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ARTICLE

Impact of evolving greenhouse gas forcing on the
warming signal in regional climate model
experiments
S. Jerez1,2, J.M. López-Romero1, M. Turco 3, P. Jiménez-Guerrero 1, R. Vautard 4 & J.P. Montávez 1

Variations in the atmospheric concentrations of greenhouse gases (GHG) may not be

included as external forcing when running regional climate models (RCMs); at least, this is a

non-regulated, non-documented practice. Here we investigate the so far unexplored impact

of considering the rising evolution of the CO2, CH4, and N2O atmospheric concentrations on

near-surface air temperature (TAS) trends, for both the recent past and the near future, as

simulated by a state-of-the-art RCM over Europe. The results show that the TAS trends are

significantly affected by 1–2 K century−1, which under 1.5 °C global warming translates into a

non-negligible impact of up to 1 K in the regional projections of TAS, similarly affecting

projections for maximum and minimum temperatures. In some cases, these differences

involve a doubling signal, laying further claim to careful reconsideration of the RCM setups

with regard to the inclusion of GHG concentrations as an evolving external forcing which, for

the sake of research reproducibility and reliability, should be clearly documented in the

literature.
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G lobal warming manifests itself and impacts hetero-
geneously across the globe1–4. The translation of global
temperature increases and targets, such as the encouraged

long-term goal of keeping the increase in global mean tempera-
ture to well below 2 °C above pre-industrial levels5, into regional
impacts and vulnerabilities is of major importance in order to
raise awareness of societies and decision-makers6. In order to
better describe the consequences of climate change at a proper
spatial scale, dynamical downscaling techniques are typically
applied to elucidate global warming fingerprints at regional scales
and to produce policy-relevant information tailored to the needs
of the potentially affected socioeconomic sectors (e.g., energy,
food, and health). The dynamical downscaling approach is based
on the use of Regional Climate Models (RCMs) running over
limited geographical domains with boundary conditions given by
Global Circulation Models (GCMs) to be downscaled over the
finer RCM spatial grid; although there is another dynamical
downscaling approach given by variable resolution GCMs. Dur-
ing the past decades, RCMs have been commonly used by a wide
community of researchers and under the umbrella and incentive
of many international initiatives, such as CORDEX7,8, sponsored
by the World Climate Research Programme (WCRP), whose aim
is to advance and coordinate the science and application of
regional climate downscaling through global partnerships.

The main added value of high-resolution RCMs is the devel-
opment of the fine scale, which reaches its optimum by con-
sidering large regional domains9–11. Although the RCMs
explicitly solve mesoscale atmospheric processes, there are still
small-scale processes that need to be parameterized12. In parti-
cular, radiation schemes are used to manage the radiative forcing,
which is affected by the concentration of greenhouse gases (GHG)
in the atmosphere. Some radiation schemes, as implemented in
RCMs, prescribe GHG concentrations to fixed values by default
(probably because they were primarily conceived for weather
forecast applications or short-term runs). For instance, in the
widely used Weather Research and Forecasting (WRF) model13,
the inclusion of variable GHG concentrations as an evolving
external forcing is an available option only from its 3.5 version
(launched in April 2013) and is not used in the default compi-
lation. The use of constant GHG concentrations in long-term
RCM runs leads to the implicit assumption that change in the
GHG atmospheric composition has little effect on the regional
climate, or that its effect is sufficiently included through the
GCMs-provided boundary conditions. No theoretical or empiri-
cal scientific evidence supports, however, either of these
assumptions. The latter contrasts in particular with the recom-
mended use of large domains as this results, in turn, in weak
control by the lateral boundary conditions9.

