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ABSTRACT
This paper presents a novel run-time detection mechanism, called NIGHTs-
WATCH, for access-driven cache-based Side-Channel Attacks (SCAs). It
comprises of multiple machine learning models, which use real-time data
from hardware performance counters for detection. We perform experi-
ments with two state-of-the-art SCAs (Flush+Reload and Flush+Flush) to
demonstrate the detection capability and effectiveness of NIGHTs-WATCH.
we provide experimental evaluation using realistic system load conditions
and analyze results on detection accuracy, speed, system-wide performance
overhead and confusion matrix for used models. Our results show detection
accuracy of 99.51%, 99.50% and 99.44% for F+R attack in case of no load,
average load and full conditions, respectively, with performance overhead of
< 2% at the highest detection speed, i.e., within 1% completion of a single
RSA encryption round. In case of Flush+Flush, our results show 99.97%,
98.74% and 95.20% detection accuracy for no load, average load and full
conditions, respectively, with performance overhead of < 2% at the high-
est detection speed, i.e., within 12.5% completion of 400 AES encryption
rounds needed to complete the attack. NIGHTs-WATCH shows considerably
high detection efficiency under variable system load conditions.

1. INTRODUCTION
With technologies like Blockchain, Cyber-Physical Sys-

tems (CPS), Cloud Computing Infrastructure-as-a-Service
(IaaS), and Internet-of-Things (IoTs) in practice, the age of
digital disruption has a renewed challenge of security and
privacy. It has become a first-case design constraint for many
application domains involving third-party processing of pri-
vate data. Malicious software and privacy intrusion tech-
niques have existed since long and their proliferation has
seen rise in recent years. In an effort to address this problem,
researchers have devised numerous prevention and detection
schemes, each focused on a certain aspect of the malicious
behavior. While it is infeasible to prevent bad actors from
attacking, schemes that target the detection of and prevention
from malicious processes do exist.

Side-channel attacks are a specific class of attacks that
mainly targets cryptographic implementations [1], [2], [3]
for unauthorized retrieval of information. The threat of side
channel leakage imposes a serious concern to data privacy as
it can break the otherwise theoretically sound cryptographic
algorithms at implementation-level. Modern-day processors
do extensive sharing and de-duplication for performance ben-
efits. Cache-based side channel attacks, a sub-class of SCAs,
are able to retrieve information from systems by exploiting
vulnerabilities in shared caches [4], [5]. Such attacks rely
on the presence of assembly instructions to fully or partially
manoeuvre the state of shared caches. For instance, in In-
tel CPUs, that feature is available through the CLFLUSH
instruction. To intercept these attacks between different pro-

cesses, we need to constitute a CPU architecture that restricts
the usage of these instructions or disables memory optimiza-
tion for such features. In both the cases, there is an overhead
for performance and cost to develop such architectures. In
the recent past, there are many successful implementations
of cache-based SCAs. For instance, SCA targeting DES im-
plementation has been demonstrated in [6], while authors
in [3] present Evit+Time and Prime+Probe techniques on
AES implementation. Recently, [1] presented a cache-based
SCA devising a new technique called Flush+Reload (F+R),
to retrieve private exponent key of GNU privacy guard’s
implementation on RSA. Researchers in [7] also used F+R
to extract secret key in AES encryption. Later, using the
same principle of F+R, authors in [8] proposed a stealthier
technique called Flush+Flush (F+F) on AES crypto-system.

Numerous software and hardware based protection tech-
niques have also been proposed against specific type of threat
generated by SCAs [9], [10]. Such attacks can be prevented
at various levels such as system-level, hardware-level, and
application-level [9]. At the system level, physical and log-
ical isolation approaches exist [11], [12]. At the hardware
level, mitigation techniques are rather difficult as they are
not applicable on commodity systems. Hardware solutions,
nevertheless, suggest to have new secure caches, changes in
prefetching policies and either randomization or complete
removal of cache interference [13]. At the application level,
the proposed countermeasure techniques tend to target the
source of information leakage and mitigate it [14].

Despite valiant efforts, mitigation techniques against mali-
cious software and side-channel attacks are not perfect. Mit-
igation techniques generally protect against specific vulner-
ability and an all-weather protection against such attacks is
often costly in terms of performance. Moreover, evidence
suggest that attacks are becoming sophisticated and stealthier.
Therefore, detection techniques can be used as a first line of
defense against such attacks. For detection-based prevention
strategy to be effective, detection need to be highly accurate,
incur minimum system overhead at run-time, and capable of
early-stage detection of attacks, i.e., before they complete.

