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Abstract

Conditional granger causality framework in Barnett and Seth (2014) is employed
to measure the connectedness among the most globally traded currencies. The
connectedness exhibits dynamics through time on both breadth and depth di-
mensions at three levels: node-wise, group-wise and system-wise. Overall, rolling
connectedness series could capture major systemic events like Lehman Broth-
ers’ collapse and the get-through of Outright Monetary Transactions in Europe
in September 2012. The rolling total breath connectedness series spike during
high-risk episodes, becomes more stable in lower risk environment and is posi-
tively correlated with volatility index and Ted spread, thus, can be considered as
a systemic risk indicator in light of Billio et al. (2012). Global currencies tend
structure into communities based on connection strength and density. While more
links are found related to currencies from emerging markets, G11 currencies are
net spreaders of foreign exchange rate returns. Finally, hard currencies including
Canadian dollar, Norwegian Krone and Japanese Yen frequently present among
the top most connected, though the centrality positions vary over time.

Keywords: conditional granger causality, exchange rates, connectedness,
systemic risk

1. Introduction

Recent global financial crisis 2007 - 2009 has drawn great attention to con-
nectedness within the financial system, reminding that financial connectedness is
of critical importance to macroeconomic stability, yet still poorly defined, mea-
sured and thus poorly comprehended (Glasserman and Young, 2016; Diebold and
Yilmaz, 2015). This status quo partly originates from the multi-dimensionality of
the concept ’connectedness’ itself. Connectedness can be pairwise or system-wide,
can focus on institutions, assets or markets, can be directional or non-directional,
weighted or non-weighted, static or dynamic, contemporary or lead - lag relation-
ship. As put forward by (Diebold and Yilmaz, 2015), connectedness is closely
related to various types of risks, has both desirable and non-desirable parts, but
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is not equivalent to risk. As thus, a good understanding of financial connectedness
is beneficial for policy makers in identifying, measuring and managing systemic
risk, for investors and portfolio managers in conducting core financial activities
like asset pricing, asset allocation and risk management. The connected objects
are often, but not limited to, returns and volatility among different assets, asset
classes or portfolios.

Foreign exchange market is an inseparable component of modern financial
system, acting simultaneously as a facilitator to cross-border activities and as an
investment channel. The role of foreign exchange market is reflected through the
tremendous trading scale of this global market, which amounted to $5.09 trillion
per day in April 2016 (BIS, 2016). Movements in values of key currencies are of
interest not only to companies, investors but also to policy makers since they not
only affect a country’s competitive advantage, its current account and the balance
of payment but also lead to foreign exchange rate risks for investors and businesses
(Eun and Resnick, 1988; Diebold and Yilmaz, 2015). Besides, several studies
document inherent relationships between foreign exchange markets and other
financial markets (Menkhoff et al., 2012; Melvin and Taylor, 2009; Apostolakis
and Papadopoulos, 2015). Accordingly, foreign exchange markets transmit risks
to and receive risks from stock markets, and to some extent, amplify turmoil
in stock markets to a global scale . As a result, studying connectedness among
global currencies in different periods of time thus also facilitates understanding
the dynamic relationship between foreign exchange markets and markets like
stocks and bonds.

This study is related to several strands of literature. The first is financial
connectedness. Interests in understanding financial connectedness arise with the
pulse to identify channels of contagion and to quantify systemic risks. Allen and
Gale (2000) see connectedness among financial firms as the cross-holdings of de-
posits in the interbank market. Based on equilibrium analysis, they come to a
conclusion that the density of connectedness strongly affects the possibility of
financial contagion. Accordingly, a complete structure - occurs when any bank
can hold deposits from others - can produce no contagion from a given shock. In
the book ’Connectedness and Contagion - Protecting the financial system from
panics’, Scott (2016) argues that ’connectedness’ is one among the three Cs of
systemic risk: Connectedness, Contagion and Correlation. According to the au-
thor, ’connectedness occurs when financial institutions are directly overexposed
to one another and the failure of one institution would therefore directly bankrupt
other institutions, resulting in a chain reaction of failures’ (Scott, 2016). Con-
nectedness involves common sharing of resources, on either asset or liability side
of the institutions’ balance sheets. Analytically, this author focuses on financial
institutions, emphasizing the direct over-exposure to each other’s assets and li-
abilities and domino effect of a particular failure as a consequence. Correlation
also leads to failure of multiple institutions but, on the other hand, results from
collapse of asset prices or exogenous events or herding instinct of asset managers.
In other words, according to the author, correlation is ’indirect connectedness’.
Billio et al. (2012) assert that connectedness is indeed the ’Linkage’ pillar in the
four ”L”s of financial crises: Leverage, Liquidity, Losses and Linkage. They argue
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that measure of systemic risk must capture the degree of connectedness in the
financial system to some extent because all truly systemic events involve financial
system - the interactions and connections among financial stakeholders. These au-
thors, however, do not differentiate connectedness from correlation, but instead,
correlation is a form of connectedness, which is inherent in their measure of sys-
temic risk using Principle Component Analysis. The object of connectedness in
this case is monthly returns (for banks, brokers/dealers, insurance companies and
hedge funds) instead of asset or liability. Diebold and Yilmaz (2015) also hold
the view that return correlation is one popular measure of connectedness. How-
ever correlation has several limitations: it measures only linear, non directional
and largely pairwise relationship. The non-linearity concern can be addressed by
dependence measure using copula functions or time-varying conditional correla-
tions these remain non-directional. Based on forecast variance decomposition of
a VAR model, Diebold and Yılmaz (2014) propose several connectedness mea-
sures such as ”from-others ” and ”to-others” connectedness to gauge the relative
impacts individual nodes receive from or exert to others, pair-wise connected-
ness to measure the connection between two nodes and ”total” connectedness to
quantify the magnitude of connectedness of the whole system. The authors used
the net pairwise directional connectedness con build a network among sixteen
major financial institutions around the collapse of Lehman Brothers, in which
out-ward links from Lehman to others are seen to increase significantly during its
last two trading days. In foreign exchange market, Diebold and Yilma’s approach
(Diebold and Yılmaz, 2014) was employed mainly to gauge the direction connect-
edness and spillovers among currencies. For example, Diebold and Yilmaz (2015)
analyzed the volatility connectedness for a sample of nine major currencies vis-a-
vis USD; On the same set of currencies but longer time span, Greenwood-Nimmo
et al. (2016) generalized the framework of Diebold and Yılmaz (2014) to analyze
not only spillovers of risk neutral returns, risk neutral variance but also risk neu-
tral skewness to capture the so-called ’crash risk’. Like in Diebold and Yılmaz
(2014), the later study found that the total connectedness could capture major
systemic events during the sub-prime crisis. Diebold and Yilma’s framework is
laid on sound theoretical foundation, easy to understand and apply, thus, is very
popular. Nevertheless, their approach requires identifying assumptions relating
to variance-decomposition and impulse response analysis which may affect ulti-
mate findings. As a result, the approach may best used with volatility as the
connected object (Diebold and Yilmaz, 2015)

Granger causality concept was introduced by Granger (1969), then extensively
developed and applied in different disciplines. The idea of granger-causality-
based network to financial markets is, perhaps, first proposed by Billio et al.
(2012). The authors’ approach can be considered as compatible to that of Diebold
and Yılmaz (2014) but has two main limitations. First, the pairwise granger
causality between the two returns X and Y may be spurious if it is driven by a
common third return Z. This third series may enhance or block the relationship
between X and Y (Lütkepohl, 1982). Second, their model used to estimate granger
causality is bivariate, focusing on two variables alone, without considering the
simultaneous effects of others. These causality relationships may not hold in

3



the multivariate case. In his paper ”Non-causality due to omitted variables”,
Lütkepohl (1982) proves theoretically and empirically that it is difficult or even
impossible to draw conclusions about the relationship between two variables solely
on the basis of a time series model just including these two. Blinowska et al.
(2004) discovered several pitfalls in evaluating the direction of causal relations
in physiological time series of electroencephalogram using bivariate techniques
and hence emphasized the importance of a multivariate approach. As stated by
Stern (1993), the advantage of multivariate Granger tests over bivariate Granger
tests is that they can help avoid spurious correlations and can improve general
validity of the causation test. These limitations are well addressed by employing
multivariate conditional granger causality framework developed by Barrett et al.
(2010) and Barnett and Seth (2014).

In short, returns or volatility connectedness among assets can be quantified
by three approaches: correlations, dependence and cross spillovers.The third ap-
proach comprises two frameworks: Forecast variance decomposition (Diebold and
Yılmaz, 2014) and Granger-causality (Billio et al., 2012). Our first contribution
is to append the lead-lag spillovers approach in (Billio et al., 2012) using condi-
tional granger causality as opposed to unconditional granger causality. Another
contribution over (Billio et al., 2012) is that we not only investigate whether there
is a connection between two assets or not but also how strong this connection is,
conditional on the influences of others. Thirdly, we relates our measures of to-
tal connectedness with important macro-economic events and financial indicators
like VIX, Vstoxx and TED spread to gain insights of this series before proposing
it to be a potential global systemic risk indicator.

