N

N

Resonance-free regions for negatively curved manifolds
with cusps

Yannick Guedes Bonthonneau

» To cite this version:

Yannick Guedes Bonthonneau. Resonance-free regions for negatively curved manifolds with cusps.
American Journal of Mathematics, 2018, 140 (3), pp.821-877. 10.1353/ajm.2018.0020 . hal-01806779

HAL Id: hal-01806779
https://hal.science/hal-01806779

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01806779
https://hal.archives-ouvertes.fr

RESONANCE-FREE REGIONS FOR NEGATIVELY CURVED
MANIFOLDS WITH CUSPS

YANNICK BONTHONNEAU

ABSTRACT. The Laplace-Beltrami operator on cusp manifolds has continuous spectrum.
The resonances are complex numbers that replace the discrete spectrum of the compact
case. They are the poles of a meromorphic function ¢(s), s € C, the scattering determinant.
We construct a semi-classical parametrix for this function in a half plane of C when the
curvature of the manifold is negative. We deduce that for manifolds with one cusp, there
is a zone without resonances at high frequency. This is true more generally for manifolds
with several cusps and generic metrics.

We also study some exceptional examples with almost explicit sequences of resonances
away from the spectrum.

The object of our study are complete connected d + 1-dimensional negatively curved man-
ifolds of finite volume (M, g) with a finite number £ of real hyperbolic cusp ends. Such a
manifold can be decomposed as follows:

M=MyuZyu---uZ,,

where My is a compact manifold with smooth boundary and negative curvature, and Z; are
hyperbolic cusps

(1) (a5, +0) x T¢ ~ Z; a2 = (y,0), 0= (61,...,05), i=1...k,
where a; > 0, and ’]T;i = ']I“/i\i = Rd/Ai are d-dimensional flat tori, and the metric on Z; in
coordinates (y, 0) € (a;, +o0) x T¢ is
dy? + d6?
= T’
which has constant —1 sectional curvature. Notice that the manifold has finite volume when

ds?

equipped with this metric. The choice of the coordinate y on a cusp is unique up to a scaling
factor, and we choose it so that all T¢’s have volume 1. Such a manifold will be referred to
as a cusp-manifold. Mind that we require that they have negative curvature.

The Laplace operator on M is denoted A in the analyst’s convention that —A > 0. The
resolvent R(s) = (—A — s(d — s))~! is a priori defined on L?(M) for Rs > d/2. Thanks to
the analytic structure at infinity, one shows that R can be continued to C as a meromorphic
family of operators C — C® whose set of poles is called the resonant set Res(M, g).
The original proof is due to Selberg in constant —1 curvature, to Lax and Phillips [16] for
surfaces, and this subject was studied by both Yves Colin de Verdiere [5 6] and Werner

Key words and phrases. Finite volume manifolds with cusps, scattering determinant, resonances, semi-
classical parametrix.
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Miiller [I8], 19, 20]. It fits in the general theory of spectral analysis on geometrically finite
manifolds with constant curvature ends, see [17, [11].

The spectrum of —A divides into both discrete L? spectrum, that may be finite, infinite
or reduced to {0}, and continuous spectrum [d?/4, +00) with multiplicity x. We can find in
[18] a precise description of the structure of its spectral decomposition given by the Spectral
Theorem. For each cusp Z;, ¢ = 1...k, there is a meromorphic family of Fisenstein functions
{E;(s)}sec on M such that

(2) — AE;i(s) = s(d — s)E;(s).

The line {Rs = d/2} corresponds to the continuous spectrum and is called the unitary axis.
The poles of the family are contained in {fs < d/2} U (d/2,d], and are called resonances. We
also consider the vector E = (Ey,...,E,). Let {ug}; be the discrete L? eigenvalues. Then,
any f € CP (M) expands as:

RN d d
f= Z<ug,f>w + = Z J E; (2 + it) <Ej <2 + it) ,f> dt [18| eq. 7.36],
0 j=1Y—®

where (-,-) is the L? duality product. An important feature of the Eisenstein functions is
the following: in cusp Zj, the zeroth Fourier mode in 6 of E; writes as

(3) Sijy* + b (s)y 2,

where ¢;; is a meromorphic function. Combining this with , we deduce that the family
E;(s) is unique. If we take the determinant of the scattering matriz ¢ = {¢;;}, we obtain
the scattering determinant ¢(s). It is known that the set R(M, g) of poles of ¢ is the same
as that of {F(s)}s — again, see [I8] theorem 7.24]. It also coincides with the poles of the
meromorphic continuation of the kernel of the resolvent of the Laplacian that are not on
{Rs = d/2}, [18].

The uniqueness property of F;(s) gives a relation between F;(s) and E;(d — s), which
implies ¢(s)¢(d — s) = 1. Hence, studying the poles of ¢ in {Rs < d/2} is equivalent to
studying the zeroes in {s > d/2}. In this article, we will be giving information on the
zeroes of ¢, keeping in mind that the really important objects are the poles.

The first examples of cusp manifolds to be studied had constant curvature, and were
arithmetic quotients of the hyperbolic plane. Let I'o(N) be the congruence subgroup of
order N, that is, the kernel of the morphism 7 : SLy(Z) — SL2(Zn). Then, H/T'4(N) is a
cusp surface — or orbifold but we will ignore this technicality here. For such examples, and
more generally, for all constant curvature cusp surfaces H/T', if cusp Z; is associated with
the point oo in the half plane model, then the associated Eisenstein functions can be written
as a series

(4) Ei(s)(z)= ), [S(2)
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where I'; is the maximal parabolic subgroup of I' associated with Z;. Recall a Dirichlet series
is a function of the form

a
f(s) = 2 —];, where (\g) is a strictly increasing sequence of real numbers.
k=0 "k
In the case of constant curvature cusp surfaces, Selberg proved — see [26] — that there is a

non-zero Dirichlet series L converging absolutely for {Rs > d} so that

(s — K/2
) o) = (FEH2) 1,

k being the number of cusps. This implies:

Theorem (Selberg). Let (M, g) be a constant curvature cusp surface. There may be a finite
set of resonances in (1/2,1]. The other resonances are contained in a vertical strip of the
form {1/2 — 6 < Rs < 1/2}, for some § > 0.

While conducting his systematic study of the spectral theory of the Laplacian on cusp
surfaces, Miiller wondered whether Selberg’s theorem still holds in variable curvature — see
[20, page 274]. Froese and Zworski [§] gave a counter-example, that had positive curvature.
The following theorem gives a partial answer in negative curvature.

Theorem 1. For M a cusp manifold, let G(M) be the set of C* metrics g on M such that
(M, g) is a cusp manifold with negative sectional curvature. If U c< M is open, let Gy (M)
be the set of metrics in G(M) that have constant curvature outside of U. Endow G(M) and
Gu (M) with the C? topology on metrics. Then

(I) There exist hyperbolic cusp surfaces (M, go) and non-empty open sets U cc M such
that for all g € Gy (M), Res(M, g) is still contained in a (possibly different) vertical
strip.

(IT1) Given any cusp manifold M, for an open and dense set of g€ G(M), or all of G(M)
when there is only one cusp, there is a 6 > d/2 such that for any constant C > 0,

{se€Res(M,g), Rs <d—9, Rs > —Clog|Ss|} is finite.

(IIT) There is a 2-cusped surface (M,g) with the following properties. The resonant set
Res(M, g) is the union of Ressirip, Respqr and an exceptional set Reseqe, so that

Resgtrip = {s € Res(M, g), Rs > d — §}
ReSepe = {Si,?i, teN, s, =35; + (’)(|si|75)} for some 3 > 0,
Restqr N {Rs > —C'log |Ss|} is finite for any C > 0.

where § > 0, and the 3;’s and §;’s are the zeroes of se”*T — Cy for some constants

T > 0 and Cy # 0 — they are related to the several branches of the Lambert W
function.

(IV) For a bigger open and dense set of metrics g € G(M), containing the example in
, there are constants 6 > 0, and Cy > 0 such that

{seRes(M,g), Rs <d—9, Rs>—Cylog|Ss|} is finite.
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FIGURE 1. The resonances: 4 cases in theorem [1l

Our theorem does not solve completely the problem. First, there may exist some metrics
for which the theorem does not say anything. We conjecture that this set is empty, that is
to say:

Conjecture 1. The set of metrics in is actually G(M).

Not being able to prove this, part 4 is dedicated to showing that the complement is
contained in a C'® infinite codimensional submanifold of G(M). Except for some special
cases, our theorem does not give much insight on the presence or the absence of resonances
far from the spectrum — i.e in the region s >> log|Js|. It seem that one would have to
invoke different techniques to make progress in the direction of

Conjecture 2. For an open and dense set of g € G(M), there is an infinite number of
resonances outside of any strip d/2 > Rs > d — 4.

Our reason for conjecturing this is that the existence of such resonances seems to be more
stable than their absence.

The main tool to prove theorem [l] is a parametrix for the scattering determinant ¢ in a
half plane {s > d,}. Thanks to the form of that parametrix — sums of Dirichlet series —
we will be able to determine zones where ¢ does not vanish.

Theorem 2. Let (M,g) be a negatively curved cusp manifold with k cusps. There is a
constant 6 > d/2 and Dirichlet series Lo, ..., Ly, ... with abscissa of absolute convergence
dg such that if at least one of the Ly ’s does not identically vanish, for Rs > 4,4, as Is — +o0,

o(s) ~ s Lo(s) + s YEIL (s) + . ...

Actually, the constant d4 is the pressure of the potential (F'*"+d)/2, where F*" is the unstable
jacobian. In constant curvature, F'** = —d and 64 = d.
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This theorem is a consequence of a more precise estimate — see Theorem The L,’s
are defined by dynamical quantities related to scattered geodesics. Those are geodesics that
come from one cusp and escape also in a cusp — maybe the same — spending only a finite
time in the compact part of M, called the Sojourn Time. This terminology was introduced
by Victor Guillemin [10]. In that article, for the case of constant curvature, he gave a version
similar to ours of . He also conjectured that his formula could be generalized to variable
curvature, which is the point of the present article, some 40 years later — see the concluding
remarks pp. 79 in [I0]. Lizhen Ji and Maciej Zworski gave a related result in the case of
locally symmetric spaces [14].

Sojourn Times are objects in the general theory of classical scattering — see [24]. Maybe
ideas from different scattering situations may help to prove Conjecture |1} that may be refor-
mulated as

Conjecture 1°. Given g € G(M), at least one L; is not identically zero.

The structure of the article is the following. In section [I] we recall some definitions and
results on cusp manifolds, and prove the convergence of a modified Poincaré series. Section
is devoted to building a parametrix for the Eisenstein functions, via a WKB argument,
using the modified Poincaré series. In section [3| we turn to a parametrix for the scattering
determinant. To use the Stationary Phase method, most of the effort goes into proving the
non-degeneracy of a phase function. The purpose of section {4] is to study the behaviour of
the series L; when we vary the metric. Finally, we prove theorem [I]in section 5} In appendix
[A] for lack of a reference, we give a proof of a regularity result on horocycles. This result may
be of interest for the study of negatively curved geometrically finite manifolds in general.

This work is part of the author’s PhD thesis. In a forthcoming article [2], we will deduce
precise spectral counting results from Theorem

Acknowledgment We thank Colin Guillarmou and Stéphane Nonnenmacher for suggest-
ing the idea that led to this article. We also thank Colin Guillarmou, Nalini Anantharaman
and Maciev Zworski for their very helpful suggestions.

1. SCATTERED GEODESICS AND SOME POTENTIAL THEORY ON CUSP MANIFOLDS

Recall that a manifold N is said to have bounded geometry when its injectivity radius is
strictly positive, and when V¥R is bounded for all k = 0,1,... — R being the Riemann
curvature tensor of N. Since the injectivity radius goes to zero in a cusp, a cusp manifold
cannot have bounded geometry. However, its universal cover M does. Since the curvature of
M is negative, M is also a Hadamard space — diffeomorphic to R — and we can define
its visual boundary é’oo]\7 homeomorphic to S¢, and visual compactification M = MU 600]\7 .

In all the article, unless stated otherwise, we will refer to the projection T*M — M as ;
when we say geodesic, we always mean unit speed geodesic.

The results given without proof are from the book [23].
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1.1. Hadamard spaces with bounded geometry and negative curvature. Let us
define the Busemann cocycle in the following way. For p € 05, M, Let

By(z, ") = &)iinp d(z,w) — d(z',w).

For each p e 800]\7 , we pick m, € M — we will specify this choice later, see remark [2| Then,
we define the horosphere H(p,r) (resp. the horoball B(p,r)) of radius r € R, based at p as

H(p,r):= {we]\f\f ’ Bp(x,myp) = —logr}

(6) and B(p,r) i= {z € M | B(z,m,) < —logr}.

We also define
(7) Gp(z) := Bp(x,mp).

Beware that with these notations, horoballs B(p,r) increase in size as r decreases. The
number 7 will correspond to a height y in the coming developments.

Since the curvature of M is pinched-negative —k2.. < K < —K2,, M has the Anosov
property. That is, at every point of S* M, there are subbundles such that

T(S*M) =RX@® E*® E*,

where X is the vector field of the geodesic flow ¢;. This decomposition is invariant under
¢, and there are constants C' > 0, A > 0 such that for ¢t > 0

|dpe| || < Ce™ and ||dp_¢|pu| < Ce™.

The subbundle E® (resp. E") is tangent to the strong stable (resp. unstable) foliation W*
(resp. W*). The subbundles E*, E* are only Holder — see [23, theorem 7.3] — but each
leaf of W#, W is a ¥* submanifold of M — see lemma

Remark 1. We have to say how we measure regulamty on M and TM. In TTM we have
the vertical subbundle V = kerT'w : TTM — TM. Since M is riemannian, we also have
a horizontal subbundle H given by the connection V. Both V and H can be identified with
T]\7, and the Sasaki metric is the one metric on TM so that V L H and those identifications
are isometries.

