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Two newly discovered hydrothermal vent fields of the Wallis and Futuna region, Kulo Lasi and Fatu Kapa, were sampled for fluid
geochemistry. A great geochemical diversity was observed and assigned to the diversity of lithologies as well as the occurrence
of various processes. Kulo Lasi fluids likely formed by interaction with fresh volcanic rocks, phase separation, and mixing with
magmatic fluid. Conversely, the geochemistry of the Fatu Kapa fluids would be mostly due to water/felsic lavas reactions. In terms
of organic geochemistry, fluids from both fields were found to be enriched in formate, acetate, and semivolatile organic compounds
(SVOCs): n-alkanes, n-fatty acids, and polyaromatic hydrocarbons (PAHs). Concentrations of SVOCs reached a few ppb at most.
The distribution patterns of SVOCs indicated that several processes and sources, at once of biogenic, thermogenic, and abiogenic
types, likely controlled organic geochemistry. Although the contribution of each process remains unknown, the mere presence
of organics at the uM level has strong implications for metal dispersion (cycles), deposition (ore-forming), and bioavailability
(ecosystems), especially as our fluxes estimations suggest that back-arc hosted vent fields could contribute as much as MOR to the

global ocean heat and mass budget.

1. Introduction

Although back-arc settings are favourable environments for
the formation of hydrothermal convection cells, hydrother-
mal exploration has long been conducted to a greater extent
on Mid-Oceanic Ridges (MOR). Today, more than 600 active
hydrothermal vent fields have been discovered and about
half of them are located at MOR against a fifth in back-
arc basins (BAB) [1]. Yet back-arc environments are likely
to generate more diversity than their MOR homologs in
terms of fluid chemistry because of the variety of lithologies
the fluids can react with (e.g., basaltic to rhyolitic volcanic
rocks with or without arc-like geochemical signature, various
alteration mineralogical assemblages) as well as the possible
contribution of magmatic-related aqueous fluids [2-5]. The
Wallis and Futuna area was surveyed for hydrothermal

activity because of its very peculiar geological settings within
a back-arc system and its potential relevance for mineral
resources [6, 7]. It is located about 200 km west of the
northern tip of the Tonga-Kermadec trench where the fastest
subduction rates have been recorded (18 to 24 cm per year)
and occur at the junction of 2 BAB: the Lau and the North-
Fiji BAB [8]. Here we report on the geochemistry of the fluids
of the very first two vent fields discovered in the area and in
this type of environment. We chose to bring a special focus
on organic geochemistry because it has been hardly studied
in modern hydrothermal systems despite the recent growing
interest for organic matter (OM) in the ocean. The discussion
focuses on processes controlling the geochemistry as well as
implications of the presence of organic molecules at the local
and regional scales.
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Organic geochemistry of hydrothermal fluids has gen-
erally been far less studied than the mineral and gas geo-
chemistry. In most cases works focused on small molecules
(hydrocarbon gases, volatile fatty acids, and amino acids)
and very few data are available on semivolatile organic
compounds (SVOCs). Despite the growing interest for OM in
the ocean and hydrothermal systems there is still a major lack
in identification and quantification of organic compounds
[10-15]. Notably numbers of studies agree on the major
ligand role of organics in metal stabilisation, transportation,
bioavailability, and ore-forming but there are hardly any clues
on the nature of these ligands in hydrothermal environments
[16-25]. Organic compounds in hydrothermal fluids may
come from marine dissolved organic matter (DOM) recycling
[12,13], subsurface biomass degradation [26], entrainment of
organic detritus from local recharge zones, and subsequent
degradation, or abiotic formation in the deep subsurface
[27-30]. The latter is supported by many theoretical [31-
33] and experimental work summarised in two reviews [34,
35]. Conversely, some other studies reported the absence of
organic compounds in hydrothermal fluids except at the Lost
City alkaline vent field which is theoretically more favourable
for abiotic synthesis [36]. Nevertheless, we report here the
presence of semivolatile organic compounds in hydrother-
mal fluids from the Wallis and Futuna area and provide
concentrations of a selection of extractable compounds that
have been identified elsewhere as hydrothermally derived
[27, 37]: n-alkanes, n-fatty acids (n-FAs), mono-, and pol-
yaromatic hydrocarbons (BTEXs and PAHs). These very first
quantitative field data might feed thermodynamic models of
abiotic synthesis, guide the design of experiments to better
understand hydrothermal organic geochemistry, and help
assessing the importance of hydrothermally derived organic
compounds in metal complexation and, as a nutrient for
microorganisms, complete fluxes calculation and enter in the
carbon cycle budget calculations.

2. Geological Settings

Wallis and Futuna Islands are located at the transition
between the North Fiji and the Lau back-arc basins. This
geodynamical setting accounts for complex volcanic and
tectonic activity in the area. Pelletier et al. [38] and Fouquet
etal. [6] observed multiple active extensional zones including
widespread areas composed of numerous individual volca-
noes (e.g., Southeast Futuna volcanic zone (SEVZ)) and well
organised spreading centers such as the Futuna and Alofi
oceanic ridge. West of Futuna Island, the 20-30° trending
Futuna spreading center (FSC), is composed of a series of en
echelon spreading segments. The opening rate of this oceanic
ridge has been estimated at 4 cm/yr from the interpretation
of magnetic anomalies [38]. East and southeast of Futuna
Island, bathymetric maps, and reflectivity data clearly reveal
that active extension and recent volcanism occur in the SEVZ
as well as along the Alofi spreading center [6]. The SEVZ isa
broad zone of diffuse volcanism bordered by the ENE-WSW
trending volcanic graben (named Tasi Tulo graben) to the
north and the NNE-SSW trending Alofi spreading center to
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the south. The SEVZ includes Kulo Lasi active volcano, the
Fatu Kapa, and Tasi Tulo volcanic zones ([7], Figure 1).

Fluids were sampled at the Kulo Lasi and Fatu Kapa sites.
Kulo Lasi has been described in detail by Fouquet and collab-
orators [39]. In summary; it is a shield volcano located about
100 km southeast of Futuna Island (Figure 1). It represents
the most recent volcano in the SEVZ and is composed of
basaltic to trachy-andesitic lava with no direct geochemical
affinity with subduction [39]. The volcanic edifice is ca. 20 km
in diameter and appears relatively flat with the top located at
a depth of 1200 m and the base only 300 m deeper (ca. 1500 m
below sealevel). It exhibits a central caldera (5 km in diameter
and 200-300 m deep) with a flat bottom covered by recent
lavas and a central mound composed of older and tectonised
lava flow. By contrast, the Fatu Kapa volcanic area is in a
20km wide transition zone between the Tasi Tulo graben
and the Kulo Lasi volcano. Here only small (<1km) volcanic
edifices are seen to be consisting of young mafic to felsic lavas
(Figure 1).