The second strand of literature is network of currencies. A network or graph
(G) is generally understood as a collection of vertexes (V ) and links (E) between
them. Mathematically, this can be expressed as: G = (V,E), V ⊂ N, E ⊂ V ×V .
Applied to the field of finance, networks can represent specific markets, specific
financial sectors or the financial system as a whole. Indeed, assets or institutions
can be seen as nodes while relationships between them can be expressed as links
or edges. Edges can be directional, weighted or both directional and weighted.
From macro perspective, academics and practitioners rely on network approach
to study financial stability, systemic risk and contagion. This approach helps
to uncover a system’s structure and connectedness, which play a vital role in
systemic risk development, and helps to address the ’robust but fragile’ issue. At
micro level, investors can benefit from portfolio diversification and return forecast
(Wang and Xie, 2016). Since there is a close relationship between foreign exchange
market and other financial markets, studying connectedness and structure in
global currency market is important. Investors and policy makers and have early
warning signal or confirmation evidence regarding development of systemic risk
in stock markets (Ortega and Matesanz, 2006; Jang et al., 2011).

Initially laying in the domain of graph theory, network science was first used
by sociologist to study relationship between social entities in the 1920s, then ex-
panded rapidly to a wide range of disciplines in the late 1990s sparked by the
two influential papers on small world networks (Watts and Strogatz, 1998) and
on scale-free networks (Barabási and Albert, 1999) along with the development
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in computer sciences (Fenn, 2010; Onnela et al., 2006). Literature about network
studies in foreign exchange markets is vast, ranging from the earliest study in
2005 (McDonald et al., 2005) till the most recent in 2016 (Kireyev and Leonidov,
2016; Shahzad et al., 2017). Foreign exchange market operates 24 hours a day, on
global scale, involving millions of participants and trillions of USD daily turnover.
This make it nearly impossible to construct network of currencies using real trans-
action data. Almost all researchers, therefore, rely on exchange rates to visualize
linkages between currencies and study different properties. Motivated by the
work of Mantegna (1999) on US stock markets, McDonald et al. (2005) applied
the Minimum Spanning Tree techniques to the correlation network of foreign
exchange markets, focusing on 11 most liquid currencies. Based on multi-step
survival analysis they found the correlations among exchange rate returns are
extremely long-lived. Furthermore, several currency clusters are found. These
clusters change over time as the minimum spanning tree itself changes. Clustered
structure is also found in all studies using the same methods, for examples Ortega
and Matesanz (2006), Kwapień et al. (2009), Jang et al. (2011) and Matesanz and
Ortega (2014). Each cluster often comprise currencies from the homogeneous ge-
ographical regions Ortega and Matesanz (2006) centering around a key currency
from a major economyMizuno et al. (2006). Dependence-based networks using
time varying copula-t (Wang et al., 2014) and Symmetrized Joe-Clayton copula
(Wang and Xie, 2016) provide similar conclusion on connectedness structure.

One similarity in the mentioned studies is that the networks are generally
weighted but undirected. Granger-based causality approach in Billio et al. (2012)
and Vỳrost et al. (2015) can address the directional problem but result in un-
weighted networks. Meanwhile, as argued by Diebold and Yilmaz (2015), both
weight and direction of connectedness matter in real life. Two recent studies
address this issue are those of Kireyev and Leonidov (2016) and Shahzad et al.
(2017). Based on his proposed definition of currency demand indicator, Kireyev
and Leonidov (2016) derives a multilateral exchange rate network from which the
multilaterally equilibrium levels of bilateral exchanges rates are identified. How-
ever, their network may not reflect the dynamics of real world since the weights of
links rely heavily on the share of currencies in the international currency turnover
which only change every three years. Shahzad et al. (2017) propose a noteworthy
approach when extending the connectedness to also the tail of return distribution.
Accordingly, they use cross-quantilogram from Han et al. (2016) to measure the
lead/lag directional return spillovers among a group of 20 currencies in different
quantiles. Then, based on that, three different networks corresponding to three
market states, namely bearish, normal and bullish, can be visualized. Together
with other model-based approach using copula (Wang and Xie, 2016; Lee and
Yang, 2014) or quantile regression (Chuang et al., 2009), this modeless approach
can show how currencies are connected to each other in extreme market con-
ditions, which is beneficial to portfolio managers. The limitation is that, how
linkages on global scale vary continually over time in terms of number of links
and their strength is unknown. Another limitation, is the directional spillovers
are bivariate and pairwise, thus not taking for the moderating effects of other
exchange rates and not considering the effects of one exchange rate to total and
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vice versa. Last but not least, the authors just focus on a group of 25 currencies,
many of which are not representative for the global currency basket due to low
trading volume.

In this paper, overall, we find that connectedness among global currencies ex-
hibited dynamics through time on both breath dimension and depth dimension.
Total connectedness witnessed unprecedented increase in banking and credit cri-
sis period 2007 2012, structurally rose from the collapse of Lehman Brothers and
structurally fell not long after the announcement of Outright Monetary Transac-
tions of European Central Bank. The Lehman Brothers impact is also observed in
most to-connectedness and from-connectedness series. One-step and multi-step
survival ratios show that the links between two certain nodes, once established,
were rather stable. In relation with some major financial indicators, spikes in the
rolling connectedness were associated with rises in global risks and uncertainty
reflected via VIX and TED spread: when VIX, rolling VIX and rolling TED
reached their highest levels, so did the connectedness. Besides, correlations with
VIX, rolling VIX and rolling TED spread were much higher than average during
two crises. Thus, in light of Billio et al. (2012), network rolling connectedness
could potentially be considered as an indicator of systemic risk. As for connect-
edness structure, global currencies tend to form different communities based on
connection strength and density. There exist communities consisting of curren-
cies sharing similar geographical locations; certain groups or pairs of currencies
fall within one group in several sub-periods; and on average connection between
currencies of emerging markets is the most dense. Similar to vast number of stud-
ies in literature, the degree of global currencies, both weighted and unweighted,
follow power law distribution, though log-normal distribution is slightly better
fitted. Finally, though no currency was uniquely most central in different sub-
periods, currencies from advanced economies like Canada, Norway, Japan, the
United Kingdom, Singapore, Korea, Taiwan frequently presented among the top
most connected.

The rest of our paper is structured as follows: in Section 2 we outline the re-
search methodology, notably on conditional Granger causality (G-causality), how
a network is constructed and major network connectedness measures. G-causality
and conditional G-causality framework in subsection 2.1 and 2.2 is drawn heavily
from Barnett and Seth (2014). Section 3 presents empirical data, research find-
ings and discussions. Conclusion, limitations and directions for future research
are covered in section 4.

2. Methodology

2.1. VAR process theory

Given two jointly-distributed random variables X and Y. X is said to Granger
causes Y if the past of X can help to predict Y beyond information already
contained in the past of Y itself. In the multivariate setting, G-causality between
variables is often estimated in a vector autoregressive model with p lags - VAR(p),
which takes the form:

Ut =

p∑
k=1

Ak.Ut−k + εt (1)
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Here p is the model order, Ak is n×n matrix of regression coefficients, εt the n×1
vector of residuals and k is the optimal lag selected using Bayesian Information
Criterion (BIC) or Akaike Information Criterion (AIC). According to Lütkepohl
(2005), for G-causality to be valid, the VAR coefficients in 1 must be square
summable and stable. Intuitively, square summability requires the coefficients do
not ”blow up”, even when the model order p −→ ∞ (Barnett and Seth, 2014).
Stability means that the coefficient matrix Ak defines a covariance-stationary
process, for which, the following condition must be satisfied:

det(Ik − A1z − A2z
2 − ...− Akzk) 6= 0 for |z| 6 1 (2)

with the variable z defined in the complex plane C.

2.2. Linear Granger causality

2.2.1. Unconditional causality

Suppose Ut in equation (1) is split into two jointly distributed processes:

Ut =

(
Yt
Xt

)
(3)

Then equation (1) can be decomposed as:(
Yt
Xt

)
=

p∑
k=1

(
Ayy,k Ayx,k
Axy,k Axx,k

)(
Yt−k
Xt−k

)
+

(
εy,t
εx,t

)
(4)

and the residuals covariance matrix as∑
≡ cov

(
εy,t
εx,t

)
=

(∑
yy

∑
yx∑

xy

∑
xx

)
(5)

The y-component of the regression (4) is:

Yt =

p∑
k=1

Ayy,k.Yt−k +

p∑
k=1

Ayx,k.Xt−k + εy,t (6)

In equation (6) the coefficients Ayx,k encapsulate the dependence of Y on past
of X given its own past. Thus, there is no dependence of Y on the past of X if
and only if Ayx,1 = Ayx,2 = ... = Ayx,p = 0. This motivates us to consider the
following reduced regression, formed by omitting the past of X:

Yt =

p∑
k=1

A′yy,k + ε′y,t (7)

Here A′yy,k and ε′y,t are relatively the coefficients and residuals of the reduced
regression model.