We endow TM with the Sasaki metric, and then also T*M by requesting that v — (v, -) is
an isometry. For a detailed account on the Sasaki metric, see [9]. On all the manifolds that
appear, when they have a metric, we define their €% spaces, k € N, using the norm of their
covariant derivatives:

[ £llgn = L Sup IV Fllo-

=0,...,n
Then, €° = Np=0€™. For a more detailed account of €* spaces on a riemannian manifold,
see for example the appendiz “functionnal spaces in a cusp” in [3].

There are useful coordinates for describing the geodesic flow ¢; on S*M. We associate
with a geodesic its endpoints p~, p*. Then we have the identification

S*M ~ 02 M x R
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given by £ — (p~,p*,t = B,- (7, m,-)). Here 630]\7 is obtained by removing the diagonal
from (3001\7 X (9001\7 . In those coordinates, (; is just the translation by t in the last variable.
Moreover, the strong unstable manifold of £ is the set {p~ = p~(&),t = t(§)}. For the strong
stable manifold, it is a bit more complicated in this choice of coordinates.

We deduce that W*(£) is the set of outer normals to the horosphere based at p~ (&), through
m€. The horospheres H (p,r) are ¥* submanifolds, and each Gy, is a smooth function so that
dG, € ‘500(]\7 ). The proof uses the fact that the unstable manifolds W*" are €™ (lemma
, and the fact that there can be no conjugate points in negative curvature.

For p e 6OOM, we introduce W*(p) as the set of ¢ € S*M such that p~(§) = p. It is the
set of outer normals to horospheres based at p. It is the graph of dG,, and

Gp(moi(z,dGp)) = G, + t.

We will refer to W(p) as the incoming Lagrangian from p.

1.2. Parabolic points and scattered geodesics. Now, let I' = 71 (M). It is a discrete
group acting freely on M by isometries. The elements of I' can be seen to act by homeo-
morphisms on M. We can define the limit set A(T") as I' - 20 n dx M, where the closure was

taken in M, and 2 is an arbitrary point in M. This does not depend on 2Y.

If v € ' is not the identity, one can prove that it has either. (1) Exactly one fixed point in
M , (2) Exactly two fixed points on O M , (3) Exactly one fixed point in 0 M. Then we say
that it is (1) elliptic, (2) loxodromic, or (3) parabolic. Here there are no elliptic elements in
I, since I' acts freely on M. Our study will be focused of the parabolic elements of T'.

All the parabolic elements 7 of I' are regular, in the following sense: there is r, € R% so
that if p, is the fixed point of v, B(p,,7) has constant curvature —1. We denote by 'y,
the set of parabolic elements in I". The set Ayq, of py’s is the set of parabolic points of M.

Let p € Apgr. Then, horoballs centered at p will project down to M as neighbourhoods
of some cusp Z;, and we say that p is a parabolic point that represents Z;. When ~v.p = p,
we also say that 7 represents Z;. Objects (points in the boundary, or elements of I'yq,)
representing the same cusp will be called equivalent. I' acts on 'y, by conjugation, and
elements of the same orbit under I' are equivalent — however observe that the equivalence
classes gather many different orbits under I'.

If p is a parabolic point representing Z;, write p € A;ar. Let I'), < I' be its stabilizer. It
is a maximal parabolic subgroup. We always have I'), ~ m (T?) ~ 74, The set of parabolic
points equivalent to p is in bijection with I')\I' = {T',y, v € I'}.

i

par’
one can choose the point m, so that Gy, coincides with —log g, on the horoball H(p,rp), where
Up is obtained on H(p,rp) by lifting the height function y on the cusp Z;. With this choice,

for p € Apgr and v € I, we have the equivariance relation

Remark 2. We will not use the functions G, when p is not a parabolic point. Whenp e A

(8) Gy1p=Gpon.
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The following lemma seems to be well known in the literature. However, since we cannot
give a reference for a proof, we have written one down.

Lemma 1.1. Since M has finite volume, A(T") = &OOM, and the parabolic points are dense
in OgpM

Proof. Let us pick a cusp Z;, and a point p € Apar Then, we consider x € 0Z; in the boundary
of Z; in M. We can lift = to Z € H(p,a;). The orbit under I" of any &’ € H(p, a;) will remain
at bounded distance of the orbit of Z under I'. We deduce that A(T") is the intersection of the
closure of u,vH (p, a;) with the boundary 0. M. This implies in particular that A < A(D).

par
Now, we can find a distance d on M that is compatible with its topology. Indeed, take a
point m € M and consider the distance d obtained on M by requesting that

ve B(0,1) © T, M — exp,, {v x argth|v|} is an isometry.

Then, for that distance, the sequence of images vH (p, a;) have shrinking radii. Now, take a
sequence of points &; € v;H (p, a;), so that £; — g € A(I"). We have v;H (p, a;) = H(v;p, a;),
and so d(Z;,y;p) — 0. This proves that A(T') = A?

par:

Next, consider the open set U in M obtained by taking only points of M that project to
points in the compact part My cc M. There is C > 0 such that given Z; € U, for any
Z9 € U, there is a y € T" such that d(yz1,22) < C.

Let U be the closure of U in M. Since U is at dlstance at most C of the orbit of any of

its points under I, we deduce that the limit set is U n 800

Then, we find that A(T') = U vH(p,a;) N 0oM = U n 0,M. But, we also have
Uy YH (p,a;) N 0o M = Uy yB(p,a;) N 0o M. We deduce that

9) Al = {uﬂﬂB(p, a;) v U} A oM =T Uy YB(p, a;) N 0o M = 0,0 M
O

Geodesics that enter a cusp eventually come back to My when they are not vertical, that
is, when they are not directed along +0,. A geodesic that is vertical in a cusp is said to
escape in that cusp.

Definition 1.2. The scattered geodesics are geodesics on M that escape in a cusp for both
t — 400 and t — —a0.

The set of scattered geodesics is denoted by SG. Such a geodesic, when lifted to M , goes
from one parabolic point to another, and hence is entirely determined by its endpoints. Take
p, q representing Z;, Z;. For v, v' € T, the pair of endpoints (p, vq) and (7'p,7'vq) represent
the same geodesic on M. We let §G;; be the set of geodesics scattered from Z; to Z;. From
the above, we deduce that when 7 # j,

where I'; (resp. I'j) is any maximal parabolic subgroup representing Z; (resp Zj).
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On the other hand, we can consider the set of C' curves that start in Z; above the torus
{y = a;} and end in Z;, above the torus {y = a;}. Among those curves, we can consider the
classes of equivalence under free homotopy. Let Wij (M) be the set of such classes. One can
prove that in each class [c] € 7'['? (M), there is exactly one element ¢ of SG;; — this is implied
by the fact that the riemannian distance on M is uniquely geodesic. In particular, this proves
that SG is countable. Hence, we have an identification SG;; ~ 7 (M). In what follows, when

there is no ambiguity on the metric, we will write directly ¢ € 7w} (M). In section {4} we will

study variations of the metric, and will come back to the notation [¢| € 7}’ (M).

For a scattered geodesic ¢;;, we define its Sojourn Time in the following way. Take one of
its lifts ¢; to M, with endpoints p, ¢q. Let T be the (algebraic) time that elapses between
the time &; hits {g, = a;}, and the time it crosses {; = a;}. Then, let
(11) T (cij) :=T —loga; — loga;.

This does not depend on the choice of a; and a; (as defined in ), nor on the choice of
the lift ¢;;. We say that T (c;;) is the Sojourn Time of c;j, and we can see T as a function
on m’(M). Given T > 0, there is a finite number of ¢ € §G;; with sojourn time less than

T (otherwise, we would have two such curves that would be so close from one another that
they would be homotopic).

We denote by ST (resp. ST ;) the set of T(c) for scattered geodesics (resp. between Z;
and Z;). We also call the Sojourn Cycles and denote by SC the set of sums

(12) Tit+Ts

where o is a permutation of {1,...,x}, and 7; € ST, ;). A set of scattered geodesics
{c1,..., ¢k} such that ¢; € §G;q(;) will be called a geodesic cycle.

1.3. A convergence lemma for modified Poincaré series. Poincaré series are a classical
object of study in the geometry of negatively curved spaces — see [7] for example. For T" a
group of isometries on M, its Poincaré series at x € M is

Pr(x,s) = Z e U@aT) g e R,
~yel'

More generally, given a Potential on SM , i.e a Holder function V on S M invariant by T, its
Poincaré series is

Pry(z,s) = Z ela Vs
~yel’

where S;x V — s is the integral of V' — s along the geodesic from x to yx. The convergence of
both series does not depend on z, only on s.

We will write { V' — s instead of {(V — s) to reduce the size of the expressions. We will
assume that the integrand is all that is written after the sign §, until we encounter another
{ sign.

When p is a point on the boundary, = and 2’ in M, §P — P,V will refer to the limit of
Si V- Si V as M > p — p. When V is Holder, this limit exists because the geodesics [z, p]
and [2/, p] are exponentially close.
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When we sum over {[y] € Z\I'} we mean that we sum over a set of representatives for Z\I'
(Z being assumed to be a subgroup of T').

We only work with reversible potentials V. That means that +*V is cohomologous to V/
(following [23], ¢ is the antipodal map in SM). In other words, we require that

(13) fyv—z*v _ Ay)— A(x)

where A is a bounded Hélder function on SM , invariant by I'. In particular when this is the
case, we can replace V by +*V in the integrals, losing a O(1) remainder. It is then harmless
to integrate along a geodesic in a direction or the other.

In our case where I' is the 7 of M, it is a general fact that there is a finite 6(I', V) € R
such that Pry converges for s > §(I', V') and diverges for s < 6(I", V). This number is called
the critical exponent of (I', V). We also call or = 6(I", 0) the critical exponent of T'.

The exponent of convergence of a maximal parabolic subgroup I', is always dr, = d/2.
Additionally, the Poincaré series for I',, diverges at d/2 (I', is divergent). This can be seen
computing explicitely with the formula for the distance between two points (y, ) and (y, 6)

in the half-space model of the real hyperbolic space HA4*?
60— 0
(14) ((5:0),(5.0)) = 20"

Definition 1.3. In what follows, we say that a potential V is admissible if the following
holds. First, V is a Hélder function on SZTJ, invariant by I' and reversible. Second, there
are positive constants C, A, and a constant Vi, € R such that whenever T > 0, if mp(§) stays
in an open set of constant curvature —1 for t € [0,T], then fort e [0,T],

(15) [V (pe(€)) = Vool < Ce™™.
Observe that an admissible potential has to be bounded. We will mostly use the potential
Vo = (F** + d)/2 where F*" is the unstable jacobian (see and (32)). We start with the

following lemma:

Lemma 1.4. Let V' be an admissible potential. Then 6(I', V') > dr, + V.

If V' =0, this is the consequence of [7, Proposition 2]. We will actually follow their proof
closely, but before, we need two observations on triangles in M.

Remark 3. 1. Consider a triangle with sides a, b, ¢ and angles o, 8,7y in a complete
Hadamard space M, of curvature —k*. We have

cosh kc = cosh ka cosh kb — sinh ka sinh kb cos 7.

Assume that v > m/2 (the triangle is obtuse). Then we find that there is a constant Cy > 0
— smooth in k # 0 and k # o0 — such that

(16) lc — (a +b)| < C.

Since the curvature of M is pinched, by the Topogonov comparison theorem for triangles, the
same 1is true for obtuse triangles in M, with a constant C' controlled by kpin and kmaz.
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2. Now, we consider a triangle with sides cg,c1,co in ]\7, and V' an admissible potential
on M. Take C' > 0. Among those triangles, we restrict ourselves to the ones such that the
length of co is at most C. Then

(17) J - f V- o)

this is still valid if the vertexr at c1 N co is at infinity. Actually, to prove this, first observe
that it suffices to make computations for that case when c1 N cs is at infinity. Then it follows
directly from the fact that the two curves are exponentially close in that case.

Proof of lemma[1.4} The limit set of I', is reduced to {p}. In H(p,a;), I', has a Borelian
fundamental #Z domain whose closure is compact. We can obtain a fundamental domain ¥
for 'y, on O M \{p} by taking the positive endpoints of geodesics from p through Z. From [23]
Proposition 3.9], which is due to Patterson, there exists a Patterson density p of dimension
(T, V) on ]\7, i.e, a family of finite non-zero borelian measures (y;)_ _7; on ﬁoo]\7, so that

for any x,z’ € ]\7, ~veT,
djiz q q —
(18) Vi = Hoa, W(Q) = exp{f —JIV—5(F,V)}7 q€ M

Additionally, the u,’s are exactly supported on A(T") = (900]\7, $0 1z (¥) > 0. Take x € A.
We have

0 > g (0o M) = Z pz(Y9) + pa({p})

velp
But,

719 = ) = [ e { [ -[v-ar V>} e
So we find | ’

JZexp{f JV 5FV}dux = ) (7)<

vel'p vel'p

For g € 9, let x4 € A be its projection on H(p,a;). Since we have d(z,z,) = O(1) — from
the choice of 4 — we use (7)) and uniformly in v e I',,

q q SC Y
f _J V5, V) = O(1) f [T v-sm,v) = o)
Zq x zq x
Take z(z’) the intersection of the geodesic [¢, #'] and the horosphere H, based at ¢ through
xq. The set of z(2'), 2’ € H(p, a;) has to be bounded. Indeed, H(p, a;) is not compact, but the
only way to go to infinity in H(p, a;) is to tend to p, and we find that as 2’ — p, z(2) — z.
The geometry is described in figure

Using again ,
q q z(2') T
|- v-sew=-ow « [ -] v-srv) -on.
Zq z(z') x!