3. Sampling and Analytical Procedures

Sampling was achieved at Kulo Lasi and Fatu Kapa by
the HOV Nautile during the FUTUNA 1 and FUTUNA
3 cruises conducted by Ifremer in 2010 and 2012. Fluid
samples were taken at the nose of smokers to minimise
seawater contamination. Samples of volumes up to 750 mL of
hydrothermal fluids were collected in titanium syringes that
were modified after the model described in Von Damm et al.
[40]. The gas-tightness was greatly improved and ensured the
majority of the gas to be recovered. Those same syringes have
been used in several studies by Charlou et al. and have shown
good results notably for gas-Mg correlations (e.g., Charlou
et al., 2002). Autonomous temperature sensors (S2T 6000-
DH, NKE Instrumentation) were mounted on the sampler
nozzle. As soon as the fluids were recovered, pH, H,S, and
Cl” concentrations were measured to evaluate the quality
of the sample. Total gases were immediately extracted and
analysed; then aliquots of gas were conditioned for further
stable isotopes measurements. Finally, the gas-free fluid was
conditioned for major and minor elements analyses, on the
one hand, and for organic compounds analyses, on the other
hand.

3.1. Gas Extraction and Analyses. Total gas was extracted as
described in Charlou and Donval [41]. Preliminary major
gases (CO,, H,, CH,, and N,) concentrations were obtained
on board by using a portable chromatograph (Microsensor
Technology Instruments Inc.) that was mounted on line
with the gas extractor. Extracted gases were conditioned
on board in stainless steel pressure-tight flasks and stored
until analyses. Gases were separated by Gas-Chromatography
(Agilent GC 7890A, Agilent Technologies) and quantitatively
analysed by triple detection using mass (MS 5975C, Agilent
technologies), flame ionisation, and thermal conductivity
detectors. Aliquots of gas were stored both in vacuum tight
tubes (Labco, Ltd.) and in copper tubes to be sent for further
carbon isotope analyses (Isolab b.v., Netherlands) and He
isotopes analyses (CEA, Saclay, France), respectively.
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FIGURE 1: Bathymetric map of the study area. Close-ups of Fatu Kapa and Kulo Lasi are shown in boxes where sample positions are marked

with red disks. Copyrights from Ifremer, FUTUNA 1, 2, and 3 cruises.

3.2. Inorganic Geochemistry: Sample Preparation and Anal-
yses. pH was measured using a combined glass electrode
(Ecotrode Plus, Metrohm). CI” and H,S were measured by
potentiometry using AgNO; (0.05 M) and HgCl, (0.01 M) as
titrating solutions, respectively. NaOH (2 M) was added to the
aliquot before H,S measurement. SO, Br, Na, K, Mg, Ca, Li,
and Cl were measured by ionic chromatography (Dionex Ion
Chromatograph System 2000) after appropriate dilutions. Fe,
Mn, Cu, Zn, Sr, Li, and Rb were measured by flame atomic
absorption spectrometry using standard additions (AAnalyst,
Perkin Elmer Inc.). Aliquots for silica determination were
immediately diluted 100- to 200-fold and analysed by the
silicomolybdate automatic colorimetric method [42, 43].

3.3. Organic Geochemistry. Total Organic Carbon (TOC)
was measured using a multi N/C 3100 (Analytik Jena AG,
Germany). Samples were acidified online with HCI and then
purged with O, to remove inorganic carbon (IC). A TIC

control analysis was performed and followed by three TOC
measurements on each sample.

Acetate and formate concentrations were determined
using a Dionex ICS-2000 Reagent-Free Ion Chromatogra-
phy System equipped with an AS50 autosampler (Dionex
Camberley, UK). Chromatographic separation was conducted
using two Ionpac ASI5 columns in series at 30°C and the
determination of species was carried out using an Anion
Self-Regenerating Suppressor (ASRS 300 4 mm) unit in com-
bination with a DS6 heated conductivity cell (35°C). The
gradient program was as follows: 6 mmol L' KOH (43 min);
increase from 27 mmol L™ KOH min~' to 60 mmol L™
(39 min); decrease from 54 mmol L™ KOH min ' to 6 mmol
L' (5min).

SVOCs were extracted using Stir Bar Sorptive Extraction
(SBSE). Basically any compound with a log Ko/w > 2.5 is
recovered with a rate > 50% [44]. The method was improved
after Konn et al. [37]. The entire content of the titanium
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TaBLE 1: Main GC analytical parameters used for calibration and analyses of hydrothermal fluid samples. Each group of compounds (n-
alkanes, BTEXs, PAHs, and n-fatty acids) was analysed using separate twisters.

n-Alkanes BTEX & PAHs n-Fatty acids
Oven
Initial T ("C) 40 40 40
Initial ¢ (min) 1 1 1
ramp 40 to 320°C at 12°C/min 40 to 320°C at 12°C/min 40 to 320°C at 20°C/min
Final T ("C) 320 320 320
Final t (min) 2 2 2
Injector
T(°C) 250 250 325

TABLE 2: Experimental conditions used for calibration curves. Linear regressions were performed on one order of magnitude concentration

domain depending on the concentration range of the samples.

n-Alkanes BTEX & PAHs n-Fatty acids
Concentration levels (yg~L'l) 0.5,1,2,5,10 0.05, 0.1, 0.25, 0.5, 1, 2, 5, 10 0.25,0.5,1,2,5,10
IS concentration (ug-L™") 5 5 10

syringe was transferred into a precombusted glass bottle and
six 90 mL aliquots of the sample were poured into 100 mL
precombusted glass vials. 10 mL of MeOH was added to avoid
adsorption of the compounds onto the wall of the vials.
Internal standards were added to the solutions in 2012 so that
quantification could only be achieved in Fatu Kapa fluids.
Extraction was performed in sealed vials with ultrainert
septum crimps, at 300 rpm and using 48 uL. PDMS Twisters®
(Gerstel GmbH). We focused on a selection of chemical
groups that had previously been described as hydrothermally
derived [27]. To that respect, pairs of aliquots were dedicated
to analysis of n-alkanes, n-FAs, and both BTEXs and PAHs,
respectively. Extraction kinetics experiments showed that
chemical equilibrium was reached after 5h of extraction for
n-alkanes, 4h for PAHs and 14 h for n-FAs (Konn, unpub-
lished results). Twisters were then removed, rinsed with MQ
water, dried, and stored at +4°C until analyses by Thermal
Desorption-Gas Chromatography-Mass Spectrometry (TD-
GC-MS) [37]. Analytical parameters were adjusted for each
group of compounds (Table 1).

For each batch of conditioned Twisters, one was spared,
stored at +4°C, and analysed in the same run as the other
Twisters. This dry blank aimed at showing any contamination
that could have occurred during conditioning, storage, and
transport. MQ water samples were prepared and extracted
on board as regular hydrothermal samples to check if any
contaminations could have occurred during the sample
preparation step. Deep-sea water was also collected, pro-
cessed, and analysed, using the same titanium syringes and
according to the same protocols as for hydrothermal fluid
samples, and thus constitute the reference blank experiment.