Let FX−→Y be the G-causality from X to Y. FX−→Y , by definition, reflects
the degree to which the past of X can help to predict Y beyond past information
of Y itself. Now FX−→Y also quantifies the degree to which the full regression

7



model (6) represents a better model of the data than the reduced regression model
(7) (Barnett and Seth, 2014), which can be calibrated as follows in the spirit of
Geweke (1984):

FX−→Y ≡ ln
|
∑′

yy |
|
∑

yy |
(8)

where
∑

yy = cov(εy,t) and
∑′

yy = cov(ε′y,t) are the residuals covariance matrices
of models (6) and (7); |

∑
| is the determinant of the the residuals covariance

matrix of a VAR model in the form (1), called the generalized variance (Barnett
and Seth, 2014). Judging on several grounds like transformation invariance, fre-
quency decomposition, information-theoretic interpretation and consistency with
the maximum likelihood formation, Barrett et al. (2010) argue that generalized
variance is an appropriate measure of model prediction error. Thus, G-causality
in (8) gauges the reduction in prediction error when the past of X is is included
to predict Y. As asymptotically equivalent to information-theoretic transfer en-
tropy (Barnett and Bossomaier, 2012), G-causalities can be meaningfully com-
pared with due attention to statistical significance (Barnett and Seth, 2014).

2.2.2. Conditional Granger causality

The problems of spurious causality is originally mentioned in Granger (1969)
and investigated by several authors including Geweke (1984), Chen et al. (2006),
Eichler (2007), Barrett et al. (2010) and Barnett and Seth (2014). Granger (1969)
was the first to coin the term ’spurious causality’, referring to the case when
relevant data and information is not available in causal relationship between two
variables. According to Chen et al. (2006) the original definition of causality
in Granger (1969) is applied to two stationary random variables, when a third
series is taken into account, prima facie cause is used to describe the true causal
relationship. X is said to prima facie causes Y if the observations of X up to
time t help one predict Yt+1 when the corresponding observations of X and Z
are available (Granger, 1980). Geweke (1984) is perhaps the first to mention the
term conditional causality and the first to officially provide a testable solution
to conditional causality. Conditional GC model is further developed and applied
widely in several fields, especially neuro-science (Chen et al., 2006; Barrett et al.,
2010). Chen et al. (2006) furthered the work of Geweke (1984) and applied to
multivariate neural field potential data. Eichler (2007) tried to visualize the
multivariate conditional causal relationships in graphs. Barrett et al. (2010)
argued that traditional bivariate method may lead to fake causality and gave
proof to the unification of time domain and frequency domain. These authors’
theoretical framework is well presented in Barnett and Seth (2014) together with
Matlab toolbox to efficiently estimate conditional Granger causality.

Suppose the universe of U in (1) splits into three jointly distributed multi-
variate processes:

Ut =

Yt

Xt

Zt

 (9)

To condition out the effect of Z, base on VAR(p) framework, we consider the
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following full and reduced regressions:

Yt =

p∑
k=1

Ayy,k.Yt−k +

p∑
k=1

Ayx,k.Xt−k +

p∑
k=1

Ayz,k.Zt−k + εy,t (10)

Yt =

p∑
k=1

A′yy,k.Yt−k +

p∑
k=1

A′yz,k.Zt−k + ε′y,t (11)

The causality from X to Y conditioned on Z, denoted as , is:

FX−→Y|Z ≡ ln
|
∑′

yy |
|
∑

yy |
(12)

Note that the null hypothesis test of no causality is still:

Ho : Ayx,1 = Ayx,2 = ... = Ayx,p = 0 (13)

but in this case, Z is included in both reduced and full regression models to ac-
count for its joint effect. Thus FX−→Y|Z can be interpreted as ”the degree to which
the past of X helps predict Y beyond the degree to which Y is already predicted
by its own past and the past of Z” (Barnett and Seth, 2014). In case X and Y
are two individual variables, we have pairwise conditional G-causality (PWGC).
When X and Y both contains a group of variables, we have multivariate condi-
tional G-causality (MVGC). MVGC is used to estimate return spillovers among
currency groups, taking into account within group interactions, while PWGC is
used to construct weighted and directed networks of currencies, following (Billio
et al., 2012).

2.3. Network connectedness

In this research, weighted, directed networks are constructed based on PWGC.
The idea is as follows: each exchange rate is treated as a NODE; if exchange rate
y Granger causes exchange rate x conditional on a set of other exchange rates z,
then there is a directional link or directional EDGE from node y to node x and
Fx−→y|z becomes the WEIGHT of this link or edge.

2.3.1. Node centrality

Once the network is constructed, the first important task is to investigate the
centrality of the exchange rates to determine which are the most connected. To
this aim, we use the following centrality criteria:

Node degrees. Node degree measures the total number of links a particular
node has. In a directed network, the degree of a node includes in-degree and
out-degree. In-degree is the sum of all links that point to the node. Out-degree,
on the contrary, is the sum of all links that depart from the node.

Node strength. Node strength is the weighted sum of all links that a node
has. Like node degree, node strength of a directed network comprises of node
out-strength and node in-strength. Node out-strength measures the weighted
sum of links that go out of a node whereas node in-strength is the weighted sum
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of links that go into a node. In Diebold and Yılmaz (2014) node strength is
also named total connectedness, node out-strength called to-other-connectedness
whereas node in-strength called from-other-connectedness.

Betweenness centrality. Node betweenness centrality is the fraction of all
shortest paths in the network that contain a given node.

B(y) =
∑

s6=y 6=t∈V

σst(y)

σst
(14)

where σst denotes shortest path from node s to node t, σst(y) denotes shortest
path from node s to node t that contains node y, V is the set of nodes in the
network G. Nodes with high values of betweenness centrality participate in a
large number of shortest paths. In some sense, it measures the influence a node
has over the spread of information through the network (Newman, 2010).

Closeness centrality. Closeness centrality (or closeness) of a node is a measure
of centrality in a connected network. It is often calculated as the reciprocal sum
of the length of the shortest paths between the node and all others.

C(y) =
∑
y 6=x

1

d(y, x)
(15)

where d(y,x) is the shortest path form node y to node x. The more central a
node is, the closer it is to all other nodes. Quantitatively, nodes with lowest∑

y 6=x d(y, x), or highest C will have highest centrality.
Harmonic closeness centrality: is the sum of the reciprocal of shortest path

from a particular node to others, where the reciprocal equal to zero if there exist
no path (Rochat, 2009).

H(y) =
∑

d(y,x)<∞,y 6=x

1

d(y, x)
(16)

Here the closeness centrality formula is modified to encompass the case of discon-
nected network. If there exist no path from node y to node x, d(y, x) = ∞, we
set 1/d(y, x) = 0. However, care must be exercised when interpreting the final
results, especially on nodes having only one out-degree in unweighted directed
network. In this study we adjust the numerator of Rochat’s formula to become
the average shortest path, as follows:

H(y) =
∑

d(y,x)<∞,y 6=x

n

d(y, x)
(17)

where n is the number of shortest paths reachable. Eigenvector centrality. Eigen-
vector centrality measures the importance of a node in a network depending upon
the importance of nodes it is connected to. Eigenvector centrality is therefore a
self-referential measure of centrality: nodes have high eigenvector centrality if
they connect to other nodes that have high eigenvector centrality. According to
(Glasserman and Young, 2016; Billio et al., 2012), the eigenvector centrality ϑy
of node y satisfies

λϑy =
N∑
x=1

ϑxAxy (18)
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where Axy is an adjacency matrix.
In a directed network, we have left and right eigenvector centrality. Left eigen-
vector centrality of node y is the sum of the eigenvector centralities of nodes that
conditionally Granger-cause y. Whereas right eigenvector centrality is the sum of
the eigenvector centralities of nodes Granger-caused by y, conditional on others.