‘,L,/
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P
P H(p,a;)
x/
B
Zq
z(2
H,
/g —1a
D —

FIiGURE 2.

and sum everything up (with 2’/ = ~yx)

q q z(yx) q q
f-i[v—&nqumn+f +J —4~V—MRV)
Y x v z(yx) Zq

T

:Om+qu—anm
’YCL’
(19) =OOHJWV—MRV)

As a consequence,
Pr,v(z,0(T,V))p(¥) < o,
and since . (4) > 0,

(20) Pr,v(z,6(I',V)) < 0.

Since V is an admissible potential, for each x € M , there is C, > 1 such that for all s € R,
1
Cy
Since I',, is divergent, taking s = 6(I", V'), we deduce that §(I', V) — Vi, > d/2. O

Pr,v(z,s) < Pr,(z,5 = Vy) < CoPr,v(z,s).

In the following developments, we will need the convergence of a modified Poincaré series.
Take V an admissible potential. For a cusp Z;, take a point p € AL, and let 7% () be the
intersection of the geodesic through p and x with H(p, a;). The horoballs B(p, a;), p € A,
are all pairwise disjoint. Indeed, the restriction of the projection M — M to any such
horoball is a universal cover of Z;. This implies that for x € B(p, a;), the part of the orbit of

x under I' that stays in B(p, a;) has to be its orbit under I'),.
For x € M, take x € M a lift of x, and define

YT
Pz, v(x,s):= Z exp{f _ V*s}.
(i) ' (42)

[V]elp\I'v2¢B
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This does not depend on the choice of #. Given a point = € M, among a family {vz,[v] €
I')\I'}, there is at most one point in B(p, a;), and such a point has to be one that minimizes
Gyp. So, for a point x € M, take x, to be a lift minimizing G}, among the lifts of =, and let
Gi(z) := Gp(zp). For q € Aoy, also let

(21) Pi(s) = Y eXP{(Voc—S)T(paW)+ |

Ppylg#lp P

4
V_Voo}a

where T (p,~vq) is the sojourn time of the geodesic on M that lifts to [p,vq]. Observe that
the set {T')7T'y # I',} can be identified with SG;;, from equation . The main result of
this section is

Lemma 1.5. The series Pz, v (x,s) and P‘i,j(s) converge if and only if s > 6(I', V). Addi-
tionally, when € > 0, there is a constant Cc > 0 such that for s > §(I', V) + ¢,

(22) 1Pz,,v (2, 8) | 2 (ary < Ce

Our proof is inspired by [I], and we generalize their Theorem 1.1. One can also see the
article [2I], or the proposition 3 in [22]. For two real valued functions f and g, we write
f = g when there is a constant C' > 0 with Cg < f < ¢g/C. In the following, when we use
that notation, we let the constant C' depend on s, but not on x, v, p. We fix a cusp Z;, a

i

representing parabolic point p € A,

Proof. The proof is divided into 3 parts. First, we compare the values of terms of the sum
for different z’s, to check that the convergence does not depend on z indeed. Then, we
study the sum for some well chosen z, to find the convergence exponent. At last, we turn
to asymptotics in cusps. We let P* be the series where we have not excluded vz, € B(p, a;)
from the sum.

1. Take z,2’ two points in M, at distance D > 0, and two lifts Z and Z’ such that
d(7,7) = D.
Take v € I'. Assume that G,(vZ’) = Gp(vZ). Then the projection a:}Y of v’ on the horoball

B(p,Gp(yz)) is at distance O(D + 1) from y2. This is a simple consequence of equation (16
for the triangle with vertices vz, ~v7/, :E}/ Write

vz vE ~E ac,1Y NE
f‘ V—S—J_ V—s:f V—s+f{ V_f, V.
Tt (V&) Tt (vE) al, Tt (V&) Tt (V&)

Since V is Holder, and bounded, we deduce that

JW v—s—fwE V—s:O(D+1){(1+]s])+JOO(ek"“'"t)“dt}

' (V&) ™' (vE) 0

where p is the Holder exponent of V. The constants in the estimates do not depend on x
and 2. We have used that the geodesics joining 7, 7, yZ and x#, ﬂ;i'ya?’ are on the same
strong stable manifold. We deduce that for some constant C' > 0,

!
(23) e~ CWPlslH) < m < CPBIH) 4 2 e M, d(z,2') = D.
x,s
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2. Take now a point € M so that z, € H(p,a;) < B(p,a;). We claim that for all
‘/LJ € H(pv ai)v

2 [[v—s =t mgemn o+ [ vos

’ i (1)

The remainder being bounded independently from z, and . Let us assume that this holds
for now. Then, we write

Prv(wp, s) — PvaV(xva) = Z Z exp{pr V- 5}7

Ipy#Lp aglp OTp

= Z Z exp {(VOO — s)d(axy, Ty () + pr | V- s}

[py£lp ael T (v
pY#L'p a€lp p P

= Pz, v(xp,s)Pr,(zp,s — Vo).

Hence

Pry(zp,s) — Ppp}v(xp, s)
Pr, (xp,5s — Vi) '
But from lemma we know that §(I', V) > (', V).

For the proof of , we will just say that it is based on the fact that the triangle with
vertices &', m5i (), and v, is obtuse at 7y (yzp). The estimate follows from remark (3| and
the way to obtain it was exemplified in the proof of .

f¥27V(xp75)::

3. We turn to asymptotics in the cusps. Take z € Z; and ¢ € Agm (if i = j, take p = q).
Let 2, minimize G, among the lifts of 2. Observe that the map (I')7[q # 'y, a € T'y) — I'pya
is a bijection onto I')\I" if ¢ # j, and I')\(I' — ') if ¢ = j. We hence rewrite

Pyy(z,s) = Z Z exp {J‘lawq )V — s} .

CpyTg#Tp aely mp' (Yo

Consider H, the horosphere based at ¢, through x,. Let z, (resp. zﬁ/) be the point of
intersection of the geodesic [p, yq] with vH, (resp. H(p,a;)). From (19)), we have

Yazq 2y yazg Tt (yag)
J_ V—8=0(1)+J +f —f V —s.
”;Z(’Yaxq) p 2y p

However, the distance between 2 and mpi(yax,) is uniformly bounded. This is a direct
consequence of lemma [3.2] Hence

P P
| -[. =ow.
2 ﬂgl('yaxq)

qu V- Voo} + (Vo — 8) (T(p,vq) — Golzg) + d(v 2, azy)) + O(1).

and

TATq
f ' V-s= {
' (yazq)
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where T (p,7q) is the sojourn time for the geodesic [p,~vyq]. It follows that

Pry(ws)= 3 exp {(V@ — )T (ya) + j My voo}

Cpylq#lp P

X Z exp{ Gy(xg) +d(v~ Z%axq))}

ael’y

In the RHS, the first term does not depend on x; we recognize P",](s) The second is
related to Pr,(z4). We can see it as a Riemann sum as x4 — ¢. Indeed, I'y ~ 74, and we
can write explicitely the second term as

(25) e(s7Veo)Ga(@a) Z exp < 2(Vo, — s) argsh 16 =60l
oy Qe_Gq(Iq)

Aszy —q, y = e~Gal@a) 5 4o and we can see this as a Riemann sum for the function
f = exp{2(Vyp — s)argsh} for the parameter 2y. It should be equivalent to (2y)? Spa f
However f is integrable if and only if s — V,; > d/2. As a result, we find that

D7 exp {(Voo — 8)(—Gylag) + d(y ™ 2y, ag)) } = e~V Calwa) 5 > v 4 d2.
ael’y

It is easy to check that the L? norm of this is finite whenever s > Vi, +d/2 + ¢. The proof of
the lemma is complete when we observe that the L? norm decreases when Rs increases. [

2. PARAMETRIX FOR THE EISENSTEIN FUNCTIONS

In the case of constant curvature, the universal cover M is the real hyperbolic space 4+,
On it, there is the Poisson kernel P(z,p, s) that associates a function f of p € 0 M ~ S on
the boundary with a function on H*!, u(z) such that

(A —s(d—9))u(z) =0 wu(z) = Ld P(z,p,s)f(p)dp.

We say that u corresponds to the superposition of outgoing stationary plane waves at fre-
quency s, with weight f(p) in the direction p. When the curvature is variable, one cannot
build such a kernel anymore, because the geometry of the space M near the boundary is
quite singular. In other words, the metric structure on the boundary is not differentiable,
only Holder. Hence, no satisfactory theory of distributions is available. However, in the spe-
cial case of parabolic points that correspond to hyperbolic cusps, the fact that small enough
horoballs have constant curvature enables us to construct an approzimate Poisson kernel for
P € Npar-

Taking the half space model for H?*!, the Poisson kernel for the point p = o0 is P = y*,
so one can rewrite formula as

EZ'(S,J}) = Z P(7x7p7 5)'

[V]elp\I

This is exactly the type of expression we are looking for. In the first subsection, we
introduce some notations. In the second we recall some facts on Jacobi fields that we will
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need. Then we build the approximate Poisson kernel, and later, we prove that summing over
pE A;,ar gives a good approximation of E;.

i

par D€ @ parabolic point. We denote

2.1. Some more notations. Fix some Z; and let p € A
by ¢ the flow on M generated by VG,. It is conjugated to the geodesic flow on W“0(p) by
the projection 7 : T*M — M. The Jacobian Jac ¢! of ¢! with respect to the riemannian

measure satisfies

d
e Jac ¢lli—o = Tr V2G, = AG),

so that
t

(26) Jact = exp {J AG, o <p7;d7'} .
0

Thanks to the rigid description in the cusps, we have

%

Gp < —loga; < we are above cusp Z; and Gy = —logy;, forallpe Aj,,.

In that case, we can compute AG), = d, and it makes sense to define a twisted Jacobian:

7 — 1 P td _ D td i
(27) Jp(x) : tEI—Poo \/Jac o’ (x)e \/Jac o’ (x)e Gy (e)+logay’ for pe A,

This J, is constant equal to 1 in the horoball B(p,a;). It is useful to define
(28) b; := inf{y > 0, B(p,y) has constant curvature}.

We have b; < a;, and J equals 1 on B(p,b;). We also let

(29) Fy(a) := log J,(x).

Recall the curvature of M is pinched between —k2 < —1 < —k2 . < 0. Then by Rauch’s

max min
comparison theorem, [4, Theorem 1.28|,

2F,
T < d(l - kmin)-

30 dl_kmaz S 7
(30) ( ) (Gp + log b;)

What is more, by V" F, is bounded for n > 1, because VG, is in CKOO(]\A[).
On the other hand, the Unstable Jacobian F*" is the Holder function on SM defined by
d
31 Fsu = —— d t d u O
( ) (.ZL‘,’U) dt|t:0 e [( Sot)|E (:Iz,v)] <

The fact that it is Holder is a consequence of the Holder regularity of E* — see [23, Theorem
7.1]. In what follows, we will be interested by the potential

1 d
9 ey
(32) Vo =58+ 3

We let 6, = 6(I',Vp). This is the relevant abscissa of convergence of theorem [2| in the
introduction, as we will see.
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2.2. Unstable Jacobi fields. We want to relate V and Fj,. We have to make a digression,
and recall some facts on Jacobi fields. Take a geodesic x(t), and a Jacobi field J along z(t),
orthogonal to 2/(t). By parallel transport, one can reduce J to some function of time valued
in Ty)M. If one also uses parallel transport for the curvature tensor, we get the equation

(33) J'(t)+ K(t)J(t) = 0.

If z(t) lives in constant curvature —1, K is the constant matrix —1. If J(0) = J'(0), then
J(t) = €' J(0), and conversely, if J(0) = —J'(0), J(t) = e~tJ(0).

For v € T, M, denote by v’ the space of vectors in T, M orthogonal to v. Recall that
H and V are the horizontal and vertical subspaces introduced in remark Then we can
identify T,SM ~ (Rv&® UJ‘) @ v*. In this identification, the first term Rv @ v+ is H,. The
second term vt is Vi, n T, SM. In this notation, Rv is the direction of the geodesic flow, and
v its vector.

This identification is consistent with Jacobi fields in the sense that if

d@t'(l’vth) = (l(t)’vl(t)a U2(t))a

then I(t) = [ for all ¢, v1(¢) is a Jacobi field orthogonal to v(t) = 2/(¢), and vo(t) is its
covariant derivative (also orthogonal to v(t)).

An unstable Jacobi field J"(t) along x(t) is a d x d matrix-valued solution of along
x(t) that is invertible for all time, and that goes to 0 as t — —o0 — it just gathers a basis
of solutions. Similarly, one can define the stable Jacobi fields. Such fields always exist; they
never vanish, nor does their covariant derivative — see [25]. Given a geodesic x(t), we denote
by J¥(t) the unstable Jacobi field that equals 1 for ¢ = s — . Actually, the fields ¢ — J%(s+1)
are all equal and only depend on v = (z(s),2'(s)) € SM. We will write it ¢ — J¥(¢).

Identifying with T'SM, we find that vectors in E“ take the form (J“(¢t)w,J* (t)w), whence
we deduce that

(34) EY = {(w,J¥ (0)w)|w L v}.

v

The matrix J*(0) only depends on v, we denote it by U,. Similarly, we define S, for the
stable Jacobi fields. They satisfy the Ricatti equation (along a geodesic v(t)):

U'+U?+K =0.

They take values in symmetric matrices (with respect to the metric), which is equivalent to
saying that the stable and unstable directions are Lagrangians. Given a geodesic curve x(t),
Ju(t) and J*(t) two Jacobi fields along it, we can write U = ((J*)~1)7((J*))T, and find that
d
dt

This is a Wronskian identity. We can also compute

(35) IHTWU-8)J*} =0

2
det (1 + U%(U))
det (1 + U2)
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We have a map i* : w € H(v) — (w,U,w) € E¥(v) from the horizontal subspace to the
unstable one. If one considers the metric ds? obtained on E" by restriction of the Sasaki
metric in TSM, this gives a structure of Euclidean bundle to E* over SM.

