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RESONANCE-FREE REGIONS FOR NEGATIVELY CURVED

MANIFOLDS WITH CUSPS

YANNICK BONTHONNEAU

Abstract. The Laplace-Beltrami operator on cusp manifolds has continuous spectrum.

The resonances are complex numbers that replace the discrete spectrum of the compact

case. They are the poles of a meromorphic function ϕpsq, s P C, the scattering determinant.

We construct a semi-classical parametrix for this function in a half plane of C when the

curvature of the manifold is negative. We deduce that for manifolds with one cusp, there

is a zone without resonances at high frequency. This is true more generally for manifolds

with several cusps and generic metrics.

We also study some exceptional examples with almost explicit sequences of resonances

away from the spectrum.

The object of our study are complete connected d`1-dimensional negatively curved man-

ifolds of finite volume pM, gq with a finite number κ of real hyperbolic cusp ends. Such a

manifold can be decomposed as follows:

M “M0 \ Z1 \ ¨ ¨ ¨ \ Zκ,

where M0 is a compact manifold with smooth boundary and negative curvature, and Zi are

hyperbolic cusps

(1) pai,`8q ˆ Tdi » Zi Q x “ py, θq, θ “ pθ1, . . . , θdq, i “ 1 . . . κ,

where ai ą 0, and Tdi “ TdΛi “ Rd{Λi are d-dimensional flat tori, and the metric on Zi in

coordinates py, θq P pai,`8q ˆ Tdi is

ds2 “
dy2 ` dθ2

y2
,

which has constant ´1 sectional curvature. Notice that the manifold has finite volume when

equipped with this metric. The choice of the coordinate y on a cusp is unique up to a scaling

factor, and we choose it so that all Tdi ’s have volume 1. Such a manifold will be referred to

as a cusp-manifold. Mind that we require that they have negative curvature.

The Laplace operator on M is denoted ∆ in the analyst’s convention that ´∆ ě 0. The

resolvent Rpsq “ p´∆ ´ spd ´ sqq´1 is a priori defined on L2pMq for <s ą d{2. Thanks to

the analytic structure at infinity, one shows that R can be continued to C as a meromorphic

family of operators C8c Ñ C8 whose set of poles is called the resonant set RespM, gq.

The original proof is due to Selberg in constant ´1 curvature, to Lax and Phillips [16] for

surfaces, and this subject was studied by both Yves Colin de Verdière [5, 6] and Werner

Key words and phrases. Finite volume manifolds with cusps, scattering determinant, resonances, semi-

classical parametrix.
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2 YANNICK BONTHONNEAU

Müller [18, 19, 20]. It fits in the general theory of spectral analysis on geometrically finite

manifolds with constant curvature ends, see [17, 11].

The spectrum of ´∆ divides into both discrete L2 spectrum, that may be finite, infinite

or reduced to t0u, and continuous spectrum rd2{4,`8q with multiplicity κ. We can find in

[18] a precise description of the structure of its spectral decomposition given by the Spectral

Theorem. For each cusp Zi, i “ 1 . . . κ, there is a meromorphic family of Eisenstein functions

tEipsqusPC on M such that

(2) ´∆Eipsq “ spd´ sqEipsq.

The line t<s “ d{2u corresponds to the continuous spectrum and is called the unitary axis.

The poles of the family are contained in t<s ă d{2uYpd{2, ds, and are called resonances. We

also consider the vector E “ pE1, . . . , Eκq. Let tu`u` be the discrete L2 eigenvalues. Then,

any f P C8c pMq expands as:

f “
ÿ

`

xu`, fyu` `
1

4π

κ
ÿ

j“1

ż `8

´8

Ej

ˆ

d

2
` it

˙B

Ej

ˆ

d

2
` it

˙

, f

F

dt [18, eq. 7.36],

where x¨, ¨y is the L2 duality product. An important feature of the Eisenstein functions is

the following: in cusp Zj , the zeroth Fourier mode in θ of Ei writes as

(3) δijy
s ` φijpsqy

d´s,

where φij is a meromorphic function. Combining this with (2), we deduce that the family

Eipsq is unique. If we take the determinant of the scattering matrix φ “ tφiju, we obtain

the scattering determinant ϕpsq. It is known that the set RpM, gq of poles of ϕ is the same

as that of tEpsqus — again, see [18, theorem 7.24]. It also coincides with the poles of the

meromorphic continuation of the kernel of the resolvent of the Laplacian that are not on

t<s “ d{2u, [18].

The uniqueness property of Eipsq gives a relation between Eipsq and Eipd ´ sq, which

implies ϕpsqϕpd ´ sq “ 1. Hence, studying the poles of ϕ in t<s ă d{2u is equivalent to

studying the zeroes in t<s ą d{2u. In this article, we will be giving information on the

zeroes of ϕ, keeping in mind that the really important objects are the poles.

The first examples of cusp manifolds to be studied had constant curvature, and were

arithmetic quotients of the hyperbolic plane. Let Γ0pNq be the congruence subgroup of

order N , that is, the kernel of the morphism π : SL2pZq Ñ SL2pZN q. Then, H{Γ0pNq is a

cusp surface — or orbifold but we will ignore this technicality here. For such examples, and

more generally, for all constant curvature cusp surfaces H{Γ, if cusp Zi is associated with

the point 8 in the half plane model, then the associated Eisenstein functions can be written

as a series

(4) Eipsqpzq “
ÿ

rγsPΓizΓ

r=pγzqss
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where Γi is the maximal parabolic subgroup of Γ associated with Zi. Recall a Dirichlet series

is a function of the form

fpsq “
ÿ

kě0

ak
λsk
, where pλkq is a strictly increasing sequence of real numbers.

In the case of constant curvature cusp surfaces, Selberg proved — see [26] — that there is a

non-zero Dirichlet series L converging absolutely for t<s ą du so that

(5) ϕpsq “

ˆ

πΓps´ 1{2q

Γpsq

˙κ{2

Lpsq,

κ being the number of cusps. This implies:

Theorem (Selberg). Let pM, gq be a constant curvature cusp surface. There may be a finite

set of resonances in p1{2, 1s. The other resonances are contained in a vertical strip of the

form t1{2´ δ ď <s ă 1{2u, for some δ ą 0.

While conducting his systematic study of the spectral theory of the Laplacian on cusp

surfaces, Müller wondered whether Selberg’s theorem still holds in variable curvature — see

[20, page 274]. Froese and Zworski [8] gave a counter-example, that had positive curvature.

The following theorem gives a partial answer in negative curvature.

Theorem 1. For M a cusp manifold, let GpMq be the set of C8 metrics g on M such that

pM, gq is a cusp manifold with negative sectional curvature. If U ĂĂM is open, let GU pMq
be the set of metrics in GpMq that have constant curvature outside of U . Endow GpMq and

GU pMq with the C2 topology on metrics. Then

(I) There exist hyperbolic cusp surfaces pM, g0q and non-empty open sets U ĂĂM such

that for all g P GU pMq, RespM, gq is still contained in a (possibly different) vertical

strip.

(II) Given any cusp manifold M , for an open and dense set of g P GpMq, or all of GpMq
when there is only one cusp, there is a δ ą d{2 such that for any constant C ą 0,

ts P RespM, gq, <s ă d´ δ, <s ą ´C log |=s|u is finite.

(III) There is a 2-cusped surface pM, gq with the following properties. The resonant set

RespM, gq is the union of Resstrip, Resfar and an exceptional set Resexc, so that

Resstrip “ ts P RespM, gq, <s ą d´ δu

Resexc “
!

si, si, i P N, si “ s̃i `Op|si|´βq
)

for some β ą 0,

Resfar X t<s ą ´C log |=s|u is finite for any C ą 0.

where δ ą 0, and the s̃i’s and s̃i’s are the zeroes of se´sT ´ C0 for some constants

T ą 0 and C0 ‰ 0 — they are related to the several branches of the Lambert W

function.

(IV) For a bigger open and dense set of metrics g P GpMq, containing the example in

(III), there are constants δ ą 0, and C0 ą 0 such that

ts P RespM, gq, <s ă d´ δ, <s ą ´C0 log |=s|u is finite.
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Figure 1. The resonances: 4 cases in theorem 1.

Our theorem does not solve completely the problem. First, there may exist some metrics

for which the theorem does not say anything. We conjecture that this set is empty, that is

to say:

Conjecture 1. The set of metrics in (IV) is actually GpMq.

Not being able to prove this, part 4 is dedicated to showing that the complement is

contained in a C8 infinite codimensional submanifold of GpMq. Except for some special

cases, our theorem does not give much insight on the presence or the absence of resonances

far from the spectrum — i.e in the region <s ąą log |=s|. It seem that one would have to

invoke different techniques to make progress in the direction of

Conjecture 2. For an open and dense set of g P GpMq, there is an infinite number of

resonances outside of any strip d{2 ą <s ą d´ δ.

Our reason for conjecturing this is that the existence of such resonances seems to be more

stable than their absence.

The main tool to prove theorem 1 is a parametrix for the scattering determinant ϕ in a

half plane t<s ą δgu. Thanks to the form of that parametrix — sums of Dirichlet series —

we will be able to determine zones where ϕ does not vanish.

Theorem 2. Let pM, gq be a negatively curved cusp manifold with κ cusps. There is a

constant δg ą d{2 and Dirichlet series L0, . . . , Ln, . . . with abscissa of absolute convergence

δg such that if at least one of the Ln’s does not identically vanish, for <s ą δg, as =sÑ ˘8,

ϕpsq „ s´κd{2L0psq ` s
´κd{2´1L1psq ` . . . .

Actually, the constant δg is the pressure of the potential pF su`dq{2, where F su is the unstable

jacobian. In constant curvature, F su “ ´d and δg “ d.
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This theorem is a consequence of a more precise estimate — see Theorem 5. The Ln’s

are defined by dynamical quantities related to scattered geodesics. Those are geodesics that

come from one cusp and escape also in a cusp — maybe the same — spending only a finite

time in the compact part of M , called the Sojourn Time. This terminology was introduced

by Victor Guillemin [10]. In that article, for the case of constant curvature, he gave a version

similar to ours of (5). He also conjectured that his formula could be generalized to variable

curvature, which is the point of the present article, some 40 years later — see the concluding

remarks pp. 79 in [10]. Lizhen Ji and Maciej Zworski gave a related result in the case of

locally symmetric spaces [14].

Sojourn Times are objects in the general theory of classical scattering — see [24]. Maybe

ideas from different scattering situations may help to prove Conjecture 1, that may be refor-

mulated as

Conjecture 1’. Given g P GpMq, at least one Li is not identically zero.

The structure of the article is the following. In section 1 we recall some definitions and

results on cusp manifolds, and prove the convergence of a modified Poincaré series. Section

2 is devoted to building a parametrix for the Eisenstein functions, via a WKB argument,

using the modified Poincaré series. In section 3, we turn to a parametrix for the scattering

determinant. To use the Stationary Phase method, most of the effort goes into proving the

non-degeneracy of a phase function. The purpose of section 4 is to study the behaviour of

the series Li when we vary the metric. Finally, we prove theorem 1 in section 5. In appendix

A, for lack of a reference, we give a proof of a regularity result on horocycles. This result may

be of interest for the study of negatively curved geometrically finite manifolds in general.

This work is part of the author’s PhD thesis. In a forthcoming article [2], we will deduce

precise spectral counting results from Theorem 2.

Acknowledgment We thank Colin Guillarmou and Stéphane Nonnenmacher for suggest-

ing the idea that led to this article. We also thank Colin Guillarmou, Nalini Anantharaman

and Maciev Zworski for their very helpful suggestions.

1. Scattered geodesics and some potential theory on cusp manifolds

Recall that a manifold N is said to have bounded geometry when its injectivity radius is

strictly positive, and when ∇kR is bounded for all k “ 0, 1, . . . — R being the Riemann

curvature tensor of N . Since the injectivity radius goes to zero in a cusp, a cusp manifold

cannot have bounded geometry. However, its universal cover ĂM does. Since the curvature of

M is negative, ĂM is also a Hadamard space — diffeomorphic to Rd`1 — and we can define

its visual boundary B8ĂM homeomorphic to Sd, and visual compactification M “ ĂM YB8ĂM .

In all the article, unless stated otherwise, we will refer to the projection T ˚ĂM Ñ ĂM as π;

when we say geodesic, we always mean unit speed geodesic.

The results given without proof are from the book [23].
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1.1. Hadamard spaces with bounded geometry and negative curvature. Let us

define the Busemann cocycle in the following way. For p P B8ĂM , Let

βppx, x
1q :“ lim

wÑp
dpx,wq ´ dpx1, wq.

For each p P B8ĂM , we pick mp P ĂM — we will specify this choice later, see remark 2. Then,

we define the horosphere Hpp, rq (resp. the horoball Bpp, rq) of radius r P R` based at p as

Hpp, rq :“
!

x P ĂM
ˇ

ˇ

ˇ
βppx,mpq “ ´ log r

)

and Bpp, rq :“
!

x P ĂM
ˇ

ˇ

ˇ
βppx,mpq ď ´ log r

)

.
(6)

We also define

(7) Gppxq :“ βppx,mpq.

Beware that with these notations, horoballs Bpp, rq increase in size as r decreases. The

number r will correspond to a height y in the coming developments.

Since the curvature of ĂM is pinched-negative ´k2
max ď K ď ´k2

min, ĂM has the Anosov

property. That is, at every point of S˚ĂM , there are subbundles such that

T pS˚Mq “ RX‘ Es ‘ Eu,

where X is the vector field of the geodesic flow ϕt. This decomposition is invariant under

ϕt, and there are constants C ą 0, λ ą 0 such that for t ą 0

}dϕt|Es} ď Ce´λt and }dϕ´t|Eu} ď Ce´λt.

The subbundle Es (resp. Eu) is tangent to the strong stable (resp. unstable) foliation W s

(resp. W u). The subbundles Es, Eu are only Hölder — see [23, theorem 7.3] — but each

leaf of W s, W u is a C8 submanifold of ĂM — see lemma A.1.

Remark 1. We have to say how we measure regularity on ĂM and TĂM . In TTĂM , we have

the vertical subbundle V “ kerTπ : TTĂM Ñ TĂM . Since ĂM is riemannian, we also have

a horizontal subbundle H given by the connection ∇. Both V and H can be identified with

TĂM , and the Sasaki metric is the one metric on TĂM so that V K H and those identifications

are isometries.

We endow TĂM with the Sasaki metric, and then also T ˚ĂM by requesting that v ÞÑ xv, ¨y is

an isometry. For a detailed account on the Sasaki metric, see [9]. On all the manifolds that

appear, when they have a metric, we define their C k spaces, k P N, using the norm of their

covariant derivatives:

}f}Cn :“ sup
k“0,...,n

}∇kf}8.

Then, C8 “ Xně0C n. For a more detailed account of C k spaces on a riemannian manifold,

see for example the appendix “functionnal spaces in a cusp” in [3].

There are useful coordinates for describing the geodesic flow ϕt on S˚ĂM . We associate

with a geodesic its endpoints p´, p`. Then we have the identification

S˚ĂM » B2
8
ĂM ˆ R
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given by ξ ÞÑ pp´, p`, t “ βp´pπξ,mp´qq. Here B2
8
ĂM is obtained by removing the diagonal

from B8ĂM ˆ B8ĂM . In those coordinates, ϕt is just the translation by t in the last variable.

Moreover, the strong unstable manifold of ξ is the set tp´ “ p´pξq, t “ tpξqu. For the strong

stable manifold, it is a bit more complicated in this choice of coordinates.

We deduce thatW upξq is the set of outer normals to the horosphere based at p´pξq, through

πξ. The horospheres Hpp, rq are C8 submanifolds, and each Gp is a smooth function so that

dGp P C8pĂMq. The proof uses the fact that the unstable manifolds W u are C8 (lemma

A.1), and the fact that there can be no conjugate points in negative curvature.