2.3.2. Connectedness distribution

Once degrees, both weighted and unweighted, of all nodes are obtained, we
then examine the network degree distribution or in fact, the distribution of node
connectedness. It is widely documented that degrees of several real-life networks
follow power law distribution, for example distribution of hyper-links in the World
Wide Web (Barabási and Albert, 1999), words frequency, citations of scientific
papers (Newman, 2005), the populations of cities, the intensities of earthquakes,
and the sizes of power outages (Clauset et al., 2009), degree of world currency
network (Górski et al., 2008; Kwapień et al., 2009; Wang and Xie, 2016). Clauset
et al. (2009) document two types of power law distributions, including continuous
and discrete. The continuous version has probability density function:

p(x) =
α− 1

xmin

(
x

xmin

)−α
(19)

where α > 1 and xmin > 0. The probability mass function for the discrete case
is:

P (X = x) =
x−α

ζ(α, xmin)
(20)

where

ζ(α, xmin) =
∞∑
n=0

(n+ xmin)−α (21)

is the generalized zeta function. A typical α normally falls within the range [2; 3]
(Newman, 2005).

2.3.3. Connectedness structure

Network analysis does not only investigate properties of nodes but also explore
the connectedness structure or topology of the network. The importance of net-
work topology is contended by Anderson and Moore (2006) regarding resilience
to external attacks:

”Network topology can strongly influence conflict dynamics. Dif-
ferent topologies have different robustness properties with respect to
various attacks”.

According to Estrada (2007), real-life networks exist in one of the four follow-
ing structures: good expander (highly homogeneous networks lacking structural
bottlenecks), modular network (networks organized into highly interconnected
modules with low inter-community connectivity), core-periphery (networks with
a highly connected central core surrounded by a sparser periphery, and network
with holes (Csermely et al., 2013). Among these four, core-periphery and modu-
larity are found to be one of two common features of social and economic networks
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(Hojman and Szeidl, 2008). However, the difference between core-periphery and
modular structure is not clear cut (Csermely et al., 2013), but largely depending
on the organization of communities in the network (Estrada, 2007).

2.3.4. Connectedness stability

Connectedness stability among exchange rates is examined using single-step
survival ratio and multi-step survival ratio following Onnela et al. (2006). Denote
E(t) as a set of edges of the conditional Granger causality network at time t.
Single-step survival ratio at time t is defined as:

SSR(1, t) =
E(t) ∩ E(t−1)

E(t−1)
(22)

Multi-step survival ratio at time t is then:

MSR(s, t) =
E(t) ∩ E(t−1) ∩ E(t−2)... ∩ E(t−s)

E(t−s)
(23)

where s is the number of steps.

3. Empirical data and results

3.1. Data

To minimize missing data and ensure global characteristics we focus on 35
most traded currencies surveyed by BIS (2016) in the period from 1999 to 2017.
It is reported from successive BIS triennial surveys from 2001 to 2016 that trading
volumes of these currencies account for around 96− 99.8% of global daily trans-
actions. From the list of these currencies, we have a sample of 34 exchange rates
against USD. We choose USD as the base currency following several studies and
because USD is the most liquid, most traded and most important reserve currency
world-wide. Furthermore, trading between these currencies against USD accounts
for around 80% of all pairs. We will use EUR for robust study, acknowledging
that numeraire currencies could effect analysis results. Multilateral exchange
rates like nominal effective exchange rates (NEER) are not utilized since we be-
lieve that interactions among bilateral exchange rates better capture and more
timely reflect concurrent processes in the foreign exchange market, effects from
other financial markets and especially behaviours of investors. In similar vein,
the Special Drawing Rights (SDR) of the International Monetary Funds is also
not considered as it has little business meaning. Data is taken from Bloomberg
terminal. The rates are mid-point spot exchange rates at the end of each day
based on the calendar of the United States. Missing data for non-trading days in
US is filled using last-price carry-forward principle. It is obvious from the list of
currencies in Table 1 that our sample is unbalanced in terms of continents with
strong bias towards Europe and Asia while South African Rand (SAR) is the only
representative of African currencies.

A more balanced way to structure these 34 currencies is to group them corre-
sponding to the level of development of countries that issue them. Accordingly we
have two broad groups: advanced economies (16) and emerging economies (18).
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As advanced or emerging economies are also heterogeneous, we further divide
them into: Group of Eleven (G11), Other Advanced Economies (OAE) Emerg-
ing Leading and Growth economies (EAGLES), and Other Emerging Economies
(OEE). G1O includes ten currencies of developed countries: EUR, JPY, GBP,

AUD, CAD, CHF, SEK, NZD, NOK and DKK. OAE comprises of six currencies
from Singapore, Hong Kong, Taiwan, South Korea, Czech Republic and Israel
(IMF, 2017). Nine currencies that fall into EAGLES are: BRL, RUB, INR, CNY,

MXN, IDR, PHP, MYR and TRY. The rest nine currencies belong to other emerg-
ing economies group.

To gauge the dynamics of global currency connectedness, besides using rolling
samples, we divide the whole period into six subsamples namely: 1999-2002, 2003-
2007, 2007-2009, 2009-2012, 2012-2015 and 2016-2017. The first subsample begins
from the lauch of EUR, covering the dot-com bubble and the economic recession
2001. The second subsample is arguably the period of economic expansion in
the US and world major economies. The third and fourth sub-periods are global
financial crisis and European sovereign debt crisis. The first crisis lasts from 03
July 2007 to 14 May 2009 as suggested by Dungey et al. (2015) while the latter
dates back to 16 October 2009, coinciding with the revising upwards of Greece’s
budget deficit to 12.5% of its GDP, and ends on 12 September 2012 when the
European Stability Mechanism got the go-ahead from a German court. The fifth
sub-sample serves as after-crisis period while the period from 01 January 2016
till the end of 2017 tracks recent historic events and trends including Brexit,
populism in Europe and United States and rising protectionism. In this research,
we use log return because it is considered as continuous compounded return, quite
similar to simple return on daily basis but has advantage of being time additive
(Hudson and Gregoriou, 2015). The equation for daily log return is as follows:

ri,t = ln

(
Pi,t
Pi,t−1

)
× 100 (24)

where ri,t is the daily log return of currency i at time t, Pi,t and Pi,t−1 are exchange
rates of currency i against USD at time t and t− 1 relatively.

Basic information about characteristics of these series is provided in Table
1.The mean daily log returns of all currencies are not significantly different from
zero with exception of TRY, RON and CNY. Mean daily returns of TRY and RON
are significantly positive value while that of CNY is significantly negative. This
means that on average CNY have more daily appreciation against USD than the
other way round and vice-versa for TRY and RON. All log returns series exhibit
excess skewness, especially excess kurtosis. Excess kurtosis or fat tail implies high
likelihood of extreme values are expected with all series, especially TRY, PHP,
SAR and CHF. The Turkish lira,TRY, also has highest excess skewness,
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which translates into this currency having very high likelihood of extreme one
day depreciation against USD. While BRL shows highest standard deviation of
returns, daily volatility and the range of daily returns for HKD and SAR belong
to top lowest group. This is reasonable since SAR and HKD is pegged against
USD while CNY is managed floating with strong intervention from the People’s
Bank of China.

Table 1 also shows all return series are stationary, thus fit for our analysis.
The fact that Jacques - Berra test for normality is strongly rejected fits with prop-
erties of skewness and kurtosis, implying normal distribution is not appropriate
to model exchange rate returns.

3.2. Node connectedness

Figure 3 provides some intuitions on which exchange rates are most connected
during the whole research period as well as in sub-periods. In the sub-figures, each
filled circle represents a node, each curve represent a directional link between two
nodes following clock-wise direction. For example, in Figure 1b, the blue curve
between SGD and MYR indicates an edge originating spillover from SGD to
MYR, the red curve between HKD and KRW the two represents a spillover from
HKD to KRW. The bigger the circle, the higher the total strength of a node and
similarly, the thicker the edge, the higher the weight or magnitude of spillovers.
Edges’ colors take colors of the source nodes. Regarding nodes’ colors, the bluer
the nodes, the higher their degrees.