Lemma 2.1. The matriz 1+ U2 is the matriz of the metric (i*)*ds2 on H. This is bounded
uniformly on SM.

Proof. This metric is always > 1 — here, 1 refers to the metric on H, i.e, the metric on TM.
The only way it can blow up would be that for a sequence of v, v L v, U,v — o0. If vy, was
a point of accumulation of v in M , that implies that E* and H are not transverse at vq.
That is not possible since there are no conjugate points in strictly negative curvature. We
deduce that mv € M has to escape in a cusp.

However, in the cusp, the curvature K is constant with value —1. Hence, unstable Jacobi
fields in the cusp write as Ae! + Be™?, where A and B are constant matrices along the orbit.
Then U, = 1 + O(e™!) as the point v travels along a trajectory ¢; that remains in a cusp.
In particular, (i%)*ds2 = 2.1 + O(1/y) for points of height y in a cusp. O

In this context, from the definition, we find that for = € M ,

(37) jg(a:) = e det Jeve, @) (—t), for t = Gy(z) + log a;.
As a consequence,

Lemma 2.2. Forze ]\7, and t e R,

AC)
j Vo = Fy(gl(z)) — Fy(a) + O(1).

T

What is more, Vy is an admissible potential.

Proof. The first part of the lemma comes directly from equations and , and the
observation just afterward.

To prove the second part, it suffices to prove that F*“ is an admissible potential. Consider
a point v € T'SM so that ¢;(v) remains in a cusp for times ¢ € [0,7]. Taking the Jacobi
fields starting from v along its orbit, for t € [0,T], we find

(38) Uy,y = (Ae' — Be ) (Ae! + Be ™)1 =1+ 0(e™"),

and

d det 1+ O(e?) ,
s — - _ |
ds|s=0 {det JSOt(”)(s)\/det 1+ O(e7t=9) } d+0(™)

The last thing we have to check is that F*" is reversible. However, ¢*F*" is the strong
Stable Jacobian F'**

(z,0)

d
39 F*° = —  logdetd s
(39) dt =0 ogdet apt g
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From equation , and the Wronskian identity , we find that

2 2
_ det(Uv _ Sv) det (1 + [Ugot(v)) (1 + Slpt@))
det(U%(U) — S%(v)) det (1 + [U%) (1 + S%)

(40) det dSOt|ES (zv) det ngt|Eu (zv)

Since the function

v/det(1 +T2)(1 + S2)
det(U —S)

is well defined on SM , Holder continuous, and bounded, F*" is reversible. [l

(41)

2.3. On the universal cover. In this section, we fix p € A,,,, and we omit the dependency
on p; it shall be restored afterwards. We use notations introduced in section [2.1] We will
use the WKB Ansatz to find our approximate Poisson kernel. Consider a formal series of
functions on M ,

fla) =) 57" ful®),

n=0

with s € C and fo = 1, and compute
(A — s(d— 8))[e"CJf] = e=*C [s (2VG.V(jf) +JFAG - jfd) - A(jf)] ,
where we have used that G satisfies the eikonal equation [VG|? = 1. If we expand the formal
series, we find that this expression (formally) vanishes if for all n > 0,
2JVG.N fr = A fr1).

Indeed,
2VG.VJ = J(d— AG).

We can rewrite those equations in terms of F' = log J :

(42) OVG.V fr = Qfn1 where Qf(z) = Af +2VEVf + (|[VF|? + AF)f.
These are transport equations, with solutions :
1 0
(43) fo=y | @hvogiar
—Q0

Remark that on {G < —logb}, from the definition F vanishes, and so does @ fo. Hence
all f,’s but fp vanish, and the formula above makes sense. We prove :

Lemma 2.3. There are constants Cp n > 0 for n > 1, N € N, such that for all T € R

I falen (a,<r—toghy) < Cn,NT™.
Proof. We use lemma again, and proceed by induction. The result is obvious for n = 0.
Now assume it holds for some n > 0. Taking go = fn, g1 = fant1, £ = —logb, the lemma
enables us to conclude directly if we can prove that

”an €k (G<T—logb) < Cn,an'

But this is a simple consequence of the induction hypothesis and the fact that VF € %00(1\7 ).
]
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All the functions defined above depended on choosing a parabolic point p, and now we
make it appear in the notations:

N
(44) fév(s) = Z s " fnpand Py(-,p,s) := e_SGPjpféV(s).

n=0

This is the approximate Poisson kernel. Then for all N > 0,
[—A — s(d— s)]e_SGp jpflﬁv(s) = —s_Ne_SGpijprm(s).
so we let

(45) Ry(.\p,8) = —e P J,Qpfnp(s)

This will be the remainder term. Now, as the last point in this section, observe the equiv-
ariance relation

(46) PN(fovpas) :PN('raﬁY_lpa S)'

2.4. Poincaré series and convergence. The functions defined by and in M are
already invariant under the action of I',, so to define a function on M, we only have to sum
over I',)\I'. As in section 1.3, take a cusp Z;, a parabolic point p € A? For x € M, let

par:*

Tp € M be a point minimizing G, amongst the lifts of . Then

Lemma 2.4. For € > 0, and N € N, there is a constant Cn, > 0 such that for all v € M,
and all Rs > §(I', Vo) + e,

> | PN (v2p, D, 8)| < Cycal™.
PIET, L £ [0] L2)

Further, with the same condition on s, the remainder satisfies

> RN (yzp.p.5)| < Oy,
[v]elp\I L2(M)

with b; as defined in .

Proof. First, we give a proof for N = 0. write

YTp
Z | Po(yxp, p,s)| = Z exp {9‘%5 log a; + Fp(yxp) — j %s} .
71200} 7o)

[Y]eTp\I, [7]#([0] [v]el\L,[ T (

Recall —F) (i (yzp)) = 0. By lemma losing constants not depending on s, the RHS is
comparable with

YTp

alts 2 exp (J . Vo — 8?8) .
~]#[0] mp* (YZp)

[V]elp\I [
Lemma states that the term in the right part of the product is bounded uniformly in L?
norm.
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Now, we deal with the higher order of approximation. Let n > 0 and consider the sum
PGPV AER?
[V]eTp\I'
By lemma this is bounded term by term by

Cr Z (e J,((Gp + log b;) F)™) o .
[v]eTp\I'

Inserting 1 = b5b; *, this is
(47) Cibs > ok (e=s(Gatlogbi) Ty o,
[v]eT¢\I',Gq=—log b;
Let
Bom N () on,
[v]eT¢\I",Gq=—log b;
By the argument above, for s > 0(T', V) + €, this sum converges and the value is bounded in
L? norm by some function of s. What is more, since all the exponents are nonpositive, this
a decreasing function of s € R. We deduce that when € > 0, there is C. > 0 such that for
xe M, Rs > (I, V) + €, we have HLS"HLQ < Ce.
Consider L = > agA; a Dirichlet series, with a € RY, A, > 1, converging for Rs > so.
Then, if s — e > 59, we find |L'(s)| < L(Rs — €) sup,, | log Ap |\, €. Since Lg" has this Dirichlet
series structure in the s variable, it implies that for some constants Cj > 0,

|05 LG ()12 < Cepy we M, Rs > §(T, Vp) +e.

Observe that C,; may depend on b;. Hence

Z 1(e™5C2 T, fnp) © 7 < Cenb® ze M, Rs > 6(T,Vp) + e
[v]elp\I L2(M)
Moreover, this also holds if we replace f,, by @Qpfnp, and this observation concludes the

proof. O

Now, we can state and prove our first theorem. Recall E;(s,x) is the Eisenstein function
incoming from cusp Z;, defined in and .

Theorem 3 (Parametrix for the Eisenstein functions). For N € N, let Z; be some cusp, and
pe Al a representing point. For Rs > §(I', Vi), let Py (z,p, s) be defined by and

par
E;n(s,z) = Z Py (vzp, p; s).
[Y]elp\I

this function is defined on ]\7, but invariant by I', so it descends to M ; it does not depend
on the choice of p € A Then, uniformly in s when Rs stays away from §(T',Vy), and

s ¢ [4/2,d],
(48) 10 (B = Bo) e any = © (5705

)
par*
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Proof. From lemma we deduce that E; v is well defined; it does not depend on p thanks to
the equivariance relation . Additionally, for a cutoff x that equals 1 sufficiently high in Z;
and vanishes outside of Z;, E; y —xy¢ is in L?, uniformly bounded in sets {its > 6(T, Vo) +¢€}.
The sum

>, RBa(yp,s)

[V]eTp\I'
converges normally on compact sets, and in L?(M) also, so we find

Ei—En=s"(-A-sd—5)" > Ry(y.ps)
[1]eTp\T

Since 0™ (—A — s(d — s))"" is bounded on H™(M) with norm O(1) when s stays in sets
{Rs > d/2+¢,s ¢ [d/2,d]}, it suffices to prove that when Rs > §(T', Vo) + ¢,

5" Z Ry (v p, ) = O(SkbiRs)
[v]elp\I HE(M)

Actually, since the sum has a Dirichlet series structure, we see that this is true for all m > 0
as long as it is true for m = 0. From the bounds in lemma and the bounds on VG, € €%,
we see that for 2’ € M,

IV R (b, )| (2') < e T, (G + log bi) )Y

We conclude the proof using the arguments of the proof of lemma again — from equation

and below. O

Remark 4. We have given estimates for the convergence in H*, k = 0. However, the sum
also converges normally in €% topology on compact sets.

3. PARAMETRIX FOR THE SCATTERING MATRIX

Let us recall that the zero-Fourier mode of E; at cusp Z; is
Yo oij + dij(s)y® "

This formula is valid a priori for y > a;. However, if we integrate E; along a projected
horosphere of height b; < y < a;, we still obtain the same expression, even though the
projected horosphere may have self-intersection — recall they are the projection in M of
horospheres in M. This is true because following those projected horospheres, we do not leave
an open set of constant curvature —1 — see — and we can apply a unique continuation
argument.

The smaller the b;’s are, the better the remainder is. In constant curvature, there is no
remainder — the remainder in goes to zero as N — oo, with fixed s. Observe that the
parameters b; are only related to the support of the variations of the curvature, and not to
their size.
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3.1. Reformulating the problem. In this section, let p € A;m,, qe A{,m. Recall from
that when ¢ # j, SG;; ~ I',\I'/T, and SG;; ~ T,\(I' —T'p)/T'p. We prove

Lemma 3.1. When Rs > (I, Vy), integrating on horospheres in ]\7,

(49) bi(s) = b5 Y f P (o p. 8)du(0) + O(sY2Nb3b).
[1]eSG,; Y (1a:bi)

The constants are uniform in sets {Rs > §(T', V) + €}, € > 0. What is more, this expansion
can be differentiated, differentiating the remainder.

Proof. First, for H;(b;) ~ T,\H(g,b;) the projected horosphere from cusp Z; at height b,
integrating in M, we claim

(50) ij(s) = =035, + f

BB Nd6T + O(sVP VB,
CEEH]' (b]‘)

where the remainder can be differentiated. Considering zero Fourier modes of E; in the
cylinder I')\M we see that the formula holds if we replace E; y by E;, without remainder.

Hence, we only have to estimate
om (b;—d f E; — Ei,Nd0d>

The surface measure obtained by disintegrating the riemannian volume on {y = b;}is du(6) =
de/b;-l. According to the Sobolev trace theorem, the L? norm of a restriction to H;(b;) —
it is an immersed hypersurface — is controlled by the H'/2 norm on M. Using this and
theorem (3| we obtain that the remainder is bounded up to a constant by

Rs—d _ s1Rs
b) /Qkfélp 105 (i — s n) | reary = O(sM2N0bT).

Now, to go from to , we just have to use the description given by theorem
Indeed, consider a cube C; in H(q,b;) that is a fundamental domain for the action of
Iy~ Z%. Then

J BB Nde = )| b Py (v, s)do?
zeH,(b;) [y]er,\T YCa

= Z J bjidPN('vpv S)ded
[Y]elp\L * 7%

- > > f b5~ Py (-, p, 8)d0? + ;5 | b; Py (-, p, 5)d6?
[y]elp\[/Ty /€l V7Y Ca P

[(V]#Tp
= Z f b5 Py (-, p, 8)dB? + 6 J b= 4Py (-, p, s)do?
[y]eT\I/T, ¥ H (7005 Cp
[(V]#Tp

It suffices to observe now that

f b~ Py (-, p, s)do = b7° .
G
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We want to give an asymptotic expansion for each term in . To be able to use stationary
phase, the next section is devoted to giving sufficient geometric bounds on the position of
H (vq,b;) with respect to W*0(p).

3.2. Preparation lemmas and main asymptotics. Take p € A;ar, qEe Agm, q # p. We

will work in H(q,b;) < M. As an embedded Riemannian submanifold, it is isometric to R,
and the isometry is given by the 6 coordinate; we use this to measure distances on H(q, b;)
unless mentioned otherwise. We are considering

(51) b;?—df PN(-,p,s)d,u(Q):f e~#(Grloghi) N (s p)dp
H(g,bj) R4

At all the points where V() is not orthogonal to the horosphere, this integral is non-
stationary as |s| — +oo. There is only one point in H(g,b;) where VG, is orthogonal
to H(q,bj); it is exactly the point where the geodesic ¢, 4 from p to ¢ intersects H(q,b;)
for the first time — the second is ¢. It is reasonable to expect that the behaviour of the
approximate Poisson kernel around this point will determine the asymptotics of the integral.