For p P B8ĂM , we introduce W u0ppq as the set of ξ P S˚ĂM such that p´pξq “ p. It is the

set of outer normals to horospheres based at p. It is the graph of dGp, and

Gppπϕtpx,dGpqq “ Gp ` t.

We will refer to W u0ppq as the incoming Lagrangian from p.

1.2. Parabolic points and scattered geodesics. Now, let Γ “ π1pMq. It is a discrete

group acting freely on ĂM by isometries. The elements of Γ can be seen to act by homeo-

morphisms on M . We can define the limit set ΛpΓq as Γ ¨ x0 X B8ĂM , where the closure was

taken in M , and x0 is an arbitrary point in ĂM . This does not depend on x0.

If γ P Γ is not the identity, one can prove that it has either. (1) Exactly one fixed point in
ĂM , (2) Exactly two fixed points on B8ĂM , (3) Exactly one fixed point in B8ĂM . Then we say

that it is (1) elliptic, (2) loxodromic, or (3) parabolic. Here there are no elliptic elements in

Γ, since Γ acts freely on ĂM . Our study will be focused of the parabolic elements of Γ.

All the parabolic elements γ of Γ are regular, in the following sense: there is rγ P R˚` so

that if pγ is the fixed point of γ, Bppγ , rγq has constant curvature ´1. We denote by Γpar
the set of parabolic elements in Γ. The set Λpar of pγ ’s is the set of parabolic points of B8ĂM .

Let p P Λpar. Then, horoballs centered at p will project down to M as neighbourhoods

of some cusp Zi, and we say that p is a parabolic point that represents Zi. When γ.p “ p,

we also say that γ represents Zi. Objects (points in the boundary, or elements of Γpar)

representing the same cusp will be called equivalent. Γ acts on Γpar by conjugation, and

elements of the same orbit under Γ are equivalent — however observe that the equivalence

classes gather many different orbits under Γ.

If p is a parabolic point representing Zi, write p P Λipar. Let Γp ă Γ be its stabilizer. It

is a maximal parabolic subgroup. We always have Γp » π1pTdi q » Zd. The set of parabolic

points equivalent to p is in bijection with ΓpzΓ “ tΓpγ, γ P Γu.

Remark 2. We will not use the functions Gp when p is not a parabolic point. When p P Λipar,

one can choose the point mp so that Gp coincides with ´ log ỹp on the horoball Hpp, rpq, where

ỹp is obtained on Hpp, rpq by lifting the height function y on the cusp Zi. With this choice,

for p P Λpar and γ P Γ, we have the equivariance relation

(8) Gγ´1p “ Gp ˝ γ.
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The following lemma seems to be well known in the literature. However, since we cannot

give a reference for a proof, we have written one down.

Lemma 1.1. Since M has finite volume, ΛpΓq “ B8ĂM , and the parabolic points are dense

in B8ĂM .

Proof. Let us pick a cusp Zi, and a point p P Λipar. Then, we consider x P BZi in the boundary

of Zi in M . We can lift x to x̃ P Hpp, aiq. The orbit under Γ of any x̃1 P Hpp, aiq will remain

at bounded distance of the orbit of x̃ under Γ. We deduce that ΛpΓq is the intersection of the

closure of YγγHpp, aiq with the boundary B8ĂM . This implies in particular that Λipar Ă ΛpΓq.

Now, we can find a distance d on M that is compatible with its topology. Indeed, take a

point m P ĂM , and consider the distance d̃ obtained on M by requesting that

v P Bp0, 1q Ă TmĂM ÞÑ expm tv ˆ argth|v|u is an isometry.

Then, for that distance, the sequence of images γHpp, aiq have shrinking radii. Now, take a

sequence of points x̃j P γjHpp, aiq, so that x̃j Ñ q P ΛpΓq. We have γjHpp, aiq “ Hpγjp, aiq,

and so d̃px̃j , γjpq Ñ 0. This proves that ΛpΓq “ Λipar.

Next, consider the open set U in ĂM obtained by taking only points of ĂM that project to

points in the compact part M̊0 ĂĂ M . There is C ą 0 such that given x̃1 P U , for any

x̃2 P U , there is a γ P Γ such that dpγx̃1, x̃2q ď C.

Let U be the closure of U in M . Since U is at distance at most C of the orbit of any of

its points under Γ, we deduce that the limit set is U X B8ĂM .

Then, we find that ΛpΓq “ YγγHpp, aiq X B8ĂM “ U X B8ĂM . But, we also have

YγγHpp, aiq X B8ĂM “ YγγBpp, aiq X B8ĂM . We deduce that

(9) ΛpΓq “
!

YγγBpp, aiq Y U
)

X B8ĂM “ U Yγ γBpp, aiq X B8ĂM “ B8ĂM.

�

Geodesics that enter a cusp eventually come back to M0 when they are not vertical, that

is, when they are not directed along ˘By. A geodesic that is vertical in a cusp is said to

escape in that cusp.

Definition 1.2. The scattered geodesics are geodesics on M that escape in a cusp for both

tÑ `8 and tÑ ´8.

The set of scattered geodesics is denoted by SG. Such a geodesic, when lifted to ĂM , goes

from one parabolic point to another, and hence is entirely determined by its endpoints. Take

p, q representing Zi, Zj . For γ, γ1 P Γ, the pair of endpoints pp, γqq and pγ1p, γ1γqq represent

the same geodesic on M . We let SGij be the set of geodesics scattered from Zi to Zj . From

the above, we deduce that when i ‰ j,

(10) SGij » ΓizΓ{Γj and SGii » ΓizpΓ´ Γiq{Γi,

where Γi (resp. Γj) is any maximal parabolic subgroup representing Zi (resp Zj).
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On the other hand, we can consider the set of C1 curves that start in Zi above the torus

ty “ aiu and end in Zj , above the torus ty “ aju. Among those curves, we can consider the

classes of equivalence under free homotopy. Let πij1 pMq be the set of such classes. One can

prove that in each class rcs P πij1 pMq, there is exactly one element c of SGij — this is implied

by the fact that the riemannian distance on ĂM is uniquely geodesic. In particular, this proves

that SG is countable. Hence, we have an identification SGij » πij1 pMq. In what follows, when

there is no ambiguity on the metric, we will write directly c P πij1 pMq. In section 4, we will

study variations of the metric, and will come back to the notation rcs P πij1 pMq.

For a scattered geodesic cij , we define its Sojourn Time in the following way. Take one of

its lifts c̃ij to ĂM , with endpoints p, q. Let T be the (algebraic) time that elapses between

the time c̃ij hits tỹp “ aiu, and the time it crosses tỹq “ aju. Then, let

(11) T pcijq :“ T ´ log ai ´ log aj .

This does not depend on the choice of ai and aj (as defined in (1)), nor on the choice of

the lift c̃ij . We say that T pcijq is the Sojourn Time of cij , and we can see T as a function

on πij1 pMq. Given T ą 0, there is a finite number of c P SGij with sojourn time less than

T (otherwise, we would have two such curves that would be so close from one another that

they would be homotopic).

We denote by ST (resp. ST ij) the set of T pcq for scattered geodesics (resp. between Zi
and Zj). We also call the Sojourn Cycles and denote by SC the set of sums

(12) T1 ` ¨ ¨ ¨ ` Tκ
where σ is a permutation of t1, . . . , κu, and Ti P ST i,σpiq. A set of scattered geodesics

tc1, . . . , cκu such that ci P SGiσpiq will be called a geodesic cycle.

1.3. A convergence lemma for modified Poincaré series. Poincaré series are a classical

object of study in the geometry of negatively curved spaces — see [7] for example. For Γ a

group of isometries on ĂM , its Poincaré series at x P ĂM is

PΓpx, sq “
ÿ

γPΓ

e´sdpx,γxq, s P R.

More generally, given a Potential on SĂM , i.e a Hölder function V on SĂM invariant by Γ, its

Poincaré series is

PΓ,V px, sq :“
ÿ

γPΓ

e
şγx
x V´s

where
şγx
x V ´ s is the integral of V ´ s along the geodesic from x to γx. The convergence of

both series does not depend on x, only on s.

We will write
ş

V ´ s instead of
ş

pV ´ sq to reduce the size of the expressions. We will

assume that the integrand is all that is written after the sign
ş

, until we encounter another
ş

sign.

When p is a point on the boundary, x and x1 in ĂM ,
şp
x´

şp
x1 V will refer to the limit of

şp̃
x V ´

şp̃
x1 V as ĂM Q p̃ Ñ p. When V is Hölder, this limit exists because the geodesics rx, ps

and rx1, ps are exponentially close.
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When we sum over trγs P ΞzΓu we mean that we sum over a set of representatives for ΞzΓ

(Ξ being assumed to be a subgroup of Γ).

We only work with reversible potentials V . That means that ı˚V is cohomologous to V

(following [23], ı is the antipodal map in SĂM). In other words, we require that

(13)

ż y

x
V ´ ı˚V “ Apyq ´Apxq

where A is a bounded Hölder function on SĂM , invariant by Γ. In particular when this is the

case, we can replace V by ı˚V in the integrals, losing a Op1q remainder. It is then harmless

to integrate along a geodesic in a direction or the other.

In our case where Γ is the π1 of M , it is a general fact that there is a finite δpΓ, V q P R
such that PΓ,V converges for s ą δpΓ, V q and diverges for s ă δpΓ, V q. This number is called

the critical exponent of pΓ, V q. We also call δΓ “ δpΓ, 0q the critical exponent of Γ.

The exponent of convergence of a maximal parabolic subgroup Γp is always δΓp “ d{2.

Additionally, the Poincaré series for Γp diverges at d{2 (Γp is divergent). This can be seen

computing explicitely with the formula for the distance between two points py, θq and py, θ1q

in the half-space model of the real hyperbolic space Hd`1

(14) dppy, θq, py, θqq “ 2argsh
|θ ´ θ1|

2y
.

Definition 1.3. In what follows, we say that a potential V is admissible if the following

holds. First, V is a Hölder function on SĂM , invariant by Γ and reversible. Second, there

are positive constants C, λ, and a constant V8 P R such that whenever T ą 0, if πϕtpξq stays

in an open set of constant curvature ´1 for t P r0, T s, then for t P r0, T s,

(15) |V pϕtpξqq ´ V8| ď Ce´λt.

Observe that an admissible potential has to be bounded. We will mostly use the potential

V0 “ pF
su ` dq{2 where F su is the unstable jacobian (see (31) and (32)). We start with the

following lemma:

Lemma 1.4. Let V be an admissible potential. Then δpΓ, V q ą δΓp ` V8.

If V “ 0, this is the consequence of [7, Proposition 2]. We will actually follow their proof

closely, but before, we need two observations on triangles in ĂM .

Remark 3. 1. Consider a triangle with sides a, b, c and angles α, β, γ in a complete

Hadamard space ĂMk of curvature ´k2. We have

cosh kc “ cosh ka cosh kb´ sinh ka sinh kb cos γ.

Assume that γ ą π{2 (the triangle is obtuse). Then we find that there is a constant Ck ą 0

— smooth in k ‰ 0 and k ‰ 8 — such that

(16) |c´ pa` bq| ď Ck.

Since the curvature of M is pinched, by the Topogonov comparison theorem for triangles, the

same is true for obtuse triangles in ĂM , with a constant C controlled by kmin and kmax.
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2. Now, we consider a triangle with sides c0, c1, c2 in ĂM , and V an admissible potential

on ĂM . Take C ą 0. Among those triangles, we restrict ourselves to the ones such that the

length of c0 is at most C. Then

(17)

ż

c1

´

ż

c2

V “ Op1q.

this is still valid if the vertex at c1 X c2 is at infinity. Actually, to prove this, first observe

that it suffices to make computations for that case when c1X c2 is at infinity. Then it follows

directly from the fact that the two curves are exponentially close in that case.

Proof of lemma 1.4. The limit set of Γp is reduced to tpu. In Hpp, aiq, Γp has a Borelian

fundamental B domain whose closure is compact. We can obtain a fundamental domain G

for Γp on B8ĂMztpu by taking the positive endpoints of geodesics from p through B. From [23,

Proposition 3.9], which is due to Patterson, there exists a Patterson density µ of dimension

δpΓ, V q on ĂM , i.e, a family of finite non-zero borelian measures pµxqxPĂM on B8ĂM , so that

for any x, x1 P ĂM , γ P Γ,

(18) γ˚µx “ µγx,
dµx
dµx1

pqq “ exp

"
ż q

x
´

ż q

x1
V ´ δpΓ, V q

*

, q P B8ĂM.

Additionally, the µx’s are exactly supported on ΛpΓq “ B8ĂM , so µxpG q ą 0. Take x P B.

We have

8 ą µxpB8ĂMq “
ÿ

γPΓp

µxpγG q ` µxptpuq

But,

µxpγ
´1G q “ γ˚µxpG q “

ż

G
exp

"
ż q

γx
´

ż q

x
V ´ δpΓ, V q

*

dµxpqq

So we find
ż

G

ÿ

γPΓp

exp

"
ż q

γx
´

ż q

x
V ´ δpΓ, V q

*

dµxpqq “
ÿ

γPΓp

µxpγG q ă 8.

For q P G , let xq P B be its projection on Hpp, aiq. Since we have dpx, xqq “ Op1q — from

the choice of B — we use (17) and uniformly in γ P Γp,
ż q

xq

´

ż q

x
V ´ δpΓ, V q “ Op1q ;

ż γx

xq

´

ż γx

x
V ´ δpΓ, V q “ Op1q

Take zpx1q the intersection of the geodesic rq, x1s and the horosphere Hq based at q through

xq. The set of zpx1q, x1 P Hpp, aiq has to be bounded. Indeed, Hpp, aiq is not compact, but the

only way to go to infinity in Hpp, aiq is to tend to p, and we find that as x1 Ñ p, zpx1q Ñ xq.

The geometry is described in figure 2.

Using again (17),

ż q

xq

´

ż q

zpx1q
V ´ δpΓ, V q “ Op1q ;

ż zpx1q

x1
´

ż xq

x1
V ´ δpΓ, V q “ Op1q,
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q

p Hpp, aiq

Hq

xq

G

B
x1

zpx1q

Figure 2.

and sum everything up (with x1 “ γx)
ż q

γx
´

ż q

x
V ´ δpΓ, V q “ Op1q `

ż zpγxq

γx
`

ż q

zpγxq
´

ż q

xq

V ´ δpΓ, V q

“ Op1q `
ż xq

γx
V ´ δpΓ, V q

“ Op1q `
ż x

γx
V ´ δpΓ, V q.(19)

As a consequence,

PΓp,V px, δpΓ, V qqµxpG q ă 8,

and since µxpG q ą 0,

(20) PΓp,V px, δpΓ, V qq ă 8.

Since V is an admissible potential, for each x P ĂM , there is Cx ą 1 such that for all s P R,

1

Cx
PΓp,V px, sq ď PΓppx, s´ V8q ď CxPΓp,V px, sq.

Since Γp is divergent, taking s “ δpΓ, V q, we deduce that δpΓ, V q ´ V8 ą d{2. �

In the following developments, we will need the convergence of a modified Poincaré series.

Take V an admissible potential. For a cusp Zi, take a point p P Λipar, and let πaip pxq be the

intersection of the geodesic through p and x with Hpp, aiq. The horoballs Bpp, aiq, p P Λipar
are all pairwise disjoint. Indeed, the restriction of the projection ĂM Ñ M to any such

horoball is a universal cover of Zi. This implies that for x P Bpp, aiq, the part of the orbit of

x under Γ that stays in Bpp, aiq has to be its orbit under Γp.

