable risk, are modified and tailored to handle records. The authors illustrate the

advantages of their method through theoretical results, simulation studies, temperature records in Paris, and

outputs from a numerical climate model.

1. Introduction

Civil engineers, flood planners, and other risk man-

agers have to take into account the nonstationarity of

our climate system when computing return levels1 to

assess, for example, the quality of existing dams or

heights of new dikes and other structures. It is natural to

wonder how a 100-yr return level for a dike built 50 years

ago, under the assumption of stationarity, could be dif-

ferent from today’s value. As emphasized by Rootzén
and Katz (2013), a delicate issue is the interpretation of

return periods and return levels within a nonstationary

world. A 100-yr return level computed 50 years ago,

today, or in 50 years may differ and become a relative

quantity. Another challenge is to discriminate between a

set of potential causes in order to explain detected

changes (see, e.g., Zwiers et al. 2013; Hegerl and Zwiers

2011; IPCC 2013).

To deal with relative probability changes and causal-

ity questions, researchers in the event attribution com-

munity (see, e.g., Uhe et al. 2016) frequently work with

the risk ratioRR5 p1/p0 of two probabilities of the same

event, p0 and p1, under two different situations: a ‘‘world

that might have been’’ (a counterfactual world without

anthropogenic forcings) and the ‘‘world that is’’ (a fac-

tual world). The archetypical example of a common

event is that the random variable of interest, say annual

maximum temperature, exceeds a high threshold. The

so-called fraction of attributable risk FAR 5 1 2 1/RR
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1 Given a fixed number of years r, the return level, say xr, is the

value that should be crossed on average once during the period

r under the assumption of stationarity. The number r is called the

return period, and, hence, it is associatedwith an event of probability

1/r. The return level xr associatedwith period r can also be defined as

the value that is exceeded with probability 1/r in any given year.
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has also been used (see, e.g., Stott et al. 2004, 2016), and

it can be viewed as the probability of necessary causa-

tion within the mathematical paradigm of causality

theory (see Hannart et al. 2016).

Instead of focusing on return period changes, which

is a frequent approach in event attributions studies, our

goal in this paper is to determine how record event

frequencies differ between the factual and counterfac-

tual worlds. Many reasons can be invoked to motivate

this change of viewpoint regarding the event of interest.

Practically, records have often large economic and hu-

man impacts. In terms of media communications, the

news anchor typically asks, whenever a record of tem-

peratures or rainfall is broken, if such a record is due

to climate change. It is important to have the appro-

priate probability tool to precisely address this ques-

tion. Conceptually, record events (see, e.g., King 2017;

Meehl et al. 2009; Resnick 1987) are different from

maxima and excesses above a high threshold. Re-

formulating extreme event attribution in terms of re-

cords rather than threshold excesses simplifies the

statistical issues because only one probability has to be

estimated instead of two. Under some additional as-

sumptions based on extreme value theory (EVT; see,

e.g., Embrechts et al. 1997; Coles 2001), we will show

that the computation of FAR for records can be sim-

plified dramatically and leads to some simple formulas

when evaluated through Pearl’s causality theory (see

Hannart et al. 2016). The results yield interesting con-

clusions when applied to two datasets of annual maxima

of daily temperature maxima: observations recorded in

Paris and outputs from the Météo-France CNRM-CM5

climate model. Still, our objective is not to replace the

classical FAR and RR, but to offer a complementary

instrument for climatologists, hydrologists, and risk

managers. Although strongly connected, the interpre-

tation of our new FAR and RR for records will differ

from conventional approaches.

a. Main assumptions and notations

The probabilistic framework in event attribution

studies often starts with the simple and reasonable hy-

pothesis that two independent samples are available,

say X5 (X1, . . . ,Xm)
T with a cumulative distribution

function2 (CDF) of G(x)5P(X#x), and Z5(Z1, ... ,Zn)
T

with a CDF of F(z)5P(Z# z). The random vectors

X and Z represent ensemble members from numerical

models run under two different scenarios. In a causality

investigation, the vector X is said to provide the relevant

time series in the so-called counterfactual word, while its

counterpart Z describes the same information but in the

factual world.

As relative probability ratios of the type p1/p0
or (p1 2 p0)/p1 are often the main objects of interest

in event attribution, we will always assume that such

ratios are well defined and finite. Such a hypothesis is

classical within the event attribution community and

simplifies mathematical expressions and interpretations.

Assuming a finite FAR implies that the right-hand end

point of G( . ) is at least a large as that of F( . ).

b. Records and return periods

Breaking a record simply means that the current ob-

servation exceeds all past measurements (see Resnick

1987). This type of event is often reported in the media

and, in such instances, climatologists are often asked

if the frequency of record breaking has increased. To

define a record mathematically, suppose that a sample

of annual3 data, sayY5 (Y1, . . . ,Yk)
T, is given. The year

r is a record year if

Y
r
.max(Y

1
, . . . ,Y

r21
).