Calibration was achieved using a commercial stan-
dard solution of BTEXs and 3 custom standard solu-
tions of Cy-C,, n-alkanes, C;-C,3 n-FAs, and PAHs con-
taining naphthalene (N), Acenaphtene (A), Fluorene (F),
Phenanthrene (Ph), Anthracene (An), Fluoranthene (Fl),
and pyrene (Py) (LGC Standards, LGC Ltd.). Deuterated
n-alkanes (C,,D,, and C,,D;,), methyl esters (CoH,50,

and C;3H;,0,), and deuterated PAHs (naphthalene-DS8,
Biphenyl-D8, and Phenanthrene-D10) were used as inter-
nal standards (IS). Calibration curves (Concentration (ana-
lyte)/Concentration (IS) versus Area (analyte)/Area (IS))
were obtained using at least five concentration levels that
were replicated 3 times (Table 2). Although the correlation
coeflicient of the linear regressions was satisfactory for all
compounds, the significance and lack of fit of the model
were checked by statistical tests before validation. A series of
Student, Barlett, Chi-square, and Fisher tests was run for each
individual compound using the Lumiére software. The best
fitting model was then chosen for each case and confidence
intervals were calculated.

4. Results

Altogether 35 hot fluid samples were collected in the study
area from 8 different sites: Kulo Lasi caldera (6), on the
one hand, and Stéphanie (7), Carla (4), Idef* (4), Obel* (3),
Aster™ (1), Fati Ufu (6), and Tutafi (4), on the other hand,
all located in the Fatu Kapa area (Figure 1). The Kulo
Lasi smokers occurred at ~1500m depth on recent lava
flows and consisted in a multitude of short (~25cm) and
narrow (~3-5 cm) diameter anhydrite chimneys containing a
small percentage of sphalerite (ZnS), chalcopyrite (CuFeS,),
isocubanite (CuFe,S;), pyrrhotite (Fe,_,S), and pyrite (FeS,)
(Figure 2). The temperature was consistently about 343°C and
the pH approached 2.2-2.3 (Table 3). In the Fatu Kapa area we
could distinguish two types of hydrothermal environments at
1550-1650 m depth. Translucent 270-290°C fluids associated
with anhydrite chimneys (up to 25m tall and 2.5m in
diameter) characterised Stéphanie, Carla, Idef*, Obel*, and
Aster™ sites, while >300°C milky to grey fluids associated
with sulphide chimneys were characteristic of the southwest
region including Fati Ufu and Tutafi sites (Figure 3, Table 3).

4.1. Gas. Concentrations of gases in all fluids as well as stable
isotopes data are compiled in Table 4. Samples recovered
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FIGURE 2: Photographs of sulphide chimneys and young lava flows
observed on the floor of the Kulo Lasi caldera. Copyrights from
Ifremer, FUTUNA 1 cruise.

from Kulo Lasi were extremely poor in CH, (<0.01mM) but
contained the series of C,—Cs hydrocarbons. Samples from
Fatu Kapa had higher concentration of CH, (0.05-0.235 mM)
but only n-pentane (0.5-3.2uM) could be detected and
quantified in terms of longer hydrocarbons. One sample
from Kulo Lasi was found to be extremely rich in H, with
nearly 20 mM while the others ranged from 1 to 6 mM and
were below 0.05mM at Fatu Kapa. H,S was highly variable
between the 3 sampled chimneys at Kulo Lasi (0.39, 1.66, and
5.05mM) while it was found rather homogeneous at Fatu
Kapa with values around 1mM. CO, concentrations were
more elevated at Fatu Kapa (4.5-29 mM) compared to Kulo
Lasi (1-5mM).

Helium isotope ratios were in the range 7.0-9.9 Ra over
the Fatu Kapa area, in agreement with plume data [7]. They
could not be measured at Kulo Lasi unfortunately. Carbon
isotopes ratios were around —5%o for CO, at Fatu Kapa
whereas at Kulo Lasi the ratio showed very different results

ranging from —0.2 to —4.1%o. As for methane, §°C were
slightly lower at Kulo Lasi (~—28%o) versus Fatu Kapa (~
—23%o0) and 6D was about —110%o in all samples from Fatu
Kapa. 8D (CH,) could not be measured in the Kulo Lasi fluids
because of the too low concentrations of CH,. Carbon isotope
ratios of longer hydrocarbons were in the —27 to —22%o at
both vent fields. To be noted one sample from Fati Ufu in the
Fatu Kapa area showed remarkably lower isotopic ratios with
8C (CO,) = —2.3%o, 8"*C (CH,) = —6.1%0 and 8D (CH,) =
—93%o. We do not have any explanation for this but do not
have any reasons either to consider it as an outlier.

4.2. Major and Minor Elements. Major and minor elements
measurements data are compiled in Table 3. Fluids from
Fatu Kapa all exhibited a higher salinity than seawater up to
4.6 wt% NaCl whereas at Kulo Lasi fluids with both lower
(2.8wt% NaCl) and higher (4.3wt% NaCl) salinity were
sampled. Mg and SO, concentrations tend to be zero in the
purest samples at Fatu Kapa. But, the purest fluids from Kulo
Lasi showed significant levels of Mg and SO, associated with
an extremely acidic pH (<2.5) and a high T'(343°C). Although
we cannot totally discard that some mixing with seawater
occurred, endmember concentrations of the Kulo Lasi fluids
were then estimated to be close to the purest fluids sampled
whereas they were obtained from mixing lines at Fatu Kapa
assuming Mg zero (Table 5).

Fluids from Fatu Kapa were enriched compared to sea-
water in alkali, alkaline Earth, and transition metals as well
as in strontium, bromide, and silica. Conversely, the fluids
from Kulo Lasi exhibited a much more complex pattern.
They were all highly enriched in transition metals and silica
compared to seawater and fluids from Fatu Kapa (e.g., Fe up
to ~10 mM). The enrichment versus seawater in alkali metals
was not as striking as for Fatu Kapa fluids. As for the alkaline
Earth metals, the amount of Ca was identical to seawater and
fluids were depleted in Sr compared to seawater. Finally, both
depletion and enrichment in Br were observed in the fluids
from Kulo Lasi.

4.3. Organic Geochemistry. First of all, we would like to men-
tion that because solubility of organic compounds decreases
with T and because samples were processed at room tempera-
ture, the measured concentrations are probably lower than in
situ concentrations. Moreover, it is very likely that a portion
of the OM was adsorbed on small particles in the fluids which
are not taken into account using our extraction and analytical
techniques. As a result, the concentrations we report here
probably represent lower estimates of in situ concentrations.
However, since in situ measurement techniques are not
available yet, these values are the best estimates we can obtain.
Note that they also are the first to be published for SVOCs.
Formate and acetate reached 16.3 and 15.5 uM, respec-
tively, and covaried with Mg in the Kulo Lasi fluids (Figure 4).
Concentrations of formate and acetate were significantly
higher in the Fatu Kapa area but no correlation with Mg
could be observed. Nevertheless, the purest fluids usually
showed the highest concentrations. Formate reached 68 ppb
at Stéphanie and 722 ppb at Fati Ufu whereas it could not
be detected at Idef* and Tutafi and was not measured at
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(c)

FIGURE 3: (a) and (b) Photographs of anhydrite structures observed at Stéphanie, Carla, Idef*, Aster™, and Obel® site. (c) Photographs of grey
smokers associated with sulphides structures observed at Fati Ufu and Tutafi. Copyrights from Ifremer, FUTUNA 3 cruise.
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FIGURE 4: Mixing lines of formate and acetate versus Mg for the Kulo Lasi fluids. Note that the reference deep-sea water sample (FU-PL05-
TiG2 noted as SW here) was taken at 1150 m depth above the southern wall of the caldera (see Figure 1 for location and Table 3) and thus very
likely within the plume [7]. This would account for the unusual concentrations of formate and acetate detected.
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Carla. Acetate was detected in all analysed samples and
concentrations were an order of magnitude higher than the
ones of formate (543-2309 ppb) (Table 6).