Blind to this issue, the benchmark CORDEX framework, for
instance, provides scant information on the RCMs implementations
and capabilities of using the same climate external forcing data (i.e.,
GHG atmospheric concentrations) as the parent GCMs, in spite of
its triggering factor in coordinating experimental setups among
modeling groups worldwide. In fact, while most of the RCMs
contributing to the European branch of CORDEX (EURO-COR-
DEX14,15) do actually include varying GHG concentrations in their
runs (e.g., RACMO, RCA, ALADIN, CCLM, and REMO), others,
as far as we are aware to date, do not (in particular some WRF and
HIRHAM runs). This information had to be gathered by personal
communication with the modeling groups, since no documentation
at this regard is publicly available. In contrast to the well docu-
mented experimental design (including the GHG forcing) within
GCM coordination frameworks such as the Climate Model Inter-
comparison Project (CMIP)16,17, this aspect of the RCMs setup is
undocumented in the current scientific literature (not only within
the EURO-CORDEX framework, but also anywhere else aside from

very few exceptions18), which, as little, goes against the code of good
practice that should guarantee reproducible research19. Moreover,
while many works deal with the sensitivity of RCM runs, for
example, to the domain spatial resolution and the choice of para-
meterization schemes, the inclusion or not of the forcing due to the
variations in the atmospheric concentrations of GHG has so far
received very little attention (find a single attempt in ref. 20). In spite
of its likely paramount importance8,21 and practical relevance for
the accuracy of regional climate change projections, the sensitivity
of RCM runs to evolving GHG concentrations has not yet been
properly established.

The impact of varying GHG concentrations in RCM runs
should be most apparent with regard to temperature trends. In
this sense, several studies22–26 have already warned about the
poor ability of RCMs to reproduce the magnitude of observed
near-surface temperature (TAS) trends along the recent past,
reporting an overall systematic underestimation that even worsen
the signal from the GCMs driving data. As possible causes, they
pointed out inadequacies in the characterization and modeling of
basic processes and features, such as cloud formation, aerosol
variations, and soil properties, which are certainly what climate
models miss most27. However, the focus so far has not been on
the likely relationship of this issue to how GHG concentrations
are treated in RCM runs. The importance of the matter, with its
immediate implications for the regional climate modeling com-
munity, motivated us to shed light on it.

Therefore, here we investigate the sensitivity of TAS trends to
year-to-year varying GHG concentrations in RCM simulations by
analyzing pairs of historical (1951–2005) and scenario
(2006–2050) regional climate simulations run with WRF over
Europe. Each counterpart was performed allowing or not allow-
ing the GHG concentrations to vary in the RCM (VAR and CTE
experiments, respectively: VAR from varying GHG concentration
values; CTE from constant values, i.e., those corresponding to the
year 2005 in our experimental setup). In order to obtain the
highest sensitivity to the variations of the GHG atmospheric
concentrations, in the scenario period we considered the Repre-
sentative Concentration Pathway 8.5 (RCP8.5)28,29, the most
challenging one with the highest increases of GHG emissions
among those considered in the latest IPCC report1, although in
the first half of the 21st century it is very similar to the more
moderate RCP4.5. The WRF setup and the GCM data driving WRF
(retrieved from the r1i1p1 MPI-ESM-LR CMIP5-experiment30,31)
are described in detail in Methods. For the historical period, WRF
was additionally driven by the ERA20C reanalysis data32,33 (here-
after referred to as ERA). These reanalysis-driven experiments
allowed us to elucidate the contribution of varying GHG con-
centrations also in RCM hindcast runs.

The fingerprint of evolving GHG concentrations in the regio-
nal warming is apparent and robust in all cases, under both past
and future conditions, involving even doubled signals under 1.5 °
C global warming in some areas (eastern Europe) and seasons
(winter). Such a non-negligible impact calls for regulating efforts
to include and document systematically the time-varying GHG
forcing in the RCM runs as a good practice.

Results
Temperature trends. Figure 1 shows the linear trends of the
yearly-mean TAS series retrieved from the global datasets and the
regional experiments (WRF CTRL configuration, see Table 1):
ERA and ERA-driven WRF CTE and VAR experiments in the
period 1951–2005, GCM and GCM-driven WRF CTE and VAR
experiments in the period 1951–2005, and GCM and GCM-
driven WRF CTE and VAR experiments in the period 2006–2050.
The differences between the VAR and CTE experiments and
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between these and the global datasets are also provided. The
Supplementary Material (Supplementary Figs 1–9) provides the
same analysis for the DJF and JJA-mean TAS series and for
maximum (Tx) and minimum (Tn) temperatures.