For x PM , take x̃ P ĂM a lift of x, and define

PZi,V px, sq :“
ÿ

rγsPΓpzΓ,γx̃RBpp,aiq

exp

#

ż γx̃

π
ai
p pγx̃q

V ´ s

+

.
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This does not depend on the choice of x̃. Given a point x P ĂM , among a family tγx, rγs P

ΓpzΓu, there is at most one point in Bpp, aiq, and such a point has to be one that minimizes

Gp. So, for a point x P M , take xp to be a lift minimizing Gp among the lifts of x, and let

Gipxq :“ Gppxpq. For q P Λjpar, also let

(21) P ijV psq :“
ÿ

ΓpγΓq‰Γp

exp

"

pV8 ´ sqT pp, γqq `
ż γq

p
V ´ V8

*

,

where T pp, γqq is the sojourn time of the geodesic on M that lifts to rp, γqs. Observe that

the set tΓpγΓq ‰ Γpu can be identified with SGij , from equation (10). The main result of

this section is

Lemma 1.5. The series PZi,V px, sq and P ijV psq converge if and only if s ą δpΓ, V q. Addi-

tionally, when ε ą 0, there is a constant Cε ą 0 such that for s ą δpΓ, V q ` ε,

(22) }PZi,V px, sq}L2pMq ď Cε

Our proof is inspired by [1], and we generalize their Theorem 1.1. One can also see the

article [21], or the proposition 3 in [22]. For two real valued functions f and g, we write

f — g when there is a constant C ą 0 with Cg ď f ď g{C. In the following, when we use

that notation, we let the constant C depend on s, but not on x, γ, p. We fix a cusp Zi, a

representing parabolic point p P Λipar.

Proof. The proof is divided into 3 parts. First, we compare the values of terms of the sum

for different x’s, to check that the convergence does not depend on x indeed. Then, we

study the sum for some well chosen x, to find the convergence exponent. At last, we turn

to asymptotics in cusps. We let P ˚ be the series where we have not excluded γxq P Bpp, aiq

from the sum.

1. Take x, x1 two points in M , at distance D ą 0, and two lifts x̃ and x̃1 such that

dpx̃, x̃1q “ D.

Take γ P Γ. Assume that Gppγx̃
1q ě Gppγx̃q. Then the projection x1

γ of γx̃1 on the horoball

Bpp,Gppγx̃qq is at distance OpD`1q from γx̃. This is a simple consequence of equation (16)

for the triangle with vertices γx̃, γx̃1, x1
γ . Write

ż γx̃1

π
ai
p pγx̃1q

V ´ s´

ż γx̃

π
ai
p pγx̃q

V ´ s “

ż γx̃1

x1γ

V ´ s`

ż x1γ

π
ai
p pγx̃1q

V ´

ż γx̃

π
ai
p pγx̃q

V.

Since V is Hölder, and bounded, we deduce that
ż γx̃1

π
ai
p pγx̃1q

V ´ s´

ż γx̃

π
ai
p pγx̃q

V ´ s “ OpD ` 1q

"

p1` |s|q `

ż 8

0
pe´kmintqµdt

*

where µ is the Hölder exponent of V . The constants in the estimates do not depend on x

and x1. We have used that the geodesics joining γx̃, πaip γx̃ and x1
γ , πaip γx̃

1 are on the same

strong stable manifold. We deduce that for some constant C ą 0,

(23) e´CpD|s|`1q ď
P ˚px1, sq

P ˚px, sq
ď eCpD|s|`1q x, x1 PM,dpx, x1q “ D.
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2. Take now a point x P M so that xp P Hpp, aiq Ă Bpp, aiq. We claim that for all

x1 P Hpp, aiq,

(24)

ż γxp

x1
V ´ s “ pV8 ´ sqdpx

1, πaip pγxpqq `Op1q `
ż γxp

π
ai
p pγxpq

V ´ s.

The remainder being bounded independently from xp and γ. Let us assume that this holds

for now. Then, we write

PΓ,V pxp, sq ´ PΓp,V pxp, sq “
ÿ

Γpγ‰Γp

ÿ

αPΓp

exp

#

ż γxp

αxp

V ´ s

+

,

—
ÿ

Γpγ‰Γp

ÿ

αPΓp

exp

#

pV8 ´ sqdpαxp, π
ai
p pγxpqq `

ż γxp

π
ai
p pγxpq

V ´ s

+

— PZi,V pxp, sqPΓppxp, s´ V8q.

Hence

PZi,V pxp, sq —
PΓ,V pxp, sq ´ PΓp,V pxp, sq

PΓppxp, s´ V8q
.

But from lemma 1.4, we know that δpΓ, V q ą δpΓp, V q.

For the proof of (24), we will just say that it is based on the fact that the triangle with

vertices x1, πaip pγxpq, and γxp is obtuse at πaip pγxpq. The estimate follows from remark 3 and

the way to obtain it was exemplified in the proof of (19).

3. We turn to asymptotics in the cusps. Take x P Zj and q P Λjpar (if i “ j, take p “ q).

Let xq minimize Gq among the lifts of x. Observe that the map pΓpγΓq ‰ Γp, α P Γqq ÞÑ Γpγα

is a bijection onto ΓpzΓ if i ‰ j, and ΓpzpΓ´ Γpq if i “ j. We hence rewrite

PZi,V px, sq “
ÿ

ΓpγΓq‰Γp

ÿ

αPΓq

exp

#

ż γαxq

π
ai
p pγαxqq

V ´ s

+

.

Consider Hq the horosphere based at q, through xq. Let zγ (resp. z1γ) be the point of

intersection of the geodesic rp, γqs with γHq (resp. Hpp, aiq). From (19), we have

ż γαxq

π
ai
p pγαxqq

V ´ s “ Op1q `
ż zγ

p
`

ż γαxq

zγ

´

ż π
ai
p pγαxqq

p
V ´ s.

However, the distance between z1γ and πaip pγαxqq is uniformly bounded. This is a direct

consequence of lemma 3.2. Hence
ż p

z1γ

´

ż p

π
ai
p pγαxqq

“ Op1q,

and
ż γαxq

π
ai
p pγαxqq

V ´ s “

"
ż γq

p
V ´ V8

*

` pV8 ´ sq
`

T pp, γqq ´Gqpxqq ` dpγ´1zγ , αxqq
˘

`Op1q.
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where T pp, γqq is the sojourn time for the geodesic rp, γqs. It follows that

PZi,V px, sq —
ÿ

ΓpγΓq‰Γp

exp

"

pV8 ´ sqT pp, γqq `
ż γq

p
V ´ V8

*

ˆ
ÿ

αPΓq

exp
 

pV8 ´ sqp´Gqpxqq ` dpγ
´1zγ , αxqqq

(

In the RHS, the first term does not depend on x; we recognize P ijV psq. The second is

related to PΓqpxqq. We can see it as a Riemann sum as xq Ñ q. Indeed, Γq » Zd, and we

can write explicitely the second term as

(25) eps´V8qGqpxqq
ÿ

θPΛi

exp

"

2pV8 ´ sq argsh
|θ ´ θ0|

2e´Gqpxqq

*

As xq Ñ q, y “ e´Gqpxqq Ñ `8, and we can see this as a Riemann sum for the function

f “ expt2pV8 ´ sq argshu for the parameter 2y. It should be equivalent to p2yqd
ş

Rd f .

However f is integrable if and only if s´ V8 ą d{2. As a result, we find that
ÿ

αPΓq

exp
 

pV8 ´ sqp´Gqpxqq ` dpγ
´1zγ , αxqqq

(

— eps´V8´dqGqpxqq, s ą V8 ` d{2.

It is easy to check that the L2 norm of this is finite whenever s ě V8` d{2` ε. The proof of

the lemma is complete when we observe that the L2 norm decreases when <s increases. �

2. Parametrix for the Eisenstein functions

In the case of constant curvature, the universal cover ĂM is the real hyperbolic space Hd`1.

On it, there is the Poisson kernel P px, p, sq that associates a function f of p P B8ĂM » Sd on

the boundary with a function on Hd`1, upxq such that

p´∆´ spd´ sqqupxq “ 0 upxq “

ż

Sd
P px, p, sqfppqdp.

We say that u corresponds to the superposition of outgoing stationary plane waves at fre-

quency s, with weight fppq in the direction p. When the curvature is variable, one cannot

build such a kernel anymore, because the geometry of the space ĂM near the boundary is

quite singular. In other words, the metric structure on the boundary is not differentiable,

only Hölder. Hence, no satisfactory theory of distributions is available. However, in the spe-

cial case of parabolic points that correspond to hyperbolic cusps, the fact that small enough

horoballs have constant curvature enables us to construct an approximate Poisson kernel for

p P Λpar.

Taking the half space model for Hd`1, the Poisson kernel for the point p “ 8 is P “ ys,

so one can rewrite formula (4) as

Eips, xq “
ÿ

rγsPΓpzΓ

P pγx, p, sq.

This is exactly the type of expression we are looking for. In the first subsection, we

introduce some notations. In the second we recall some facts on Jacobi fields that we will
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need. Then we build the approximate Poisson kernel, and later, we prove that summing over

p P Λipar gives a good approximation of Ei.

2.1. Some more notations. Fix some Zi and let p P Λipar be a parabolic point. We denote

by ϕpt the flow on ĂM generated by ∇Gp. It is conjugated to the geodesic flow on W u0ppq by

the projection π : T ˚ĂM Ñ ĂM . The Jacobian Jacϕpt of ϕpt with respect to the riemannian

measure satisfies
d

dt
Jacϕpt |t“0 “ Tr∇2Gp “ ∆Gp,

so that

(26) Jacϕpt “ exp

"
ż t

0
∆Gp ˝ ϕ

p
τdτ

*

.

Thanks to the rigid description in the cusps, we have

Gp ď ´ log ai ô we are above cusp Zi and Gp “ ´ log yi, for all p P Λipar.

In that case, we can compute ∆Gp “ d, and it makes sense to define a twisted Jacobian:

(27) J̃ppxq :“ lim
tÑ`8

b

Jacϕp´tpxqe
td “

b

Jacϕp´tpxqe
td

těGppxq`log ai
, for p P Λipar.

This J̃p is constant equal to 1 in the horoball Bpp, aiq. It is useful to define

(28) bi :“ infty ą 0, Bpp, yq has constant curvatureu.

We have bi ď ai, and J̃ equals 1 on Bpp, biq. We also let

(29) Fppxq :“ log J̃ppxq.

Recall the curvature of M is pinched between ´k2
max ď ´1 ď ´k2

min ă 0. Then by Rauch’s

comparison theorem, [4, Theorem 1.28],

(30) dp1´ kmaxq ď
2Fp

pGp ` log biq`
ď dp1´ kminq.

What is more, by B.1, ∇nFp is bounded for n ě 1, because ∇Gp is in C8pĂMq.

On the other hand, the Unstable Jacobian F su is the Hölder function on SM defined by

(31) F supx, vq :“ ´
d

dt |t“0
det

“

pdϕtq|Eupx,vq
‰

ă 0.

The fact that it is Hölder is a consequence of the Hölder regularity of Eu — see [23, Theorem

7.1]. In what follows, we will be interested by the potential

(32) V0 “
1

2
F su `

d

2
.

We let δg “ δpΓ, V0q. This is the relevant abscissa of convergence of theorem 2 in the

introduction, as we will see.
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2.2. Unstable Jacobi fields. We want to relate V0 and Fp. We have to make a digression,

and recall some facts on Jacobi fields. Take a geodesic xptq, and a Jacobi field J along xptq,

orthogonal to x1ptq. By parallel transport, one can reduce J to some function of time valued

in Txp0qM . If one also uses parallel transport for the curvature tensor, we get the equation

(33) J2ptq `KptqJptq “ 0.

If xptq lives in constant curvature ´1, K is the constant matrix ´1. If Jp0q “ J 1p0q, then

Jptq “ etJp0q, and conversely, if Jp0q “ ´J 1p0q, Jptq “ e´tJp0q.

For v P TxM , denote by vK the space of vectors in TxM orthogonal to v. Recall that

H and V are the horizontal and vertical subspaces introduced in remark 1. Then we can

identify TvSM » pRv ‘ vKq ‘ vK. In this identification, the first term Rv ‘ vK is Hv. The

second term vK is Vv X TvSM . In this notation, Rv is the direction of the geodesic flow, and

v its vector.

This identification is consistent with Jacobi fields in the sense that if

dϕt.pl, v1, v2q “ plptq, v1ptq, v2ptqq,

then lptq “ l for all t, v1ptq is a Jacobi field orthogonal to vptq “ x1ptq, and v2ptq is its

covariant derivative (also orthogonal to vptq).

An unstable Jacobi field Juptq along xptq is a d ˆ d matrix-valued solution of (33) along

xptq that is invertible for all time, and that goes to 0 as t Ñ ´8 — it just gathers a basis

of solutions. Similarly, one can define the stable Jacobi fields. Such fields always exist; they

never vanish, nor does their covariant derivative — see [25]. Given a geodesic xptq, we denote

by Jus ptq the unstable Jacobi field that equals 1 for t “ s — . Actually, the fields t ÞÑ Jus ps`tq
are all equal and only depend on v “ pxpsq, x1psqq P SM . We will write it t ÞÑ Juv ptq.

Identifying with TSM , we find that vectors in Eu take the form pJuptqw, Ju1ptqwq, whence

we deduce that

(34) Euv “ tpw, Juv
1
p0qwq|w K vu.

The matrix Juv 1p0q only depends on v, we denote it by Uv. Similarly, we define Sv for the

stable Jacobi fields. They satisfy the Ricatti equation (along a geodesic vptq):

U1 ` U2 `K “ 0.

They take values in symmetric matrices (with respect to the metric), which is equivalent to

saying that the stable and unstable directions are Lagrangians. Given a geodesic curve xptq,

Juptq and Jsptq two Jacobi fields along it, we can write U “ ppJuq´1qT ppJuq1qT , and find that

(35)
d

dt

 

pJuqT pU´ SqJs
(

“ 0.

This is a Wronskian identity. We can also compute

(36) det dϕt|Eupvq “ det Juv ptq

g

f

f

e

det
´

1` U2
ϕtpvq

¯

det p1` U2
vq

.
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We have a map iu : w P Hpvq ÞÑ pw,Uvwq P Eupvq from the horizontal subspace to the

unstable one. If one considers the metric ds2
u obtained on Eu by restriction of the Sasaki

metric in TSM , this gives a structure of Euclidean bundle to Eu over SM .

Lemma 2.1. The matrix 1`U2
v is the matrix of the metric piuq˚ds2

u on H. This is bounded

uniformly on SM .

Proof. This metric is always ě 1 — here, 1 refers to the metric on H, i.e, the metric on TM .

The only way it can blow up would be that for a sequence of v, ṽ K v, Uvṽ Ñ 8. If v8 was

a point of accumulation of v in ĂM , that implies that Eu and H are not transverse at v8.

That is not possible since there are no conjugate points in strictly negative curvature. We

deduce that πv PM has to escape in a cusp.

However, in the cusp, the curvature K is constant with value ´1. Hence, unstable Jacobi

fields in the cusp write as Aet`Be´t, where A and B are constant matrices along the orbit.

Then Uv “ 1 ` Ope´tq as the point v travels along a trajectory ϕt that remains in a cusp.

In particular, piuq˚ds2
u “ 2.1`Op1{yq for points of height y in a cusp. �

In this context, from the definition, we find that for x P ĂM ,

(37) J̃2
p pxq “ etd det Jupx,∇Gppxqqp´tq, for t ě Gppxq ` log ai.

As a consequence,

Lemma 2.2. For x P ĂM , and t P R,

ż ϕpt pxq

x
V0 “ Fppϕ

p
t pxqq ´ Fppxq `Op1q.

What is more, V0 is an admissible potential.

Proof. The first part of the lemma comes directly from equations (37) and (36), and the

observation just afterward.

To prove the second part, it suffices to prove that F su is an admissible potential. Consider

a point v P TSM so that ϕtpvq remains in a cusp for times t P r0, T s. Taking the Jacobi

fields starting from v along its orbit, for t P r0, T s, we find

(38) Uϕtv “ pAet ´Be´tqpAet `Be´tq´1 “ 1`Ope´tq,

and

F su “ ´
d

ds |s“0

#

det Juϕtpvqpsq

d

det 1`Ope´tq
det 1`Ope´t´sq

+

“ ´d`Ope´tq.