(a) 2007− 2012 (b) 1999− 2017

Figure 1: Networks of global currencies

3.2.1. Node centrality

Node centrality shows which nodes are the most connectedness in the web
of connections. To this end, we first combine total degree, total strength and
betweenness centrality to judge the total connectedness of a particular node.
Betweenness centrality can go with total degree and total strength since high
ranking on this criterion requires a node to have both inward links and outward
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links to be on most shortest paths between two any other nodes. Table 2 provides
a rather mixed picture on which node is the most central for each period of time.
For instance, over the period 1999 - 2017, total degree indicates that MYR is the
most connected while total strength picks KRW, betweenness points to ZAR. A
combination of these three criteria is thus appropriate for final judgment. Only
those which appear in the top 10 of three criteria are considered. Accordingly,
it is easy to tell that MYR is the most central for the whole sample, RUB for
1999-2002, CLP for 2007-2009, IDR for 2007-2012 and 2016 - 2017 and finally
KRW for 2012-2015. However, in other periods, it is not so clear cut. For 2003-
2007, it is hard to tell which between MXN and JPY are the most connected.
For 2009 - 2012, it should be the competition between SGD and CAD. Overall we
can see that the most connected currencies mostly falls onto 2 groups: EAGLES
or Advanced economies, where EAGLES is more dominant. It is reasonable for
positions of RUB and JPY in 1999-2001, JPY in 2003-2007 given the effects of
Russian Default of 1998 and Japanese Quantitative Easing in early 2000s (Fawley
et al., 2013). The centrality of MXN in 2003-2007 is also understandable thanks to
the special relationship between Mexico and the United States, thus enjoyed the
benefits from US’ economic expansion in this period. Similarly, highest connect-
edness rankings of CLP, GBP, TWD, AUD in 2007 - 2009 are expected because of
close trade and investment relationship between Chile, the United Kingdom, Tai-
wan, Australia with the United States. G11 currencies marked their presence in
chaotic periods from 2007 to 2015 and uncertain period over the last two years.
We can see currencies from this group in the top five of all criteria in these 4
sub-periods. It is also interesting to see that the two currencies most affected by
Brexit, namely EUR and GBP make their ways to top 5 most central currencies
in 2016-2017. The presence of CNY in the top 10 these last two years also fit with
the efforts of China to turn CNY into a global currency, coinciding with the fact
that CNY was included into the currency basket for SDR by the International
Monetary Funds from 1 October 2016.

Another thing we are interested in is which currency is the most influential,
in the way that changes in its value will quickly and strongly affect others. To
answer this question, we opt to use right-hand eigenvector centrality, Harmonic
closeness centrality, out-degree and out-strength. To save space, we only consider
three periods: whole sample, the crisis period and the most recent period. Table
3 lists the top 10 currencies with regards to these four criteria. Fortunately these
four criteria seem to provide very consistent ranking: they agree with each other
in nearly 80% of the top 10 ranking. While out-degree tells how many nodes that
a particular node can affect, out-strength provides information about strength of
effect, harmonic closeness shows the influence speed and right-hand eigenvector
centrality states the importance of nodes that are influenced. Overall, MXN,
BRL and CZK are the three most influential. For the double crisis period, these
go to IDR, CLP and NOK. While CAD is obviously most significant over the last
two years. Again we see the presence of G11 currencies in top 5 most influential
currencies in all periods considered, among them CAD and NOK is the most
found then come GBP. EUR is also seen in the last period considered, together
with CNY and SGD.
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3.2.2. Degree distribution
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Figure 2: Fitted distribution for Node degrees

It can be observed from Figure 2 that distribution of weighted degrees has
long right tail: nodes with degrees smaller than 0.03 account for the majority
while nodes with degrees exceeding 0.05 are around 5% to 10%. Figure 2 seem-
ingly shows that continuous power law distribution (red dashed line) does not fit
the distribution of total weighted degree as good as log normal distribution. It
tends to perform well if only degrees from around 0.018 are considered. However,
goodness-of-fit test based on a bootstrap of 5000 iterations does not reject the
hypothesis that observed data set actually follows a power law. Vuong’s test, a
likelihood ratio test for model selection using the Kullback-Leibler criteria (Gille-
spie, 2014), also fails to support log normal distribution over power law (p-value
= 0.504) although the negative test statistics slightly favors the former. Tests
on distribution of total degrees give similar conclusions (Table 4). We can, thus,
safely say that total degrees of global currency network based on conditional
granger causality have power law distribution. This finding agrees with other
studies in foreign exchange market (Górski et al., 2008; Wang and Xie, 2016) but
with unpopular alpha values compared to the 2 - 3 range documented in Newman
(2005).

19



Table 4: Power Law distribution fit

Degree Weighted Degree

X-min
Mean 13.01 0.020

Standard Deviation 2.76 0.004

Alpha
Mean 7.73 4.028

Standard Deviation 3.00 1.471

Power law fit test p-value 0.61 0.603

Vuong test
Test statistics -0.65 -0.010

p-value 0.74 0.504

Source: Author’s calculation

(a) 1999− 2002 (b) 2003− 2007 (c) 2007− 2009

(d) 2009− 2012 (e) 2012− 2015 (f) 2016− 2017

Figure 3: Networks of global currencies over sub-periods
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Table 5: Dynamic communities of global currency networks

1999/17 1999/02 2003/07 2007/09 2009/12 2007/12 2012/15 2016/17

BRL MXN RUB CZK JPY JPY THB MYR
CLP PHP JPY CAD GBP CNY NOK AUD
COP CAD TWD EUR CNY THB CZK ILS

INR GBP KRW CLP CZK EUR MXN CNY
IDR CNY AUD TRY CAD DKK MYR INR

MXN SGD ZAR INR EUR SEK CNY PHP

PEN THB HKD DKK DKK NOK IDR CAD

PHP INR CZK HUF PLN RON TRY NOK

TRY HKD CAD PLN SEK AUD PLN CZK

CAD EUR SGD RUB NOK IDR HKD EUR
GBP DKK MYR JPY HKD TRY GBP DKK

JPY HUF PEN GBP SAR NZD RUB NZD

AUD NZD MXN IDR RON ILS EUR HUF

CNY NOK PHP ILS RUB HUF DKK IDR

MYR SEK GBP BRL IDR CZK AUD PLN

RUB COP EUR CNY BRL PLN NZD GBP
SGD IDR COP THB TRY CLP ILS RON

CHF PEN IDR TWD MYR INR HUF JPY

TWD RUB SAR AUD CLP PHP COP SEK

THB SAR ILS SGD TWD MXN PEN MXN

HKD ILS BRL MYR SGD COP BRL COP

SAR RON CLP PHP NZD PEN RON PEN

ZAR JPY TRY SEK KRW HKD JPY BRL

KRW TWD CNY NZD ZAR SAR SEK TRY

EUR KRW THB NOK ILS KRW CLP HKD

CZK CZK INR MXN THB ZAR KRW RUB

DKK BRL DKK COP INR GBP TWD SAR
HUF CLP SEK PEN HUF CAD SGD CLP

ILS TRY RON KRW PHP RUB CHF THB

NZD AUD CHF ZAR MXN BRL INR ZAR

NOK MYR HUF HKD COP MYR PHP KRW
PLN CHF NZD SAR PEN TWD SAR TWD
RON ZAR NOK RON CHF SGD ZAR SGD

SEK PLN PLN CHF AUD CHF CAD CHF
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3.2.3. Connectedness structure

Community structure exists if the nodes of the network can be easily grouped
into sets of nodes such that each set of nodes is densely connected internally. It
is essential to notice that overlapping communities are also allowed. Results of
community detection using Louvain algorithm are shown on Table 5. It is inher-
ent that the number of communities as well as members within each community
varied over time and from samples to samples. Nevertheless these communities
share some similar characteristics. First, almost all of them are dominated by
currencies having either similar geographical condition or similar level of devel-
opment regarding economies that issue the currencies. Second, there are core or
central members that connect the rest of each community. Take the sample of
whole period 1999 - 2017 for instance. Table 5 reveals 4 communities are found
based on conditional Granger-based weighted and directed network. The first
community from the top left is typically Latin America- or EAGLES- dominated.
Figure 1b clearly shows BRL, MXN and IDR are the three core nodes that tie
members together in one group. Seven out of eleven currencies in community
two are from advanced economies, namely CAD, GBP, JPY, AUD, SGD, CHF and

TWD . To some extent, the community is Asia-dominated since more than half of
it are from Asia and three out of four core currencies are Asian, including SGD,

TWD and MYR (Figure 1b). By similar reasoning, we can argue that the third
community is in fact Asia-dominated. The last community, however, is undoubt-
edly European as eight among nine of its members are currencies of European
countries and Israel, which is geographically in between Europe and Asia. Fur-
thermore, it is the three European currencies including NOK, CZK and RON that
connect all members together. In short, there are reasonable economic and geo-
graphical reasoning behind each group of currencies. This finding is, thus, agree
with and further confirms the results of previous studies (Ortega and Matesanz,
2006; Kwapień et al., 2009; Jang et al., 2011; Matesanz and Ortega, 2014).