In this paper, we address the problem of accurate & early
detection of cache-based SCAs at run-time. We present a
novel detection mechanism that uses machine learning mod-
els. These models use data from Hardware Performance
Counters (HPCs), in near real-time, representing the pattern
of memory accesses generated by data-dependent crypto-
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graphic operations being carried out by underlying hardware.
Specifically, the main contributions of this paper are as fol-
lows:

1. We propose NIGHTs-WATCH, a novel run-time & early detection
mechanism for access-driven cache-based SCAs, which uses three
machine learning models and real-time data from hardware perfor-
mance counters.

2. We demonstrate successful detection of state-of-the-art cache-based
SCAs (Flush+Reload & Flush+Flush) under realistic system load con-
ditions, i.e., under No Load, Average Load, and Full Load conditions,
with considerably high detection accuracy, high speed, and mini-
mal performance overheads. Testing under realistic load conditions
improves its deployability.

3. We propose, to the best of our knowledge, a first-ever successful
detection of Flush+Flush category of stealthier SCAs using NIGHTs-
WATCH with an accuracy of up to 99.97% (best-case) and perfor-
mance overhead of < 2% while relying on selected hardware events.

4. We provide experimental results and discussion on detection accuracy,
system-wide performance overhead, detection speed, and confusion
matrix for selected machine learning models in detail. Also, we
discuss limitations related to the use of HPCs.

Rest of the paper is organized as follows. Section 2 presents
necessary background & related work on cache-based SCAs,
mitigation and detection mechanisms. Section 3 presents
NIGHTs-WATCH in detail. Section 4 provides experimental
evaluation and discussion. Section 5 concludes this paper.

2. BACKGROUND AND RELATED WORK
This section provides necessary background on cache-

based SCAs, their mitigation techniques, and the support
for hardware events using HPCs.

2.1 Cache-based SCAs and Mitigation
Side-channel attacks target micro-architecture of platforms

and can collapse the strongest of crypto-systems like AES,
RSA, and ECC etc. The pattern of memory accesses and
timing generated by data-dependent cryptographic operations
is a major source of information revelation in these attacks.
Over the last decade, numerous cache-based SCAs have been
proposed, followed by their mitigation techniques. Both
Instruction and Data Caches are indeed important sources
of vulnerabilities for micro-architectural attacks [15]. Some
examples of such attacks are Prime & Probe, Flush+Reload,
Flush+Flush and Evict & Time, [1], [3], [8].

Some practical solutions to mitigate such SCAs include;
disabling hardware threading [16], auditing [17], cache flush-
ing [18], cache coloring [19], scheduling-based obfuscation
[20], and hardware cache partitioning [21]. These techniques
are often designed to offer protection against a specific infor-
mation leakage channel and incur significant system overhead
by blowing up the code size and cutting down the perfor-
mance by many-folds. A common protection approach is
to ensure that the memory accesses generated by the cryp-
tographic operations are not dependent on the data being
processed. Cache partitioning is another popular solution as a
countermeasure against cache-based SCAs [14]. These strate-
gies, however, introduce significant performance degradation
because of cache reservation. Since, applying mitigation tech-
niques in all cases is expensive, therefore, detection methods
can help applying countermeasure on need-basis.

2.2 Selected Cache-based SCAs
We have selected two state-of-the-art access-driven cache-

based SCAs to demonstrate the effectiveness of NIGHTs-
WATCH. We elaborate these attacks for the reader here.

2.2.1 Flush+Reload Attack on RSA
Flush+Reload attack, proposed in [1] on RSA crypto-

system, fundamentally exploits the security vulnerability in-
troduced due to demand-fetch policy of caches by measuring
the timing difference when data is loaded in response to a
cache hit compared to when it is loaded in response to a cache
miss. F+R attack relies mainly on two factors: 1) the ability
of processes to flush any cache line by virtual address on the
target architecture and 2) the existence of shared virtual mem-
ory (shared libraries). A malicious process shares memory
with a victim process while executing on Intel’s x86 archi-
tecture having inclusive caches. One round of F+R attack
consists of three distinct phases: Flush, Wait, and Reload. In
the first phase, attacker, while targeting shared Last-Level
Cache (LLC), first evicts a shared cache line of interest by
either using eviction through contention mechanism or dedi-
cated instructions. Authors in [1] have used Intel’s cl f lush
instruction for this purpose. In the second phase, attacker
waits for a prefixed duration and allows victim to execute.
In the last phase, attacker reloads the same cache line it had
evicted earlier and measures its loading time. A slow reload
would indicate that attacker is the only process touching that
particular cache line, thus every reload will cause a cache
miss and will take more time to fetch instruction from main
memory. A faster reload, however, indicates that the victim
process also touched the cache line of interest while attacker
was in its wait phase, thus a cache hit for attacker and it takes
less time to fetch instruction from cache. The attack exploits
inclusive property of Intel’s caches to remove instructions
from all levels while targeting LLC.