The last thing we have to check is that F su is reversible. However, ı˚F su is the strong

Stable Jacobian F ss

(39) F ss “
d

dt |t“0
log det dϕt|Espx,vq.



RESONANCE-FREE REGIONS FOR SOME FINITE VOLUME MANIFOLDS 19

From equation (36), and the Wronskian identity (35), we find that

(40) det dϕt|Espx,vq det dϕt|Eupx,vq “
detpUv ´ Svq

detpUϕtpvq ´ Sϕtpvqq

g

f

f

e

det
´

1` U2
ϕtpvq

¯´

1` S2
ϕtpvq

¯

det p1` U2
vq p1` S2

vq
.

Since the function

(41)

a

detp1` U2qp1` S2q

detpU´ Sq

is well defined on SĂM , Hölder continuous, and bounded, F su is reversible. �

2.3. On the universal cover. In this section, we fix p P Λpar, and we omit the dependency

on p; it shall be restored afterwards. We use notations introduced in section 2.1. We will

use the WKB Ansatz to find our approximate Poisson kernel. Consider a formal series of

functions on ĂM ,

fpxq “
ÿ

ně0

s´nfnpxq,

with s P C and f0 “ 1, and compute

p´∆´ spd´ sqqre´sGJ̃f s “ e´sG
”

s
´

2∇G.∇pJ̃fq ` J̃f∆G´ J̃fd
¯

´∆pJ̃fq
ı

,

where we have used that G satisfies the eikonal equation |∇G|2 “ 1. If we expand the formal

series, we find that this expression (formally) vanishes if for all n ą 0,

2J̃∇G.∇fn “ ∆pJ̃fn´1q.

Indeed,

2∇G.∇J̃ “ J̃pd´∆Gq.

We can rewrite those equations in terms of F “ log J̃ :

(42) 2∇G.∇fn “ Qfn´1 where Qfpxq “ ∆f ` 2∇F.∇f ` p|∇F |2 `∆F qf.

These are transport equations, with solutions :

(43) fn “
1

2

ż 0

´8

pQfn´1q ˝ ϕ
p
τdτ

Remark that on tG ď ´ log bu, from the definition (28) F vanishes, and so does Qf0. Hence

all fn’s but f0 vanish, and the formula above makes sense. We prove :

Lemma 2.3. There are constants Cn,N ą 0 for n ą 1, N P N, such that for all τ P R`

}fn}CN ptGpďτ´log buq ď Cn,Nτ
n.

Proof. We use lemma B.1 again, and proceed by induction. The result is obvious for n “ 0.

Now assume it holds for some n ě 0. Taking g0 “ fn, g1 “ fn`1, ` “ ´ log b, the lemma

enables us to conclude directly if we can prove that

}Qfn}C kpGďτ´log bq ď Cn,kτ
n.

But this is a simple consequence of the induction hypothesis and the fact that ∇F P C8pĂMq.

�
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All the functions defined above depended on choosing a parabolic point p, and now we

make it appear in the notations:

(44) fNp psq :“
N
ÿ

n“0

s´nfn,p and PN p¨, p, sq :“ e´sGp J̃pf
N
p psq.

This is the approximate Poisson kernel. Then for all N ą 0,

r´∆´ spd´ sqse´sGp J̃pf
N
p psq “ ´s

´Ne´sGp J̃pQpfN,ppsq.

so we let

(45) RN p., p, sq :“ ´e´sGp J̃pQpfN,ppsq

This will be the remainder term. Now, as the last point in this section, observe the equiv-

ariance relation

(46) PN pγx, p, sq “ PN px, γ
´1p, sq.

2.4. Poincaré series and convergence. The functions defined by (44) and (45) in ĂM are

already invariant under the action of Γp, so to define a function on M , we only have to sum

over ΓpzΓ. As in section 1.3, take a cusp Zi, a parabolic point p P Λipar. For x P M , let

xp P ĂM be a point minimizing Gp amongst the lifts of x. Then

Lemma 2.4. For ε ą 0, and N P N, there is a constant CN,ε ą 0 such that for all x P M ,

and all <s ą δpΓ, V0q ` ε,
›

›

›

›

›

›

ÿ

rγsPΓpzΓ,rγs‰r0s

|PN pγxp, p, sq|

›

›

›

›

›

›

L2
xpMq

ă CN,εa
<s
i .

Further, with the same condition on s, the remainder satisfies
›

›

›

›

›

›

ÿ

rγsPΓpzΓ

|RN pγxp, p, sq|

›

›

›

›

›

›

L2
xpMq

ă CN,εb
<s
i .

with bi as defined in (28).

Proof. First, we give a proof for N “ 0. write

ÿ

rγsPΓpzΓ,rγs‰r0s

|P0pγxp, p, sq| “
ÿ

rγsPΓpzΓ,rγs‰r0s

exp

#

<s log ai ` Fppγxpq ´

ż γxp

π
ai
p pγxpq

<s

+

.

Recall ´Fppπ
ai
p pγxpqq “ 0. By lemma 2.2, losing constants not depending on s, the RHS is

comparable with

a<si
ÿ

rγsPΓpzΓ,rγs‰r0s

exp

˜

ż γxp

π
ai
p pγxpq

V0 ´ <s

¸

.

Lemma 1.5 states that the term in the right part of the product is bounded uniformly in L2

norm.
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Now, we deal with the higher order of approximation. Let n ą 0 and consider the sum
ÿ

rγsPΓpzΓ

pe´sGp J̃pfn,pq ˝ γ.

By lemma 2.3, this is bounded term by term by

Ck
ÿ

rγsPΓpzΓ

pe´sGp J̃pppGp ` log biq
`qnq ˝ γ.

Inserting 1 “ bsi b
´s
i , this is

(47) Ckb
s
i

ÿ

rγsPΓqzΓ,Gqě´ log bi

Bks pe
´spGq`log biqJ̃qq ˝ γ.

Let

Lbi0 :“
ÿ

rγsPΓqzΓ,Gqě´ log bi

pe´spGq`log biqJ̃qq ˝ γ.

By the argument above, for s ą δpΓ, V0q ` ε, this sum converges and the value is bounded in

L2 norm by some function of s. What is more, since all the exponents are nonpositive, this

a decreasing function of s P R. We deduce that when ε ą 0, there is Cε ą 0 such that for

x PM , <s ą δpΓ, V0q ` ε, we have }Lbi0 }L2 ď Cε.

Consider L “
ř

akλ
s
k a Dirichlet series, with ak P R`, λk ě 1, converging for <s ą s0.

Then, if s´ ε ą s0, we find |L1psq| ď Lp<s´ εq supn | log λn|λ
´ε
n . Since Lbi0 has this Dirichlet

series structure in the s variable, it implies that for some constants Cε,k ą 0,

}BksL
bi
0 psq}L2 ď Cε,k, x PM, <s ą δpΓ, V0q ` ε.

Observe that Cε,k may depend on bi. Hence
›

›

›

›

›

›

ÿ

rγsPΓpzΓ

|pe´sGp J̃pfn,pq ˝ γ|

›

›

›

›

›

›

L2pMq

ď Cε,nb
<s
i , x PM, <s ą δpΓ, V0q ` ε.

Moreover, this also holds if we replace fn,p by QpfN,p, and this observation concludes the

proof. �

Now, we can state and prove our first theorem. Recall Eips, xq is the Eisenstein function

incoming from cusp Zi, defined in (2) and (3).

Theorem 3 (Parametrix for the Eisenstein functions). For N P N, let Zi be some cusp, and

p P Λipar a representing point. For <s ą δpΓ, V0q, let PN px, p, sq be defined by (44) and

Ei,N ps, xq :“
ÿ

rγsPΓpzΓ

PN pγxp, p, sq.

this function is defined on ĂM , but invariant by Γ, so it descends to M ; it does not depend

on the choice of p P Λipar. Then, uniformly in s when <s stays away from δpΓ, V0q, and

s R rd{2, ds,

(48) }Bms pEi ´ Ei,N q}HkpMq “ O
´

sk´Nbsi

¯
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Proof. From lemma 2.4, we deduce that Ei,N is well defined; it does not depend on p thanks to

the equivariance relation (46). Additionally, for a cutoff χ that equals 1 sufficiently high in Zi
and vanishes outside of Zi, Ei,N´χy

s
i is in L2, uniformly bounded in sets t<s ą δpΓ, V0q`εu.

The sum
ÿ

rγsPΓpzΓ

RN pγ¨, p, sq

converges normally on compact sets, and in L2pMq also, so we find

Ei ´ Ei,N “ s´N p´∆´ spd´ sqq´1
ÿ

rγsPΓpzΓ

RN pγ¨, p, sq

Since Bms p´∆´ spd´ sqq´1 is bounded on HnpMq with norm Op1q when s stays in sets

t<s ą d{2` ε, s R rd{2, dsu, it suffices to prove that when <s ą δpΓ, V0q ` ε,
›

›

›

›

›

›

Bms

ÿ

rγsPΓpzΓ

RN pγ¨, p, sq

›

›

›

›

›

›

HkpMq

“ Opskb<si q

Actually, since the sum has a Dirichlet series structure, we see that this is true for all m ě 0

as long as it is true for m “ 0. From the bounds in lemma 2.3, and the bounds on ∇Gp P C8,

we see that for x1 P ĂM ,

}∇kRN p¨, p, sq}px
1q ď Ce´sGppx

1qJ̃pppGp ` log biq
`qN

We conclude the proof using the arguments of the proof of lemma 2.4 again — from equation

(47) and below. �

Remark 4. We have given estimates for the convergence in Hk, k ě 0. However, the sum

also converges normally in C k topology on compact sets.

3. Parametrix for the scattering matrix

Let us recall that the zero-Fourier mode of Ei at cusp Zj is

ysδij ` φijpsqy
d´s.

This formula is valid a priori for y ě aj . However, if we integrate Ei along a projected

horosphere of height bi ď y ď ai, we still obtain the same expression, even though the

projected horosphere may have self-intersection — recall they are the projection in M of

horospheres in ĂM . This is true because following those projected horospheres, we do not leave

an open set of constant curvature ´1 — see (28) — and we can apply a unique continuation

argument.

The smaller the bi’s are, the better the remainder is. In constant curvature, there is no

remainder — the remainder in (48) goes to zero as N Ñ 8, with fixed s. Observe that the

parameters bi are only related to the support of the variations of the curvature, and not to

their size.
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3.1. Reformulating the problem. In this section, let p P Λipar, q P Λjpar. Recall from (10)

that when i ‰ j, SGij » ΓpzΓ{Γq, and SGii » ΓpzpΓ´ Γpq{Γp. We prove

Lemma 3.1. When <s ą δpΓ, V0q, integrating on horospheres in ĂM ,

(49) φijpsq “ bsj
ÿ

rγsPSGij

ż

Hpγq,bjq
PN p¨, p, sqdµpθq `Ops1{2´Nbsi b

s
jq.

The constants are uniform in sets t<s ą δpΓ, V0q ` εu, ε ą 0. What is more, this expansion

can be differentiated, differentiating the remainder.

Proof. First, for H̃jpbjq » ΓqzHpq, bjq the projected horosphere from cusp Zj at height bj ,

integrating in M , we claim

(50) φijpsq “ ´b
2s´d
j δij `

ż

xPH̃jpbjq
bs´dj Ei,Ndθ

d `Ops1{2´Nbsi b
s
jq,

where the remainder can be differentiated. Considering zero Fourier modes of Ei in the

cylinder ΓqzĂM we see that the formula holds if we replace Ei,N by Ei, without remainder.

Hence, we only have to estimate
ˇ

ˇ

ˇ

ˇ

Bms

ˆ

bs´dj

ż

Ei ´ Ei,Ndθ
d

˙
ˇ

ˇ

ˇ

ˇ

.

The surface measure obtained by disintegrating the riemannian volume on ty “ bju is dµpθq “

dθd{bdj . According to the Sobolev trace theorem, the L2 norm of a restriction to H̃jpbjq —

it is an immersed hypersurface — is controlled by the H1{2 norm on M . Using this and

theorem 3, we obtain that the remainder is bounded up to a constant by

b
<s´d{2
j sup

k“0,...m
}Bks pEi ´ Ei,N q}H1{2pMq “ Ops1{2´Nb<si b<sj q.

Now, to go from (50) to (49), we just have to use the description given by theorem

3. Indeed, consider a cube Cq in Hpq, bjq that is a fundamental domain for the action of

Γq » Zd. Then
ż

xPH̃jpbjq
bs´dj Ei,Ndθ

d “
ÿ

rγsPΓpzΓ

ż

Cq
bs´dj PN pγ¨, p, sqdθ

d

“
ÿ

rγsPΓpzΓ

ż

γCq
bs´dj PN p¨, p, sqdθ

d

“
ÿ

rγsPΓpzΓ{Γq
rγs‰Γp

ÿ

γ1PΓq

ż

γγ1Cq
bs´dj PN p¨, p, sqdθ

d ` δij

ż

Cp
bs´di PN p¨, p, sqdθ

d

“
ÿ

rγsPΓpzΓ{Γq
rγs‰Γp

ż

Hpγq,bjq
bs´dj PN p¨, p, sqdθ

d ` δij

ż

Cp
bs´di PN p¨, p, sqdθ

d

It suffices to observe now that
ż

Cp
bs´di PN p¨, p, sqdθ

d “ b2s´di .
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�

We want to give an asymptotic expansion for each term in (49). To be able to use stationary

phase, the next section is devoted to giving sufficient geometric bounds on the position of

Hpγq, bjq with respect to W u0ppq.

3.2. Preparation lemmas and main asymptotics. Take p P Λipar, q P Λjpar, q ‰ p. We

will work in Hpq, bjq Ă ĂM . As an embedded Riemannian submanifold, it is isometric to Rd,
and the isometry is given by the θ coordinate; we use this to measure distances on Hpq, bjq

unless mentioned otherwise. We are considering

(51) bs´dj

ż

Hpq,bjq
PN p¨, p, sqdµpθq “

ż

Rd
e´spGp´log bjqJ̃pf

N
p ps, θqdθ

d

At all the points where ∇Gp is not orthogonal to the horosphere, this integral is non-

stationary as |s| Ñ `8. There is only one point in Hpq, bjq where ∇Gp is orthogonal

to Hpq, bjq; it is exactly the point where the geodesic cp,q from p to q intersects Hpq, bjq

for the first time — the second is q. It is reasonable to expect that the behaviour of the

approximate Poisson kernel around this point will determine the asymptotics of the integral.

It is indeed the case, as we will show that Gp, J̃p and fNp satisfy appropriate symbol

estimates on Hpq, bjq. If a P C8pRdq, we say that a is a symbol of order n P Z if for all k P N,

(52) |xxy´n`kBkapxq|L8pRdq ă 8 where xxy2 “ 1` x2.

For a geodesic coming from p intersecting Hpq, bjq, call the first intersection the point of

entry and the second one the exit point — they may be the same. We can assume that the

point of entry of cp,q is 0 in the θ coordinate — denoted 0θ. It is also the point where Gp
attains its minimum on Hpq, bjq, and this is T pcp,qq ` log bj , with T pcp,qq the sojourn time

as defined in (11). We start with a lemma :

Lemma 3.2. Let I Ă Hpq, bjq be the set of entry points. It is compact. Its radius is bounded

independently from p, q, for the distance on Hpq, bjq given by Hpq, bjq » Rd.

Proof. First, we prove it is compact. By continuity, I contains a small neighbourhood U of 0θ.

Let U 1 be the set of exit points of geodesics whose entry point is in U . It is a neighbourhood

of q in Hpq, bjq — by definition of the visual topology on M . The complement of U 1 has

to contain I, and it is compact, so I is relatively compact. The claim follows because I is

closed.