It is indeed the case, as we will show that Gy, jp and fév satisfy appropriate symbol
estimates on H(q,b;). If a € C®(R?), we say that a is a symbol of order n € Z if for all k € N,

(52) |<x>*"+k8ka($)|Lm(Rd) <o where (z)? =1 + 22

For a geodesic coming from p intersecting H(q,b;), call the first intersection the point of
entry and the second one the exit point — they may be the same. We can assume that the
point of entry of ¢,  is 0 in the 6 coordinate — denoted 0py. It is also the point where G,
attains its minimum on H/(q,b;), and this is T (cp4) + logb;, with T (¢p4) the sojourn time
as defined in . We start with a lemma :

Lemma 3.2. Let Z < H(q,bj) be the set of entry points. It is compact. Its radius is bounded
independently from p, q, for the distance on H(q,b;) given by H(q,b;) ~ R,

Proof. First, we prove it is compact. By continuity, Z contains a small neighbourhood U of 0.
Let U’ be the set of exit points of geodesics whose entry point is in U. It is a neighbourhood
of ¢ in H(q,b;) — by definition of the visual topology on M. The complement of U’ has
to contain Z, and it is compact, so Z is relatively compact. The claim follows because Z is
closed.

Now, since Gy, is C*, and the horosphere is smooth, the boundary of 7 only contains
points where VG, is tangent to H(q,b;). Take such a point 6, and consider the triangle in
M with vertices p, 0g, and 6. Let a be the angle at 0y, and L the distance between 0y and 6
in M. Since the horoball B (g,b;) is convex, o > m/2. From the remark on obtuse triangles
for [p, 0,0¢], if | = Gp(8) — G,(0p), we have L — 1 = O(1).

We want to prove that L is bounded independently from p, q. To see that, consider p’
the other endpoint of the geodesic through p and 6, and 6’ its projection on H(q,b;). Let
I'=Gp(0)—Gp(0) and let L' be the distance in M between 6 and 6. By the same argument,
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q
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L I ~
4 0 —"\0p  Hl(g,b;)
K a
l/
P D

FIGURE 3. Geometric presentation of the proof.

L' =1+ O(1). Moreover, [ + 1" is the distance between H (p,Gp(0p)) and H(p', Gy (¢')). So
that if L” is the distance between 0y € H(p,Gp(0g)) and 0" € H(p',Gp(¢)), L" > 1 + 1.
However, by the triangle inequality, L” < L + L’. We deduce that L” = L + L' + O(1). By
theorem 4.9 and 4.6 of [12], L” is bounded by constants depending only on the pinching of
M, and so is L. ]

Our second lemma is the following;:

Lemma 3.3. In Z, G, is convex. That is, on I, if & is the angle VG, makes with the
horosphere H(gq,bj), we have d3G, > (sin@ + sin® aKmm)/b?.

Proof. Let # € T. Take u € R? with |u| = 1 and #' = 6 + eu for € > 0 small. We apply
Topogonov’s theorem to the triangle with vertices 6, #’ and p, where p is a point that will
tend to p. Let a(e) be the angle at §. Then by comparison, we have

cosh(Knind(0', D)) = cosh(Kmind(0,p)) cosh(Kpind(6,0"))
— sinh (K ind(0, p)) sinh(K i d(0,6")) cos ae).
As we let p — p,

COSh(Kmind(elv ﬁ)) and COSh(Kmind(0,7 ﬁ))
COSh(Kmind(evﬁ)) Slnh(sznd(euﬁ))

— exp(Kmin(Gp(0') — Gp(0)))
and
Kmin(Gp(9/> — Gp(0)) = log [COSh(Kmmd(Q, 0')) — sinh(Kpnind(6,6")) COSOz(&)] :

Now, we let € go to 0. We have G,(0') — G,(0) = eVG,(0).u + €2d3G,(0).u®?/2 + o(€?).
Additionally, VG, (#).u = — cos a(0)/b; and d(6,0") ~ ¢/b; by (14)), so the RHS becomes

Kmin K2 i€ Kmin 2K2 i
log |1 — € cosafe) "”72‘6 +o(e?)| = € cos 04(6)4-6 2 (1—cos a(0)%40(1)).
b; 207 b; 207

And we deduce

Kmin !
d3Gp(0).u%? = 2 sin? a(0) + QW.
i J

Now, computing in the hyperbolic space, we find that the angle § at which the geodesic
between 6 and 0’ intersects H(q, b;) satisfies 5 ~ €/2b;. If @ is the angle between VG)p(0)
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and H(q,b;), we find
sin @

2,

cosa = cosacos X (u, dyGp) +sinasinB  and  (cosa)'(0) =

Finally, we can observe that a(0) > @ and

SIn@ 4+ Kipin sin’ @
2
bj

d2G,(0) =
O

We have to separate the integral into two parts, let us explain how we choose them.
The stable and the unstable distributions of the flow ¢; are always transverse. Since they
are continuous, the angle between them is uniformly bounded by below by some a > 0 in
any given compact set of M — we say that they are uniformly transverse. Lifting this to
M , the angle is uniformly bounded by below on sets that project to compact sets in M. In
particular, this is true on the union of the H(q,b;) for g € Afmr.

Now, we can also consider the geodesic flow in the hyperbolic space of dimension d + 1.
It has stable and unstable distributions. The cusp Z; is the quotient of an open set of that
space by a group of automorphisms, so that those stable and unstable distributions project
down to subbundles Eiyp, E}Zyp of T'S*Z;, invariant by the geodesic flow. We call them the
x-stable and #-unstable manifolds of Z;. The angle between them is constant equal to /2,

and they are smooth — even analytic.

By definition of the stable and #-stable manifolds, if the trajectory of a point & € S*Z;
stays in Z; for all times positive, its stable and #-stable manifolds coincide. This is the case
of (0,dG)p). As a consequence, there is a small neighbourhood V; of 0 in the 6 plane, whose
size can be taken independent from p, ¢, where the unstable manifold of (6,dGp(6)) and its
x-stable manifolds are uniformly transverse.

By the arguments in the proof of lemma we see that the set of points of H(q,b;) that
are not exit points of geodesics whose entry points are in Vi, is a compact set. Denote it by
Va. Its radius is also bounded independently from p and ¢. Now, let x € C®(R?) take value
1 on Vb, and introduce 1 = x(0) + (1 — x(#)) in (51), to separate it into (I) and (II).

From theorem 7.7.5 (p.220) in Hérmander [I3] — the stationnary phase — we deduce

Lemma 3.4. For each p,q, there are coefficients An(p,q) so that for every N > 1

0= () o]

[ 2 An(p,q) + SLNO ((1+ (T(epg) +1ogbj)")Y)

n
n<N-—-1 s

Vo — 8T (¢pq) }

24

We have Ao(p,q) =1, and An(p,q) = O(1 + (T (cpq) +logb;)*)™. What is more, the A, do
not depend on N forn < N — 1.
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Proof. From lemma [2.3] we already know that the functions under the integral are smooth,
uniformly in p, ¢. From lemma[3.3] we know that the phase is non-degenerate at 0. To apply
Hérmander’s theorem, we need to check that the derivative |0pGp| is uniformly bounded from
below in V5 — V7.

The general observation is that |dgG)p| remains bounded from below if VG, stays away
from being the outer normal to H(q, b;).

Start with 6 € V5 an exit point. Consider ¢ the geodesic along VG, going out at . The
closer to the outer normal VG,(6) is, the longer the time ¢ had to spend in the horoball.
Since the set of entry points is uniformly compact, this implies that points where VG, is
almost vertical — i.e along d, — have to be far from 0. But V5, is uniformly bounded, so
|0sGp| is bounded by below on the exit points in V5.

For the entry points that are not exit points, we use the uniform convexity from lemma
m By that lemma, 0pG) is a local diffeomorphism in 7' = {0, VG,(0).VG,(6) < 0}. On
the boundary of 7', |0pG,p| = b?. By continuity, there is € > 0 such that [0pGp(0)| < b?/2
implies d(0,0Z') > €. As a consequence, from the local inversion theorem, there is 0 < ¢’ < €
and ¢’ > 0 such that if |0pG,(0)| < b?/Q,

B(0gGp(0),€") < 0sGp(B(0,€)).
Then, when |0pGp(6)| < €”, 0 has to be at most at distance € from a zero of 9pG)p, i.e 0.

The constants ¢ and €” can be estimated independently from p and q.

Now, we have an expansion

(53) (1) = (i”)dm exp {—5T (cpg)} <00 + %01 . ) .

We have

Jp(OO)
(det d2G,(09)) /2"

We factor out Cj from the sum, and define A4, (p,q) = C,,/Cp. From lemma and the fact
that VF, is (M), it is quite straightforward to prove the estimates on the A,’s.

(54) Co =

Now, we have to compute Cy. From [I2] proposition 3.1], we see that
(55) V2Gp(x) = Uy vey(a)s
where U was introduced after equation (34]).

We use a simple trick. Along the geodesic ¢, 4, V(G)p + G;) = 0, so that the Hessian
d*(Gp + G,) is well defined along ¢, 4. This implies that d3(Gp + G4) = V(G + G4). But
on the horosphere H(g,b;), Gy is constant, and we find d3G,(0g) = V2G,(0p) + V2Gy(0p).

The unstable Jacobi fields along ¢, are the stable Jacobi fields along ¢, 4 s0 Uy va, (2) =
—Sz,va,(z)- Hence,

(56) d5Gp(09) = Up w6, (2) — Seva, (x)-

In constant curvature, this is the constant matrix 2 x 1.
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Now, we give another expression for JE(OQ). Let 2 € M. Consider J, the unstable Jacobi
field along (¢¥(z)), that equals (1/y)1 for a point along the orbit that is close enough to p
— where y is the height coordinate exp —G). Then

oG (@)
~ det Jy(z)

When = = 0y, for t > 0, we can write J, (¢} (0p)) = Ae’ + Be™*. We can also define J the
stable Jacobi field along ¢V (0p) that equals 1 at 0y. From the equation , we find that

(57) J3 (@)

(58) W= J.(t)T(U(t) — S(t))Js(t) is constant.
Hence
02 ed'GP(OQ) d
0 - detW eth(O)
The limit for ¢t — 400 gives W = 2A. Whence
d.Gp(05)
2 _ e
(59) o = 2ddet A

On the other hand,

q
exp {f —2V0} = tEToo det (dcpt‘Eu(v)) e for v e [p, q] sufficiently close to p.
P

= det {Ae*GP(O")} from formulae and .

We conclude that

(60) Co =2 exp {f Vo} .
Cp,q

O
3.3. Estimating the remainder terms. Now, we consider
(61)
- 1 -
() = [ e O em i (s, 0)(1 = x(0))d6 = 5 [ e LAY (5,6)(1 — x(0))ds
Rd Rd
where L, f = div [% ] This holds for any k € N; if we get symbolic estimates on the

integrand, we will find that (II) = O(s~*)(I). Our next step is to study the growth of G, as
0 — 0.

Lemma 3.5. The function % is a symbol of order 1 in 6 in R — Vy, bounded indepen-

dently from p,q.

Additionally, exp(—s(G, — logb;)) is integrable, and for any € > 0, there is a constant
C. > 0 such that whenever Rs > d/2 + e,

J ¢=5(Go108b) gg < (e~ RT (Cr.a),
RI—V;
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Proof. With each # € R? — V; we associate the point of entry g — 6y € V| by definition.
Consider the geodesic coming from p, entering the horoball at 8y and going out at €. Then,
if € is the angle of this geodesic with the normal to the horosphere,

2b
0 — 60yl = .
| 0‘ tan e
but, we also have that
sin e
’aer‘ - b
Hence
1 1 4h2?
0—06 1
@G, 2l 0 e
and
006G 1 4b2
—r = _(f—-0 1+ ———.
0GyE = 2 TP gy

It suffices to see that 6 — 6 is a symbol of order —1 to obtain the first part of the lemma.
But 6 — 6y is a one-to-one map, and by means of an inversion in the hyperbolic space, we
see that 6y — 6/]0]? is a smooth map. Its derivatives are controlled by the angle that VG,
makes with the vertical (and its derivatives). As a consequence 6 — 6 is a symbol of order
—1, uniformly in p and gq.
Then, using formula , as 6 — oo,
0 0
Gp =2log |2b‘ + Gp(bp) = 21log ’2b| + T (cp,q) +1ogb; + o(1)

where the remainder is a symbol of order —1. We deduce that exp —sG), is integrable (fs >
d/2), and

f 40%e—Rs(Gp—logty) < 1o~ RsT(pa).
Rd
O

Lemma 3.6. On the horosphere H(q,b;), jp is a symbol of order 0 with respect to 0. In

symbol norm, it is O(Jp(0p)).

Proof. We use Jacobi fields and notations introduced in section We also use the uniform
transversality condition in the definition of V; — see page In the neighbourhood V7, since
E* is transverse to the constant curvature stable direction, there exists a smooth matrix A(6)
such that

EY0)={X"+X | X" eE},,, X €E},, X" =A0)X"}.
When we transcribe this to Jacobi field coordinates,

E(0) = {((1 + A)&*, (1 — A)eT)[¢t el).

Remark here that (1 + A) is invertible ; indeed, if it were not, there would be an unstable
Jacobi field on M that would vanish at some point. But a Jacobi field that vanishes at some
point cannot go to 0 as t — —o0, it has to grow.
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Now, we consider a trajectory entering the horoball at 6y. We use the coordinates (6o, t)
to refer to ¢} (6p). We use parallel transport to work with vectors in T'S* M)y, . We have

E"(6o,t) ={X" + X7 | X" e E},,, X €Ef,,, XT =eA(f) X"}
and in the horizontal-vertical coordinates
E"(00,t) = {((1 + e 2 A)E, (1 — e 2 A)E)[¢ L d/dt}.
Actually, for t € [0,T], the jacobian
Jac ©¥(6)

is the determinant of J(0) — J(t) where J(¢) are the unstable Jacobi fields along the trajec-
tory ¢! (6p). From the description with the matrix A above, we deduce that this is

t.d 1 + 672t14(60)
e det [ 1+ A0

As a consequence,

B _ [ e )]

J,(60) 1+ A(bo)
Recall that ¢ ~ 21log || when the trajectory reaches the horosphere again, and that 6 — 6
is a symbol of order —1. We deduce that J,(6) is a symbol of order 0. O

Lemma 3.7. For alln = 0, in the region of the horoball corresponding to trajectories entering
m Vi, we can write

fnyp(g(]v t) = fn,p(e()v 6_2t)'
We have for all k = 0,
an,p cr < Cr (T (cpq) + log bj)+)n
with Cy, 1, not depending on p nor on q.