Another interesting observation that can be drawn from Table 5 is: there
exist groups and pairs of currencies that consistently fell within one commu-
nity; and they can be in the same or different continents. Regarding Asian
currencies, we have KRW/TWD/SGD, KRW/TWD/JPY, THB/CNY, TWD/SGD,

JPY/TWD and KRW/TWD . For European currencies, we have somewhat big-
ger groups and more consistent pairs: NOK/SEK/DKK, NOK/SEK/PLN/CZK,

NOK/SEK/PLN/DKK/CZK, NOK/SEK, HUF/PLN, SEK/DKK, CZK/PLN . Con-
cerning Latin America, the pair COP/PEN is the most consistent over time and
so is the the group COP/PEN/MXN . To a lesser extent, we have BRL/COP,

BRL/CLP and the group BRL/COP/PEN. Consistent strong connections are
not only found among currencies in the same region but also across regions as
well. These include: GBP/CAD, TRY/BRL, TRY/CLP, SGD/CAD, AUD/MYR,

TRY/BRL/CLP and CHF/TWD/SGD . These stable links can be formed thanks
to international trade, investment or portfolio rebalancing among substitute cur-
rencies.
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Figure 4: Rolling To and From connectedness
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3.2.4. Rolling from-others and to-others connectedness

Rolling to-others connectedness reflect the effect of one currency on the system
while from-others connectedness capture the opposite direction effects. Brown
lines in Figure 4 show the dynamic rolling from- and to-connectedness of selected
currencies (to save space). In each figure, the first vertical dashed blue line coin-
cides with the collapse of Lehman Brothers on 15 September 2009, and the second
one is on 12 September 2012 when the German Court approved the European
Stability Mechanism. It can be seen that, these two events exerted consider-
able impacts on both series of connectedness: both see a spike in between the
events. Another striking feature observed in Figure 4a is a big jump in mid 2005
in all series except for HKD. Similar phenomenon is observed in CNY’s to-others
rolling connectedness. It turns out these spikes occurred on 22 July 2005, one
day after the People’s Bank of China announced its policy shift from pegging to
managed floating exchange rate. Given the potential growth of Chinese economy,
its positive states of current and financial accounts and international reserves,
CNY would appreciate against USD and other major currencies. Quick market
responses make the outgoing connectedness of CNY to others rose from 0.0143
the previous day to an all time height of 9.2 on 22 July 2005, dropped back to
1.46 and 0.54 over the next two business days then stabilized around 0.39 to 04
August 2005. This big spillover then was absorbed by most other currencies. The
mean from-other connectedness rose from 0.0113 to 0.28 from 21 to 22 July 2005,
fell back to 0.054 on 25 July before sustained around 0.02 to mid August of the
same year. The impacts from Chinese exchange rate policy, the Lehman Broth-
ers’ collapse and approval of European Stability Mechanism can also be seen on
Figure 7 regarding total connectedness.

3.3. Group connectedness

3.3.1. Number of links

Apart from endogenously-formed groups in the previous section, another way
to investigate the structure of connectedness is to see how the links are distributed
among different groups of currencies. Based on the number of outward links,
currencies from advanced economies are main spreaders of returns over the entire
period 1999 - 2017 (Table 6). Table 7 reveals that more links are seen across
groups than within each subgroups. In sub-periods from 2003 to 2015, most
links originated from OTH while in the rest two sub-periods, G11 were the main
originators. Links from OTH increased in the sub-prime credit crisis while links
from G11 increased in the latest sub-period. It can also be observed that, most
connections are related to emerging economies. Indeed, the percentage of links
that have currencies from emerging economies as one end is averagely 78.1% in
medium term (average of sub-periods) and 76.6% in long term (1999-2017). The
same ratios for advanced economies’ currencies are 58.1% and 67.9% relatively.
Over the long run, there are more EAGLES-related connections (51.5%) than
connections related to all other sub-groups. Table 7 also shows that connections
within emerging and within advanced groups are more dense than across these two
broad groups, accounting for 55.5% total connections in 1999-2017. Higher intra-
group connectedness is also seen in EAGLES: the ratios of total links between
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EAGLES per total links from EAGLES were highest during 2003 - 2007 at 67.44%
then fluctuated around 55% from 2007 to 2015. On the relationship between one
subgroup to another, in the long run, more links are found between EAGLES
and OTH (16.3%) but in short to medium term, links between EAGLES and
G11 (12.03%) are slightly more than between any other subgroups.

3.3.2. Net to-others connectedness
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Figure 5: Net connectedness among currency groups

Figure 5 shows the dynamics of net connectedness among the four currency
blocs G11, OAE, EAGLES and OTH over time. Net to-others connectedness of a
particular bloc is the difference between to-others connectedness and from-others
connectedness. Different from connectedness of a node, bloc connectedness is
measured using MVGC framework, which, according to Barnett and Seth (2014),
already accounts for intra-group connections. Net connectedness in this case, is
net return spillover, reflecting whether a group is a net receiver or transmitter of
change in exchange rates. Figure 5 reveals several interesting information. Firstly,
the magnitude of spillovers vary through time, highest in 2007-2009 and lowest in
1999-2002. Secondly, the bloc of major currencies G11 plays as net transmitter
while EAGLES and OAE are net receivers. Changes in values of EAGLES’s
currencies were driven the most by changes in other blocs while changes values
of G11 currencies exerted highest impact on others, especially during the two
crises. Regarding OTH bloc, overall spillover this bloc received balanced with
what they spread out. Nevertheless the bloc was net spillover over sub-periods
from 2003 to 2012, with highest magnitude seen in 2007-2009. Given generally
higher interest for this group, literature suggests that carry trade activities may
have a say (Melvin and Taylor, 2009; Kohler, 2010).
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3.4. System-wide connectedness
3.4.1. Network connectedness over sub-samples

As put forward by Billio et al. (2012), network density reflects the global
connectedness among assets or institutions and is measured by the ratio of realized
edges per total number of possible edges. We call this the breath dimension of
connectedness and introduce another dimension, namely depth connectedness,
calculated by average weighted degrees of nodes. While the breath dimension
tends to capture the quantity of linkages, the depth dimension reflects the strength
of connection between nodes.

Figure 6: Snapshots of Network Total Connectedness

Figure 6 and Figure 3 show network connectedness over the study period 1999
- 2016, subdivided into six short periods. It seems that breath connectedness is
very sensitive period’s length whereas the depth connectedness is not. Though
covering less time span, depth connectedness of the double crisis period are higher
than the whole period. This phenomenon is easily seen in the global financial crisis
period 2007 - 2009, when a big spike in connectedness is witnessed, especially in
the depth. This reflects the fact that the sub-prime credit exert a huge impact
on the connectedness, boosted both the number of connections and the strength
of connections in the global foreign exchange. Lower connection’s density and
strength in 2009 - 2012 as compared to 2007 - 2009 may reflect the fact that
the surprising or unexpected factors may have dropped. The higher in both
dimensions of 2012 - 2015 compared to 2009 - 2012 is potentially due to longer
time span but could capture the ups and downs in this period due to: oil price
fluctuation, instability in Europe. Noticeably the connectedness strength in 2016-
2017 is second highest only after that of the great depression period, well reflecting
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the uncertainty over the last two years created by Brexit and triumph of populism
in the United States and rising populism in several countries in Europe. Our
depth dimension of connectedness thus help to adequately capture the effects of
systemic events and better identify chaotic and uncertain periods. These can be
seen more clearly with three year rolling connectedness.

3.4.2. Rolling network connectedness

Figure 7 visualizes the relationship between rolling connectedness, total num-
ber of links with two systemic events (top left and bottom left), the two consec-
utive crises (top right) and three recent recessions in OECD economies (bottom
right). Information about the series is provided on Table 8. On average, the
Granger-based currency network has 93 edges, with average density of 8.3% and
average strength per node of 0.04. Only 1% of cases the density went down below
4.3% or above 16.8% corresponding to 48 and 188 edges relatively. The max
density is 18.2% reached one month after the Lehman Brothers’ event, when the
total number of links were 204. On the other hand, max level of average strength
did not fall on the crisis period but nearly coincided with the exchange rate policy
shift of China, when all time height of 0.56 was achieved. However, the lowest
levels of both series were in 2005 and 2006 while the their average highest were
in the last quarter of 2008.