To relate this mathematical inequality with the media

question about the likelihood of this event, one can

compute the probability of observing such an event:

P[Y
r
.max(Y

1
, . . . ,Y

r21
)]5

1

r
. (1)

This equality holds if the random variables Yi are in-

dependently and identically distributed (IID). Basically,

Eq. (1) emphasizes two points. First, records are ex-

pected to occur less frequently as the period length r

increases. Second, given a fixed time period r, the chance

of the record occurring in a given year is uniform, 1/r.

Equation (1) will be the backbone of our conceptual

and inferential strategies. In particular, it does not de-

pend on the marginal distribution of the Y, that is, on

P(Y# y).

c. Interpreting records in an event attribution context

Given any return period r, different types of records

can be defined by comparing data from our different

worlds. For example, the event [Zr .max(X1, . . . , Xr21)]

2 All CDFs in this article are assumed to be continuous.

3 For ease of interpretation, the temporal increment will always

be a year in this work, but this is arbitrary and other increments

could be used instead.
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characterizes the fact that Zr is a record, relative to the

counterfactual world.

Equation (1) can be applied to the counterfactual

sample4 X:

p
0,r
5P[X

r
.max(X

1
, . . . ,X

r21
)]5

1

r
.

To assess the probability that a factual observation like

Zr could be a record in the counterfactual world, it is

convenient to introduce

p
1,r

5P[Z
r
.max(X

1
, . . . ,X

r21
)].

Comparing p0,r and p1,r answers the question of whether

the frequency of today’s records was different in the past.

Themirrored option would be to compute the chance that

a counterfactual realization like Xr becomes a record in

the factual world, that is, P[Xr .max(Z1, . . . , Zr21)].

Although possible, we do not pursue this here because the

‘‘world that might have been’’ provides a more likely

stationary referential than the ‘‘world that is.’’

To make the link with past event attribution studies,

we use the notation p0,r and p1,r; they differ in their

interpretation and inference properties from the

classical survival functions p0(u)5P(X. u) and

p1(u)5P(Z. u), where u is any number on the real

line, such as p1(u) . 0.

Given the return period r, we have to find the solution

of the system defined by p0,r and p1,r. By construction,

p0,r is always equal to 1/r, and consequently, there is only

one quantity to estimate: p1,r. The consequence of fixing

p0,r 5 1/r is particularly relevant when dealing with in-

tercomparison studies like CMIP5 or the upcoming

CMIP6 (see, e.g., Kharin et al. 2013; Taylor et al. 2012).

To compare the values of p1 from different climate

models, it would be best to fix p0 to the same value for

all climate models. Otherwise, the interpretation of

the ratio p1/p0 will only be relative, an important

shortcoming for assessments like CMIP5. For example,

the ratio p1,IPSL(u)/p0,IPSL(u) for the French IPSL cli-

mate model is not directly comparable to that from,

say, the American NCAR model because p0,IPSL(u)

and p0,NCAR(u) differ due to model error. This inter-

model discrepancy can be large. This issue disappears in

our framework because p0,r,IPSL 5 p0,r,NCAR 5 1/r for all

r $ 2. Having the same reference frequency, it is now

possible to compare different relative ratios, that is, to

perform intermodel comparisons with respect to the

same yardstick.

The remaining task is to estimate p1,r. To implement

it, the rest of the paper will be organized as follows.

Section 2 presents our statistical model and its corre-

sponding inferential strategy. Examples will be given

in section 3. In particular, the analysis of yearly tem-

perature maxima from a climate model will illustrate

the applicability of our approach. Section 4 will con-

clude by highlighting potential improvements and fur-

ther directions.

2. Statistical model for p1,r

A simple approach for deriving explicit formulas for

p1,r is to make the connection5 with moments and mo-

ment generating functions (MGFs) by writing

p
1,r

5E[G(Z)r21]5Efexp[2(r2 1)W]g , (2)

where the new random variable

W52logG(Z)

takes its values in the interval [0, ‘) sinceG(Z) 2 (0, 1].

Equation (2) will play a fundamental role because it will

enable us to compute the probability that a factual ob-

servation like Zr could be a record in the counterfactual

world. In particular, we do not need to observe a record

at year r to infer p1,r 5P[Zr .max(X1, . . . , Xr21)]. In-

stead, we simply need to compute the expectation

E[G(Z)r21]. Hence, p1,r can also be viewed and in-

terpreted as an MGF with respect to the random vari-

able W.