Now, since Gp is C8, and the horosphere is smooth, the boundary of I only contains

points where ∇Gp is tangent to Hpq, bjq. Take such a point θ, and consider the triangle in
ĂM with vertices p, 0θ, and θ. Let α be the angle at 0θ, and L the distance between 0θ and θ

in ĂM . Since the horoball Bpq, bjq is convex, α ą π{2. From the remark on obtuse triangles

(16) for rp, θ, 0θs, if l “ Gppθq ´Gpp0θq, we have L´ l “ Op1q.
We want to prove that L is bounded independently from p, q. To see that, consider p1

the other endpoint of the geodesic through p and θ, and θ1 its projection on Hpq, bjq. Let

l1 “ Gp1pθq´Gp1pθ
1q and let L1 be the distance in ĂM between θ and θ1. By the same argument,
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q

pp1

θ 0θθ1 H̃pq, bjq
L1 L

ll1

cp,qL2

α

Figure 3. Geometric presentation of the proof.

L1 “ l1 `Op1q. Moreover, l ` l1 is the distance between Hpp,Gpp0θqq and Hpp1, Gp1pθ
1qq. So

that if L2 is the distance between 0θ P Hpp,Gpp0θqq and θ1 P Hpp1, Gp1pθ
1qq, L2 ą l ` l1.

However, by the triangle inequality, L2 ď L` L1. We deduce that L2 “ L` L1 `Op1q. By

theorem 4.9 and 4.6 of [12], L2 is bounded by constants depending only on the pinching of

M , and so is L. �

Our second lemma is the following:

Lemma 3.3. In I, Gp is convex. That is, on I, if α is the angle ∇Gp makes with the

horosphere Hpq, bjq, we have d2
θGp ě psinα` sin2 αKminq{b

2
j .

Proof. Let θ P I. Take u P Rd with |u| “ 1 and θ1 “ θ ` εu for ε ą 0 small. We apply

Topogonov’s theorem to the triangle with vertices θ, θ1 and p̃, where p̃ is a point that will

tend to p. Let αpεq be the angle at θ. Then by comparison, we have

coshpKmindpθ
1, p̃qq ě coshpKmindpθ, p̃qq coshpKmindpθ, θ

1qq

´ sinhpKmindpθ, p̃qq sinhpKmindpθ, θ
1qq cosαpεq.

As we let p̃Ñ p,

coshpKmindpθ
1, p̃qq

coshpKmindpθ, p̃qq
and

coshpKmindpθ
1, p̃qq

sinhpKmindpθ, p̃qq
Ñ exppKminpGppθ

1q ´Gppθqqq

and

KminpGppθ
1q ´Gppθqq ě log

“

coshpKmindpθ, θ
1qq ´ sinhpKmindpθ, θ

1qq cosαpεq
‰

.

Now, we let ε go to 0. We have Gppθ
1q ´ Gppθq “ ε∇Gppθq.u ` ε2d2

θGppθq.u
b2{2 ` opε2q.

Additionally, ∇Gppθq.u “ ´ cosαp0q{bj and dpθ, θ1q „ ε{bj by (14), so the RHS becomes

log

«

1´
Kminε cosαpεq

bj
`
K2
minε

2

2b2j
` opε2q

ff

“ ´
εKmin

bj
cosαpεq`

ε2K2
min

2b2j
p1´cosαp0q2`op1qq.

And we deduce

d2
θGppθq.u

b2 ě
Kmin

b2j
sin2 αp0q ` 2

pcosαq1p0q

bj
.

Now, computing in the hyperbolic space, we find that the angle β at which the geodesic

between θ and θ1 intersects Hpq, bjq satisfies β „ ε{2bj . If α is the angle between ∇Gppθq
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and Hpq, bjq, we find

cosα “ cosα cos >pu, BθGpq ` sinα sinβ and pcosαq1p0q “
sinα

2bj
.

Finally, we can observe that αp0q ě α and

d2
θGppθq ě

sinα`Kmin sin2 α

b2j
.

�

We have to separate the integral (51) into two parts, let us explain how we choose them.

The stable and the unstable distributions of the flow ϕt are always transverse. Since they

are continuous, the angle between them is uniformly bounded by below by some α ą 0 in

any given compact set of M — we say that they are uniformly transverse. Lifting this to
ĂM , the angle is uniformly bounded by below on sets that project to compact sets in M . In

particular, this is true on the union of the Hpq, bjq for q P Λjpar.

Now, we can also consider the geodesic flow in the hyperbolic space of dimension d ` 1.

It has stable and unstable distributions. The cusp Zj is the quotient of an open set of that

space by a group of automorphisms, so that those stable and unstable distributions project

down to subbundles Eshyp, E
u
hyp of TS˚Zi, invariant by the geodesic flow. We call them the

˚-stable and ˚-unstable manifolds of Zi. The angle between them is constant equal to π{2,

and they are smooth — even analytic.

By definition of the stable and ˚-stable manifolds, if the trajectory of a point ξ P S˚Zi
stays in Zi for all times positive, its stable and ˚-stable manifolds coincide. This is the case

of p0, dGpq. As a consequence, there is a small neighbourhood V1 of 0 in the θ plane, whose

size can be taken independent from p, q, where the unstable manifold of pθ, dGppθqq and its

˚-stable manifolds are uniformly transverse.

By the arguments in the proof of lemma 3.2, we see that the set of points of Hpq, bjq that

are not exit points of geodesics whose entry points are in V1, is a compact set. Denote it by

V2. Its radius is also bounded independently from p and q. Now, let χ P C8c pRdq take value

1 on V2, and introduce 1 “ χpθq ` p1´ χpθqq in (51), to separate it into pIq and pIIq.

From theorem 7.7.5 (p.220) in Hörmander [13] — the stationnary phase — we deduce

Lemma 3.4. For each p, q, there are coefficients Anpp, qq so that for every N ě 1

pIq “
´π

s

¯d{2
exp

#

ż

cp,q

V0 ´ sT pcp,qq

+

«

ÿ

nďN´1

Anpp, qq

sn
`

1

sN
O
`

p1` pT pcp,gq ` log bjq
`qN

˘

ff

.

We have A0pp, qq “ 1, and Anpp, qq “ Op1` pT pcp,qq ` log bjq
`qn. What is more, the An do

not depend on N for n ď N ´ 1.
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Proof. From lemma 2.3, we already know that the functions under the integral are smooth,

uniformly in p, q. From lemma 3.3, we know that the phase is non-degenerate at 0. To apply

Hörmander’s theorem, we need to check that the derivative |BθGp| is uniformly bounded from

below in V2 ´ V1.

The general observation is that |BθGp| remains bounded from below if ∇Gp stays away

from being the outer normal to Hpq, bjq.

Start with θ P V2 an exit point. Consider c the geodesic along ∇Gp, going out at θ. The

closer to the outer normal ∇Gppθq is, the longer the time c had to spend in the horoball.

Since the set of entry points is uniformly compact, this implies that points where ∇Gp is

almost vertical — i.e along By — have to be far from 0. But V2 is uniformly bounded, so

|BθGp| is bounded by below on the exit points in V2.

For the entry points that are not exit points, we use the uniform convexity from lemma

3.3. By that lemma, BθGp is a local diffeomorphism in I 1 “ tθ, ∇Gqpθq.∇Gppθq ă 0u. On

the boundary of I 1, |BθGp| “ b2j . By continuity, there is ε ą 0 such that |BθGppθq| ă b2j{2

implies dpθ, BI 1q ą ε. As a consequence, from the local inversion theorem, there is 0 ă ε1 ă ε

and ε2 ą 0 such that if |BθGppθq| ă b2j{2,

BpBθGppθq, ε
2q Ă BθGppBpθ, ε

1qq.

Then, when |BθGppθq| ă ε2, θ has to be at most at distance ε1 from a zero of BθGp, i.e 0θ.

The constants ε1 and ε2 can be estimated independently from p and q.

Now, we have an expansion

(53) pIq “

ˆ

2π

s

˙d{2

exp t´sT pcp,qqu
ˆ

C0 `
1

s
C1 ` . . .

˙

.

We have

(54) C0 “
J̃pp0θq

pdet d2
θGpp0θqq

1{2
.

We factor out C0 from the sum, and define Anpp, qq “ Cn{C0. From lemma 2.3 and the fact

that ∇Fp is C8pĂMq, it is quite straightforward to prove the estimates on the An’s.

Now, we have to compute C0. From [12, proposition 3.1], we see that

(55) ∇2Gppxq “ Ux,∇Gppxq,

where U was introduced after equation (34).

We use a simple trick. Along the geodesic cp,q, ∇pGp ` Gqq “ 0, so that the Hessian

d2pGp ` Gqq is well defined along cp,q. This implies that d2
θpGp ` Gqq “ ∇2pGp ` Gqq. But

on the horosphere Hpq, bjq, Gq is constant, and we find d2
θGpp0θq “ ∇2Gpp0θq `∇2Gqp0θq.

The unstable Jacobi fields along cq,p are the stable Jacobi fields along cp,q so Ux,∇Gqpxq “
´Sx,∇Gppxq. Hence,

(56) d2
θGpp0θq “ Ux,∇Gppxq ´ Sx,∇Gppxq.

In constant curvature, this is the constant matrix 2ˆ 1.
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Now, we give another expression for J̃2
p p0θq. Let x P ĂM . Consider Ju the unstable Jacobi

field along pϕpt pxqq, that equals p1{yq1 for a point along the orbit that is close enough to p

— where y is the height coordinate exp´Gp. Then

(57) J̃2
p pxq “

ed.Gppxq

det Jupxq
.

When x “ 0θ, for t ą 0, we can write Jupϕpt p0θqq “ Aet ` Be´t. We can also define Js the

stable Jacobi field along ϕpt p0θq that equals 1 at 0θ. From the equation (35), we find that

(58) W :“ JuptqT pUptq ´ SptqqJsptq is constant.

Hence

C2
0 “

ed.Gpp0θq

detW
det Jsp0q.

The limit for tÑ `8 gives W “ 2A. Whence

(59) C2
0 “

ed.Gpp0θq

2d detA
.

On the other hand,

exp

"
ż q

p
´2V0

*

“ lim
tÑ`8

det
´

dϕt|Eupvq

¯

e´td for v P rp, qs sufficiently close to p.

“ det
!

Ae´Gpp0θq
)

from formulae (36) and (38).

We conclude that

(60) C0 “ 2´d{2 exp

#

ż

cp,q

V0

+

.

�

3.3. Estimating the remainder terms. Now, we consider

(61)

pIIq :“

ż

Rd
e´spGp´log bjqJ̃pf

N
p ps, θqp1´ χpθqqdθ “

1

sk

ż

Rd
e´sGpLkq pJ̃pf

N
p ps, θqp1´ χpθqqqdθ

where Lpf “ div
”

BθGp
}BθGp}2

f
ı

. This holds for any k P N; if we get symbolic estimates on the

integrand, we will find that pIIq “ Ops´8qpIq. Our next step is to study the growth of Gp as

θ Ñ8.

Lemma 3.5. The function
BθGp
}BθGp}

is a symbol of order 1 in θ in Rd ´ V2, bounded indepen-

dently from p, q.

Additionally, expp´spGp ´ log bjqq is integrable, and for any ε ą 0, there is a constant

Cε ą 0 such that whenever <s ą d{2` ε,
ż

Rd´V2
e´spGp´log bjqdθ ď Cεe

´<sT pcp,qq.
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Proof. With each θ P Rd ´ V2 we associate the point of entry θ0 — θ0 P V1 by definition.

Consider the geodesic coming from p, entering the horoball at θ0 and going out at θ. Then,

if ε is the angle of this geodesic with the normal to the horosphere,

|θ ´ θ0| “
2b

tan ε
.

but, we also have that

|BθGp| “
sin ε

b
.

Hence

1

|BθGp|
“

1

2
|θ ´ θ0|

d

1`
4b2

|θ ´ θ0|
2
,

and

BθGp
}BθGp}2

“
1

2
pθ ´ θ0q

d

1`
4b2

pθ ´ θ0q
2
.

It suffices to see that θ ÞÑ θ0 is a symbol of order ´1 to obtain the first part of the lemma.

But θ ÞÑ θ0 is a one-to-one map, and by means of an inversion in the hyperbolic space, we

see that θ0 Ñ θ{}θ}2 is a smooth map. Its derivatives are controlled by the angle that ∇Gp
makes with the vertical (and its derivatives). As a consequence θ Ñ θ0 is a symbol of order

´1, uniformly in p and q.

Then, using formula (14), as θ Ñ8,

Gp “ 2 log
|θ|

2b
`Gppθ0q “ 2 log

|θ|

2b
` T pcp,qq ` log bj ` op1q

where the remainder is a symbol of order ´1. We deduce that exp´sGp is integrable (<s ą
d{2), and

ż

Rd
dθde´<spGp´log bjq ď Ce´<sT pcp,qq.

�

Lemma 3.6. On the horosphere Hpq, bjq, J̃p is a symbol of order 0 with respect to θ. In

symbol norm, it is OpJ̃pp0θqq.

Proof. We use Jacobi fields and notations introduced in section 2.2. We also use the uniform

transversality condition in the definition of V1 — see page 26. In the neighbourhood V1, since

Eu is transverse to the constant curvature stable direction, there exists a smooth matrix Apθq

such that

Eupθq “ tX` `X´| X` P Eshyp, X
´ P Euhyp, X

` “ ApθqX´u.

When we transcribe this to Jacobi field coordinates,

Eupθq “ tpp1`AqξK, p1´AqξKq|ξK PKu.

Remark here that p1 ` Aq is invertible ; indeed, if it were not, there would be an unstable

Jacobi field on M that would vanish at some point. But a Jacobi field that vanishes at some

point cannot go to 0 as tÑ ´8, it has to grow.
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Now, we consider a trajectory entering the horoball at θ0. We use the coordinates pθ0, tq

to refer to ϕpt pθ0q. We use parallel transport to work with vectors in TS˚M|V1 . We have

Eupθ0, tq “ tX
` `X´| X` P Eshyp, X

´ P Euhyp, X
` “ e´2tApθ0qX

´u

and in the horizontal-vertical coordinates

Eupθ0, tq “ tpp1` e
´2tAqξ, p1´ e´2tAqξq|ξ K d{dtu.

Actually, for t P r0, T s, the jacobian

Jac ϕpt pθ0q

is the determinant of Jp0q ÞÑ Jptq where Jptq are the unstable Jacobi fields along the trajec-

tory ϕpt pθ0q. From the description with the matrix A above, we deduce that this is

et.d det

„

1` e´2tApθ0q

1`Apθ0q



.

As a consequence,

J̃ppϕ
p
t pθ0qq

J̃ppθ0q
“

d

det

„

1` e´2tApθ0q

1`Apθ0q



.

Recall that t „ 2 log |θ| when the trajectory reaches the horosphere again, and that θ Ñ θ0

is a symbol of order ´1. We deduce that J̃ppθq is a symbol of order 0. �

Lemma 3.7. For all n ě 0, in the region of the horoball corresponding to trajectories entering

in V1, we can write

fn,ppθ0, tq “ f̃n,ppθ0, e
´2tq.

We have for all k ě 0,

}f̃n,p}Ck ď Cn,kppT pcp,qq ` log bjq
`qn

with Cn,k not depending on p nor on q.

Proof. We start by considering two functions a1 and a2 of θ0 and e´2t. Then

e2t∇a1.∇a2 and e2t∆a1

are still smooth functions of θ0 and e´2t. Consider a trajectory xptq “ pθ0, tq. We can take

normal coordinates along this geodesic pt, x1q. We then only need to prove that etBθ0{Bx
1
|x1“0

is a smooth function of θ0 and t. First, we observe that Bθ0{Bx
1
|x1“0,t“0 is only controlled

by the angle between the geodesic and the horosphere Hpq, bjq, and this angle we have

shown to be smooth. We only have to consider Bx1ptq{Bx1p0q|x1“0, that is, the differential

of the flow ϕpt transversally to ∇Gp. We have computed it in the previous proof; it is

etp1` e´2tApθ0qqp1`Apθ0qq
´1.