All the global and regional datasets and experiments usually
depict positive trends, which are more marked over land than sea.
The spatial patterns are very similar for TAS, Tx and Tn, with the
largest signals (up to 6 K century−1 at the annual scale) appearing
over central and northern Europe for the recent past, and also along
the south-western Mediterranean strip for the future. By seasons,
the signals increase to 8 K century−1 in winter (north-eastern areas,
past period) and summer (south-western areas, future period).

Both WRF experiments (VAR and CTE) reproduce the most
outstanding features of the spatial patterns retrieved from their
respective global driving datasets, while showing some important
discrepancies. For instance, at the annual scale, both ERA-driven
WRF experiments provide weaker TAS trends in Mediterranean
Europe and north-eastern areas compared to the results from
ERA (Fig. 1, first row). This is more marked in the CTE
experiment than in the VAR, the differences between them being
statistically significant over both such areas, with higher values

from the VAR experiment, up to 1 K century−1 higher (which
involves doubling the signal), than from the CTE one (Fig. 1f).
Note, however, that the differences between the VAR and CTE
experiments in reproducing TAS trends are smaller than between
each WRF realization and ERA, thus the underestimation of TAS
trends still persists in the ERA-driven VAR simulation. Generally,
the differences between the CTE and VAR runs are larger in the
GCM-driven experiments (Fig. 1l, r), particularly in the future
period. In that case (Fig. 1r), statistically significant differences
ranging from 0.5 to 1.5 K century−1 appear over most of Europe,
widely reaching 2 K century−1 over the central and north-eastern
regions in the DJF and JJA seasonal analysis (Supplementary
Figs 2, 3), which again involves doubling the signal in these areas.
Very similar results are found for Tx and Tn (Supplementary
Figs 4–9), which support the structural character of the
differences between the VAR and CTE approaches reported.
The fact that the differences between the VAR and CTE
experiments are notably larger over land than over the sea
merely reflects the key control that the sea surface temperature
(SST) exerts on TAS, as SST remains identical in the VAR and
CTE regional simulations. This also could reflect the influence of

a ERA TAS′ ANN HIST b ERA-WRF-CTE TAS′  ANN HIST c b–a d ERA-WRF-VAR TAS′ ANN HIST e d–a f d–b

g GCM TAS′ ANN HIST h GCM-WRF-CTE TAS′ ANN HIST i h–g j GCM-WRF-VAR TAS′ ANN HIST k j–g l j–h

m GCM TAS′ ANN SCEN n GCM-WRF-CTE TAS′ ANN SCEN o n–m p GCM-WRF-VAR TAS′ ANN SCEN q p–m r p–n

−8 −6 −4 −2 0 2 4 6 8

K century−1 K century−1 K century−1 K century−1 K century−1 K century−1

−8 −6 −4 −2 0 2 4 6 8 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −8 −6 −4 −2 0 2 4 6 8 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Fig. 1 Near-surface air temperature trends from global datasets and regional simulations. Trends of the simulated yearly-mean time series of TAS in the
historical period 1951–2005 (first and second rows) and the scenario period 2006–2050 (third row). The first row depicts the results from ERA (a) and
ERA-driven WRF experiments (CTRL configuration, see Table 1), CTE (b) and VAR (d), along with the differences between ones and others: CTE minus
ERA (c), VAR minus ERA (e), and VAR minus CTE (f). Similarly, the second and third rows (g–r) depict the results from GCM and GCM-driven WRF
experiments. Only significant values (p < 0.1) are shown. The points in the last column indicate that the magnitude of the difference between the VAR and
CTE experiments is equal to or greater than the magnitude of the signal from the respective CTE experiment. Units: K century−1

Table 1 Radiative, microphysics, and cumulus schemes used in the multi-physics ensemble of WRF simulations. We denote as
CONTROL (CTRL) configuration the one corresponding to Exp. 2

Radiative scheme Microphysics scheme Cumulus scheme

Exp. 1 CAM shortwave and longwave schemes48 Lin et al. scheme45 Grell 3D ensemble scheme43,44

Exp. 2 (CTRL) RRTMG shortwave and longwave schemes42 Lin et al. scheme45 Grell 3D ensemble scheme43,44

Exp. 3 CAM shortwave and longwave schemes48 Morrison 2—moment scheme49 Kain–Fritsch scheme50

Exp. 4 RRTMG shortwave and longwave schemes42 Morrison 2—moment scheme49 Kain–Fritsch scheme50
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the atmospheric composition on the well-known land-atmo-
sphere feedback (higher temperatures leading to drier soils,
leading to higher temperatures, and so on34,35).