Proof. We start by considering two functions a; and as of 6y and e~2!. Then
e?’Va,.Vas and e* Aay

are still smooth functions of #y and e~2!. Consider a trajectory z(t) = (6p,t). We can take
normal coordinates along this geodesic (t,z’). We then only need to prove that e'd6y/ (93:"76,:0
is a smooth function of 6y and t. First, we observe that 890/8x1x,:0’t:0 is only controlled
by the angle between the geodesic and the horosphere H(g,b;), and this angle we have
shown to be smooth. We only have to consider 0x'(t)/0z'(0)|,7—o, that is, the differential
of the flow ¢! transversally to VG,. We have computed it in the previous proof; it is

(1 + e20A(60)) (1 + A(6)) .

Now, we proceed by induction on n. First, fo, = 1 so it obviously satisfies the assumptions;
it is also the case of F,, = log jp. Assume that the hypothesis has been verified for some
n = 0. Then by the above and , e*Qp fnp is a smooth function of 6y and e, with
the same control as for f,,,, and

1 t
Futal00.8) = Fuer(60.0) + 5 | Qg
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we can write the integral as

t 1
| e aton.e2as - [ | a(eo,p)dp] ,
0 o—2t

for some smooth function a. This ends the proof. O

Now, recall that e=2! ~ |§ — | ~%, so this proves that f, ,(6) is a symbol of order 0 as
60 — 0.

Putting lemmas together, we deduce from equation that for all N,k > 0
and € > 0, there is a constant Cy ;> 0 such that, when Rs > d/2 + ¢,

(62) (D] < O™ TErD® (14 (T (cpq) +logby)*) Vs

3.4. Main result. With the notations of lemma 3.4}, for ¢ € 7r1 (M ) with endpoints p, ¢ in
M , we define

(63) a"(c) :=exp {f Vo} Ay (p,q).
We also define
(64) T = inf{T(c), cen{ (M)} and T;] = min(—logbib;, 7).

Putting together lemmas and equation , we get

Theorem 4. For two cusps Z; and Z; not necessarily different, and for every N > 0, when
Rs > §(T', Vo), the element of scattering matriz defined in

N\ d/2 Nt o1
(65) ij(s) = (g) > Z o 65T Ne(s']éjk'

[clex™ (M) n=0

We proceed to give a parametrix for ¢. When taking the determinant of the scattering
matrix ¢(s), we use the Leibniz formula

w(s) = > ,2(0) | [ bio(s)
o i=1

The sum is over the permutations o of [1, x], and (o) is the signature of 0. The remainder
will be bounded by terms of the form

§5/2N e {_S(Tlf(l) Lot Ti(n))} ,

This one corresponds to the error of approximation for the product ¢1,(1)(8) .- - @ro(x)(5)
where o is a permutation of [1,x]. Hence, we define

(66) T# = mlnz

10 ()

It corresponds to the slowest decreasing remainder term as Jts — +00. Recall the definition
in ([12)): the scattering cycles (SC) are numbers of the form Ty + - - - + T, where T; € ST ;5(;).
We define 79 to be the smallest scattering cycle. It corresponds to the slowest decreasing
term in the parametrix. By definition, 77 < 7°.
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Remark 5. There are two cases. When T# < TV, the error is bigger than the main term in
the parametriz, for Rs too big with respect to Ss. That occurs when the incoming plane waves
from the cusps encounter variable curvature before they have travelled the shortest scattered
geodesics.

When T# = TP, the error term is always smaller than the main term in the parametriz.
This means that the variations of the curvature happen not too close to the cusps. It is in
particular the case when the curvature is constant.

In any case, let Ay = exp T#. Alsolet \g < A\; < --- < A\, < ... be the ordered elements
of {expT, T € SC}. We can now state the conclusion of this section:

Theorem 5. There exist real coefficients {a} }x n>0 such that if

L, = Zi—g,

k=0 "k
all the L, ’s converge in the half plane {S‘Es > (', Vp)}. In that half plane, for all N =0

B B O(1)
rd/2 n
( - / Z § L SN+1)\s

4. DEPENDENCE OF THE PARAMETRIX ON THE METRIC

This section is devoted to studying the regularity of the coefficients a™(c¢) with respect to
the metric. We prove that they are continuous in the appropriate spaces in sections and
Then, we prove an openness property in ¥ topology on metrics. While essential to the
proof of theorem [I| this part is quite technical, and the impatient reader may skip directly
to section [Bl

4.1. The marked Sojourn Spectrum. As announced in section we emphasize the
dependence of objects on the metric from now on. In particular, when we write [¢4] € Wij (M),
we mean that we take some class in Wij (M), and consider ¢,4, the unique scattered geodesic
for g in that class.

We denote by T; the application Ty : [¢,] € (M) — T(¢q). We also write a"(g,[c])
instead of just a"(c).

In what follows, we are interested in the regularity and openness properties of ¢. It is
obtained as the determinant of ¢(s). Since the determinant is a polynomial expression, it
is certainly smooth and open with respect to ¢. As a consequence, it suffices to study the
regularity of each ¢;; independently, and the openess properties of ¢(s) instead of .

Definition 4.1. Let (g¢)eer be a family of €* cusp metrics on M, so that their curvature
varies in a compact set independent from e. Also assume that they coincide in some cusp
neighbourhood {y = yo}. Suppose additionally that g. is C*** on R x M for k = 0. Then we
say that ge is a C**F family of cusp metrics.

The following lemma is classical:
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Lemma 4.2. Assume that (gc)e is C*** family of cusp metrics. Then the geodesic flow
tre,x, & — @l (2, &) is C1TF on R x R x S*M for k = 0.

This is the direct consequence of

Lemma 4.3. Let f be a C'™F map from R x (U < R™) to R™ where k = 0 and U is an
open set. Then the flow VU : s,t,x(s) — x(t) associated to

T = f(t,x).

is C1% on its mazimal domain of definition in R x R x U.

This is a basic lemma in dynamical systems — for example see proposition 6.2 in [27].
Now, we can prove that both the marked set of scattered geodesics and the marked Sojourn
Spectrum are continuous along a perturbation of the metric that is at least C! in the C?
topology on metrics.

Lemma 4.4. Let k > 0 and let g be a C*** family of cusp metrics on M. Let € be a
scattered geodesic for g = go. Then there is a CYtF family of curves ¢ on M such that G, is
a scattered geodesic for ge. In particular, this proves that g — €4 (given a class in ﬂ](M))
and g — T, are C'F in C*** topology on g.

Proof. Let us assume that ¢ enters M in Z; and escapes in Z;. We can assume that the
variations of g. always take place below y = yo. Let xo (resp. 1) be the point where ¢
intersects the projected horosphere H; (resp. Hj) at height yo in Z; (resp. Zj), entering
(resp. leaving) the compact part. For z € H; and e close to 0, we can consider the following
curve: cg . is the geodesic for g, that passes through z, and is directed by —d, at . We
have € = ¢;,0. For (x,€) close enough to (z9,0), ¢z intersects the projected horosphere Hj,
for a time close to T (¢) 4+ 2logye. We let 2/(z,€) be that point of intersection, and v(x,€)
the vector ¢}, . at 2'(x, €).

Now, by the lemma above, v(z,€) is C'**, and by the Inverse Function Theorem, there is
a unique € — x(€), C1** such that v(x(e), €) is the vertical for all e sufficiently close to 0, as
soon as d,v(0,0) is invertible. But the fact that it is invertible is a direct consequence of the
non-degeneracy of the phase function shown in lemma [3.3 O

Let
i a"(g, [¢])
i _
L= 2
[elery’ (M)

Lemma 4.5. Let g. be a C*>T* family of metrics, k > 0. Then, as a formal series, Léj
depends on € in a C* fashion. In particular, the series Lo giving the first asymptotics for ¢
at high frequencies, also depends in a C* fashion on e.

Proof. We only have to prove that a®(ge, [¢]) depends on € in a C* fashion. Since Vj is only
a Holder function, it is easier to study the regularity of a with the original expression (54)).
That is, we have to study d2G,(0g) and J,(0p).
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First, consider jp. It is a function of the jacobian of the flow ¢ along €. Since ¢! is just
some restriction of ¢, ¢} is C'T% on R x M. We also have that ¢ is C1**, so that Jp is Cck
on €.

For dng(Og), consider that it is obtained as the first variation of VG, along the horocycle
H(g,b;). But this means that d2G,(0p) is again obtained directly in terms of dy} along ¢
and this ends the proof. O

Here already, we see that the first order behaviour of the scattering determinant at high
frequency (Rs bounded and $s — +o0) depends continuously on g in C? topology. The next
section is devoted to studying this regularity for other terms.

4.2. Higher order coefficients of the parametrix. Now, we are interested in the regu-
larity of a™(g, [c]) for n > 1. Before stating a lemma and its proof, let us start by a discussion
of classical stationary phase in R%. Let o be a smooth compactly supported function on R,
Then, as |s| — 400 with s > 0,

JRd e_stU(x)dx B (Z)d/Z [U(O) + %SAU(O) + - gu4e ZAE (0) + O(s_g_l)]

where Afc = A...Ao. If G is a non-degenerate phase function around 0, we find ¥ smooth
around 0 such that G o ¥(x) = 22, by Morse theory. Then, if ¢ is still compactly supported

but has an expansion o(s,z) ~ og(x) + o1(z)/s+ - + op(z)/s" + ..., we find
d/2 1
—sG(x) ~ (L P 4 14
JRde o(s,x)dx ( ) [ _EOZEO E'MA (op 0 W. Jac(W ))(0)] .

In other words, the coefficient of 7%2s~%2-n ig

(67) 3 ﬁﬂ(an,g o W Jac(1))
(=0

It is a well known fact that the Morse chart ¥ is not uniquely defined. However, from the
computations above, the operators

o — AN (ooW. JacW)(0)

do not depend on the choice of ¥, but only on G. By writing the condition G o ¥ = z2, one

can see that d¥(0).d¥7(0) = 2(d2G(0))~!. This determines d¥(0) up to isometries of R%.
The higher order derivatives of ¥ are undetermined, but one can see that they can be chosen
recursively, so that d*¥(0) only depends on the (k + 1)-jet of G at 0.

Remark. One can check that the numbers AJ Jac W(0) are, up to universal constants, the
Taylor coefficients in the expansion of the function vol(G < r?).

Now comes our lemma:

Lemma 4.6. Let g. be a C**F family of cusp metrics on M. Then the coefficients a™(g, [c])
are C*=2" functions of €, as soon as k = 2n.
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In the following proof, we fix two points p, ¢ on the boundary. Most of the functions that
appear depend on p and ¢, but to simplify notations, we omit that dependence. We do not
fix n, but k will always be assumed to be greater or equal to 2n.

Proof. We apply the discussion above to a™(g, [c]). The notations are coherent with section
and equation if one set G = G, and 0 = jp fév . We decompose a", following equation
(67). We find that a™ depends on derivatives of J, f and G. We expand each summand in
the decomposition, using the Leibniz rule. Then we gather the terms involving the highest
order derivatives of the metric. They are
(68)
1 n = S ~ $ 1
— (Jac T(0)AZJ(0) + J(0)AD Jac \p(o)) + J(0) Jac W(0) ;1 P

AT (froW).

In the proof of we saw that along a C2t* perturbation, J is C*, so that Ag(j oW) is
C*=2"_ By the same argument, we find that the (2n + 2)-jet of G at 0 is a C*~2" function
of €, so that Ay Jac ¥ is also Cchk—2n,

Now, we deal with the f,,’s. From the definition of @) in and f, in , we can prove
by induction that for n > 1,

0 0 0
(69) fn ! dip [J dtp—1--- J dt1Q,_, - Qp Qofo} o @p,
n t

=5 2
where @ is defined by Q(f o ¢}) = (Qif) o ¢. Since F is essentially a jacobian of ¢¥, it

is C* on R x M along a C*** perturbation. From the formula , we deduce that f, is
Ck=27 along a C?** perturbation when k > 2n, and this ends the proof.

0

4.3. Openness in smooth topology. To find that the coefficients of the parametrix are
open, we are going to adopt a different point of view from the previous section. We let
a~1(g,[c]) = Ty([¢]). We aim to prove the following:

Lemma 4.7. Let [¢1],...,[cen] be distinct elements of wi7" (M), ..., wNIN(M), and take
indices ny,...,ny. Then the application

an :g+— ((a_17a07~~-,an1)(9, [01]),...,(a_l,ao,...7anN)(97 [CN])) e REni+2

is open in C'® topology on g.

Proof. First, observe that it suffices to prove that the differential of ap is surjective. Indeed,
we can then use the inverse function theorem to prove the openness property.

For each class [c;], we will compute the variation of (a”, ..., a"™) along a well chosen smooth
family of cusp metrics g.. We will find that this variation is a linear form in a jet of the
variation 0J.g. along ¢;. From the properties of this linear form, we will find that there are
functions with arbitrary compact support on which it does not vanish. This will prove the
lemma for N = 1.
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For the case when N > 1, observe that since the [¢;] are distinct, the ¢; are also distinct.
Then, it suffices to observe that we can take a finite number of small open sets U; such
that U; nU; = & when 7 # j, and U; n¢; # (J. Then we can perturb in each open set
independently, and in this way, we see that the differential of ay is surjective, and this ends
the proof.