Now, we proceed by induction on n. First, f0,p “ 1 so it obviously satisfies the assumptions;

it is also the case of Fp “ log J̃p. Assume that the hypothesis has been verified for some

n ě 0. Then by the above and (42), 2.3, e2tQpfn,p is a smooth function of θ0 and e´2t, with

the same control as for fn,p, and

fn`1,ppθ0, tq “ fn`1,ppθ0, 0q `
1

2

ż t

0
Qpfn,pds.
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we can write the integral as
ż t

0
e´2sapθ0, e

´2sqds “

„
ż

apθ0, ρqdρ

1

e´2t

,

for some smooth function a. This ends the proof. �

Now, recall that e´2t „ |θ ´ θ0|
´4, so this proves that fn,ppθq is a symbol of order 0 as

θ Ñ8.

Putting lemmas 3.5, 3.6, 3.7 together, we deduce from equation (61) that for all N, k ą 0

and ε ą 0, there is a constant CN,k,ε ą 0 such that, when <s ą d{2` ε,

(62) |pIIq| ď CN,ke
´T pcp,qq<sp1` pT pcp,qq ` log bjq

`qNs´k.

3.4. Main result. With the notations of lemma 3.4, for c P πij1 pMq with endpoints p, q in
ĂM , we define

(63) anpcq :“ exp

"
ż

c
V0

*

Anpp, qq.

We also define

(64) T 0
ij :“ inftT pcq, c P πij1 pMqu and T #

ij “ minp´ log bibj , T 0
ijq.

Putting together lemmas 3.1, 3.4, and equation (62), we get

Theorem 4. For two cusps Zi and Zj not necessarily different, and for every N ą 0, when

<s ą δpΓ, V0q, the element of scattering matrix defined in (3)

(65) φijpsq “
´π

s

¯d{2 ÿ

rcsPπij1 pMq

N´1
ÿ

n“0

1

sn
anpcq

esT pcq
`

Op1q

sNesT
#
ij

.

We proceed to give a parametrix for ϕ. When taking the determinant of the scattering

matrix φpsq, we use the Leibniz formula

ϕpsq “
ÿ

σ

εpσq
κ
ź

i“1

φi,σpiqpsq.

The sum is over the permutations σ of v1, κw, and εpσq is the signature of σ. The remainder

will be bounded by terms of the form

sκ{2´N exp
!

´s
´

T #
1σp1q ` ¨ ¨ ¨ ` T #

κσpκq

¯)

.

This one corresponds to the error of approximation for the product φ1σp1qpsq . . . φκσpκqpsq

where σ is a permutation of v1, κw. Hence, we define

(66) T # “ min
σ

ÿ

T #
iσpiq.

It corresponds to the slowest decreasing remainder term as <sÑ `8. Recall the definition

in (12): the scattering cycles (SC) are numbers of the form T1` ¨ ¨ ¨`Tκ, where Ti P ST iσpiq.

We define T 0 to be the smallest scattering cycle. It corresponds to the slowest decreasing

term in the parametrix. By definition, T # ď T 0.
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Remark 5. There are two cases. When T # ă T 0, the error is bigger than the main term in

the parametrix, for <s too big with respect to =s. That occurs when the incoming plane waves

from the cusps encounter variable curvature before they have travelled the shortest scattered

geodesics.

When T # “ T 0, the error term is always smaller than the main term in the parametrix.

This means that the variations of the curvature happen not too close to the cusps. It is in

particular the case when the curvature is constant.

In any case, let λ# “ exp T #. Also let λ0 ă λ1 ă ¨ ¨ ¨ ă λk ă . . . be the ordered elements

of texp T , T P SCu. We can now state the conclusion of this section:

Theorem 5. There exist real coefficients tankuk,ně0 such that if

Ln :“
ÿ

kě0

ank
λsk
,

all the Ln’s converge in the half plane t<s ą δpΓ, V0qu. In that half plane, for all N ě 0,

ϕpsq “ s´κd{2

«

N
ÿ

n“0

s´nLnpsq `
Op1q

sN`1λs#

ff

.

4. Dependence of the parametrix on the metric

This section is devoted to studying the regularity of the coefficients anpcq with respect to

the metric. We prove that they are continuous in the appropriate spaces in sections 4.1 and

4.2. Then, we prove an openness property in C8 topology on metrics. While essential to the

proof of theorem 1, this part is quite technical, and the impatient reader may skip directly

to section 5.

4.1. The marked Sojourn Spectrum. As announced in section 1.2, we emphasize the

dependence of objects on the metric from now on. In particular, when we write rcgs P π
ij
1 pMq,

we mean that we take some class in πij1 pMq, and consider cg, the unique scattered geodesic

for g in that class.

We denote by Tg the application Tg : rcgs P π
ij
1 pMq ÞÑ T pcgq. We also write anpg, rcsq

instead of just anpcq.

In what follows, we are interested in the regularity and openness properties of ϕ. It is

obtained as the determinant of φpsq. Since the determinant is a polynomial expression, it

is certainly smooth and open with respect to φ. As a consequence, it suffices to study the

regularity of each φij independently, and the openess properties of φpsq instead of ϕ.

Definition 4.1. Let pgεqεPR be a family of C8 cusp metrics on M , so that their curvature

varies in a compact set independent from ε. Also assume that they coincide in some cusp

neighbourhood ty ě y0u. Suppose additionally that gε is C2`k on RˆM for k ě 0. Then we

say that gε is a C2`k family of cusp metrics.

The following lemma is classical:
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Lemma 4.2. Assume that pgεqε is C2`k family of cusp metrics. Then the geodesic flow

t; ε, x, ξ ÞÑ ϕgεt px, ξq is C1`k on Rˆ Rˆ S˚M for k ě 0.

This is the direct consequence of

Lemma 4.3. Let f be a C1`k map from R ˆ pU Ă Rmq to Rm where k ě 0 and U is an

open set. Then the flow Ψ : s, t, xpsq ÞÑ xptq associated to

9x “ fpt, xq.

is C1`k on its maximal domain of definition in Rˆ Rˆ U .

This is a basic lemma in dynamical systems — for example see proposition 6.2 in [27].

Now, we can prove that both the marked set of scattered geodesics and the marked Sojourn

Spectrum are continuous along a perturbation of the metric that is at least C1 in the C2

topology on metrics.

Lemma 4.4. Let k ě 0 and let gε be a C2`k family of cusp metrics on M . Let c be a

scattered geodesic for g “ g0. Then there is a C1`k family of curves cε on M such that cε is

a scattered geodesic for gε. In particular, this proves that g ÞÑ cg (given a class in πij1 pMq)

and g ÞÑ Tg are C1`k in C2`k topology on g.

Proof. Let us assume that c enters M in Zi and escapes in Zj . We can assume that the

variations of gε always take place below y “ y0. Let x0 (resp. x1) be the point where c

intersects the projected horosphere Hi (resp. Hj) at height y0 in Zi (resp. Zj), entering

(resp. leaving) the compact part. For x P Hi and ε close to 0, we can consider the following

curve: cx,ε is the geodesic for gε, that passes through x, and is directed by ´By at x. We

have c “ cx0,0. For px, εq close enough to px0, 0q, cx,ε intersects the projected horosphere Hj ,

for a time close to T pcq ` 2 log y0. We let x1px, εq be that point of intersection, and vpx, εq

the vector c1x,ε at x1px, εq.

Now, by the lemma above, vpx, εq is C1`k, and by the Inverse Function Theorem, there is

a unique ε ÞÑ xpεq, C1`k, such that vpxpεq, εq is the vertical for all ε sufficiently close to 0, as

soon as Bxvp0, 0q is invertible. But the fact that it is invertible is a direct consequence of the

non-degeneracy of the phase function shown in lemma 3.3. �

Let

Lijn psq “
ÿ

rcsPπij1 pMq

anpg, rcsq

esTgprcsq

Lemma 4.5. Let gε be a C2`k family of metrics, k ě 0. Then, as a formal series, Lij0
depends on ε in a Ck fashion. In particular, the series L0 giving the first asymptotics for ϕ

at high frequencies, also depends in a Ck fashion on ε.

Proof. We only have to prove that a0pgε, rcsq depends on ε in a Ck fashion. Since V0 is only

a Hölder function, it is easier to study the regularity of a0 with the original expression (54).

That is, we have to study d2
θGpp0θq and J̃pp0θq.
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First, consider J̃p. It is a function of the jacobian of the flow ϕpt along c. Since ϕpt is just

some restriction of ϕt, ϕ
p
t is C1`k on RˆM . We also have that c is C1`k, so that J̃p is Ck

on ε.

For d2
θGpp0θq, consider that it is obtained as the first variation of ∇Gp along the horocycle

Hpq, bjq. But this means that d2
θGpp0θq is again obtained directly in terms of dϕpt along c

and this ends the proof. �

Here already, we see that the first order behaviour of the scattering determinant at high

frequency (<s bounded and =sÑ ˘8) depends continuously on g in C2 topology. The next

section is devoted to studying this regularity for other terms.

4.2. Higher order coefficients of the parametrix. Now, we are interested in the regu-

larity of anpg, rcsq for n ě 1. Before stating a lemma and its proof, let us start by a discussion

of classical stationary phase in Rd. Let σ be a smooth compactly supported function on Rd.
Then, as |s| Ñ `8 with <s ą 0,

ż

Rd
e´sx

2
σpxqdx “

´π

s

¯d{2
„

σp0q `
1

4s
∆σp0q ` ¨ ¨ ¨ `

1

`!4`s`
∆`σp0q `Ops´`´1q



where ∆`σ “ ∆ . . .∆σ. If G is a non-degenerate phase function around 0, we find Ψ smooth

around 0 such that G ˝Ψpxq “ x2, by Morse theory. Then, if σ is still compactly supported

but has an expansion σps, xq „ σ0pxq ` σ1pxq{s` ¨ ¨ ¨ ` σnpxq{s
n ` . . . , we find

ż

Rd
e´sGpxqσps, xqdx „

´π

s

¯d{2
«

8
ÿ

n“0

8
ÿ

`“0

s´n´`
1

`!4`
∆`pσn ˝Ψ. JacpΨqqp0q

ff

.

In other words, the coefficient of πd{2s´d{2´n is

(67)
n
ÿ

`“0

1

`!4`
∆`pσn´` ˝Ψ. JacpΨqq

It is a well known fact that the Morse chart Ψ is not uniquely defined. However, from the

computations above, the operators

σ ÞÑ ∆jpσ ˝Ψ. Jac Ψqp0q

do not depend on the choice of Ψ, but only on G. By writing the condition G ˝Ψ “ x2, one

can see that dΨp0q.dΨT p0q “ 2pd2Gp0qq´1. This determines dΨp0q up to isometries of Rd.
The higher order derivatives of Ψ are undetermined, but one can see that they can be chosen

recursively, so that dkΨp0q only depends on the pk ` 1q-jet of G at 0.

Remark. One can check that the numbers ∆j Jac Ψp0q are, up to universal constants, the

Taylor coefficients in the expansion of the function volpG ď r2q.

Now comes our lemma:

Lemma 4.6. Let gε be a C2`k family of cusp metrics on M . Then the coefficients anpg, rcsq

are Ck´2n functions of ε, as soon as k ě 2n.
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In the following proof, we fix two points p, q on the boundary. Most of the functions that

appear depend on p and q, but to simplify notations, we omit that dependence. We do not

fix n, but k will always be assumed to be greater or equal to 2n.

Proof. We apply the discussion above to anpg, rcsq. The notations are coherent with section

3.2 and equation (51) if one set G “ Gp and σ “ J̃pf
N
p . We decompose an, following equation

(67). We find that an depends on derivatives of J̃ , f and G. We expand each summand in

the decomposition, using the Leibniz rule. Then we gather the terms involving the highest

order derivatives of the metric. They are

(68)

1

n!4n

´

Jac Ψp0q∆n
θ J̃p0q ` J̃p0q∆

n
θ Jac Ψp0q

¯

` J̃p0q Jac Ψp0q
n
ÿ

`“1

1

pn´ `q!4n´`
∆n´`
θ pf` ˝Ψq.

In the proof of 4.5, we saw that along a C2`k perturbation, J̃ is Ck, so that ∆n
θ pJ̃ ˝Ψq is

Ck´2n. By the same argument, we find that the p2n` 2q-jet of G at 0θ is a Ck´2n function

of ε, so that ∆n
θ Jac Ψ is also Ck´2n.

Now, we deal with the fn’s. From the definition of Q in (42) and fn in (43), we can prove

by induction that for n ě 1,

(69) fn “
1

2n

ż 0

´8

dtn

„
ż 0

tn

dtn´1 ¨ ¨ ¨

ż 0

t2

dt1Qtn´1 ¨ ¨ ¨Qt1Q0f0



˝ ϕptn

where Qt is defined by Qpf ˝ ϕpt q “ pQtfq ˝ ϕ
p
t . Since F is essentially a jacobian of ϕpt , it

is Ck on R ˆM along a C2`k perturbation. From the formula (69), we deduce that fn is

Ck´2n along a C2`k perturbation when k ě 2n, and this ends the proof.

�

4.3. Openness in smooth topology. To find that the coefficients of the parametrix are

open, we are going to adopt a different point of view from the previous section. We let

a´1pg, rcsq “ Tgprcsq. We aim to prove the following:

Lemma 4.7. Let rc1s, . . . , rcN s be distinct elements of πi1j11 pMq, . . . , πiN jN1 pMq, and take

indices n1, . . . , nN . Then the application

aN : g ÞÑ
`

pa´1, a0, . . . , an1qpg, rc1sq, . . . , pa
´1, a0, . . . , anN qpg, rcN sq

˘

P R
ř

ni`2

is open in C8 topology on g.

Proof. First, observe that it suffices to prove that the differential of aN is surjective. Indeed,

we can then use the inverse function theorem to prove the openness property.

For each class rcis, we will compute the variation of pa0, . . . , aniq along a well chosen smooth

family of cusp metrics gε. We will find that this variation is a linear form in a jet of the

variation Bεgε along ci. From the properties of this linear form, we will find that there are

functions with arbitrary compact support on which it does not vanish. This will prove the

lemma for N “ 1.
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For the case when N ą 1, observe that since the rcis are distinct, the ci are also distinct.

Then, it suffices to observe that we can take a finite number of small open sets Ui such

that Ui X Uj “ H when i ‰ j, and Ui X ci ‰ H. Then we can perturb in each open set

independently, and in this way, we see that the differential of aN is surjective, and this ends

the proof.

Remark 6. There might seem to be a difficulty when the geodesic c has a self intersection,

because at the point of intersection, we have less liberty on the perturbations we can make.

However, we will always choose to perturb away from those intersection points.

As we have reduced the proof to the case N “ 1, let rcs P πij1 pMq.

First case, n “ 0.

Lemma 4.8. Let gε be a C8 family of cusp metrics. Then

BεT prcsq “
1

2

ż

pBεgq0pc
1
0ptq, c

1
0ptqqdt.

In particular, if U is an open set that intersects c0, one can find a perturbation of the metric,

supported in U , along which BεT prcsq ‰ 0.

Proof. From the arguments above, we can construct a variation cε of c0 such that each γε
is an unparametrized geodesic for gε. We can assume that for t negative (resp. positive)

enough, yipcεq “ yipc0q (resp. yjpcεq “ yjpc0q). Then in local coordinates

BεT prcsq “
1

2

ż

“

pBεgq0pc
1
0ptq, c

1
0ptqq ` 2g0pc

1
0ptq, Bεc

1
0ptqq

‰

dt

In the RHS, the second term, we can interpret as the 1st order variation of the length of the

curve cε for g0. Since c0 is a geodesic, this has to be zero �

Lemma 4.9. The logarithmic differential

dg log a0pg, rcsq

is non-degenerate on the set of symmetric 2-tensors h on M such that h and dh vanish at c.

This proves the property for n “ 0, because if h is such a 2-tensor, along the pertur-

bation g ` εh, the curve c is always a scattered geodesic of constant sojourn time, and

dga
´1pg, rcsq.h “ 0.