Projections under 1.5 °C warming. Next we investigated how the
differences in TAS trends between the VAR and CTE experi-
ments translate into different climate change signals. For that,
scenario simulations were analyzed with the focus on impacts
under 1.5 °C global warming, a limit threshold (agreed in the
2015 Paris climate conference COP21 with the aim of minimizing
the risks and impacts associated with the consequences of climate
change5) that will guide a special report by the IPCC planned for
201836. Thus we computed changes from the VAR and CTE
experiments (WRF CTRL configuration, see Table 1) in the
period 2011–2040 (when global mean temperature from the used
GCM is 1.5 °C warmer than the pre-industrial level) with respect
to the reference period 1971–2000 (see Methods).

Figure 2 provides climate change patterns for TAS (at annual
and seasonal scales) for the 1.5 °C global warming future period
(2011–2040), compared to the historical period (1971–2000), as
retrieved from GCM and GCM-driven WRF simulations, both
CTE and VAR. Analogous plots (with very similar appearances)
for Tx and Tn are provided in the Supplementary Material
(Supplementary Figs 10–12). Increases over 2 K, up to 3 K at
most, are projected from all the datasets and seasons (annual,
winter, and summer scales), with the patterns from the regional
experiments resembling the overall structure of the patterns from
their driving GCM (Fig. 2, first, second, and fourth columns). The
differences between the former and the latter are negative
(positive) in southern (north-eastern) areas, generally smaller
(larger) for the VAR experiment than for the CTE but for
summer, (Fig. 2, third and fifth columns). Hence, the differences
between the VAR and CTE experiments, when they are used to

project changes in TAS under 1.5 °C global warming, depict overall
positive signals (the largest changes are projected from the VAR
experiment) affecting most of continental Europe with significant
values around 0.5 K both at the annual scale and for winter (Fig. 2
last column). Although the differences between the VAR and CTE
experiments in the TAS projections are generally smaller than the
differences between the WRF and GCM simulations, the former
implies that the change signal from the VAR realizations doubles
the change signal from the CTE ones in some areas of central
Europe. This is most evident for Tn, when the differences between
the VAR and CTE change patterns spread and become the strongest
(up to 1 K, Supplementary Figs 11–12). In turn, this is least evident,
negligible indeed, when the regional climate simulations are
conducted over small area domains and thus strongly tied by the
lateral boundary conditions (Supplementary Figs 13).

Beyond a particular case study. The attribution of the differences
shown in the last columns of Figs. 1 and 2 to the varying GHG
concentrations in the VAR runs is not only straightforward, due to
our experimental design, but also consistent with what one would
expect. Nevertheless, in order to reinforce our message, here we
provide evidence of the coherence and consistency of our results
in a wider context. For that we run and analyze the signals from a
multi-physics ensemble of regional simulations. It should be noted
that different physical configurations of regional models provide
the same range of uncertainty (or ensemble spread) as an
ensemble of different models, as they may indeed rely on different
physical configurations37–40. Our ensemble includes modifications
in the radiative, microphysics and convective schemes, totalizing a
number of four ensemble members (Table 1, see Methods).

Figure 3 summarizes the results from the ensemble as regards
the sensitivity of the TAS projections under 1.5 °C global
warming to the varying GHG approach within the regional