In the remainder of this work, we will always assume

that the random variable W follows an exponential dis-

tribution with mean u. The MGF for an exponential is

well known (see, e.g., Henze and Meintanis 2005) and

gives a simple form for

p
1,r
5

1

11 (r2 1)u
. (3)

A natural question is to wonder which cases obey this

exponential constraint for W.

Table 1 provides three examples from extreme value

theory, a well-developed probability theory for distri-

butions ofmaxima and related upper-tail behaviors (see,

e.g., Embrechts et al. 1997; Coles 2001). From this table,

one can see that a shifted Gumbel random variable, that is,

Z5X1 m, produces a random variableW52logG(Z)

that is exponentially distributed. The same result can

4 The IID assumption appears reasonable for yearly maxima in

the counterfactual world, the topic of interest in our examples.

5 The proofs of all our mathematical statements can be found in

the appendix.
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be obtained from an inflated Fréchet, that is, Z 5
sX with s . 0, or from a Weibull–EVT type,6 that is,

Z 5 m 1 sX. This hints that block maxima, a block

being a season or a year, can produce factual and coun-

terfactual records that are in compliance with an expo-

nentially distributed W. In practice, we do not have to fit

a generalized extreme value distribution (GEV) to the

factual and counterfactual data. We need to assume that

W is exponentially distributed.

a. Testing the null hypothesis, H0: W ; exp(u)

The random variable W 5 2logG(Z) can be approx-

imated by its empirical version

Ŵ
i
52logĜ

m
(Z

i
) ,

where i 5 1, . . ., n, and Ĝm(z) represents a slightly

modified7 version of the empirical CDF of the sampleX.

To assess the goodness of fit with respect to the null

hypothesis, H0: W ; exp(u) with an unknown u against

general alternatives, we refer to Henze and Meintanis

(2005) and Ascher (1990). Both authors indicated

that the test of Cox and Oates (1984) performs well

for a wide range of testing alternatives. Its statistic is

given by Sn 5 n1�n

i51[12 (Ŵi/Wi)log(Ŵi/Wi)] with

Wi 5 (Ŵ1 1 . . . 1 Ŵn)/n. It can be shown that
ffiffiffiffiffiffiffi
6/n

p
Sn/p

is asymptotically standard normal under H0 (see, e.g.,

Henze and Meintanis 2005).

b. Inference of u under H0: W ; exp(u)

The constant u, which plays an essential role, can be

interpreted in different ways. Since p1;2 5P(Z.X)5
1/(11 u), the constant u can be viewed as the ratio

u5P(Z#X)/P(Z.X) that measures a type of fatness

between X and Z. If X and Z have the same distribu-

tion, then u equals one. If u is smaller than one, thenZ is

more likely than X to take large values, and vice versa.

The constant u is also the limit of the ratio p0,r /p1,r as

r goes to infinity.

UnderH0:W; exp(u), we need to estimate the single

parameter u. As p1,25 1/(11 u) with p1;2 5E[G(Z)], we

define

û5
1

p̂
1;2

2 1 with p̂
1;2

5
1

n
�
n

i51

G
m
(Z

i
) ,

where Gm(. ) corresponds to the empirical CDF associ-

ated with the sample X. The asymptotic properties8 of

û can be deduced fromffiffiffi
n

p
( p̂

1;2
2 p

1;2
)/N(0,l2

2), (4)

where

l2
2 5

1

11 2u
2

2

(11 u)2
1

2

(11 u)(21 u)
.

The delta method (see, e.g., Proposition 6.1.5 in

Brockwell and Davis 1991) givesffiffiffi
n

p
(û2 u)/N(0,s2

u), (5)

with s2
u5l2

2/p
2
1;25[(11u)2/(112u)]221[2(11u)/(21u)].

This leads to the (1 2 a)3 100% asymptotic confidence

interval for u; û6z12a/2(ŝu/
ffiffiffi
n

p
), where z12a/2 represents

the standard normal quantile at 1 2 a/2.

c. Inference of far(r) and risk ratio under
H0: W ; exp(u)

From the expression for p1,r in Eq. (3), the FAR for

records defined by far(r)5 12 p0,r /p1,r can be expressed

as

far(r)5 12
1

rp
1,r

5 (12 u)

�
12

1

r

�
. (6)

Table 2 provides far(r) and FAR(u) expressions for our

three GEV examples defined in Table 1. Figure 1 com-

pares far(r) with FAR(xr) for the same three distribu-

tions, where xr 5 G21(1 2 1/r) is the classical return

TABLE 1. Three examples for X and Z (see, e.g., Fig. 1).

Note that X and Z have to have the same lower and upper end

points. For the Weibull type, this imposes x, 1/(2j) with s . 0 and

m 5 (1 2 s)/(2j).