Table 8: Basic statistics of Rolling Connectedness

Mean Max Min 1% 5% 95% 99%

Density (%) 8.3 18.2 3.8 4.3 4.8 16.0 16.8
Number of Links 94 204 43 48 54 179 188
Average Strength 0.04 0.56 0.02 0.02 0.02 0.09 0.09

Two sub-figures on the left of Figure 7 are relatively the rolling breath con-
nectedness (on top) and rolling depth connectedness (at bottom). With exception
of two extreme peaks in July 2005 and October 2012 of depth connectedness, the
two dimensions nearly vary in tandem, with similar patterns observed over time.
Interestingly, these two series have captured well different important event over
the given period. In fact, there is a surge in both series on 22 July 2005, one
day after People’s Bank of China announced the switch from pegged to man-
aged floating exchange rate regime. Spikes are also seen not long after the fall of
Lehman Brothers as well as the approval of German court for European Stability
Mechanism. While the former event marked the outbreak of the global financial
crisis, the latter paved way to the end of European Sovereign Credit problem.
The series did not fall immediately after the court got-through is understand-
able: there is time for finalizing the mechanism and more importantly markets
need time to react to news in chaotic situation. Here, we have to note again that,
the breath dimension of connectedness, though less volatile, does not capture the
magnitude of the impact of events like Chinese exchange rate policy shift or the
establishment of European Stability Mechanism. As for this, our depth dimension
does a better job.
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Figure 7: Connectedness, Systemic Events, crises, recessions

Clearly, the period of September 2008 to September 2012 can be considered
the peak of two consecutive crises and thus global financial markets were in a pe-
riod of high uncertainty. The sustaining high level of density and average strength
captures this fact. Two sub-figures on the right panel also reveal that the rolling
connectedness is informative about the crises and recession periods. Peaks in the
series fall within each identified recession period for OECD countries. According
to Melvin and Taylor (2009), the crisis in foreign exchange derived from sub-
prime credit crisis and stock markets’ turbulence and thus came relatively late.
According to these authors, foreign exchange market crisis is closely related to
carry trade, which is a very popular strategy for currency investors. It involves
buying high interest currencies, funded by sellling low interest rate currencies,
thus profiting via interest rate differences. This strategy has its root in the obser-
vation that interest rate parity (IRP) does not always work. IRP suggests that
the difference in interest rates will be offset by the appreciation of low-interest
currencies over high-interest currencies but in reality the high interest currency
tend to appreciate against the low interest currencies (Melvin and Taylor, 2009;
Kohler, 2010). Carry trade is obviously risky, and thus often unwinded during
market stress. From the view of practitioners, the proposed a crisis time-line with
four important months, making four legs of the foreign exchange crisis, namely
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Figure 8: Depth connectedness from 2007 to 2008

August 2007 - Contagion from other assets, November 2007 - Credit, commodities
and deleveraging, March 2008 - Bear Stern and illiquidity and lastly September
2008 - Lehman Brothers and counter-party risks. In the first leg contagion from
bond and stock markets lead to a major unwinding of the carry trade and caused
huge losses to many currency investors. The second leg was marked by an abrupt
carry trade return fall in early November 2007 and mainly concerned with bor-
rowing difficulty, falling commodity prices and wide-spread deleveraging across
investment funds. It turns out that the rolling depth connectedness can reflect
well these events. Figure 8 reveals an upward trend in the series with minor
increase in August compared to July 2007 (averagely from 0.027 to 0.028), a
more visible rise in November 2007 compared to previous months. The series
rises again from March 2008 then hardly crosses 0.04 and tends to go down until
August 2008. However, it begins to rise steeply in September accompanied by
a sudden jump in October 2008 when the connection strength nearly doubled
from 0.044 to 0.084 within 12 days, from 06/10/2008 to 17/10/2008. Does this
reflect the risk behaviors in real world? According to Melvin and Taylor (2009),
after orderly takeover of Bear Sterns by JP Morgan Chase, the ’too big too fail’
issue was consolidated, market fears were calmed down and many thought that
the world was once again returning to normal in early second quarter of 2008.
The sudden jump in the series occurs within three weeks after Lehman declared
bankruptcy. Seemingly, the more significant the incident, the higher the strength
(as well as density). The behaviour of rolling connectedness, thus, matches well
with the foreign exchange crisis process and episodes described in Melvin and
Taylor (2009) and better captures the dynamics in foreign exchange market from
2007 to 2008 than total connectedness in Diebold and Yilmaz (2015).

It can be seen that not only the number of connection by also the strength of
connection rises and maintains at a high level during stock market turmoil period.
This confirms the close relationship between equities and foreign exchange rates
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(Cho et al., 2016; Atanasov and Nitschka, 2015) in the context of increasing
cross-border investment. This also points to the fact that assets returns are more
connected in bearish market as compared to normal or bullish (da Silva Filho
et al., 2012). In an informally efficient FX market, short-term exchange rate
changes should not be related to other lagged exchange rates. Thus, one possible
explanation for the 4 year sustaining high level of connectedness: after Lehman
Brother event to October 2012 is the period of high uncertainty, low risk tolerance
and the market is highly informationally inefficient. Good reasons for the effect
of uncertainty and risks on connectedness can be found in Billio et al. (2012):

”...in the presence of value-at-risk constraints or other market fric-
tions such as transaction costs, borrowing constraints, costs of gather-
ing and processing information, and institutional restrictions on short-
sales, we may find Granger causality among price changes of financial
assets. Moreover, this type of predictability may not easily be arbi-
traged away precisely because of the presence of such frictions.”

The work of Kohler (2010) offers a more practical explanation for a long period
of sustained high connections in currency market besides market efficiency issue.
Kohler compared the global financial crisis 2007-2009 with the Asian financial
crisis of 1997-1998 and the Russian debt default in August 1998 and noted that
previous two crises occurred in emerging economies while the most recent in the
most developed country with safe-haven currency. Thus, although all three crises
lead to substantial movements in exchange rates, instead of depreciating, USD
strongly appreciated against most other currencies at the heart of the crisis and
then strongly reversed after that. Flight to quality and flight to liquidity paved
way for capital moving into safe haven currencies like USD, leading to strong
appreciation against most others. After a short time, reversal in risk aversion
and carry trade activities made capital flows in reversal direction, leading to
appreciation of other currencies against USD. Kohler (2010) found that in the
latest financial crisis, interest rate differences, and thus carry trade, had much
more profound effects on exchange rate movement than in the two previous ones.
This is reasonable when policy interest rates of major economies including Great
Britain, Japan, Euro zone and the United States dropped significantly to low-
est levels (in between 0% and 1%) in response to the Lehman Brothers’ collapse
(Fawley et al., 2013). Lim and Mohapatra (2016) document that after a sudden
halt following Lehman’s fall, from mid-2009 to March 2013, cumulative quarterly
gross financial inflows into developing economies increased 211% from USD192
billion to USD598 billion. We, therefore, suppose that it was these massive in-
flows and out-flows of capital that lead to high correlation in exchange rates,
given all having USD as the base currency. Together with constraints addressed
by Billio et al. (2012), profit opportunities from significant lead-lag relations could
not be exploited, thus Granger-caused connectedness remained high. The con-
nectedness should have dropped further after mid - 2009 when positive stress test
results of US banks came out if European public debt problems did not emerge
(Diebold and Yilmaz, 2015). The sovereign debt crisis threatened the stability of
European Union and exerted strong impacts on the common currency EUR, and
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thus prolonged the uncertainty situation in global financial markets, especially
bonds and foreign exchange markets. However, as the surprising factors gradually
lost ground, herd behaviours were not as strong as in previous crisis, connections
gradually dropped. Efforts from European Central Bank (ECB) and European
governments step by step reduced risks but only when the feasibility of Euro-
pean Stability Mechanism fully appreciated by the market, did connectedness
structurally fall.

3.5 Rolling total breath connectedness and major economic and financial indica-
tors

In previous sections ,we found that rolling connectedness captures well sys-
temic events, fits well with crises and recessions. The question is then, is there
a good relationship between rolling connectedness and major economic indica-
tors? To answer this, we plot the series against TED spread, fed funds rates
and Volatility Index (VIX) and examine correlation correlations between them.
The TED spread is commonly a proxy for funding liquidity and credit risk in the
interbank market. It is the difference between the three-month US. LIBOR and
the three-month US Treasury bill rate. The volatility index, VIX is a popular
measure of the stock market’s expectation of volatility implied by S&P 500 index
options. It is widely picked as a proxy for market fear and uncertainty. We also
compare currency market connectedness with VSTOXX, which has the same eco-
nomic meaning as VIX but applied for European stock market. Fed Funds rate
is often considered as a gauge of the cyclical position of the U.S economy.