a GCM ΔTAS ANN b GCM-WRF-CTE ΔTAS ANN c b–a d GCM-WRF-VAR ΔTAS ANN e d–a f d–b

g GCM ΔTAS DJF h GCM-WRF-CTE ΔTAS DJF i h–g j GCM-WRF-VAR ΔTAS DJF k j–g l j–h

m GCM ΔTAS JJA n GCM-WRF-CTE ΔTAS JJA o n–m p GCM-WRF-VAR ΔTAS JJA q p–m r p–n

−3 −2 −1 0 1 2 3

K

−3 −2 −1 0 1 2 3

K

−1.0 −0.5 0.0 0.5 1.0

K

−3 −2 −1 0 1 2 3

K

−1.0 −0.5 0.0 0.5 1.0

K

−1.0 −0.5 0.0 0.5 1.0

K

Fig. 2 Near-surface air temperature projections under 1.5 °C global warming from global and regional simulations. Projected changes (2011–2040 vs. 1971–2000
climatologies) in year-mean (first row), DJF-mean (second row), and JJA-mean (third row) TAS from GCM (first column, panels a, g,m) and GCM-driven WRF
experiments (CTRL configuration, see Table 1), CTE and VAR (second and fourth columns, panels b, h, n, and d, j, p, respectively), along with the differences
between ones and others: CTE minus GCM (third column, panels c, i, o), VAR minus GCM (fifth column, panels e, k, q), and VAR minus CTE (sixth column,
panels f, l, r). The points in the last column indicate that the magnitude of the difference between the VAR and CTE experiments is equal to or greater than the
magnitude of the signal from the respective CTE experiment. Only significant values (p < 0.1) are shown. Units: K

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03527-y

4 NATURE COMMUNICATIONS |  (2018) 9:1304 | DOI: 10.1038/s41467-018-03527-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


model (see also Supplementary Figs 14–19 for detailed plots
and the results for Tx and Tn). The first column depicts the
number of sensitive experiments (NSE) to varying GHG
concentrations when projecting TAS changes, with positive/
negative values indicating larger/smaller TAS increments in the
VAR than in the CTE simulations in those sensitive experi-
ments. Over wide areas, three out of four experiments show
significant sensitivity to the varying GHG approach, especially
when the TAS projections are assessed at the annual scale, with
higher TAS increases in the VAR experiments than in the CTE,
overwhelmingly. The second column displays the most sensitive
experiment (MSE) among all the ensemble members to the
varying GHG approach when projecting TAS changes to the
future. While it should be acknowledged that one of the two
radiation schemes included in the ensemble (the RRTMG

scheme, Exps. 2 and 4 in Table 1) leads to higher differences in
TAS projections between GHG approaches than the other (the
CAM scheme, Exps. 1 and 3 in Table 1) (see Supplementary
Figs 14–16), the MSE patterns show a quite heterogeneous
structure demonstrating that all the configurations are sensitive
to the varying GHG approach. In fact, all of them provide
signals of TAS change that, in some regions, in the VAR
experiment are double than those in the CTE one (see points in
second column and Supplementary Figs 14–19). The third and
fourth columns depict ensemble mean and maximum values of
the differences between the VAR and CTE experiments in the
TAS projections. The patterns are similar to those of the last
column of Fig. 2, thus further proving and confirming the
coherence of our results under an ensemble of climate change
simulations.

a NSE ΔTAS ANN b MSE ΔTAS ANN c ENSMEAN diffΔTAS ANN d ENSMAX diffΔTAS ANN

e NSE ΔTAS DJF f MSE ΔTAS DJF g ENSMEAN diffΔTAS DJF h ENSMAX diffΔTAS DJF

i NSE ΔTAS JJA j MSE ΔTAS JJA k ENSMEAN diffΔTAS JJA l ENSMAX diffΔTAS JJA

−4 −3 −2 −1 0 1 2 3 4

Number of exps.