X Gumbel distributed with CDF

G(x) 5 exp[2exp(2x)] with x real, m $ 0, and

Z 5 X 1 m

X Fréchet distributed with CDF

G(x) 5 exp(2x21/j) with x . 0, j . 0

Z 5 sX with s . 0

X Weibull distributed with CDF

G(x)5 exp[2(11 jx)21/j
1 ] with j , 0

Z 5 m 1 sX

6With the constraint thatX andZ share the same support, that is,

x , 1/(2j) with s . 0 and m 5 (1 2 s)/(2j).
7 As Gm(Zi), with Gm representing the empirical CDF, could be

equal to zero for any i such Zi , min(X1, . . . , Xn), the

expression 2logGm(Zi) could provide 2log 0 5 ‘. This explains

why, to compute Ŵi 52logĜm(Zi), we use a kernel estimate Ĝm

with infinite support, and not Gm, to approximate the CDF G (see

the np package of Racine and Hayfield in R). This approximation is

only used for the testH0, but not to estimate p1,r, and consequently u.

See Eq. (4). 8 See the appendix for the proof.
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level. The limits of far(r) and FAR(xr) as r becomes

large are equal (horizontal dashed lines; see also the

‘‘Limit’’ rows in Table 2). In other words, far(r) and

FAR(u) are asymptotically equivalent for extremes.

Equation (6) naturally suggests the estimator

cfar(r)5 (12 û)

�
12

1

r

�
. (7)

The delta method applied to Eq. (5) gives

ffiffiffi
n

p
[cfar(r)2 far(r)]/N

"
0,

�
12

1

r

�2

s2
u

#
,

and the asymptotic confidence interval for far(r) iscfar(r)6 z12a/2(1/
ffiffiffi
n

p
)(12 1/r)ŝu. The relative error ofcfar(r) defined as the renormalized standard deviation

does not depend on r. For u 6¼ 1, it is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var[cfar(r)]q
far(r)

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(û)

q
12 u

5
s
u

12 u
.

Also note that this ratio is infinite when u 5 1 (no dif-

ference between the factual and counterfactual worlds).

Hence, it is counterproductive to compute far(r) in this

special case.

The record risk ratio rr(r) 5 p1,r /p0,r under model (6)

does not have this issue. For the estimator

brr(r)5 r

11 (r2 1)û
,

we have

ffiffiffi
n

p
[brr(r)2 rr(r)]/N

(
0,

r2(r2 1)2

[11 (r2 1)2u]4
s2
u

)
,

and consequently, this relative error of the risk ratio

satisfies ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var[brr(r)]p
rr(r)

;
r[‘

s
u

u2
,

and it is well defined for u 5 1.

3. Examples

a. Annual temperature maxima in Paris

To illustrate how our approach can be applied to cli-

matological time series, we study one of the longest re-

cords of annual maxima of daily temperature maxima in

Paris (weather station of Montsouris). To represent the

factual and counterfactual worlds, this Paris time series

is divided into two parts: 1900–30 and 1990–2015. Al-

though the influence of anthropogenic forcing may not

be completely absent in the first part of the record, Fig. 2

still shows that the hypothesis of exponentially distrib-

uted Wi seems reasonable. The histogram and the q-q

plot do not contradict the exponential hypothesis. The

top-right panel compares a decreasing convex dotted

line (our fitted exponential model) with the observa-

tional histogram that is also decreasing and convex. The

lower-left panel shows the ranked observations versus

the ones expected from our model. Being close to the

diagonal (the solid line) indicates a good fit.

To complement these visual devices, our exponential

fit is compared, via the Akaike information criterion

(AIC) and Bayesian information criterion (BIC), to a

Weibull fit, a natural but more complex alternative. The

lower scores for the exponential pdf (AIC 5 11.83 and

BIC 5 13.05 vs AIC 5 13.2 and BIC 5 15.7) confirms

our preference for the simpler model. Concerning the

test of Cox andOates (1984), the inferred p value is 0.51,

indicating that there is no reason to reject the expo-

nential model for our Parisian data. The upper-left panel

of Fig. 2 displays far(r) with its associated 90% confi-

dence interval. Even from a single location like Paris,

one can deduce that far(r) is not equal to zero, but is

rather around 0.5.

b. Analysis of yearly temperature maxima from
CNRM-CM5

To illustrate our method with numerical climate

model outputs, we study yearly maxima of daily maxima

of near-surface air temperature generated by theMétéo-
France CNRM-CM5 climate model. We focus on a

TABLE 2. Explicit FAR(u) and far(r) for the three examples in

Table 1. The ‘‘limit’’ row indicates the asymptotic value of far(r) as

r [ ‘ and, equivalently, the FAR(u) asymptote as umoves toward

the upper support bound. See also Fig. 1.