2.2.2 Flush+Flush Attack on AES
Flush+Flush attack, proposed in [8], is also based on sim-

ilar approach as F+R attack, except that it is considerably
stealthier. In contrast to other cache attacks, F+F does not
perform any memory accesses, which means it does not allow
any additional cache misses and minimal cache hits due to
attacker process. It is dependent on precise cache timing only,
which makes it more stealthy and efficient attack. Proposed
detection methods to-date are not able to detect such stealthy
attack techniques. F+F uses the same hardware and software
vulnerabilities exploited in F+R except the fact that F+F at-
tacks OpenSSL T-Table-based AES Implementation. F+F
works across cores and in virtualized environments. This is
also a three phase attack. In the first phase, attack executes an
infinite loop executing cl f lush instruction to flush a shared
cache line. In the second phase, the attacker process measures
the execution time of clflush instruction itself every time it
is being applied on a shared cache line. In the third phase,
attacker uses the measured time in second phase to determine
whether the that shared memory line, being flushed in first
phase, had been cached or not by the victim process. Since the
attacker itself is not loading any memory line into the cache,
therefore, if any other process fetches shared cache line into
the cache, the attacker process will come to know about it
and in every loop it will simply flush the memory line again.
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Authors in [8] have claimed to detect their own attack using
hardware events in linux Per f _event_open syscall interface.
They documented that their attack is not detectable using 24
hardware events available with Linux syscall interface.

2.3 Hardware Performance Counters (HPCs)
Hardware Performance Counters (HPCs) are special hard-

ware registers used primarily for the performance monitoring
& subsequent tuning, debugging, and identifying bottlenecks
in program execution. HPC registers reveal run-time behav-
ioral information of software using specific hardware events
such as; cache references, cache misses & hits, branch miss-
predictions, retired instructions, and CPU cycles etc. These
events use dedicated hardware, therefore, they can be ac-
cessed very fast without affecting target software. Moreover,
no source code modification is required to access them. Mod-
ern processors, such as Intel family [22], offer hundreds of
events that can be tracked. These events vary in numbers,
types, and methods in which they can be used across various
architectures. One limitation, however, is that these HPC
registers are limited due to which only a very small number
of events can be monitored concurrently. HPCs have been
used in recent research work [23], [24] for dynamic profiling
and intrusion detection.
2.4 Related Work on Detection

This section summarizes the state-of-the-art on side-channel
intrusion detection mechanisms (with and without machine
learning approaches) and discusses their advantages and lim-
itations. In recent years, some research work such as [8],
[24], [25], [26], [27], [28], [29], [30] has been done to de-
tect side channels by implementing user-level processes to
observe the execution of other processes or by providing
light-weight patches in operating system. These solutions
do not modify underlying hardware. Authors in [25], [28]
present mechanisms related to signature-based anomaly de-
tection and pattern recognition for known attacks. Authors
in [30] propose to detect both known and unknown attacks
by monitoring normal and abnormal behaviors of target pro-
cesses. They claim to have lower chances of observing false
positives compared to other approaches due to the fact that
their approach is capable of detecting abnormal behavior de-
viation from normal one in unknown attacks as well. [30]
also introduced a method to deal with false positives and
false negatives in cloud environments, but it does not provide
proof of concept for side-channel attacks and memory inten-
sive programs together, which are hard to obtain in rigorous
security demanding applications. Authors in [28] investigated
detection of both known and unknown attacks using machine
learning approaches, but they did not address the difficulty
provoked by false negatives.

Researchers in [27] investigated a three-step detection
method to deal with above problems in side-channels and
branch prediction-based attacks. This approach helped to
remove false positives in the system and detects branch pre-
diction and DRAM attacks. However, the mechanism is not
demonstrated to be efficient in the presence of realistic system
load conditions, i.e., any background noise to make it more
suitable to work in real systems and in cloud environments.
Moreover, the technique has significant detection overheads
in this system and needs to be more accurate about attack

classes. In 2016, authors in [29] demonstrated an anomaly-
based detection approach on Heartbleed vulnerability. This
work explains the vulnerability of buffer over-reads only on
malwares. This technique was able to detect data-oriented at-
tacks at run-time in the user space. This approach was able to
correctly detect 92% of two-class and 70% for one-class sup-
port vector machine model. However, there is no evidence of
this detection mechanism working under normal system load
conditions. Furthermore, it has some limitations for detecting
unknown data-oriented attacks. It only tackles one type of
vulnerability (Heartbleed) as a test case in OpenSSL crypto-
graphic software library with one SVM algorithm. Hence,
more sophisticated approaches can be proposed to detect a
large class of side-channel attacks.