1 2 3 4

Exp. ID
−1.0 −0.5 0.0 0.5 1.0

K

−1.0 −0.5 0.0 0.5 1.0

K

Fig. 3 Sensitivity of near-surface air temperature projections to the GHG handling in an ensemble of regional simulations. Number of sensitive experiments
(NSE, first column, panels a, e, i) and most sensitive experiment (MSE, second column, panels b, f, j, numbers referred to the experiments identifiers of
Table 1), within the ensemble of WRF runs (Table 1), to the GHG handling by the RCM when projecting TAS changes under 1.5 °C global warming (ΔTAS,
assessed at annual, DJF and JJA scales in first, second and third rows, respectively). The NSE is computed by assigning 1 to those experiments in which the
varying GHG approach provides significantly (p < 0.1) higher values of ΔTAS than the constant GHG approach, −1 to those in which ΔTAS is significantly
lower in the varying GHG counterpart of each experiment, 0 if there is no significant difference between both approaches, and then summing over the four
experiments; with the color gray indicating the mix of 1 and −1. MSE denotes the experiment in which the difference in ΔTAS between approaches is highest
if it is statistically significant; if not, it is white. The points in the second column indicate that ΔTAS in the MSE is at least double when GHG vary. The third
and fourth columns (panels c, g, k, and d, h, l) depict, respectively, the ensemble mean and maximum values of the differences in ΔTAS (units: K) between
approaches over the grid points in which at least two experiments provide significant values of such differences; otherwise, it is white. The points, crosses,
stars, and squares in the third and fourth columns indicate that ΔTAS is at least double when GHG vary in one, two, three, or four experiments, respectively
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Discussion
Our analysis yields statistically significant and noticeable differ-
ences in the TAS trends between regional climate simulations
using the two different assumptions, constant or varying GHG
concentrations in the RCM, when conducted for both the recent
past (including the case of reanalysis-driven simulations) and the
near future. Other variables and/or RCMs may show different
sensitivity, which could be worth to investigate. Anyhow, the
worrying issue is that whether the forcing due to the variations in
the atmospheric concentrations of GHG is or not included in the
regional climate model runs is not sufficiently documented in the
scientific literature. This lack of information, together with (1) the
fact that the default compilation in one of the most used (and
most recent) RCMs, the WRF model, does not include such time-
varying forcing, and (2) the information that these authors have
gathered regarding the non-regulated practice in this regard
within the outstanding EURO-CORDEX initiative, alarmingly
incites doubt to emerge.

Here we intend to appeal to the regional climate modeling
community worldwide by identifying the need to clarify and
document the approach when reporting regional climate informa-
tion. It is clear that the discrepancies between both approaches are
large enough for better information on the setup of RCMs to be
required, especially when the regional climate simulations are con-
ducted over wide domains and contribute to initiatives demanding
coordination efforts (e.g. CORDEX, IPCC-related simulations).
Special attention should be paid to the design of the regional climate
modeling experiments that may involve the use of data by a wide
community of potential users, including the impacts community.

Methods
Experiments. The 3.6.1 version of the WRF model13 was used to run the regional
climate simulations over Europe with a spatial resolution of 0.44° in latitude and
longitude, using the EURO-CORDEX compliant domain14. For the historical
period (1951–2005), both the ERA20C reanalysis32,33, which assimilates observa-
tions of surface pressure and surface marine winds and has an horizontal resolution
of approximately 125 km, and the GCM CMIP5-experiment16,17 r1i1p1 MPI-ESM-
LR historical run30 with an approximate horizontal resolution of 200 km over land
(hereafter referred to as ERA and GCM data, respectively) were used to initialize
and drive (without nudging) the WRF model. Both global datasets incorporate the
year-to-year varying annual concentrations of the CO2, CH4, and N2O GHG (as
estimated from inventory data28), which show a continuous positive trend1. For the
scenario period (2006–2050), the GCM CMIP5-experiment RCP8.5-forced r1i1p1
MPI-ESM-LR run31 was used. RCP8.5 depicts the highest radiative forcing along
the XXI century among all RCPs28,29, with doubled CO2, CH4, and N2O con-
centrations (these are again annual estimations) by 2050 compared to the last
record of the historical period.

The first setup of the WRF model (CTRL configuration, see Table 1) included
the Noah land surface model41, RRTMG shortwave and longwave schemes42, Grell
3D ensemble scheme for cumulus43,44, Lin scheme for microphysics45 and Yonsei
University scheme for the boundary layer46. To construct the multi-physics
ensemble we used all the WRF configurations listed in Table 1. The choice includes
the only two radiative schemes handling variable GHG concentrations in WRF, the
two most different (single-moment and two-moment) microphysics
parameterizations and, linked with that (not all microphysics schemes are
compatible with all cumulus schemes), one of the simplest and one of the most
complex convective schemes. Based on previous results40, these configurations
yield results that cover a wide range of the model spread. Simulations other than
the CTRL one span only the periods 1971–2000 and 2011–2040, which are enough
to assess impacts under 1.5 °C global warming. Also, the GCM-driven CTRL
experiments were replicated for these periods over a smaller area domain, with
latitude ranging from 44.8° to 53.5° and longitude from 16.2° to 30° (see
Supplementary Fig. 13).