X Gumbel distributed and Z 5 X 1 m

FAR(u) 12
12 exp[2exp(2u)]

12 expf2 exp[2(u2m)]g
far(r) [1 2 exp(2m)](1 2 1/r)

Limit 1 2 exp(2m)

X Fréchet distributed and Z 5 sX

FAR(u) 12
12 exp(2u21/j)

12 exp[2(u/s)21/j]

far(r) (1 2 s21/j)(1 2 1/r)

Limit 1 2 s21/j

X Weibull distributed and Z 5 m 1 sX

FAR(u) 12
12 exp[2(11 ju)21/j]

12 exp[2s1/j(11 ju)21/j]

far(r) (1 2 s21/j)(1 2 1/r)

Limit 1 2 s21/j
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single climate simulation with ‘‘all forcings’’9 for the

period 1975–2005. This should mimic the current cli-

matology, that is, the counterfactual world, at least ac-

cording to this model. During this 30-yr climatological

period, we assume that the climate system is approx-

imately stationary with respect to annual maxima.

Concerning the ‘‘world that might have been’’ without

anthropogenic forcings, we consider a second run from

the same numerical model, but with only natural forc-

ings. For this counterfactual world, we assume statio-

narity over the full length of the simulation, that is, for

the period 1850–2012.

Our first inquiry is to see if our null hypothesis onW is

rejected or not. The white areas in Fig. 3 correspond to

the locations where the exponential hypothesis has been

rejected by the Cox and Oates test at the 5% level. For

the other points, the estimated value of u inferred from

Eq. (5) ranges from 0.2 to 1.2. A u near one (orange)

indicates identical factual and counterfactual worlds. A

u close to zero (blue) implies that the factual and

counterfactual worlds strongly differ with an increase

in temperature records. Note that the estimated u can be

larger than one, meaning that p̂1 , p̂0. Consequently, the

risk ratio should be used instead of the far in such cases.

Figure 4 displays the largest values of p1,r 2 p0,r over

all values of r $ 2. In causality theory, this difference

is called the probability of sufficient and necessary

causations, and under H0, it is equal to p1,ru 2 p0,ru 5
(12

ffiffiffi
u

p
)/(11

ffiffiffi
u

p
) with ru 5 11 1/

ffiffiffi
u

p
. These probabili-

ties summarize evidence of both sufficient and neces-

sary causation (see, e.g., Hannart et al. 2016). The subset

of locations such that the Cox and Oates p values are

greater than 5% and û, 1 are displayed in Fig. 4. For

example, this number for Iceland is 35%.

Interpreting the two maps jointly highlights the African

continent, Brazil, and western Australia, which seem to

represent regions with low u and large p values, that is,

with a strong contrast between the all forcing and only

natural forcing runs. Northern Brazil, most of Africa, and

western Australia appear to show evidence of such cau-

sations most strongly. Variability in surface air tempera-

ture is low in tropical regions and over many ocean areas,

and it is strongly reduced in areas of sea ice loss, so we

expect large relative differences between the counterfac-

tual and factual worlds in these cases. Simulated variability

is larger in other places, relative to the simulated change in

mean climate. As a consequence, both PN and PS remain

FIG. 1. Comparison of far(r) (dotted lines) defined by Eq. (6) with FAR(xr) (solid lines). The

horizontal dashed lines correspond to the limits shown in Table 2.

9 That is, the model is driven by specifying the history of green-

house gas concentrations, aerosols, land use, volcanic aerosol, and

solar output over the period of simulation from preindustrial times

up to 2005.
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small locally in these regions. This includes the Mediter-

ranean basin, which is sometimes referred to as a ‘‘hot

spot.’’ Note that given the period of time considered for

the ‘‘factual world,’’ non-GHG forcings like anthropo-

genic aerosols can contribute to this result (offsetting part

of the GHG-induced warming).

4. Discussions and future work

a. Event definition

Our work is closely related to the fundamental and

sometimes overlooked question of how to define the

event itself. Ideally, the event of interest should be easily

interpretable, its probability should be simple to compute

in both worlds, and it should belong to an invariant ref-

erence framework in order to compare different studies.

These desiderata were fulfilled by slightly moving away

from the idea of defining the event as an excess over a

fixed threshold and instead setting the event as a record.