Remark 6. There might seem to be a difficulty when the geodesic ¢ has a self intersection,
because at the point of intersection, we have less liberty on the perturbations we can make.
However, we will always choose to perturb away from those intersection points.

As we have reduced the proof to the case N = 1, let [¢] € 77/ (M).

First case, n = 0.

Lemma 4.8. Let g be a C® family of cusp metrics. Then
1 _ _
0((e)) = ; [ @aa(ehle). oot

In particular, if U is an open set that intersects ¢y, one can find a perturbation of the metric,
supported in U, along which 0.T([c]) # 0.

Proof. From the arguments above, we can construct a variation c. of ¢y such that each -,
is an unparametrized geodesic for g.. We can assume that for ¢ negative (resp. positive)
enough, y;(cc) = yi(¢o) (resp. y;(ce) = y;(¢o)). Then in local coordinates

0((e)) = 5 | [(@u)oeh(t):ch(t)) + 2on(ch(t), onch(t)]

In the RHS, the second term, we can interpret as the 1st order variation of the length of the
curve ¢, for gg. Since ¢y is a geodesic, this has to be zero O

Lemma 4.9. The logarithmic differential
dglog a’(g, [c])

s non-degenerate on the set of symmetric 2-tensors h on M such that h and dh vanish at €.

This proves the property for n = 0, because if h is such a 2-tensor, along the pertur-
bation g + €h, the curve ¢ is always a scattered geodesic of constant sojourn time, and
dya=(g, [c]).h = 0.

Proof. since the curve ¢ does not depend on the metric in our context, it is reasonable to use

the method of variation of parameters. Let g. = g + €h, and consider J, ¢ = J, + €ll, + o(e)

the unstable Jacobi field for g. along ¢ defined in page We also use Js as defined in the

same page. We can write

and we find the equations for A and B:
J.A + 1,8
IA+ B

[
o

—(dyK.h)],.
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Recall from the arguments in page [28| that
04-Gp(09) o 1

0 e [C 2= li det 3.0 e 2 A '
a e e = I e, ~ e e T A e T o

where A(+00) is the limit of A when ¢ — o0. Hence

d 0 - 1 ~
iloga (ge, [€]) = —3 Tr A(+00).

We find
/T(—koo) = J JJI(S — [U)_l(dgK(t).h)Ju(t)dt
R

and conclude
d 1

(70) —loga®(ge, [¢]) = f Tr{(U—S) ' (dgK (t).h)} dt
dE 2 R

When the curvature of g is constant along ¢, one may observe that this gives a particularly
simple expression — a quarter of the integral of the variation of the curvature along the
geodesic. Now we prove that the differential h — dyK.h is surjective on the set of symmetric
matrices along the geodesic ¢. We consider Fermi coordinates along ¢. That is, the coordinate
chart in a neighbourhood of ¢ given by

(z1;2") — expe,,) {2’} € M.

Remark 7. When ¢ has self-intersection, this chart is not injective. However, we can assume
that h vanishes around such points of intersection, and the computations below remain valid.

In those coordinates, g — 1 and dg vanish along the geodesic, which is ¢ ~ {2/ = 0}. We
deduce that the Christoffel coeflicients Ffj also vanish to second order on ¢. Now we recall
from [I5] two useful formulae.

1
(p.160) Ty = 5 29" (ig + 001 — digi5)
l

l

Whence we deduce that on ¢
d+1 1
(71) Ry (0, 01)01 = Z ol = ~50i0kg11.0-

We see that 2K (t) = —d%g11(t), so that dyK.h = —1/2d*hy1, and this is certainly surjective
onto the set of smooth functions along the geodesic valued in symmetric matrices. In par-
ticular, the RHS of defines a non-degenerate linear functional on the set of compactly
supported 2-symmetric tensors along ¢. O

This ends the case n = 0.

General case, n > 1. We introduce a special coordinate chart on M:

g (z,t) € H(p,bi) x R— @} ().
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Since H(p, b;) ~ R?, we are now working in R%*!. In the coordinates Sy, the flow has a very
simple expression: ¢! (z,s) = (x,s + t). The metric also:

(72) g = g(z,t;dz) + dt?;
the jacobian

det g(x,s +t)

(73) Jac(@g)(% 8) = det g(m S)

)

and from the definition ,

(74) Fy(z,s) = — (logdet g(z, s) — logdet g(x,0) + 2sd) .

g

We can find that §(z, 0) actually does not depend on x. We also have that G,(x, s) = s—logb;.
We will refer to horospheres ¢! (H(p,b;)) as slices.

Idea of proof. If we perturb g by a symmetric 2-tensor h on the slices, we obtain a new
metric g, on R4, We can obtain a metric g,l1 on M , pushing forward by ¢,. If the support
Q of this perturbation g,ll — ¢ is small enough so that Y2 n Q = ¢ for all v # 1, we can
periodize the perturbation to obtain a metric on M, or equivalently, a metric g; invariant
by ' on M.

The metric gy, seen in the chart ¢4, does not have the nice decomposition anymore.
However, that decomposition still holds in the complement of ¢ ° L(T), where Y := U,gr, 782
To apply our perturbative argument, we need to be able to choose ) so that there is a
neighbourhood €' of the geodesic ¢ that we wanted to perturb with Q' n T = .

FIGURE 4. Global situation.

The condition for 2 to be appropriate is that the projection M — M is injective on £,
and that 78 does intersect the lift [p, ¢] of €. For this, it suffices that  is not too close to
the points I in [p, q] that project to self-intersection points of ¢. See figure

There one more difficulty. The point of intersection of ¢ with H(q,b;), Op, is represented
by (0,t1) with t; = Ty(g, [c]) +1og bib; — see the paragraph after equation (52)). It is possible
that ¢t; < 0. In that case, the geodesic ¢ only encounters constant curvature. To perturb the



RESONANCE-FREE REGIONS FOR SOME FINITE VOLUME MANIFOLDS 39

coefficients, we will need to create variable curvature along the geodesic. In particular, that
will change the values of b; and b;.

To overcome this problem, we proceed in the following way. Instead of integrating along the
projected horosphere at height b; in the cusp Z;, we integrate on the projected horosphere at
height b} > b; in the proof of theorem We do it so that for all [¢] € w/ (M), T (¢) +log b b5 >
0 (for all 4,75...). Since the marked sojourn time function is proper, only a finite number
of scattered geodesics intervene here. All quantities that depended on b;, b; before will now

i/ﬂ(q, )

05

receive a » when we replace b; by b;.

. Support of h

H(p,b})

FIGURE 5. A close up.

Coming back to perturbing coeflicients, the point 0j is represented by (0,t}) with ¢] =
Ty(g,[c]) + log b;b;. 1If the pert~urbation h is compactly supported in {0 < t < tj}, the
expression of g, H (q,b}), Aj, J, G, will not depend on & in the chart ¢, around 0j. In
particular, a~! and a® are always constant along such a perturbation.

Now, we assume that the change in the slices is eh where h is a 2-symmetric tensor
such that h,dh,...,d* 'h vanish along {z = 0} in the chart Sg» and h is supported for
0<T <s<T <t]. Let ge := gen.

1,0 n—1

Lemma 4.10. Under such a perturbation, a=*,a",...,a are constant.

Proof. As we saw in section the coefficient a”* is computed from the 2k — 2¢ jet of fy,
¢ =1,...,k, at Og, and also the 2k jet of J and G. Those computations are done with Ag,
which in our chart ¢; has a complicated expression. However, since we are not perturbing
the metric around 0Og, the coefficients of Ay do not change under the perturbation. From
equation , and the expression for G in this chart, we see that the contribution of J and
G to a* will not change under perturbation (independently from the order of cancellation of
h).

We are left to prove that the 2k — 2/ jet of f, at 0p does not change for 0 < ¢ < k <
n — 1. From formula , we see that the 2n — 1 jet of F' along ¢ will not change along the
perturbation. From equation , we see that the m jet of fy at Oy depends on the m + 2/
jet of F', and the m + 2¢ —1 jet of g — recall that the coefficients in the Laplacian A depend
on dg, and the coefficients in V depend on g. Taking this for m = 2k —2fand { < k <n—1,
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we find that the 2k — 27 jet of f, can be computed with only the 2n — 2 jet of g at ¢, and
this proves the lemma. ]

From the proof of the lemma above, we see that in o™, the only change will come from
the change in the derivatives of order 2n — 2k of fi, and more precisely, the parts of these
variations that come from the change in 2n derivatives of F', in the = direction. As a conse-
quence, we can do all the forecoming computations as if the differential operators appearing
had constant coefficients, and replace A (resp. Ag(-o W) o W~1) by

A = gu(s)é’z@j (resp. Ag = cij(?i&j)
where the matrices (g;;)(t) and (¢;5) are symmetric, positive matrices. Recall the metric g
has the expression
9(epy(dz, dt) = Goi(da) + dt?

and (g;;)(t) is the value of gy ., but this fact will not be used later. Recall that the operator Q;
was defined by (Q¢f) o ¢f = Q(f o). We define A, in the same way. An easy computation
shows that A; = > gi5(s — t)0;0;.

Now, we use formula . We only keep the terms that vary under the perturbation g..
This yields

a"(ge, [€]) — a™(g,[c]) = a’(g,[¢ Z ,4n S8 e — o}

Next we use equation , leaving out the constant terms again. We find:

a" (ge.[]) — a"(g.[c]) _
(9. [7)

S 1 ANn—C A AA *

Zl —(n — g)!4n2—é Jedtg ..odty Ag Ate—1 - AtlA {FE — F} (O,tl + tz)
Here, G is the simplex {—o0 < ty < ty1 < -+ < t; < 0}. Let to = 0. Now, since
4d,F = Tr g~'dg, each integrand in the above formula reduces to

(75)
¢ n—1 -1 n
;T GRS {(‘Z ; Hecimjm HO i (B3 + 1 — ) <H1 aimajm> h(t% + )
tm,yJm) g M= m= m=

It is still not clear why such a formula would lead to a non-degenerate differential. However,
let us assume that h has the following form in a neighbourhood of {z = 0}

h(z,s,dx) = \(s)dz> Z u“z® + o|z|*")

|a|=2n

where u® = Uq, . . . Uay, , and likewise for z®. We take u a constant vector in R%, and A(s) a
smooth function, supported in ]0,¢;[. Formula becomes

/—1
(c(u, u))"* Trg L (t] + ty) { (t] + to) H (t] +tp — )(u,u)} :
m=0
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Observe that these are nonnegative numbers. From those computations, we see that

n =1\ _ o7 = 7
a (ga [C]) 0
where H (t) is a function that does not vanish. This ends the proof for n > 1. O

5. APPLICATIONS

We use simple Complex Analysis to locate zones without zeroes for ¢. We also give some
explicit examples corresponding to part (I) and (III) of the main theorem.

5.1. Complex Analysis and Dirichlet Series. Let A\g < A\; <--- < A\ < ... be positive
real numbers. For § > 0, we let (9, \) be the set of Dirichlet series L(s) whose abscissa of

absolute convergence is < §, and
o0

L(s) = %
k=0 "'k
We let 2%(0,\) be the set of L € 2(5,)) such that ag = --- = ax_; = 0 and a3, # 0. For

0 < Ax < Ao, also consider Z(0, A, Ax) the set of holomorphic functions f on {s > d} such
that there are L, € Z(5,\) with, for all n > 0

F(s) = Lo(s) + éLl(s) T NOER <1> .

s sn+1)\s#

We will denote (a}) the coefficients of L,,. By taking notations coherent with the rest of the
article, we have s"%/2¢ e D(dg, A\, Ay). For ¢’ > § and C > 0, let

Qs c={seC Rs>4§ RNs<Clog|Ts|}.

Lemma 5.1. Let f € P(5,\, A\y) such that Lo € 2°(8,\). Then there is a §' > § such that
for any constant C > 0, f has a finite number of zeroes in s .

In the special case where Ay = X, we can take 0’ > 0 such that f has no zeroes in

{SE(C §Rs>(5l}.

Proof. We can write

0 ® 0
a a
L[)(S) = 9 —k
A AR
R
:=Lo(s)
There is a ¢’ > ¢ such that whenever s > ¢/,
~ 1]ad
Lo(s)] < 5 |52].
o(a) < 3|2
Take N > 0. Then for |s| big enough — say |s| > Cnx — and for Rs > ¢’,
1 1 1|ad

—|L — | Ln_ < —
|S|! 1(s)] + +|s|N—1‘ N-1(8)] 3

S|
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We also find that

N

Rs < —————— Cﬁv
= log(Xo/Ax)

N
3)\;

0
Qg

log|Ss| + O(1) and |s| > Oy = ik
0

1
3

When \g = Ay, the condition on Rs is void. When \g > Ay, by taking N ~ C'log(Xo/Ax),
we find that the zeroes of f in the region described in the lemma are actually in a bounded
region of the plane. Since f is holomorphic, they have to be in finite number. O

We give another lemma:

Lemma 5.2. Let f € 2(5,\,Ay) be such that Lo € 21(5,)\) and Ly € 9°(5,)). Let

0 1
Frey . 1 %
f(s): XA

There is a 6’ > 0 such that for any constant C > 0, there is a mapping W from the zeroes
of f in Qs ¢ to the zeroes of f in Qs ¢, that only misses a finite number of zeroes of f, and
such that

W(s) —s=0O(s|™?), for some 5> 0.

A picture gives a better idea of the content of this abstract lemma. Using usual asymptotic
expansion techniques, we observe that the zeroes of f are asymptotically distributed along a
vertical log line Rs = alog |3s| + b, at intervals of lengths ~ 27 (log(A1/Ag)) ™ .

FIGURE 6. The zeroes of f.