Proof. since the curve c does not depend on the metric in our context, it is reasonable to use

the method of variation of parameters. Let gε “ g ` εh, and consider Ju,ε “ Ju ` εJ̃u ` opεq
the unstable Jacobi field for gε along c defined in page 28. We also use Js as defined in the

same page. We can write

J̃u “ Ju rAptq ` Js rBptq
and we find the equations for rA and B̃:

Ju rA1 ` Js rB1 “ 0

J1u rA1 ` J1s rB1 “ ´pdgK.hqJu.
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Recall from the arguments in page 28 that

a0pgε, rcsq
2 “ lim

tÑ`8

ed.Gpp0θq

det JuJs
“ a0pg0, rcsq

2 1

det 1` ε rAp`8q ` opεq
.

where rAp`8q is the limit of rA when tÑ8. Hence

d

dε
log a0pgε, rcsq “ ´

1

2
Tr rAp`8q.

We find

rAp`8q “

ż

R
J´1
u pS´ Uq´1pdgKptq.hqJuptqdt

and conclude

(70)
d

dε
log a0pgε, rcsq “

1

2

ż

R
Tr

 

pU´ Sq´1pdgKptq.hq
(

dt

When the curvature of g is constant along c, one may observe that this gives a particularly

simple expression — a quarter of the integral of the variation of the curvature along the

geodesic. Now we prove that the differential h ÞÑ dgK.h is surjective on the set of symmetric

matrices along the geodesic c. We consider Fermi coordinates along c. That is, the coordinate

chart in a neighbourhood of c given by

px1;x1q ÞÑ expcpx1q
 

x1
(

PM.

Remark 7. When c has self-intersection, this chart is not injective. However, we can assume

that h vanishes around such points of intersection, and the computations below remain valid.

In those coordinates, g ´ 1 and dg vanish along the geodesic, which is c » tx1 “ 0u. We

deduce that the Christoffel coefficients Γkij also vanish to second order on c. Now we recall

from [15] two useful formulae.

Γkij “
1

2

ÿ

l

glkpBigjl ` Bjgli ´ Blgijq(p.160)

RpBi, BjqBk “
ÿ

l

#

BiΓ
l
jk ´ BjΓ

l
ik `

ÿ

m

ΓmjkΓ
l
im ´ ΓmikΓ

l
jm

+

Bl.(p.145)

Whence we deduce that on c

(71) RgpBi, B1qB1 “

d`1
ÿ

l“1

BiΓ
l
11Bl “ ´

1

2
BiBkg11Bk.

We see that 2Kptq “ ´d2g11ptq, so that dgK.h “ ´1{2d2h11, and this is certainly surjective

onto the set of smooth functions along the geodesic valued in symmetric matrices. In par-

ticular, the RHS of (70) defines a non-degenerate linear functional on the set of compactly

supported 2-symmetric tensors along c. �

This ends the case n “ 0.

General case, n ě 1. We introduce a special coordinate chart on ĂM :

ςg : px, tq P Hpp, biq ˆ R ÞÑ ϕpt pxq.
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Since Hpp, biq » Rd, we are now working in Rd`1. In the coordinates ςg, the flow has a very

simple expression: ϕpt px, sq “ px, s` tq. The metric also:

(72) ς˚g g “ g̃px, t; dxq ` dt2;

the jacobian

(73) Jacpϕqt qpx, sq “

d

det g̃px, s` tq

det g̃px, sq
,

and from the definition (29),

(74) Fppx, sq “
1

4
plog det g̃px, sq ´ log det g̃px, 0q ` 2sdq .

We can find that g̃px, 0q actually does not depend on x. We also have thatGppx, sq “ s´log bi.

We will refer to horospheres ϕpt pHpp, biqq as slices.

Idea of proof. If we perturb g̃ by a symmetric 2-tensor h on the slices, we obtain a new

metric g̃h on Rd`1. We can obtain a metric g1
h on ĂM , pushing forward by ςg. If the support

Ω of this perturbation g1
h ´ g is small enough so that γΩ X Ω “ H for all γ ‰ 1, we can

periodize the perturbation to obtain a metric on M , or equivalently, a metric gh invariant

by Γ on ĂM .

The metric gh, seen in the chart ςg, does not have the nice decomposition (72) anymore.

However, that decomposition still holds in the complement of ς´1
g pΥq, where Υ :“

Ť

γRΓp
γΩ.

To apply our perturbative argument, we need to be able to choose Ω so that there is a

neighbourhood Ω1 of the geodesic c that we wanted to perturb with Ω1 XΥ “ H.

Ω

Ω1

c

p

q

I

Υ

Figure 4. Global situation.

The condition for Ω to be appropriate is that the projection ĂM Ñ M is injective on Ω,

and that γΩ does intersect the lift rp, qs of c. For this, it suffices that Ω is not too close to

the points I in rp, qs that project to self-intersection points of c. See figure 4.

There one more difficulty. The point of intersection of c with Hpq, bjq, 0θ, is represented

by p0, t1q with t1 “ Tgpg, rcsq` log bibj — see the paragraph after equation (52). It is possible

that t1 ă 0. In that case, the geodesic c only encounters constant curvature. To perturb the
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coefficients, we will need to create variable curvature along the geodesic. In particular, that

will change the values of bi and bj .

To overcome this problem, we proceed in the following way. Instead of integrating along the

projected horosphere at height bj in the cusp Zj , we integrate on the projected horosphere at

height b‹j ě bj in the proof of theorem 4. We do it so that for all rcs P πij1 pMq, T pcq`log b‹i b
‹
j ą

0 (for all i, j. . . ). Since the marked sojourn time function is proper, only a finite number

of scattered geodesics intervene here. All quantities that depended on bi, bj before will now

receive a ‹ when we replace bi by b‹i .

Hpp, b‹i q

Hpq, b‹j q

0‹θ

t

x

Support of h

Figure 5. A close up.

Coming back to perturbing coefficients, the point 0‹θ is represented by p0, t‹1q with t‹1 “

Tgpg, rcsq ` log b‹i b
‹
j . If the perturbation h is compactly supported in t0 ă t ă t‹1u, the

expression of gh, Hpq, b‹j q, ∆‹
θ, J̃ , Gp will not depend on h in the chart ς‹g , around 0‹θ. In

particular, a´1 and a0 are always constant along such a perturbation.

Now, we assume that the change in the slices is εh where h is a 2-symmetric tensor

such that h, dh, . . . , d2n´1h vanish along tx “ 0u in the chart ς‹g , and h is supported for

0 ă T ă s ă T 1 ă t‹1. Let gε :“ gεh.

Lemma 4.10. Under such a perturbation, a´1, a0, . . . , an´1 are constant.

Proof. As we saw in section 4.2, the coefficient ak is computed from the 2k ´ 2` jet of f`,

` “ 1, . . . , k, at 0θ, and also the 2k jet of J̃ and G. Those computations are done with ∆θ,

which in our chart ςg has a complicated expression. However, since we are not perturbing

the metric around 0θ, the coefficients of ∆θ do not change under the perturbation. From

equation (73), and the expression for G in this chart, we see that the contribution of J̃ and

G to ak will not change under perturbation (independently from the order of cancellation of

h).

We are left to prove that the 2k ´ 2` jet of f` at 0θ does not change for 0 ď ` ď k ď

n´ 1. From formula (74), we see that the 2n´ 1 jet of F along c will not change along the

perturbation. From equation (69), we see that the m jet of f` at 0θ depends on the m` 2`

jet of F , and the m` 2`´ 1 jet of g — recall that the coefficients in the Laplacian ∆ depend

on dg, and the coefficients in ∇ depend on g. Taking this for m “ 2k´ 2` and ` ď k ď n´ 1,
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we find that the 2k ´ 2` jet of f` can be computed with only the 2n ´ 2 jet of g at c, and

this proves the lemma. �

From the proof of the lemma above, we see that in an, the only change will come from

the change in the derivatives of order 2n ´ 2k of fk, and more precisely, the parts of these

variations that come from the change in 2n derivatives of F , in the x direction. As a conse-

quence, we can do all the forecoming computations as if the differential operators appearing

had constant coefficients, and replace ∆ (resp. ∆θp¨ ˝Ψq ˝Ψ´1) by

∆̃ :“ g̃ijpsqBiBj presp. ∆̃θ :“ cijBiBjq

where the matrices pg̃ijqptq and pcijq are symmetric, positive matrices. Recall the metric g

has the expression

gpx,tqpdx, dtq “ g̃x,tpdxq ` dt
2

and pg̃ijqptq is the value of g̃´1
0,t , but this fact will not be used later. Recall that the operator Qt

was defined by pQtfq ˝ϕ
q
t “ Qpf ˝ϕqt q. We define ∆̃t in the same way. An easy computation

shows that ∆̃t “
ř

gijps´ tqBiBj .

Now, we use formula (68). We only keep the terms that vary under the perturbation gε.

This yields

anpgε, rcsq ´ a
npg, rcsq “ a0pg, rcsq

n
ÿ

`“1

1

pn´ `q!4n´`
∆̃n´`
θ tpf`qε ´ f`u .

Next we use equation (69), leaving out the constant terms again. We find:

anpgε, rcsq ´ a
npg, rcsq

a0pg, rcsq
“

n
ÿ

`“1

1

pn´ `q!4n2´`

ż

S
dt` . . . dt1 ∆̃n´`

θ ∆̃t`´1
. . . ∆̃t1∆̃ tFε ´ F u p0, t

‹
1 ` t`q

Here, S is the simplex t´8 ă t` ď t`´1 ď ¨ ¨ ¨ ď t1 ď 0u. Let t0 “ 0. Now, since

4dxF “ Tr g´1dg, each integrand in the above formula reduces to

(75)

ε

4
Tr

$

&

%

g´1pt‹1 ` t`q
ÿ

tpim,jmqu

n´1
ź

m“`

cimjm

`´1
ź

m“0

g̃imjmpt
‹
1 ` t` ´ tmq

˜

n
ź

m“1

BimBjm

¸

hpt‹1 ` t`q

,

.

-

.

It is still not clear why such a formula would lead to a non-degenerate differential. However,

let us assume that h has the following form in a neighbourhood of tx “ 0u

hpx, s, dxq “ λpsqdx2
ÿ

|α|“2n

uαxα ` op|x|2nq

where uα “ uα1 . . . uα2n , and likewise for xα. We take u a constant vector in Rd, and λpsq a

smooth function, supported in s0, t‹1r. Formula (75) becomes

pcpu, uqqn´` Tr g´1pt‹1 ` t`q

#

λpt‹1 ` t`q
`´1
ź

m“0

g̃pt‹1 ` t` ´ tmqpu, uq

+

.
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Observe that these are nonnegative numbers. From those computations, we see that

anpgε, rcsq ´ a
npg, rcsq

a0pg, rcsq
“ ε

ż t‹1

0
λptqHptqdt

where Hptq is a function that does not vanish. This ends the proof for n ě 1. �

5. Applications

We use simple Complex Analysis to locate zones without zeroes for ϕ. We also give some

explicit examples corresponding to part (I) and (III) of the main theorem.

5.1. Complex Analysis and Dirichlet Series. Let λ0 ă λ1 ă ¨ ¨ ¨ ă λk ă . . . be positive

real numbers. For δ ą 0, we let Dpδ, λq be the set of Dirichlet series Lpsq whose abscissa of

absolute convergence is ď δ, and

Lpsq “
8
ÿ

k“0

ak
λsk
.

We let Dkpδ, λq be the set of L P Dpδ, λq such that a0 “ ¨ ¨ ¨ “ ak´1 “ 0 and ak ‰ 0. For

0 ă λ# ď λ0, also consider Dpδ, λ, λ#q the set of holomorphic functions f on t<s ą δu such

that there are Ln P Dpδ, λq with, for all n ě 0

fpsq “ L0psq `
1

s
L1psq ` ¨ ¨ ¨ `

1

sn
Lnpsq `O

˜

1

sn`1λs#

¸

.

We will denote pankq the coefficients of Ln. By taking notations coherent with the rest of the

article, we have sκd{2ϕ P Dpδg, λ, λ#q. For δ1 ą δ and C ą 0, let

Ωδ1,C :“
 

s P C <s ą δ1 <s ď C log |=s|
(

.

Lemma 5.1. Let f P Dpδ, λ, λ#q such that L0 P D0pδ, λq. Then there is a δ1 ą δ such that

for any constant C ą 0, f has a finite number of zeroes in Ωδ1,C .

In the special case where λ# “ λ0, we can take δ1 ą 0 such that f has no zeroes in
 

s P C <s ą δ1
(

.

Proof. We can write

L0psq “
a0

0

λs0
`

8
ÿ

k“1

a0
k

λsk
loomoon

:“L̃0psq

There is a δ1 ą δ such that whenever <s ą δ1,

|L̃0psq| ď
1

3

ˇ

ˇ

ˇ

ˇ

a0
0

λs0

ˇ

ˇ

ˇ

ˇ

.

Take N ą 0. Then for |s| big enough — say |s| ą CN — and for <s ą δ1,

1

|s|
|L1psq| ` ¨ ¨ ¨ `

1

|s|N´1
|LN´1psq| ď

1

3

ˇ

ˇ

ˇ

ˇ

a0
0

λs0

ˇ

ˇ

ˇ

ˇ

.
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We also find that

<s ď N

logpλ0{λ#q
log |=s| `Op1q and |s| ą CN ùñ

ˇ

ˇ

ˇ

ˇ

ˇ

C 1N
sNλs#

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

3

ˇ

ˇ

ˇ

ˇ

a0
0

λs0

ˇ

ˇ

ˇ

ˇ

.

When λ0 “ λ#, the condition on <s is void. When λ0 ą λ#, by taking N „ C logpλ0{λ#q,

we find that the zeroes of f in the region described in the lemma are actually in a bounded

region of the plane. Since f is holomorphic, they have to be in finite number. �

We give another lemma:

Lemma 5.2. Let f P Dpδ, λ, λ#q be such that L0 P D1pδ, λq and L1 P D0pδ, λq. Let

f̃psq :“
a0

1

λs1
`

a1
0

sλs0

There is a δ1 ą δ such that for any constant C ą 0, there is a mapping W from the zeroes

of f̃ in Ωδ1,C to the zeroes of f in Ωδ1,C , that only misses a finite number of zeroes of f , and

such that

W psq ´ s “ Op|s|´βq, for some β ą 0.

A picture gives a better idea of the content of this abstract lemma. Using usual asymptotic

expansion techniques, we observe that the zeroes of f̃ are asymptotically distributed along a

vertical log line <s “ a log |=s| ` b, at intervals of lengths „ 2πplogpλ1{λ0qq
´1.

d{2

Figure 6. The zeroes of f̃ .

Remark 8. Instead of assuming a0
0 “ 0 and a1

0, a
0
1 ‰ 0, we could have assumed a finite

number of explicit cancellations and non-cancellations. In that case, it is likely that one

could prove a similar lemma, with f having zeroes close to a finite (arbitrary) number of log

lines instead of only one line. However, this leads to tedious computations that we did not

carry out entirely.
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Proof. This is an application of Rouché’s Theorem. We aim to give a good bound for |f ´ f̃ |

on appropriate contours. To this end, we decompose

|f ´ f̃ | ď

ˇ

ˇ

ˇ

ˇ

L0 ´
a0

1

λs1

ˇ

ˇ

ˇ

ˇ

`
1

|s|

ˇ

ˇ

ˇ

ˇ

L1 ´
a1

0

λs0

ˇ

ˇ

ˇ

ˇ

`
1

|s|2

ˇ

ˇ

ˇ

ˇ

L2 ` ¨ ¨ ¨ `
1

sn´2
Ln

ˇ

ˇ

ˇ

ˇ

`O

˜

1

|s|n`1λ<s#

¸

(76)

For some δ1 ą δ, and for <s ą δ1,this gives

ď C

˜

1

λ<s2

`
1

|s|λ<s1

`
1

|s|2λ<s0

`
1

|s|n`1λ<s#

¸

(77)

where C ą 0 is a constant. We can always choose δ1 big enough so that

C

λ<s2

ď
1

2
|f̃ |

for <s “ δ1 and |=s| big enough. Then, on the vertical line <s “ δ1, for |=s| big enough,

|f ´ f̃ | ă |f̃ |.