Heavier extractable organic compounds were not
detected in the dry control experiment and only a few were
detectable but below limit of quantification (LOQ) in the
MQ water blank experiment (Table 6). This showed that
sample preparation and storage could be considered as
contamination-free steps. The levels of heavier extractable
organic compounds appeared rather high in the reference
water at Fatu Kapa certainly because of the overall spread
hydrothermal discharges and diffuse venting in the region [7]
(Table 6, Figure 5). This sample was indeed taken mid-way
between Obel™ and Aster™ fields at about 20 m above the
seafloor. As a consequence, it is difficult to assess possible
contamination originating from sampling device or seawater
contribution in the present case. However, earlier studies
have shown that they generally did not represent major
sources of contamination as for the studied compounds
[27, 37]. Nevertheless, in comparison to deep-sea water
both the qualitative (Kulo Lasi) and quantitative (Fatu
Kapa) data obtained suggested enrichment of the fluids
in hydrothermally derived compounds, namely, n-alkanes
(Cy-Cy,), n-FAs (Cy, Cy,, C14—Cyg), and PAHs (fluorene,
phenanthrene, pyrene) ([39]; Table 6, Figures 5 and 6).
Such enrichment was unclear for >C,, n-alkanes; C,,
C,;>» Cy3 n-FAs; BTEXs; naphthalene, acenaphthene, and
fluoranthene because of their very low concentration and/or
the measurement uncertainty.

Differences in concentrations seemed to exist among the
vents over the Fatu Kapa area. Fluids from the Stéphanie vent
field had concentrations in hydrocarbons equal or below the
reference water sample whereas they were clearly enriched
in Cy, Cy,, C;4—C,3n-FAs. The Carla fluids were slightly
enriched in Cy-C;, n-alkanes and showed the highest con-
centrations in PAHs. Fluids from Idef*, Fati Ufu, and Tutafi
shared some similarities: a strong enrichment in decane and
undecane, alike concentrations in PAHs, and the presence of
significant amounts of xylene. However, fluids expelled at the
Tutafi vent appeared the most enriched in Cy-C,; n-alkanes
and xylenes. In terms of fatty acids and considering the
analytical error, the 5 vents showed consistent concentrations
with Cy, Cy4, and C,4 being major. Note that fluids from Fati
Ufu seemed depleted in C,, and Cg.

Generally we did not observe strong linear correlation
between the concentration of individual compounds and Mg.
Nonetheless, these relations showed that both enrichment
and depletion of organic compounds seemed to occur in
hydrothermal fluids versus deep-sea water.

5. Discussion

The elemental and gas composition of hydrothermal fluids
is mainly affected by water/rock interactions and thus the
nature of the host rocks, phase separation, magmatic fluid
contribution, conductive cooling, and seawater mixing in
local recharge zones [45]. In the following discussion we
attempt to unravel the occurrence of these various processes

1

both at Kulo Lasi and at Fatu Kapa. Much less is known on
processes that control organic geochemistry and are therefore
discussed here as well as some implications of the presence
of organic compounds in hydrothermal fluids. Implications
related to the composition of the fluids are dependent on
fluxes; therefore, we give here an attempt to provide order of
magnitude estimates of heat and mass fluxes.

5.1 Plume-Fluids Relations. The geochemistry and dynamics
of the plumes over the Wallis and Futuna region have
been studied elsewhere [7]. The Kulo Lasi plume has been
proposed to be the result of both high-T" and diffuse venting
from multiple vents located both on the floor and on the
wall of the caldera. Consistently, both types of venting have
been observed [6]. Helium, nephelometry, and Mn profiles
recorded above the northern sampling area showed constant
elevated concentrations in the 300 masf and were assumed
to be the results of diffuse venting. Our results show that
they are obviously the result of the numerous small black
smokers observed on the seafloor (Figure 2). The methane
concentration in the sampled fluids was extremely low which
cannot account for the elevated concentration of CH, in
the water column reported by Konn et al. [7]. The strong
difference in the CH,/Mn ratios between the plume (0.7-4.5)
and the sampled fluids (0.001-0.01) is another line of evidence
that the methane plume has another origin compared to
hydrothermal fluids and likely come from degassing of the
lava flows as suggested by the authors. Although other fluid
discharges likely remain undiscovered, this is consistent with
a past eruption and accumulation of the water mass in the
caldera [39].

A great diversity of the fluid compositions was expected
from the geological settings and the water column survey and
was indeed confirmed by the mixing lines that point to as
many endmembers as sampled areas (Figure S1). CH,/TDM
ratios also differed among the vents but it was not due to sole
CH, concentration variations as suggested earlier (Table 5)
[7]. Finally, the very weak nephelometry of the Fatu Kapa
plume is likely best explained by the low metal contents of
the fluids.

5.2. Reaction Zone Depth. The solubility of Quartz in hydro-
thermal fluids has been studied by different authors (e.g.,
[46]). According to these works silica concentration in the
fluid may be used to estimate the depth of the reaction zone.
The silica concentration measured in the Kulo Lasi and Fatu
Kapa fluids indicates a hydrothermal reaction zone at seafloor
or in the water column (Figure S2). Both observations suggest
that, in this area, fluids are not in equilibria with Quartz at
the pressure and temperature of the fluid emission. And this
prevents using Si as a geothermometer to determine the depth
of the reaction zone.