A potential worry could have been that treating record

events instead of excesses above the threshold u could

drastically move us away from FAR(u). Figure 1 showed

that this concern was unfounded. In other words, the

practitioner interested in assessing the likelihood of

FIG. 2. Analysis of annual maxima of daily temperaturemaxima recorded at the weather station ofMontsouris in

Paris. To compute far(r), the period 1900–30 plays the role of the counterfactual world, and the recent climatology

1990–2015 represents the factual world. The 90% confidence intervals are based on Eq. (5).
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extreme events relative to a counterfactual scenario has

the choice of using far(r) or FAR(xr) for large r or,

equivalently, rr(r) or RR(xr).

b. Null hypothesis

Statistically, inferences of the probabilities of interest

are simple, fast, and efficient under H0: W ; exp(u). In

particular, such an assumption is satisfied for simple

GEV setups (see Table 1). Theoretically, it is rooted on

the variable W 5 2logG(Z). This transformed variable

shows that the interest is neither in only Z nor only X

(throughout the CDF G) but in how they combine. In

other words, our main message is that it is counterpro-

ductive to minutely study the two samples X and Z in-

dependently. As the FAR and risk ratios are relative

quantities, working with the relative statistic W greatly

simplifies their inferences.

Concerning the applications, our analysis of a long

temperature record in Paris and of a climate model in-

dicates that the exponential assumption for W appears

to be reasonable for temperature maxima over land

areas. Still, a comprehensive study with a large number

of both weather stations and climate models is needed to

confirm this hypothesis. Future work should also focus

on precipitationmaxima. In this situation, we conjecture

that the Weibull MGF, with its extra parameter k, could

be a better fit than the exponential MGF because

extreme precipitation has a stronger variability. The

Weibull parameter k should capture the changes between

the factual and counterfactual tails. Another option when

H0 is rejected is to estimate nonparametrically p1,r [see

Eq. (A1)], which provides the necessary information to

compute confidence intervals in this case. The main ad-

vantage of this approach is that goodness-of-fit tests are

FIG. 3. Comparing yearly temperature maxima from two runs of the Météo-France
CNRM-CM5 climate model. The factual run has all forcings (1975–2005), and the coun-

terfactual has only natural forcings (1850–2012). This figure displays û for the locations

such that the p value of the Cox and Oates test (H0: W is exponential) is greater than 5%.

The white areas correspond to locations where the null hypothesis can be rejected at the

5% level.
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not required, but itsmain drawback is that the sample size

n should always bemuch greater than the return period of

interest so
ffiffiffiffiffiffi
r/n

p
goes to zero.

To summarize our findings about H0, it is important to

emphasize that this hypothesis allows us to work with small

sample sizes; see our Paris example with n 5 30. This is a

huge difference with nonparametric methods that need

thousands of factual and counterfactual simulations.Hence,

our methodology is fairly general. One possible application

could be conditional attributions, when the event itself can

be linked to another covariate, like the atmospheric circu-

lation. Further work on far(r) would be to estimate this

value’s conditional to atmospheric circulation properties, in

order to separate the roles of changes in circulation and

temperature increases (see, e.g., Yiou et al. 2017).

Finally, our goal in this paper is not to discard the clas-

sical FAR(u) and RR(u) in favor of far(r) and rr(r). The

two have different interpretations, and they complement

each other. Here, the new p0,r and p1,r should be viewed as

an additional risk management tool for practitioners in-

terested in causality, especially those who base their

decision-making process on records. Conceptually, our

approach has the advantage of providing a fixed reference

framework,which is a necessity for intercomparison studies

and could help future intercomparison studies like CMIP6.

Acknowledgments. This work is supported by ERC

Grant 338965-A2C2 and P. Naveau’s work was par-

tially financed by the EUPHEME project (ERA4CS

ERA-NET).

APPENDIX

Mathematical Computation

a. Proof of Eq. (2)

Since F(z)5P(Z# z), we can write that

FIG. 4. As in Fig. 3, but for probabilities of sufficient and necessary causations at locations

such that û# 1, and the Cox andOates p value is greater than 5%. This probability is defined as

p1,ru 2p0,ru 5 (12
ffiffiffi
u

p
)/(11

ffiffiffi
u

p
), with ru 5 11 1/

ffiffiffi
u

p
.
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p
1,r

5P[Z
r
.max(X

1
, . . . ,X

r21
)]

5

ð
P[z.max(X

1
, . . . ,X

r21
)] dF(z),

5

ð
P
r21(X, z) dF(z), since X

i
iid,

5E[G(Z)r21], sinceG(z)5P(X# z) .

b. Proof of Eq. (4)

In this section, we prove a more general result than

Eq. (4); the latter can be deduced by taking r 5 2 in the

following proposition.

Let

p̂
1,r
5

1

n
�
n

i51

G
r21
n (Z

i
) ,

where Gn(z)5
1

m
�n

j51I(Xi # z). Then, we haveffiffiffi
n

p
( p̂

1,r
2 p

1,r
)/N(0, l2

r ), (A1)

with

l2
r 5 p

1;2r21
2 p2

1,r

1 (r2 1)2(EfGr22(Z
1
)Gr22(Z

2
)[G(Z

1
) ^G(Z

2
)]g

2 p2
1,r).