Remark 8. Instead of assuming a8 = 0 and a(l),a? # 0, we could have assumed a finite
number of explicit cancellations and non-cancellations. In that case, it is likely that one
could prove a similar lemma, with f having zeroes close to a finite (arbitrary) number of log
lines instead of only one line. However, this leads to tedious computations that we did not
carry out entirely.
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Proof. This is an application of Rouché’s Theorem. We aim to give a good bound for |f — f |
on appropriate contours. To this end, we decompose

0
x aj 1 ao 1 1
@) =< ilo= 5 1B x| T e nan+0<W
For some ¢’ > §, and for Rs > §,this gives
1 1 1 1
(77) <C| = + + +
AFs 0 [s|ARE |s2ARe |s|”+1)\§5

where C' > 0 is a constant. We can always choose ¢’ big enough so that

C

<3

for s = & and |Js| big enough. Then, on the vertical line Rs = &', for |s| big enough,
= fI<Ifl.

NOW on the line s = nlog[SIs|(log Ao/Ax)~ 1 the 3 first terms of the RHS of equation
are very small in comparison to f. We can check that the last one is O(1/s)|f| to see
that on that curve also, |f — f| < |f].

Now, we observe that

a? al
1fl = ¥
5A]
/\ 0
— \sslog/\ +args~|—arg— € 2nZ.
ag

Observe that in the region Q = {0 < Rs < nlog|Ss|(log\o/Ag) 71}, args = 7/2 +
O(log |s|/|s])- In particular, there is a (possibly large) constant C' > 0 such that, on each
line §s = C + 27k(log :\\—(1))*1, keN,in Q,

0 1

a
2 0 1.
|f| )\8 s)\f)
Since on 2, we also have for |Js| large enough,
0 1
a
0= 7= | o

this implies that on each of those horizontal lines, |f — f| < |f|.

Now, the zeroes of f are located on the curve
Jag|AT* = [af][s[A3".

In a O(1)-sized neighbourhood of that curve, there is a a > 0 such that the RHS in (77) is

bounded by
ay

JERIE:
1
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The proof of the lemma will be complete if we can find some circles C), around the zeroes s,
of f, whose radii r,, shrink like a power of s,, but such that on C),,

. al
>> |s,|7¢ .
715> Jsul |2
Actually, this kind of estimate is true on the circles C,, centered at s, of radius r,, as long
rp, — 0 with 7, >> |s,|7%. Thus, we can take any 5 < a. O
Now,

Lemma 5.3. There are different situations.

(1) When there is only 1 cusp, we always have Lo € P°(6, \).

(2) In general, the set of g € G(M) such that Lo € 2°(5,\) is open and dense in C?
topology.

(3) There are examples of hyperbolic cusp surfaces with Lo e 2 (5, \).

(4) There are examples of hyperbolic cusp surfaces M that satisfy the following. First,
Lo e 9°(6,\). Second, there is an open set U c< M such that for any cusps Z;, Zj,
AU, Z;)+d(U, Z;) = 7?; +loga;+logaj. Then Ay = A for all the metrics g € Gy (M)
(the metrics with variable curvature supported in U ).

Lemmas and can be combined to prove theorem [Il Let us first prove lemma
b3l

Proof. When k = 1, ¢ = ¢11. From lemma we see that a8 is a sum of positive terms
over the set of scattered geodesics whose sojourn time is 773, hence it cannot vanish.

In the general case, the openness property of lemma [£.7] shows that for an open and dense
set of g € G(M) for the C? topology, the smallest element T° of the set of sojourn cycles is
simple. That implies that a) # 0.

For the third part of the lemma, an example will be constructed in section [5.2.2

For the last part, an example will be given in section The conclusion Ay = Xg is a
consequence of the discussion just before theorem ([l

Proof of theorem[1} We can list the cases

(1) Consider the hyperbolic surface described in lemma [5.3{4). For such a surface, for
all g € Gy (M), we have Lo € 2°(5,\), and Ay = A\g. We can apply the special case

of lemma to prove part (I).
(2) For all manifolds with one cusp only, Lo € 2°(, \) so we can apply the general case

of lemma [5.71

(3) When there is more than one cusp, case (2) of lemmal5.3 and lemma[5.1]lead to part
(IT) of theorem

(4) The example in case (3) of lemma can be perturbed, preserving the condition
Lo € 2%(6,)), and with Ly € 2°(3, \), according to lemma We can then apply
lemma [5.2] to prove part (III).
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(5) Finally, we can adapt the proof of lemma to show that whenever at least one L;
is not the zero function, the conclusions of lemma [5.1] apply, if we replace ”for all
constant C' > 0” by "for some constant C' > 0”. This proves part (IV).

0

5.2. Two examples. In this last section, we construct explicit hyperbolic examples that
satisfy the conditions given in lemma[5.3

5.2.1. An example with one cusp. Here, we construct a surface with one cusp, such that
there are parts of the surface that are far from the cusp, in the appropriate sense.

FIGURE 7. symmetric pentagon with an ideal vertex.

Topologically, we are looking at the most simple cusp surface: a punctured torus. It
can be obtained explicitely by glueing two hyperbolic pentagons. Consider two copies of the
pentagon in figure[7]— the Euclidean distance between sides A and B has to be strictly larger
than 2 to build such a pentagon, because we require right angles. Glueing sides A < B’,
B« A, D« D' C <« FEand C' < E’, we obtain a punctured torus.

The scattered geodesic ¢y with the smallest sojourn time corresponds to the sides AB’ and
BA’. Its sojourn time is 0, i.e 79 = 0. However, the set U of points that are strictly below
the line {y = 1} is non empty (and open). This is the example in 4) in lemma [5.3]

5.2.2. An example with 2 cusps. Now, we aim to construct an example of surface with two
cusps (M, g) such that Lo € 2'. We consider a two-punctured torus.

As in the previous example, we will glue pentagons. Only this time we glue 4 identical
pentagons a, b, ¢, d, and they will not be symmetrical — see figure

The cusp corresponding to pentagons a and b will be called cusp Z;, and the other one,
corresponding to pentagons ¢ and d will be cusp Zs. We obtain a surface (M, g¢) with two
cusps, depending on the hyperbolic length £. To ensure the normalization condition that the

1

volume of a projected horosphere at height y is y~*, we have to take

1 1

78 = — .
(78) vo 224 V1+e 2

We number the geodesics ¢ from i to j (i=1,2,and j = 1,2) by their sojourn time with
T(cf) < T(cY)<.... Since a geodesic coming from a cusp has to go under the y = yq line
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FIGURE 8. A tiling of the hyperbolic plane with pentagons.

to exit a pentagon, we see that actually, ¢t and c}? are the geodesics designated in figure
Actually, we also get that :

—2logyo = T(cg") = T(cd?) < T(c}), i,5=1,2

This proves that a8 = 0. Now, to obtain that Ly € 2!, we need to show that the second
shortest sojourn time is 2¢ — 21log yo, and that it is simple. That is to say, ci? really is the
curve drawn in figure |8 and the only other curves with sojourn time < 2¢ — 2logyg are c(l)l

and 6(1]2.

In order to prove this, draw a line at height yoe=2¢. A scattered geodesic coming from cusp
Z, can be lifted to H? as a curve coming from oo in the pentagon a, that stays in the same
pentagon as y < yoe 2!. When ¢ is small enough, there are only 3 geodesics that satisfy such
a property, and they are drawn on figure

APPENDIX A. REGULARITY OF HOROSPHERES FOR SOME HADAMARD MANIFOLDS
In this appendix, we recall some results on the regularity of stable and unstable foliations.

Lemma A.1. Let N be a simply connected manifold of dimension d + 1, with sectio nal
curvature —|Kpaz| < K < —|Kpmin| < 0. Assume additionally that all the covariant deriva-
tives of the curvature tensor R of N are bounded. For a point & € S*N, we define W*5(§)
as {£ € S*M, d(mpil',mpi) — 0 ast — +o0}, and similarly W*(§). Those are € sub-
manifolds of TS*N, uniformly in £; they form a continuous foliation of T'S*N, tangent
respectively to E° and E“.

Proof. We just check that the proof of the compact case also works for us.

Let £ € S*N. Take v > 0, ¢t > 0 and 0 < € < t. For k = 0, let & = ¢x(§). Using the
exponential charts for the Sasaki metric on S*N, we can conjugate ¢ to diffeomorphisms
from T¢, S*N to Tg, ,, S*N that map 0 to 0. We still refer to those as ;. Let

Ay = {(z1) | 2k € Tg, S*N, limsup |z |e”* < oo}
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This is a Banach space when endowed with

[Cz)l = sup ||z& e,

On 47, we can define

U(z) := (0,91(20) — 21, pe(z1) — 22,...).
This is a €* function on .77],. We want to solve ¥ = 0 in 7,. As the stable manifold £ should
be a graph over E*(§), for (z;) € J4,, we decompose (z) = (%,7). We need to show that
0rV is injective and surjective on a closed subspace, to use the implicit function theorem for

Banach spaces. Let V = (vf{)‘o, v1,...) € J4, where u0 refers to the weak unstable direction
E*®RX. We have

orW(0)V = (0,deypy - UE)‘O —v1,de, P - V1 — V2, ... ).

First, we prove this is injective. Assume ¢, ¥(0)V = 0. Then, we have dg¢p- v = v;. Since
the weak unstable direction is stable by the flow, v; € E“9(¢1). By induction, vy € E“0(&,).
However, V has to be in 47, so that there is a constant C' > 0 such that for all k£ > 0,

080 = || (depre) Mg < Ce™*,
This implies that vgo =0,and V = 0.

Now, we prove that 0,V is surjective on the space of sequences whose first term vanishes.
Let W = (w§% w1,...) € 5, We decompose each wy = (wi, w?), and we try to solve
0, W.V =W, with v; = (v§,v™). If V is a solution, then, for all & > 0,

17 7

k-1
0
v = dppvg — Z dprpw_i-
=0

That is why we let

0

vyl = Z(dgplt)_lwfo.
=1

This sum converges because ||(dggt) ™| guo | is bounded independently from k, and we assumed
w is in #4,. Then, we have to check that the equations

k 0
ve = — Y dog_pwf + > (do) " wpd,
=1 =1

define a sequence in J7,. By the Anosov property, there are constants A > 0 and C' > 0 not
depending on w, nor on ¢ such that ||dpgws| < e |w?|. So

k 0
Josl < Y Cem 2 B0t ], + 3" e B0 oy .
=1 =1

It suffices to choose v < A\, and we find that v € J7,.

By the Implicit Function Theorem, in a small enough neighbourhood of £, the strong stable
manifold of ¢ is a graph of a €® function from E*(¢) — E“0(¢). Additionally, the derivatives
of this function are controlled by the €% norms of ¥. These norms are the €* norms of ;.
They can be bounded independently from £ — recall ¥ depends on £ — according to Lemma
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B.1 and Proposition C.1 of [3]. Hence, the stable manifolds are uniformly smooth in the
manifold.

Moreover, the tangent space of W*(£) at £ has to be E*(§), according to the dynamical
definition of W*(£). We deduce that the regularity of the lamination formed by the collection
of W#(&), £ € S*M has the regularity of the splitting E* @ E". Using the description as
Green’s fiber bundles for £® and E“, one can prove that they are Holder, and the lamination
is actually a foliation.

The case of unstable manifolds is similar. O

APPENDIX B. ESTIMATING THE REGULARITY OF SOLUTIONS FOR TRANSPORT EQUATIONS

Lemma B.1. Let N be a riemannian manifold such that all the derivatives of its curvature
are bounded. Let G be a C* function on N, such that [VG| =1, and |V G|gn ) is bounded
for all n. Let o be the flow generated by V = VG. Assume that ©© is expanding, that is,
there is a A\ > 0 such that if u LV, ||dp$ ul| = CeM|u| for t > 0.

Let gg be a C* function on N, supported in G = £. Let

0
gi(x) = f g0 0 @ dt.
—©

Then if Z(7) = sup{|go(z)|, G(x) = 7}, for all n there is a constant Cy,, > 0 only depending
on G such that

G(z)
(@)] < L L(r)dr, |[Varlenrsaen < Cnlolencen

Proof. The first part of the statement is obvious. We concentrate on the second part. The
basic idea is that when differentiating in the direction of the flow, one obtains gy, and when
differentiating in other directions, one can use the contracting properties of ¢§ in negative
time. Let € N, and X71,...,X,, vectors at . We want to evaluate Vx, _ x,g1(x). We can
decompose the X;’s according to

T,.N=RVa@®V™.

By linearity, we can assume that either X;ocV or X; L V. Additionally, we assume |X;| =
1. By taking symmetric parts, and antisymmetric parts of V, we see that it suffices to
evaluate Vx, . x,g1 when the X;’s colinear to V are the last in the list. That corresponds
to differentiating g1 first along V. Now, there are two cases. First, assume that one of the
X,’s is colinear to V. Then

Vxi,..v91 = VX, . X, 190

We are left to consider the case when all the X;’s are orthogonal to V. For this, we use
the proof from [3, appendix B]. From therein, we know that for ¢ > 0,

Vxp,%, (900 9%) = Wlgo((08)* X, .., (9F)* X)

Where — lemma B.2 — W}/'gp is a sum of tensors of the form

k
VT 0),... (0.6 90"



RESONANCE-FREE REGIONS FOR SOME FINITE VOLUME MANIFOLDS 49

The T;(s,t)’s are tensors with a particular structure. Either they are of order 1 and
Ti(s, 1)(X) = X,

or they are of higher order and
¢

Ty(s.t) = f &) Ry [(09)aTia (1), - ()T (1, £)] du

S
where R; is a bounded tensor with all derivatives bounded, and the T;; have the same
structure. Observe that for X € TN, |(¢§)*X|| < C|X| when ¢t > 0, and [(¢$)*X| <
Ce M| X|| when X L V. By induction, we deduce that for ¢ > 0,

IV X1, %0 (90 © 99 () < Cre™ ™ go

We just have to integrate this for ¢ € [0, +o0[, and the exponential decay ensures the conver-
gence. O

¢ (G<G(x))
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