All fluids at Fatu Kapa were indeed highly depleted in
Si with respect to the Quartz saturation curve at 170 bar,
300°C (Si ~12mM in Figure S2). A higher temperature in
the reaction zone (>350°C at 200 bar) may explain a lower Si
concentration in the fluid at equilibrium as Quartz solubility
decreases (Figure S2). The dispersion of a great number of
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FIGURE 5: Distribution of n-alkanes, n-fatty acids, mono-, and polyaromatic hydrocarbons (BTEX and PAH) in the purest fluids of the
Stéphanie, Carla, Idef™, Fati Ufu, and Tutafi sites collected within the Fatu Kapa vent field. Because organic geochemistry does not seem to
follow a simple mixing model, endmember concentrations cannot be calculated. To that respect composition of the purest fluids is presented
and assumed to be close to endmembers composition. Note that quantitative results are not available for the Kulo Lasi fluids (see Figure 6 for

chromatograms).
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FIGURE 6: Only qualitative results could be obtained at Kulo Lasi. This figure presents a selection of representative chromatograms obtained
for the Kulo Lasi fluid samples. For the sake of clarity, close-ups of a few peaks are shown to illustrate the enrichment of fluids (FU-PL06-TiG1
in red and FU-PL06-TiD3 in green) versus the reference deep-sea water (FU-PL05-TiG2 in blue).

vent fields over a large area of recent lava flows may be due
to complex fluid pathways that favour conductive cooling of
the fluid and subsurface loss of silica before venting on the
seafloor. Consistently, amorphous silica was common in the
seafloor deposits at Fatu Kapa where opal was abundant as
a late mineral in sulphides and as silica crusts (slabs) at the
surface of the deposits [6]. In conclusion, this would indicate
a fairly shallow reaction zone at Fatu Kapa (a few 100 mbsf)
in agreement with the geological settings and the possible
occurrence of dikes.

5.3. Chlorinity. Phase separation is often accounted for salin-
ity deviation in hydrothermal fluids versus seawater [47, 48].
Phase separation is of great importance in metal transporta-
tion and ore-forming processes, for example, [24, 49-51].
It also implies that seawater experiences dramatic changes
in its physical and chemical properties as it reaches the
super- or subcritical state. In particular, strong modification
of the density and ionic strength of seawater enables uncon-
ventional chemical reactions, hence a likely importance in
hydrothermal organic geochemistry, for example, [52]. The
measured P and T of the Kulo Lasi fluids are almost on the

critical curve of seawater meaning that liquid and vapor phase
may coexist at Kulo Lasi. An adiabatic decompression of
supercritical seawater (initial fluid and equivalent to 3.2 wt%
NaCl) as it rises towards the seafloor would cause it to
separate, at about 320-350bar and 415-420°C, into two
phases having the NaCl percentages observed at Kulo Lasi
(Figure S3) [53, 54].

Similarly, the excess salinity of the Fatu Kapa fluids (9 to
41%) could be explained by phase separation and is supported
by the Br/Cl ratios which significantly differed from seawater
[45, 55]. Since we have not sampled any Cl-depleted fluids
we may infer that phase separation may have occurred in
the past and that only the brine phase was venting at the
time of the cruise. Alternatively water-rock reactions could
represent a significant Cl source to the fluids [56]. Indeed,
the felsic lavas collected in the Fatu Kapa area contained up
to 10 times more Cl than MORB (Aurélien Jeanvoine, personal
communication).

5.4. Water-Rock Reactions. Generally, fluids from Kulo Lasi
and Fatu Kapa were not typical of back-arc settings but
shared similarities with ridge, arc, and back-arc settings fluid
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signatures [3]. The Kulo Lasi fluids have unusually high
concentrations of Mg (24.6 to 34.9mM) and SO, (6.2 to
12.0 mM) at low pH (2.24 to 3.32) and high T (338-343°C)
which indicate that significant seawater mixing at subsurface
or during sampling is rather unlikely. In back-arc context,
the occurrence of Mg and SO, in endmember fluids can
be explained by a magmatic fluid input as observed at the
Desmos [5, 57], Rota 1 and Brother sites [58, 59]. Magmatic-
derived SO, would disproportionate according to reaction (1)
at temperatures measured at Kulo Lasi (e.g., [5, 60]). This is
consistent with widespread occurrences of native sulfur on

fresh lava near the active vents [39] as well as the low pH of
the fluids.

350, (aq) + 2H,0 = §° (s) + 4H" + 250, 6))

Yet CO, concentrations are low and the Na:K:Mg
ratios are strongly different to seawater. The latter suggests
a contribution of Mg by dissolution of magnesium silicates
[39]. Besides, the high Li and Rb concentrations and the
presence of recent lava injected in the caldera point to
water/fresh hot volcanic rocks interactions. Notably, such
interactions are capable of producing the extremely high
concentration of H, measured in the Cl-depleted sample and
thus the very unusual H,/CH, observed [61] (Figure S4).
High concentrations of metals are consistent with the highly
acidic nature of the fluids coupled with high H,/H,S ratios
[62, 63].

The relatively mild pH, *He/CO,, and R/Ra ratios of the
Fatu Kapa fluids are diagnostic of the occurrence of seawa-
ter/MORB interactions [64-66] (Figure S5). Consistently, the
geochemistry of the Fatu Kapa fluids was very similar to the
Vienna Woods ones whose composition is mainly the result
of interactions with basalts [3, 4]. Yet metal concentrations
were lower at Fatu Kapa while Ca, K, and Rb were higher
and Li is similar. Plausible explanations for the extremely
low metal concentrations observed in the Fatu Kapa fluids
are conductive cooling; water/metal-poor rocks interactions;
subsurface metal trapping under silica and barite slabs [6].
Given the wide variety of lithologies sampled in the area,
fluid compositions are likely the results of interactions with
a wide range of rock source chemistries. To that respect,
the composition of the local lavas that are characteristic of
andesite, trachy-andesite, dacite, and trachy-dacite probably
best explains the enrichment in Ca and in the mobile alkali
metals K and Rb.

5.5. What Controls Organic Geochemistry? The origin of
hydrocarbon gases and SVOCs in natural systems including
hydrothermal systems has been the focus of many studies
since the abiotic origin of some hydrocarbons was postulated
([67, 68] for a review). Both field and experimental studies
have tried to unravel the origin of hydrocarbons making use
of stable isotopes (e.g., reviews of [34, 35]). Although there
are strong discrepancies among studies, the variation of §">C
with the carbon number may be a reasonable indicator of
the origin. The trend observed in the Cl-depleted sample
of Kulo Lasi was very similar to the ones attributed to an
abiogenic origin in the Precambrian shields or in the Lost
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City hydrothermal field [69, 70]. The Kulo Lasi Cl-rich sample
exhibited a pattern that has been observed in several Fischer-
Tropsch type (FTT) experiments [34]. The strong positive or
negative fractionation between C, and C, observed in the
hot fluids of Kulo Lasi is likely due to chain initiation [71].
Conversely, the low-T (135°C) sample that was collected in
a beehive-type smoker covered with bacterial mats showed
a regular positive trend which has been proposed to be
diagnostic of a thermogenic origin. Although we concede that
the abiogenic origin of C,, hydrocarbon gases in the Kulo
Lasi field will need more investigation, methane is clearly at
the border of abiogenic and thermogenic domains both at
Kulo Lasi and at Fatu Kapa with §"°C values ranging from
—-29 to —6.1%o ([72] and Figure 7). Carbon isotopes of CH,
and CO, suggest that methane underwent oxidation, possibly
by bacteria, at both sites and may explain the extremely low
concentrations observed (Figure 8 in [73]). Consistently and
according to thermodynamic calculations, methanogenesis
should be limited under the P, T, and redox conditions
present at the Futuna sites and CH, consumption might be
prevalent [31].