Table 9: Correlation between density and major economic indicators

Indicators 1999/17 2007/09 2007/12 2016/17

Level

VIX 0.60 0.83 0.33 0.56
TED 0.09 0.11 -0.37 0.08
FFR -0.52 -0.88 -0.82 -0.59

VSTOXX 0.55 0.82 0.37 0.64

Rolling mean

VIX 0.45 0.92 0.56 0.61
TED 0.88 0.92 0.88 -0.73
FFR -0.01 -0.80 -0.34 -0.52

VSTOXX 0.17 0.91 0.49 0.53

Relationship between rolling connectedness and three major economic and fi-
nancial indicators is reflected on Table 9 and Figure 9. Three sub-figures on the
left show the dynamics of density with 4 year rolling mean of the three indica-
tors while sub-figures on the right-hand side depicts the relationships in levels.
We use four years for the rolling window as the connectedness is also computed
on 4-year window basis. The series in level provide short-run information while
the 4-year rolling mean implies medium term. Some important features are re-
vealed. First, rolling connectedness is counter-cycle since it is highly negatively
correlated with the Fed Funds rate while highly positively correlated with risk
indicators like TED spread, VIX and VSTOXX. In general, rolling density fell
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Figure 9: Rolling connectedness and major economic and financial indicators
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when FF rate rose and vice versa (Figure 9b), rose and spiked together with
VIX (Figure 9d) and TED, especially during crisis period (Figures 9e and 9f).
In fact, its correlations with all risk series rose dramatically in the global finan-
cial crisis 2007-2009 (Table 9. This is contrary to Diebold and Yilmaz (2015)
who argue that total volatility connectedness is not counter-cyclical. Second,
high association of currency connectedness both with VIX and Ted spread in the
global financial crisis reflects the fact that: fears, credit risk and liquidity risk
were also prevailing in foreign exchange market at that time. Correlation with
VIX is higher than with VSTOXX over the whole period as well as in the first
crisis possibly mean that overall the series better capture expected fear and un-
certainty in US market. However, higher correlation with VSTOXX than with
VIX during 2007-2012 and 2016-2017 indicates that our currency connectedness
captures very well volatility in European stock markets during these periods of
time. Third, rolling connectedness potentially conveys contemporary informa-
tion about stock market fear while reflects medium to long term trend of credit
and liquidity risk, with exception of 2016-2017 period. Our main findings here
agree with Greenwood-Nimmo et al. (2016) though our approach is much simpler.
Thus, in light of Billio et al. (2012), rolling connectedness can potentially be an
indicator of systemic risk. From Figure 7, we suggest that if density drops down
below its 5% quantile, a period called ’silence before a storm’ may be created.
On the other hand, when density exceeds the seemingly ’resistance level’ 10%, it
may signify the widespread or end of bad period of time.

3.6. Network connectedness stability

(a) Single step survival ratio (b) 100-step survival ratio

Figure 10: Single and multi-step survival ratio

On average after one single step, 97.24% of links previously formed remains
while the ratio is 65.11% for 50 steps and 51.67% for 100 steps. This seemingly
means that the connectedness is fairly stable, it does not fall under 50% after
100 steps on average. Nevertheless Figure 10 shows that the stability is highly
time-dependent. The single step ratio fell down to 65 - 70% round the mid 2005,
to 80% in the first month of 2009 and to 70% near the end of 2012. The 100-step
survival ratio also see a plunge in early 2009 and late 2012 to nearly 10%. Both
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Figure 10a and Figure 10b shows a highly stable connection in between 2009
and 2012. They also show steady increase in connection stability to the end of
2017, further confirming the fact that cross-over spillovers increase and remain
high during high uncertain periods when market mispricing cannot be quickly
exploited.

3.7. Robust studies on rolling total connectedness
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Figure 11: Connectedness with EUR as the base currency

First, to check whether the base currency affect the result or not we performed
the same techniques over EUR-based series. EUR-based rolling connectedness
has higher average value. It shows a stronger inclination towards EUR-related
problematic times with higher values in sovereign debt crisis and around Brexit.
However, Figure 11 exhibits that the two series possess similar pattern over time.
Specifically, both shows sustained all-time high levels in between the two crises;
and important structural changes found around the two systemic events above-
mentioned.

Second, following suggestions in Billio et al. (2012), we first adjust each return
series for GARCH effects by dividing it by the conditional standard deviation
obtained from GARCH(1,1) then perform conditional Granger causality analysis
on the adjusted series. Specifically, the conditional standard deviation series are
obtained from the following baseline model of returns:

Ri
t = µi + σitε

i
t, ε

i
t ∼ WN(0, 1)

σ2
it = ωi + αi(Rt−1 − µi)2 + βiσ

2
it−1 (25)

This procedure yields less linkages, and has basically different pattern (Figure 12.
Density sees a structural break from September 2008 but climbs to higher levels
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Figure 12: GARCH - adjusted rolling density

during the European public debt turmoil. It begins to drop long before September
2012, then reaches highest level around October 2015, within the recession period
2005-2006.

Third, we adopt bivariate non-conditional granger-causality methods to see
whether the results regarding breath connectedness change or not. Final results
are presented in Figure 13. It can be seen that, results with raw log returns and
GARCH-adjusted returns make virtually no difference. Overall, the total number
of links is nearly twice as much as that obtained from our method. This is under-
standable because bivariate G-causality does not take into account the effects of
other. Regarding connectedness pattern, the density is highest during the global
financial crisis but not very much higher than that in the economic expansion
time 2003-2007 (33.16% compared to 30.57%) and only slightly higher than den-
sity of 2009-2012 (33.16% versus 32.98%). This is strikingly different from ours.
Connectedness based on conditional G-causality, thus, is more informative.

(a) With raw log returns (b) With GARCH-adjusted returns

Figure 13: Bivariate Granger-based network connectedness

Finally, the relationship between exchange rates are not entirely linear (Bekiros
and Diks, 2008), we therefore conduct non-linear granger causality to supplement
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and confirm whether our linear model adequately capture the spillovers in higher
moments or not. In this sense, we opt for Kernel method developed by Marinazzo
et al. (2008a,b) because the authors’ approach to test for granger causality is sim-
ilar to ours. Both aim for conditional causality and both have stance in Granger
(1969) when focusing on testing the significance of prediction error though the
strategies to obtain degree of g-causality are not the same. Readers can refer to
the work of these authors for details. In this framework, the inhomogeneous poly-
nomial kernel with lag = 1 for VAR and model order d = 2 is used. As compared
to Figure 7, Figure 14 indicates the existence of several non-linear relationships
among the exchange rates. Indeed, the max, mean and median density obtained
from non-linear G-causality are all higher than those from linear relationship.
The number of links rose substantially after September 2008, sustained highest
levels from 2009 to mid 2010, dropped significantly in 2011 then climbed up and
fluctuated around 10% before and after the get-through of Financial Stability
Scheme. Similar to the GARCH-adjusted series, the non-linear G-causality con-
nectedness witnesses a hike in mid-2015, at a higher level than the peak in early
2013.

0.05

0.10

0.15

0.20

2005 2010 2015

Figure 14: Non-linear Granger causality network connectedness

In summary, rolling connectedness using exchange rates against EUR yields
similar result while connectedness series based on different techniques agree on
one point: they all rise in crisis or recession periods. Nevertheless, non-linear
connectedness, GARCH-adjusted connectedness and connectedness based on bi-
variate G-causality do not reflect the impacts of different systemic events as well
as the original connectedness series. Figure 15 provides one way to track the
development of systemic risk based on the behavior of this series over time. The
red and blue dash-lines are relatively mean and median of rolling density in be-
tween 1999 and 2017. When density is below its median, global systemic risk is
by and large low. Rolling density sustains above the blue line but below the red
line could indicate higher systemic risk. Systemically above-the-mean values are
usually associated with periods of high contagion risk or even crisis.
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4. Conclusion and future research

The purpose of this study is to investigate the dynamics of the global cur-
rency network connectedness. To achieve this, we rely on the concept network
connectedness in Diebold and Yilmaz (2015) and Billio et al. (2012) and enhance
their measurement approach using conditional granger causality from Barnett
and Seth (2014) and Barrett et al. (2010). We first employed pairwise condi-
tional granger causality to construct a weighted directed network based on 34
exchange rates of most traded currencies vis--vis USD and examine connected-
ness over time on three scales, including node-wise, group-wise and system-wise.
Global currency network exhibited dynamics over the last nineteen years, when
no currency is uniquely most central. We found that the top highest currencies
are usually either currencies from advanced economies or from emerging and lead-
ing growth economies (EAGLES). Among G11 currencies, NOK and CAD were
the most connected and influential. This is reasonable since Norway is neighbor
of the Euro zone when Canada borders with the United States. Furthermore,
these are net exporters of oil, which obviously exerted important impacts on the
world economy over the last 15 years. The global currencies were structured
into different communities depending on the number of links and more impor-
tantly, the strength of linkage among them. All communities have cores, with are
highly and strongly connected. Though time-varying, several pairs and groups of
currencies are repeatedly organized into one community in different sub-periods.
This finding is beneficial for portfolio diversification, portfolio rebanlancing and
pair trading. The rolling to- and from-connectedness as well as total breath
and depth connectedness among these exchange rates varied in accordance with
global risks and could capture major systemic events over the research period.
The behaviour of rolling connectedness matches well with different crisis periods
in foreign exchange market pointed out by Melvin and Taylor (2009). Further-
more, rolling total connectedness is counter-cycle, negatively correlated with fed
funds rate and positively correlated with all risk indicators. With these proper-
ties, our proposed measurement of connectedness based on conditional granger
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causality complement those of Billio et al. (2012) and Diebold and Yilmaz (2015)
and should be considered as an indicator of systemic risk. Policy makers can de-
sign real-time global currency connectedness index based on this result to gauge
the development of systemic risk, at least to confirm with risk development else
where. Future research should quantify the relationship between the centrality
positions and risks as well as returns of exchange rates. Another direction is to
identify the determinants of total rolling connectedness as well as whether or not
this series can predict chaos in currency markets as well as stock markets.
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