Note that the estimator p̂1,r and its asymptotic properties

do not depend on the null hypothesis:H0:W; exp(u). In

other words, p̂1,r is a very general nonparametric esti-

mator of p1,r for any integer r $ 2.

The key point for the proof of Eq. (A1) is the fol-

lowing result about the empirical processGm (seeMason

and Van Zwet 1987):

sup
z

j ffiffiffiffiffimp
[G

m
(z)2G(z)]2B[G(z)]j5O

�
logmffiffiffiffiffi

m
p

�
, (A2)

where B(u) represents a classical Brownian bridge on

[0, 1] with E[B(u)]5 0 and covariance

cov[B(u),B(y)]5 (u ^ y)2 uy .

It follows that for all i5 1, . . . , n, we can write uniformly

for any ziffiffiffiffiffi
m

p
[G

m
(z

i
)2G(z

i
)]5B[G(z

i
)]1O

�
logmffiffiffiffiffi

m
p

�
.

Letting h(u) 5 ur21, we can write that

ffiffiffi
n

p
( p̂

1,r
2p

1,r
)5

ffiffiffi
n

p �
1

n
�
n

i51

h[G
n
(Z

i
)]2 h[G(Z

i
)]

�
1

ffiffiffi
n

p �
1

n
�
n

i51
h[G(Z

i
)]2 p

1,r

�
5N

1
1N

2
,

with obvious notation for N1 and N2. Concerning

the latter, the central limit theorem tells us thatffiffiffi
n

p n
(1/n)�n

i51h[G(Zi)]2 p1,r

o
converges to a zero-

mean Gaussian variable with variance p1;2r21 2 p2
1,r.

Concerning N1, the function h(u) 5 ur21 being a dif-

ferentiable function on [0, 1], Proposition 6.1.5 in

Brockwell and Davis (1991) allows us to focus on the

approximation of N1 (the so-called delta-s method):ffiffiffi
n

p �
1

n
�
n

i51

h0[G(Z
i
)][G

n
(Z

i
)2G(Z

i
)]

�
5

1

n
�
n

i51

h0[G(Z
i
)]B[G(Z

i
)]1O

�
lognffiffiffi

n
p

�
.

As E[B(u)]5 0, we have

Efh0[G(Z
i
)]B[G(Z

i
)]g5E(h0[G(Z

i
)]E

Zi
fB[G(Z

i
)]jZ

i
g)

5 0.

Using cov[B(u), B(y)]5 (u ^ y)2 uy, we have

Efh0[G(Z
i
)]B[G(Z

i
)]h0[G(Z

j
)]B[G(Z

j
)]g5E(h0[G(Z

i
)]h0[G(Z

i
)]f[G(Z

i
) ^G(Z

j
)]2G(Z

i
)G(Z

j
)g)

5 (r2 1)2E(Gr22(Z
i
)Gr22(Z

j
)f[G(Z

i
) ^G(Z

j
)]2G(Z

i
)G(Z

j
)g) .

It follows that the covariance of

(1/n)�n

i51h
0[G(Zi)]B[G(Zi)] is equal to

1

n
(EfG2r24(Z)[G(Z)2G2(Z)]g

1 (n21)(r21)2fEfGr22(Z
1
)Gr22(Z

2
)[G(Z

1
) ^G(Z

2
)]g

2E
2[Gr21(Z)]g) .

For large n, this leads to

var

�
1

n
�
n

i51

h0[G(Z
i
)]B[G(Z

i
)]

�
; (r2 1)2(EfGr22(Z

1
)Gr22(Z

2
)[G(Z

1
) ^G(Z

2
)]g

2E
2[Gr21(Z)]) .
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In other words, the random variableffiffiffi
n

p �
(1/n)�n

i51h
0[G(Zi)][Gn(Zi)2G(Zi)]

�
asymptotically

follows a zero-mean Gaussian distribution with variance

(r 2 1)2(EfGr22(Z1)G
r22(Z2)[G(Z1) ^ G(Z2)]g2 p2

1,r).

In addition, the covariance

Efh0[G(Z
i
)]B[G(Z

i
)]g5E(h0[G(Z

i
)]EfB[G(Z

i
)]jZ

i
g)

is equal to zero because E[B(u)]5 0. In summary, the

sum N1 1 N2 can be viewed (asymptotically in a distri-

butional sense) as the sum of two zero-mean Gaussian

random variables, with total variance

l2
r 5 p

1;2r21
2 [11 (r2 1)2]p2

1,r

1 (r2 1)2EfGr22(Z
1
)Gr22(Z

2
)[G(Z

1
) ^G(Z

2
)]g .