By contrast, carbon isotopes have not appeared to be
useful up to date in determining the origin of heavier
organic compounds [74]. Several processes are likely to occur
simultaneously and to use several C sources, resulting in
a nondiagnostic bulk 8"°C signature. Several experimental
and theoretical studies indicate that a range of organic
compounds including linear alkanes and FAs could form
and persist in natural hydrothermal systems (e.g., [31-35]).
However, according to the calculated fH, at P and T of
the study sites, the redox conditions are likely buffered by
Hematite-Magnetite (HM) or an even more oxidizing min-
eral assemblage which appear less favourable for abiotic syn-
thesis than Pyrite-Pyrrhotite-Magnetite, Fayalite-Magnetite-
Quartz, or ultramafic rocks assemblages [27, 32, 33] (Table 4).
The occurrence of organic compounds in our fluids must thus
be attributed to a great part to other processes. Microbial
production and thermal degradation of microorganisms, OM
detritus, and/or refractory dissolved OM represent good
candidates to produce soluble organic compounds. PAHs are
indeed common products of pyrolysis of OM [26, 75, 76].
Long chained fatty acids are major constituent of organisms
and their presence in the Futuna fluids could be easily
associated with thermal degradation of biomass or OM [26,
77]. Yet the distribution of the compounds found in the fluids
does not match a simple process of OM degradation. Only
>C,; n-FAs occurred in sediments with C,, being the most
abundant (Figure S6). However, similar to our samples, both
odd and even carbon number n-FAs were observed in the
C,4—-C,, range with odd FAs being less abundant. Petroleum
exhibits nearly equal levels of C,,~C,, n-FAs. Only the even
series has been reported in both massive sulphide deposits
(MSD) and hydrothermal mussels with C,¢ being the most
abundant. Short chain FAs (<C,;) have only been reported in
Lost City fluids but here again only the even series occurred.
In any case C, was reported whereas it was nearly the
most abundant in our fluids. Abiotic processes may still be
considered as nonanoic acid could be synthesized from CO,
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FIGURE 7: Modified after Etiope and Sherwood Lollar [9]. The isotopic composition of CH, in the Fatu Kapa fluids falls into the abiotic gas
category but differs from the typical isotopic signature of CH, at Mid-Atlantic Ridge’s vent fields.

and H, [31], nonane [78], or undecane [79]. As a difference
the presence of C,4 and C,4 n-FAs in significant amount in
the fluids from Fatu Kapa may represent a direct microbial
contribution. The distribution observed in the Fatu Kapa
fluids likely reflects the occurrence of several concomitant
processes possibly including production reactions (abiotic
and thermogenic) and consumption mechanisms (adsorp-
tion and complexation).

Nonvolatile n-alkanes are usually associated with lower
T processes such as in oil fields or at the Middle Valley
hydrothermal vent field [80]. In the Guaymas basin, where
n-alkane-rich sediment samples have been reported, it is
less clear what temperature they were exposed to. However
and as far as we understood high temperatures were rather
associated with absence of n-alkanes and presence of PAHs
consistently with high-temperature OM pyrolysis [26, 81, 82].
Pyrolytic processes resulted in the presence of light hydrocar-
bon gases with an exception of some high T (>200°C) fluids
containing C, and C,, n-alkanes. n-Alkanes also occur in
solids from unsedimented hydrothermal vent fields ([76] and
references therein). Notably, the n-alkanes distribution in our
fluids does not resemble any aspects neither the ones resulting
of low-T processes nor the ones created by high-T FT'T reac-
tions [83, 84] (Figure S7). C,,—-C,, n-alkanes usually occur
in equivalent amounts in petroleum or show a consistent
decrease with molecular weight. Experimental FTT reactions
produced consistent increasing concentrations from C, to
C,, and then consistent decreasing concentrations to C,,.
Similar patterns are also associated with the kerosene fraction
of petroleum [85]. Distribution patterns in hydrothermal
solids are difficult to picture as usually only chromatograms

are provided in the studies, for example, [86], but they largely
differ by the simple fact that <C,, alkanes were not detected
in most cases as in sediments from various locations [87].
The smaller alkanes may well be preferentially entrained in
fluid circulation but they are more likely the result of other
processes, especially high-temperature ones, and including
abiotic reactions. Note that the latter should not be reduced
to sole FTT reactions because supercritical water is a fabulous
medium for unconventional reactions [88-90].

Formate and acetate have been given more attention in
both laboratory [91-93] and field hydrothermal studies [28,
29] as these small molecules are likely to prevail according
to thermodynamic studies (e.g., [31-33]). Where usually
formate dominates, acetate was found to be more abundant
in fluids from Fatu Kapa. According to Shock studies, at
280-300°C, formic acid concentrations should not be much
higher than acetic acid, but this is not enough to explain our
“reverse” concentrations. And especially it is not consistent
with higher amounts in the 300°C fluids. A ratio close
to 1 was observed at Kulo Lasi which may indicate that
different production/consumption processes occur. Also the
concentrations of the formate and acetate plotted on a line
versus Mg which suggest that the fate of these volatile fatty
acids at Kulo Lasi is controlled by simple mixing; that is there
would be no consumption/production when fluid mixes with
seawater (Figure 4). The deep-seawater concentrations were
high compared to what is usually reported in the literature
which was most likely due to plume contribution [27, 28].
This supports the simple mixing model hypothesis and is
consistent with the near absence of organisms around those
chimneys.
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5.6. Organic Compounds: Implications for Biology, Mineral
Resources, and C Cycling. The idea that life could have
originated in hydrothermal systems from abiotic reactions
was postulated in the late 70s [94]. However, the question
of the origin of organic compounds in hydrothermal systems
has remained ever since they were evidenced in natural envi-
ronments [95]. On the one hand, a biogenic or thermogenic
origin seems most likely for most compounds investigated so
far; on the other hand, one cannot exclude that some of the
formate and aliphatic hydrocarbons form abiotically [13, 26—
28, 30, 96]. As detailed in the previous section, our results
are consistent with a mix of origin although abiotic synthesis
likely occurs to a far smaller extent than other processes that
would overprint an abiotic signature.

Upon the hot topic of the origin of life, the mere presence
of organic compounds is highly important for the fauna at
the local and regional scales. It is well established that VFAs
constitute a significant food source for some microorganisms
and thus help sustaining hydrothermal ecosystems [97-100].
Besides, some bacteria have proven to be capable of using
naphthalene [101] and tubeworms, hydrocarbons [102].

Organics can form complexes with metals [20, 21]. This
greatly improves the dispersion of metals in the ocean and
prevents them from precipitation as sulphides or oxyhydrox-
ydes [23, 103]. Notably fatty acids are efficient ligands that
play a major role in making metals bioavailable as well as in
transporting them both through the upper crust ([17] and
references therein) and through the water column in the
plume [11, 104-106]. In addition, they have been shown to
be involved in growth/dissolution processes of some minerals
[19,107]. For these reasons, they are of particular importance
in ore-forming processes. Hydrocarbons which are weaker
ligands would react with sulfates to generate bisulfide (HS™),
which in turn would easily react with metal chlorides to
form metal sulphides according to the following mass balance
equations:

350,% +3H" + 4R-CH,
)
— 4R-CO,H + HS™ + 4H,0

HS™ + MeCl, — MeS + H" + 2CI” 3)

where R is a carbonated chain, either aliphatic or aromatic,
and represents OM [108]. To that respect hydrocarbons are
likely to be involved in depositional processes of metals.
Notably associations of aliphatic and aromatic hydrocarbons
with mineral deposits have also been observed on the EPR
[109] and in sulphide sedimentary deposits on land [104].