Now, on the line <s “ n log |=s|plog λ0{λ#q
´1, the 3 first terms of the RHS of equation

(77) are very small in comparison to f̃ . We can check that the last one is Op1{sq|f̃ | to see

that on that curve also, |f ´ f̃ | ă |f̃ |.

Now, we observe that

|f̃ | “

ˇ

ˇ

ˇ

ˇ

a0
1

λs1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

a1
0

sλs0

ˇ

ˇ

ˇ

ˇ

ðñ =s log
λ0

λ1
` arg s` arg

a0
1

a1
0

P 2πZ.

Observe that in the region Ω “ tδ1 ď <s ď n log |=s|plog λ0{λ#q
´1u, arg s “ π{2 `

Oplog |s|{|s|q. In particular, there is a (possibly large) constant C ą 0 such that, on each

line =s “ C ` 2πkplog λ1
λ0
q´1, k P N, in Ω,

2|f̃ | ě

ˇ

ˇ

ˇ

ˇ

a0
1

λs1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

a1
0

sλs0

ˇ

ˇ

ˇ

ˇ

.

Since on Ω, we also have for |=s| large enough,

4|f ´ f̃ | ă

ˇ

ˇ

ˇ

ˇ

a0
1

λs1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

a1
0

sλs0

ˇ

ˇ

ˇ

ˇ

,

this implies that on each of those horizontal lines, |f ´ f̃ | ă |f̃ |.

Now, the zeroes of f̃ are located on the curve

|a1
0|λ

<s
1 “ |a0

1||s|λ
<s
0 .

In a Op1q-sized neighbourhood of that curve, there is a α ą 0 such that the RHS in (77) is

bounded by

Op|s|´αq
ˇ

ˇ

ˇ

ˇ

a0
1

λs1

ˇ

ˇ

ˇ

ˇ
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The proof of the lemma will be complete if we can find some circles Cn around the zeroes sn
of f̃ , whose radii rn shrink like a power of sn, but such that on Cn,

|f̃ | ąą |sn|
´α

ˇ

ˇ

ˇ

ˇ

a0
1

λsn1

ˇ

ˇ

ˇ

ˇ

.

Actually, this kind of estimate is true on the circles Cn centered at sn of radius rn, as long

rn Ñ 0 with rn ąą |sn|
´α. Thus, we can take any β ă α. �

Now,

Lemma 5.3. There are different situations.

(1) When there is only 1 cusp, we always have L0 P D0pδ, λq.

(2) In general, the set of g P GpMq such that L0 P D0pδ, λq is open and dense in C2

topology.

(3) There are examples of hyperbolic cusp surfaces with L0 P D1pδ, λq.

(4) There are examples of hyperbolic cusp surfaces M that satisfy the following. First,

L0 P D0pδ, λq. Second, there is an open set U ĂĂM such that for any cusps Zi, Zj,

dpU,Ziq`dpU,Zjq ě T 0
ij` log ai` log aj. Then λ# “ λ for all the metrics g P GU pMq

(the metrics with variable curvature supported in U).

Lemmas 5.1, 5.2 and 5.3 can be combined to prove theorem 1. Let us first prove lemma

5.3.

Proof. When κ “ 1, ϕ “ φ11. From lemma 3.4, we see that a0
0 is a sum of positive terms

over the set of scattered geodesics whose sojourn time is T 0
11, hence it cannot vanish.

In the general case, the openness property of lemma 4.7 shows that for an open and dense

set of g P GpMq for the C2 topology, the smallest element T 0 of the set of sojourn cycles is

simple. That implies that a0
0 ‰ 0.

For the third part of the lemma, an example will be constructed in section 5.2.2.

For the last part, an example will be given in section 5.2.1. The conclusion λ# “ λ0 is a

consequence of the discussion just before theorem 5 �

Proof of theorem 1. We can list the cases

(1) Consider the hyperbolic surface described in lemma 5.3(4). For such a surface, for

all g P GU pMq, we have L0 P D0pδ, λq, and λ# “ λ0. We can apply the special case

of lemma 5.1, to prove part (I).

(2) For all manifolds with one cusp only, L0 P D0pδ, λq so we can apply the general case

of lemma 5.1.

(3) When there is more than one cusp, case (2) of lemma 5.3 and lemma 5.1 lead to part

(II) of theorem 1.

(4) The example in case (3) of lemma 5.3 can be perturbed, preserving the condition

L0 P D1pδ, λq, and with L1 P D0pδ, λq, according to lemma 4.7. We can then apply

lemma 5.2 to prove part (III).
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(5) Finally, we can adapt the proof of lemma 5.1 to show that whenever at least one Li
is not the zero function, the conclusions of lemma 5.1 apply, if we replace ”for all

constant C ą 0” by ”for some constant C ą 0”. This proves part (IV).

�

5.2. Two examples. In this last section, we construct explicit hyperbolic examples that

satisfy the conditions given in lemma 5.3.

5.2.1. An example with one cusp. Here, we construct a surface with one cusp, such that

there are parts of the surface that are far from the cusp, in the appropriate sense.

A B

C
D

E
y “ 1

Figure 7. symmetric pentagon with an ideal vertex.

Topologically, we are looking at the most simple cusp surface: a punctured torus. It

can be obtained explicitely by glueing two hyperbolic pentagons. Consider two copies of the

pentagon in figure 7 — the Euclidean distance between sides A and B has to be strictly larger

than 2 to build such a pentagon, because we require right angles. Glueing sides A Ø B1,

B Ø A1, D Ø D1, C Ø E and C 1 Ø E1, we obtain a punctured torus.

The scattered geodesic c0 with the smallest sojourn time corresponds to the sides AB1 and

BA1. Its sojourn time is 0, i.e T 0 “ 0. However, the set U of points that are strictly below

the line ty “ 1u is non empty (and open). This is the example in 4) in lemma 5.3

5.2.2. An example with 2 cusps. Now, we aim to construct an example of surface with two

cusps pM, gq such that L0 P D1. We consider a two-punctured torus.

As in the previous example, we will glue pentagons. Only this time we glue 4 identical

pentagons a, b, c, d, and they will not be symmetrical — see figure 8.

The cusp corresponding to pentagons a and b will be called cusp Z1, and the other one,

corresponding to pentagons c and d will be cusp Z2. We obtain a surface pM, g`q with two

cusps, depending on the hyperbolic length `. To ensure the normalization condition that the

volume of a projected horosphere at height y is y´1, we have to take

(78) y0 “
1

2

1
?

2`
?

1` e´2`
.

We number the geodesics cijn from i to j (i “ 1, 2, and j “ 1, 2) by their sojourn time with

T pcij0 q ď T pcij1 q ď . . . . Since a geodesic coming from a cusp has to go under the y “ y0 line
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c12
1

c d

y “ y0

ba

b

b
c

cd

c11
0

c12
0

`

Figure 8. A tiling of the hyperbolic plane with pentagons.

to exit a pentagon, we see that actually, c11
0 and c12

0 are the geodesics designated in figure 8.

Actually, we also get that :

´2 log y0 “ T pc11
0 q “ T pc12

0 q ă T pcij1 q, i, j “ 1, 2.

This proves that a0
0 “ 0. Now, to obtain that L0 P D1, we need to show that the second

shortest sojourn time is 2` ´ 2 log y0, and that it is simple. That is to say, c12
1 really is the

curve drawn in figure 8, and the only other curves with sojourn time ď 2`´ 2 log y0 are c11
0

and c12
0 .

In order to prove this, draw a line at height y0e
´2`. A scattered geodesic coming from cusp

Z1 can be lifted to H2 as a curve coming from 8 in the pentagon a, that stays in the same

pentagon as y ď y0e
´2`. When ` is small enough, there are only 3 geodesics that satisfy such

a property, and they are drawn on figure 8.

Appendix A. Regularity of Horospheres for some Hadamard manifolds

In this appendix, we recall some results on the regularity of stable and unstable foliations.

Lemma A.1. Let N be a simply connected manifold of dimension d ` 1, with sectio nal

curvature ´|Kmax| ă K ă ´|Kmin| ă 0. Assume additionally that all the covariant deriva-

tives of the curvature tensor R of N are bounded. For a point ξ P S˚N , we define W spξq

as tξ1 P S˚M, dpπϕtξ
1, πϕtξq Ñ 0 as t Ñ `8u, and similarly W upξq. Those are C8 sub-

manifolds of TS˚N , uniformly in ξ; they form a continuous foliation of TS˚N , tangent

respectively to Es and Eu.

Proof. We just check that the proof of the compact case also works for us.

Let ξ P S˚N . Take ν ą 0, t ą 0 and 0 ă ε ă t. For k ě 0, let ξk “ ϕktpξq. Using the

exponential charts for the Sasaki metric on S˚N , we can conjugate ϕt to diffeomorphisms

from TξkS
˚N to Tξk`1

S˚N that map 0 to 0. We still refer to those as ϕt. Let

Hν :“ tpzkq | zk P TξkS
˚N, lim sup }zk}e

νk ă 8u.
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This is a Banach space when endowed with

}pzkq}ν :“ sup }zk}e
νk.

On Hν , we can define

Ψpzkq :“ p0, ϕtpz0q ´ z1, ϕtpz1q ´ z2, . . . q.

This is a C8 function on Hν . We want to solve Ψ “ 0 in Hν . As the stable manifold ξ should

be a graph over Espξq, for pzkq P Hν , we decompose pzkq “ pz
s
0, rq. We need to show that

BrΨ is injective and surjective on a closed subspace, to use the implicit function theorem for

Banach spaces. Let V “ pvu0
0 , v1, . . . q P Hν where u0 refers to the weak unstable direction

Eu ‘ RX. We have

BrΨp0qV “ p0, dξϕt ¨ v
u0
0 ´ v1, dξ1ϕt ¨ v1 ´ v2, . . . q.

First, we prove this is injective. Assume BrΨp0qV “ 0. Then, we have dξϕt ¨v
u0
0 “ v1. Since

the weak unstable direction is stable by the flow, v1 P E
u0pξ1q. By induction, vk P E

u0pξkq.

However, V has to be in Hν , so that there is a constant C ą 0 such that for all k ą 0,

}vu0
0 } “ }pdξϕktq

´1vk} ď Ce´νk.

This implies that vu0
0 “ 0, and V “ 0.

Now, we prove that BrΨ is surjective on the space of sequences whose first term vanishes.

Let W “ pwu0
0 , w1, . . . q P Hν . We decompose each wk “ pwsk, w

u0
k q, and we try to solve

BrΨ.V “W , with vi “ pv
s
i , v

u0
i q. If V is a solution, then, for all k ą 0,

vk “ dϕktv
u0
0 ´

k´1
ÿ

l“0

dϕltwk´l.

That is why we let

vu0
0 “

8
ÿ

l“1

pdϕltq
´1wu0

l .

This sum converges because }pdϕktq
´1|Eu0} is bounded independently from k, and we assumed

w is in Hν . Then, we have to check that the equations

vk “ ´
k
ÿ

l“1

dϕpk´lqtw
s
l `

8
ÿ

l“1

pdϕltq
´1wu0

k`l

define a sequence in Hν . By the Anosov property, there are constants λ ą 0 and C ą 0 not

depending on w, nor on ξ such that }dϕktw
s
l } ď e´λkt}wsl }. So

}vk} ď
k
ÿ

l“1

Ce´λpk´lqte´lν}w}ν `
8
ÿ

l“1

e´pk`lqν}w}ν .

It suffices to choose ν ă λt, and we find that v P Hν .

By the Implicit Function Theorem, in a small enough neighbourhood of ξ, the strong stable

manifold of ξ is a graph of a C8 function from Espξq Ñ Eu0pξq. Additionally, the derivatives

of this function are controlled by the C k norms of Ψ. These norms are the C k norms of ϕt.

They can be bounded independently from ξ — recall Ψ depends on ξ — according to Lemma
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B.1 and Proposition C.1 of [3]. Hence, the stable manifolds are uniformly smooth in the

manifold.

Moreover, the tangent space of W spξq at ξ has to be Espξq, according to the dynamical

definition of W spξq. We deduce that the regularity of the lamination formed by the collection

of W spξq, ξ P S˚M has the regularity of the splitting Es ‘ Eu. Using the description as

Green’s fiber bundles for Es and Eu, one can prove that they are Hölder, and the lamination

is actually a foliation.

The case of unstable manifolds is similar. �

Appendix B. Estimating the regularity of solutions for transport equations

Lemma B.1. Let N be a riemannian manifold such that all the derivatives of its curvature

are bounded. Let G be a C8 function on N , such that }∇G} “ 1, and }∇G}CnpNq is bounded

for all n. Let ϕGt be the flow generated by V “ ∇G. Assume that ϕG is expanding, that is,

there is a λ ą 0 such that if u K V , }dϕGt .u} ě Ceλt}u} for t ą 0.

Let g0 be a C8 function on N , supported in G ě `. Let

g1pxq “

ż 0

´8

g0 ˝ ϕ
G
t dt.

Then if L pτq “ supt|g0pxq|, Gpxq “ τu, for all n there is a constant Cn ą 0 only depending

on G such that

|g1pxq| ď

ż Gpxq

`
L pτqdτ, }∇g1}Cn´1pGďtq ď Cn}g0}CnpGďtq

Proof. The first part of the statement is obvious. We concentrate on the second part. The

basic idea is that when differentiating in the direction of the flow, one obtains g0, and when

differentiating in other directions, one can use the contracting properties of ϕGt in negative

time. Let x P N , and X1, . . . , Xn vectors at x. We want to evaluate ∇X1,...,Xng1pxq. We can

decompose the Xi’s according to

TxN “ RV ‘ V K.

By linearity, we can assume that either Xi9V or Xi K V . Additionally, we assume }Xi} “

1. By taking symmetric parts, and antisymmetric parts of ∇, we see that it suffices to

evaluate ∇X1,...,Xng1 when the Xi’s colinear to V are the last in the list. That corresponds

to differentiating g1 first along V . Now, there are two cases. First, assume that one of the

Xi’s is colinear to V . Then

∇X1,...,V g1 “ ∇X1,...,Xn´1g0

We are left to consider the case when all the Xi’s are orthogonal to V . For this, we use

the proof from [3, appendix B]. From therein, we know that for t ą 0,

∇X1,...,Xnpg0 ˝ ϕ
G
´tq “Wn

t g0ppϕ
G
t q
˚X1, . . . , pϕ

G
t q
˚Xnq

Where — lemma B.2 — Wn
t g0 is a sum of tensors of the form

∇k
T1p0,tq,...,Tkp0,tq

g0.
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The Tips, tq’s are tensors with a particular structure. Either they are of order 1 and

Tips, tqpXq “ X,

or they are of higher order and

Tips, tq “

ż t

s
pϕGu q

˚Ri
“

pϕGu q˚Ti,1pu, tq, . . . , pϕ
G
u q˚Ti,kipu, tq

‰

du

where Ri is a bounded tensor with all derivatives bounded, and the Ti,j have the same

structure. Observe that for X P TN , }pϕGt q
˚X} ď C}X} when t ą 0, and }pϕGt q

˚X} ď

Ce´λt}X} when X K V . By induction, we deduce that for t ą 0,

}∇X1,...,Xnpg0 ˝ ϕ
G
´tq}pxq ď Cne

´λnt}g0}CnpGďGpxqq.

We just have to integrate this for t P r0,`8r, and the exponential decay ensures the conver-

gence. �
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(373):viii+281, 2015.

[24] V. Petkov and L. Stoyanov. Sojourn times, singularities of the scattering kernel and inverse problems. In

Inside out: inverse problems and applications, volume 47 of Math. Sci. Res. Inst. Publ., pages 297–332.

Cambridge Univ. Press, Cambridge, 2003.

[25] R. O. Ruggiero. Dynamics and global geometry of manifolds without conjugate points, volume 12 of
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