For the special case defined by Eq. (3), we can write

that

l2
r 5

1

11 (2r2 2)u
2

1

[11 (r2 1)u]2

1 (r2 1)2
(

2

[11 u(r2 1)][21 u(2r2 3)]

2
1

[11 (r2 1)u]2

)
.

As l2
r 5 1/(2ru)[11 (1/u)]1O(1/r) and sr 5 lr/(rp

2
1,r),

we can write

s
r
;

ffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffi
11 u

2

r
, for large r .

This indicates that this nonparametric technique should

be used with caution for large r as the standard deviation

increases with the rate
ffiffi
r

p
. The sample size n should be

alwaysmuch greater than the return period of interest soffiffiffiffiffiffi
r/n

p
goes to zero.

c. Computation of p1,r in the GEV case

For ji 6¼ 0, we denote

T
i
(x)5

�
11 j

i

x2m
i

s
i

�1/ji

1

,

for i 2 f0, 1g, and we have T21
i (x)5mi 1 (si/ji)(x

ji 2 1).

For any GEV distributions in our tables, we have F(x)5

exp[21/T1(x)] and G(x) 5 exp[21/T0(x)]. In this con-

text, we can write

T
1
[T21

0 (x)]5

"
11 j

1

m
0
1

s
0

j
0

(xj0 2 1)2m
i

s
1

#1/j1
,

5

	
11

j
1

s
1

(m
0
2m

1
)2

s
0

s
1

j
1

j
0

1
s
0

s
1

j
1

j
0

xj0


1/j1
,

5

�
j
1
s
0

j
0
s
1

�1/j1

xj0/j1 ,

(A3)

whenever m0 2m1 5s0/j0 2s1/j1 (same support condi-

tion in the Weibull and Fréchet cases).
For j0 5 j1 5 0, we set for i 2 f0, 1g, Ti(x) 5

exp[(x2mi)/si] and T21
i (x)5mi 1si ln x. Then, we

have

T
1
[T21

0 (x)]5 xs0/s1 exp

�
m
0
2m

1

s
1

�
. (A4)

As T1(�)is a nondecreasing function, we can write that

A5PfT
1
(Z

r
)$max[T

1
(X

1
), . . . ,T

1
(X

r21
)]g.

To continue, we need to derive the pdf of T1(Zr). If Z

follows a GEV(m1, s1, j1), then

P[T
1
(Z

r
)# x]5P[Z

r
#T21

1 (x)],

5 exp

(
2

1

T
1
[T21

1 (x)]

)
5 exp

�
2
1

x

�
.

Hence, T1(Zr) is unit-Fréchet. Going back to the com-

putation of p1,r, we can use the independence assump-

tion within the sample X to write that

p
1,r

5

ð
Pfmax[T

1
(X

1
), . . . ,T

1
(X

r21
)# x]gdF

T1(Zr)
(x),

5

ð
[P(T

1
(X)# x)]r21 dF

T1(Zr)
(x) .

We need to compute

P[T
1
(X)# x]5P[X#T21

1 (x)]5 exp

 
2

(
1

T
0
[T21

1 (x)]

)!
.

To finish the computation, we study separately the

Gumbel and Fréchet cases. If j0 5 j1 5 0, then

T0[T
21
1 (x)] 5 xs1/s0 exp[(m1 2 m0)/s0]. Hence, p1,r 5Ð ‘

0
exp(2crx

2s1/s0)d[exp(21/x)], with cr5(r21)exp[(m12
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m0)/s0]. In other words, we have p1,r 5Ð 1
0
exp[2cr(2logu)s1/s0 ]du. When s0 5 s1, this becomes

p1,r 5 1/(1 1 cr).

If the shape parameters are nonnull and of the same

sign, then we have

T
0
[T21

1 (x)]5

	
11

j
0

s
0

(m
1
2m

0
)2

s
1

s
0

j
0

j
1

1
s
1

s
0

j
0

j
1

xj1


1/j0
,

5

�
j
0
s
1

j
1
s
0

�1/j0

xj1/j0 ,

whenever m1 2m0 5s1/j1 2s0/j0 (same support condi-

tion in the Weibull and Fréchet cases). It follows that

p
1,r
5

ð‘
0

exp(2d
r
x2j1/j0 ) d[exp(21/x)] ,

with cr 5 (r2 1)[(j0s1)/(j1s0)]
21/j0 . In other words, we

have p1,r 5
Ð 1
0
exp[2cr(2logu)j1/j0 ]du.

For the special case when j0 5 j1, then this simplifies

to p1,r 5 1/(1 1 cr).
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