5.7. Fluxes: Importance of Back-Arc Hydrothermal Systems to
the Ocean Geochemistry. Hydrothermal input to the ocean
via plumes has long been neglected but recent results of the
GEOTRACES program clearly show its importance in terms
of metals and trace elements transportation and implications
for ocean biogeochemistry [13, 110-113]. While it is now
well established that MOR hydrothermal discharge has a
large impact on the global ocean chemistry and element
cycles, the relative impact of hydrothermal activity from other
hydrothermal settings has not been established. The extensive
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hydrothermal activity reported in the Wallis and Futuna
region suggests that back-arc system hydrothermalism may
be of much greater importance than previously anticipated
[7, 114]. Estimation of hydrothermal fluxes is generally chal-
lenging and very few data are available in the literature [115-
118]. Therefore we believe that any kind of estimation, even
orders of magnitudes are of importance to make advances in
this field. We propose to combine two different approaches
based on geophysical data and video recordings (see here),
respectively, to propose such estimates with some confidence.

5.71. Estimation Using Geophysics. We can make an order
of magnitude estimate of the heat flux from the different
hydrothermally active areas based on the physical character-
istics of the plumes. Marshall and coworkers [119-121] have
proposed a scaling relationship between the heat flux at an
interface, Hf, the ambient buoyancy frequency (N) in the
surroundings of the plume, the characteristic size (R,) of the
heat transfer region, and the equilibrium height (or depth; /)
reached by the plume, as

Hfz%-(N%f, (4)

where p is seawater density (1030 kg-m ), Cp is heat capacity
of seawater (~4000 J-kg™"-K™"), and g is gravitational acceler-
ation (9.81 m-s2), and « is the thermal expansion coefficient
of seawater (107* K™"). The ambient buoyancy frequency (N)
can be estimated to be between 0.001 and 0.002s™* from CTD
profiles in the area using a routine in the UNESCO Sea Water
Library described by Jackett and Mcdougall [122]. The radius
(R;) of the Kulo Lasi caldera is 2500 m and the plume rose
in average about 200 m above seafloor (top layer boundary)
[7]. For order of magnitude estimates, the ~130 km? Fatu
Kapa area can be approximated by a disk of radius 6400 m,
with a similar plume height. Introducing these numbers in
(4) leads to heat flux estimates ranging between 100 and
800 W-m™? for the Kulo Lasi caldera and 50 and 400 W-m™
for the Fatu Kapa area, which is greatly dependent on the
value for buoyancy frequency. While these estimates scale
proportionally with the area considered to be hydrothermally
active, they integrate the sources within the area which do not
demand that the whole area be active. We estimate that total
heat inputs are in the 2-16 GW for the Kulo Lasi caldera and
5-40 GW for the Fatu Kapa areas.

5.7.2. Estimation Based on Video Postprocessing. Video re-
cordings could be used to estimate fluid velocities of the
Carla and Obel® chimneys and of a few smokers at Kulo
Lasi using for instance the Typhoon algorithm [123] (Figures
S8-S11). This optical flow method recovers the (2D) fluid
flow from the apparent displacements, in an image sequence,
of tracers advected by the flow. Here, the plume acts as the
tracer. Compensation for the camera and vehicle motion
and parallax correction were not possible, so the investigated
video sequences where chosen according to (i) the overall
stability of the camera and vehicle and (ii) the plume being
as perpendicular to the camera as possible. The relevant
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lengths scales (image spatial resolution and diameter of the
chimneys) had to be estimated from known object sizes in
the same ground, typically shrimps. External diameters of
the chimney were used for calculation as any estimation
of the internal diameter on video recordings would be too
speculative. Note that (i) chimney samples taken at Kulo
Lasi exhibited similar internal and external diameters; (ii) the
large anhydrite chimneys (e.g., Obel®, Carla) at Fatu Kapa
did not seem to have any central conduit but rather exhibited
a sponge-like structure leaking fluid at a high velocity from
the entire volume. As a result, we believe the overestimation
resulting from this assumption to be limited. Finally, the
observed flow velocity is assumed to be constant across the
jet section. Given all these limitations and assumptions, the
resulting fluxes values should be taken as an indication of
their order of magnitude.

The fluid velocity was estimated to be on average 0.05,
0.15,and 1ms™" for Kulo Lasi, Carla, and Obel, respectively.
In terms of heat fluxes, Carla (diameter ca. 70 cm) would
generate ~6 MW while Obel* (diameter ca. 250 cm) would
produce ~5.7 GW, respectively. Associated mass fluxes would
be 54Ls™! and 5m®s™' which means, for instance, that
the single Obel® chimney could generate an input of 2.6
x 10" moly™' CH, to the ocean. Comparatively, estimation
of the total efflux of methane from serpentinisation ranges
from 15 to 84 x 10’ moly ™" including 9 x 10° moly™" for
the sole slow spreading ridges. Similarly, the Carla chimney
would release about 5.7 x 10> moly™" of dodecane that may
help forming 1.4 moly ™" of metal sulphides (see Section 5.6).
Cumulative observations during the dives brought to a total
of 220 smokers of various sizes (~5 cm to ~2.5 m in diameter)
and apparent flows (strong, medium, slow). We assigned the
strong, medium, and slow flows observed to the velocities
of Obel®, Carla, and Kulo Lasi, respectively. At Kulo Lasi
about 100 smokers were counted during the Nautile dives
and all appeared very similar in diameter (~3 cm) and fluid
flow (0.05). Keeping in mind these uncertainties, an order
of magnitude of the heat and mass fluxes generated by hot
smokers at Fatu Kapa are estimated to be 6.8 GW and 6 m® s
for the Fatu Kapa area versus 9MW and 6Ls™' for the
Kulo Lasi caldera. This means, for example, that the total
Fe flux from hot fluids emanating from the caldera would
be up to 1.9 x 10° moly ™" versus recent estimations of the
global hydrothermal iron input that are about 10° moly™
[112, 124]. The average nonanoic acid concentration in Fatu
Kapa purest fluids is 7.25ppb, which would result in 1.4
x 10°moly™" released in the ocean by the Fatu Kapa hot
smokers. The carboxylic acid functional group of fatty acids
makes them good potential ligands to form coordination
complexes with iron, which stabilises iron in the plume in
its reduced form [103, 125]. Hence, the example of nonanoic
acid suggests that fatty acids could largely contribute to iron
stabilisation.