In practice, the simulated periods were split into 5-year periods that were then
continuously run with a spinup period of 4 months (time-slice approach). Updates of
the boundary conditions, from either ERA or GCM, were performed every 6 h at the
borders of the regional domain. The outputs were recorded at one-hour intervals.

Each WRF realization was run twice: considering static concentrations of CO2,
CH4, and N2O GHG, fixed to their values in 2005 (the by-default option in WRF; CTE
experiments), and considering their evolution, their annual estimated values, along the
simulated periods as it was included in the driving global datasets (VAR experiments).

Data analysis. The analysis first deals with the temporal trends of TAS over both
historical and scenario periods: differences between the VAR and CTE experiments,
and between these and their driving global datasets (ERA and GCM). The temporal
trends were computed as the linear trends of the yearly-mean series of TAS at either
annual or seasonal scales (winter: December to February, DJF, averages; summer: June
to August, JJA, averages). The daily maximum and minimum TAS (Tx and Tn,
respectively) series were also yearly or seasonally averaged and included in the ana-
lysis. The linear trends were computed using the Theil–Sen estimator, a non-
parametric method that defines the slope as the median among all possible lines
through pairs of points. This approach is less sensitive to outliers than the classic least-
squares method and is more accurate in case of non-normal data. Trend significance
was estimated applying the standard Mann–Kendall trend test. Statistical significance
of trend differences (i.e., between datasets) was equally estimated but using the dif-
ference time series (i.e., series of TAS, Tx or Tn differences between datasets). This
method reduces noise levels by subtracting the variability common to both datasets
being faced47. In all cases, we imposed the threshold p < 0.1.

Second, the analysis deals with climate change regional impacts on TAS, Tx and
Tn, as depicted by the VAR and CTE experiments under 1.5 °C global warming above
pre-industrial levels. For that, following the common procedure6, change patterns
were constructed by subtracting the averaged values of TAS, Tx and Tn over the 30-
year future period centered in the year Y when global mean temperature rises 1.5 °C
higher than in the pre-industrial era, and their averages over the recent past period
1971–2000. To define Y, we considered the 30-year running mean series of global
mean TAS retrieved from the RCP8.5-forced GCM simulation used to feed WRF and
looked for an increment of 1.04 °C compared to the record corresponding to the
average of the period 1971–2000. Until this base period, 1971–2000, the pre-industrial
warming (since the record corresponding to the average of the period 1881–1910) had
been 0.46 °C according to the observations6; that is why we looked for an increment of
1.04 °C since 1971–2000. Applying this methodology, Y was found to be 2025. Thus
the future period considered here to construct the change patterns of TAS, Tx and Tn
was 2011–2040. Statistical significance of the signals appearing in the change patterns
and the patterns of differences in the change signals (i.e., between datasets) was
accounted for by applying a two-tailed t-test. Again, we imposed the threshold p < 0.1.

To compare the signals retrieved from the WRF experiments and from their
driving global datasets at the grid point level, the former were bilinearly spatially
interpolated to the respective global grids.

Data availability. All datasets used in this study are publicly available. GCM and
ERA data can be retrieved from the websites of the Climate and Environmental
Retrieval and Archive (https://www.dkrz.de/daten-en/cera) and the European
Center for Medium Range Weather Forecast (https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era-20c, respectively. On behalf of reproducibility, the
WRF runs used in this work are available for research purposes by contacting the
corresponding author. In any case, the open source WRF code is freely available
from https://www.mmm.ucar.edu/weather-research-and-forecasting-model (we
used the version 3.6.1), and the WRF namelists as used here are provided in the
Supplementary Tables 1 and 2, thus guaranteeing full reproducibility of our
experiments. The codes used for the data processing and analysis are based on open
source software: the Climate Data Operators (CDO version 1.6.3, functions:
remapbil, daymean, daymax, daymin, yearmean, seasmean, and diff) available from
https://code.mpimet.mpg.de/projects/cdo/, and the R Project for Statistical Com-
puting (R version 3.2.1, functions: t.test and mannKen, the latter from the R
package WQ version 0.4.7) available from https://www.r-project.org/. All codes are
as well available from the corresponding author upon request.
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