However, the high-temperature fluxes calculated above
failed to include heat fluxes from diffusive venting, which
was largely present in both areas and is thought to be an
important part of the global hydrothermal heat flux (up to
98%) [126]. The surface of the diffusive areas was also assessed

19

on the videos. However, because the velocity of diffusive
fluids could not be estimated using Typhoon, we assumed
hydrothermal waters are exiting the seafloor at the minimum
velocity reported for low temperature flow (0.04 m sH [127].
The cumulative surface of diffusive areas with a typical
temperature of 10°C reached 100 m* at Kulo Lasi and 2885 m*
at Fatu Kapa. In addition, a particular area of about 300 m* at
Kulo Lasi consisted in hundreds of silica chimney diffusing a
40°C fluid [6]. The resulting contribution of diffuse venting
to the heat flux would be 214 GW and 53 GW at Kulo
Lasi and Fatu Kapa, respectively. This brings the total heat
flux estimates at 2.15 GW and 12 GW, respectively, which is
consistent with the estimates obtained using the lower N
value as well as the fact that only a small portion of the total
surface of the sites was explored with the submersible.

5.7.3. Summary. According to these different estimates heat
efflux at Kulo Lasi and Fatu Kapa are conservatively estimated
to be at least for 1-2GW and 5-10 GW, respectively; this
estimate is based on the low N value, whereas using the
higher N suggests a flux almost 10x higher. It seems highly
likely that the Wallis and Futuna active areas combined
with the 3 calderas to the East [114] have a heat flux of
>10 GW. Vent fields on MOR have been reported to generate
between 10 MW and 25 GW ([116,117,127,128] and references
therein) and the total hydrothermal heat flux at MORs is
estimated to be about 1000 GW [129, 130]. This suggests
that the presently discovered area might be of significant
importance in the global budget and that back-arc hydrother-
mal activity contributes as much as MOR systems, and,
possibly more, to the global ocean chemistry and cycles.
Few estimates of hydrothermal heat flux have been published
and the relative importance of heat, fluid, and geochemical
hydrothermal fluxes from different environments will require
studies designed to more accurately gauge these fluxes.

6. Concluding Remarks

The study of the geochemical characteristics of hydrother-
mal fluids from the Wallis and Futuna area confirmed the
great potential of the region to generate a variety of fluid
chemistries, as it was expected considering its particular geo-
logical context. This supports the idea that the hydrothermal
contribution of back-arc environments is of great interest for
the global ocean chemistry. Our order of magnitude estimates
of fluxes suggest that back-arc hydrothermal activity con-
tributes as much as MOR systems and possibly more. Notably
the sole Obel® chimney could generate ~1%o of the total
hydrothermally derived CH,. The diversity observed in the
Wallis and Futuna area also emphasizes that each new field
presents its own characteristics and that exploration should
continue. A huge number of sites remain to be discovered
according to the newly published estimation of vent fields
occurring on Earth [131].

A special focus was brought on organic geochemistry
because of the few data available in modern hydrothermal
systems despite the recent growing interest for oceanic OM.
Concentrations of SVOCs are the first to be reported which
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will have implications in a wide range of questions and
fields. Our results are relevant to the understanding of C
cycling and complete the works by Hawkes and Rossel who
demonstrated that DOM is recycled if not removed partially
through hydrothermal systems but who could not identify
compounds in DOM. Identification of organic molecules
is especially needed to better understand organometallic
chemistry at hydrothermal vents and thus utilisation by
microbes, metal export, and ore-forming processes. The dis-
tribution patterns obtained revealed the occurrence of several
processes controlling organic geochemistry and notably that
one cannot exclude abiotic synthesis to occur in the study area
but very likely to a so small extent that the signature would be
overprinted.

This brings the idea that using natural concentrations
to feed thermodynamic models of abiotic synthesis and/or
guide the design of experimental work should enable making
progress in unravelling the origin of organic compounds in
hydrothermal systems. In addition, growing techniques as
clumped isotopes [132] and position specific isotopes mea-
surements [133] are available and should also help answering
this question.
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Supplementary Materials

Supplementary 1. S1: mixing lines used for calculation of
the endmember composition of the Fatu Kapa fluids. S2:
modified after Von Damm et al. [46]. Plot of the molality of
dissolved SiO2 in equilibrium with quartz in seawater versus
temperature for isobars from 1500 to 1000 bar according to
Von Damm et al. model. The Si most enriched fluid collected
at Kulo Lasi is represented by the blue star. The red circle
covers the range of Si concentrations and T encountered
in fluids from the Fatu Kapa vent field. S3: modified after
Bischoff and Pitzer [53]. Stars stand for Kulo Lasi fluid phases
characteristics. They nearly plot on the 150-bar isobar. The
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close-up of the 400°C, 300-bar region shows that seawater
could produce the observed salinities at Kulo Lasi by phase
separation at about 320-350 bar and 415-420°C. S4: modified
after Kawagucci et al. [134]. Plots of H2 concentration
versus CH4 concentration in various hydrothermal fluids.
The grey area represents values observed in a hydrothermal
experiment using natural seafloor sediments. Values obtained
for the Wallis and Futuna vent fields are reported: Kulo
Lasi brine and condensed vapour phases are marked by the
red square and the blue diamond, respectively, and the blue
shaded area covers the range of values obtained in the Fatu
Kapa field. S5: modified after Lupton et al. [66]. (a) Plot
summarizing 3He/4He ratio versus C/3He for various mantle
provinces, including mid-ocean ridges (black-filled symbols),
submarine arc volcanoes (blue), and sub aerial arc volcanoes
(green). Values for the Fatu Kapa vent field are reported as
orange diamonds. 3He/4He is expressed as R/Ra. Crosses
indicate average values for MORBs and for subaerial arcs
from. (b) Similar plot including values for hotspot volcanoes
such as Loihi, Kilauea fumarole, Yellowstone Park gases,
Reunion, and Fatu Kapa (orange diamonds). S6: distribution
of linear fatty acids in various environments. Data are from
[135] for Massive Sulphide Deposits (MSD); [36] for Lost
City (LC) fluids; [136] for petroleum and recent and ancient
sediments; [137] for 13°N mussels. S7: distribution of linear
alkanes obtained by thermogenic maturation in various crude
oil basins and abiotic Fischer-Tropsch type experiment [84].
S11: time series of the estimated displacements corresponding
to the video sequences shown in Figures S8, S9, and S10.

Supplementary 2. S8: example of a postprocessed video
sequence using the Typhoon algorithm to estimate displace-
ments (instantaneous, left panel; averaged on 25 frames, right
panel) on one of the small black smokers in the Kulo Lasi
caldera.

Supplementary 3. S9: example of a postprocessed video
sequence using the Typhoon algorithm to estimate displace-
ments (instantaneous, left panel; averaged on 25 frames, right
panel) at the base of the Carla chimney.

Supplementary 4. S10: example of a postprocessed video
sequence using the Typhoon algorithm to estimate displace-
ments (instantaneous, left panel; averaged on 25 frames, right
panel) at the top of the massive Obel® chimney. S1I: time
series of the estimated displacements corresponding to the
video sequences shown in Figures S8, S9, and SI10.
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