Authors in [26] propose to use hardware-supported lower-
level micro-architectural features for detection of anomalies
due to malware. This approach uses unsupervised learning
on micro-architectural features taken from HPCs. Authors
demonstrated that sequence of events in program execution,
which motivates attacks, can be easily retrieved using HPCs.
These features were later used to detect lower-level irreg-
ularities caused by malware. In another relevant research
work presented in [24], authors proposed a technique called
ConFirm, which is an inexpensive method to detect threat-
ful alterations in the firmware of embedded control systems.
ConFirm measures the low-level hardware events, which are
performed all along the firmware execution. The detection
accuracy and performance of ConFirm has been checked on
different firmwares like ARM and PowerPC. As explained
in Section 2.2.2, F+F attack is stealthy and to-date, it is con-
sidered to be undetectable using published detection mecha-
nisms. A novel contribution of the NIGHTs-WATCH is that
it is capable of successfully detecting F+F attack with an
accuracy of 99.97% while relying on existing HPCs.

3. NIGHTS-WATCH
This section presents the proposed NIGHTs-WATCH de-

tection mechanism. Intrusion detection is a problem of iden-
tifying data patterns that do not confirm with the expected
(normal) system behavior. Detection mechanisms therefore
apply a huge amount of effort in learning the expected sys-
tem behavior first. NIGHTs-WATCH does this learning by
profiling target crypto-systems (RSA & AES in our case)
using carefully selected hardware events described in Section
3.2. Since detection mechanisms can only approximate the
system behavior, they can be inaccurate and lead to false pos-
itives or false negatives at run-time. Moreover, they can also
slowdown program execution due to detection overhead. We
use all these parameters as evaluation metrics for NIGHTs-
WATCH. We first describe our system model.

3.1 System Model
We demonstrate the effectiveness of proposed detection

mechanism on Intel’s core i7−4770 CPU running on Linux
Ubuntu 16.04.1 with kernel architecture... Our threat model
comprises of access-driven side-channel attacks that cause
information leakage across complete cache hierarchy (i.e., L1
through LLC) in Intel’s x86 architecture. We consider same-
core as well as cross-core SCAs for detection. Moreover,
we consider that the Operating System is not compromised.
There are many high-level software libraries/APIs that help
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extract information from HPCs such as; PerfMon, OProfile,
Perf tool, Intel Vtune Analyzer, and PAPI. We use PAPI
(Performance APIpplication Programming Interface) library
[31] to access HPCs on Intel’s Core i7 machines.

3.2 Selection of Hardware Events as Features
The PAPI library offers 100+ events for Intel’s Core i7

systems. These events provide per-process, per-CPU, and
system-wide statistical profiling of the running processes.
Since NIGHTs-WATCH targets access-driven cache-based
micro-architectural SCAs, we considered only those hard-
ware events which are more likely to be affected by these
attacks. In order to select the most relevant hardware events,
we did experiments on a larger set of 12 most relevant events,
presented in Table 1, in order to observe the impact of target
computational loads,i.e., crypto-operations and attacks.

Table 1: Selected events related to cache-based SCAs
Scope of
Event

Hardware Event as Fea-
ture

Feature ID

L1 Caches
Data Cache Misses L1-DCM
Instruction Cache Misses L1-ICM
Total Cache Misses L1-TCM

L2 Caches

Instruction Cache Accesses L2-ICA
Instruction Cache Misses L2-ICM
Total Cache Accesses L2-TCA
Total Cache Misses L2-TCM

L3-Caches
Instruction Cache Accesses L3-ICA
Total Cache Accesses L3-TCA
Total Cache Misses L3-TCM

System-wide Total CPU Cycles TOT_CYC

Branch Miss-Predictions BR_MSP

Figure 1: Experimental results of selected hardware events.
Figure 1 shows experimental results of selected hardware

events that measure Branch Miss-Predictions (BR_MSP),
Total execution Cycles (TOT_CYC), L1 Instruction Cache
Misses (L1-ICM), and L3 Instruction Cache Accesses (L3-
ICA) for 15,000 encryption rounds of RSA crypto-system.
The figure shows frequency of samples on y-axis and magni-
tude of measured events on x-axis. Results shown in green
represent normal behavior of RSA encryption rounds running
under No Attack while results in red show RSA under F+R
Attack. Figure 1 clearly shows that the magnitude of events
significantly increases under attack conditions compared to
normal behavior. Thus the events are affected by attack and

reveal interesting information, which could be used by the
ML for run-time detection.

3.3 Selected Machine Learning Models
NIGHTs-WATCH includes three different ML models:

Linear Discriminant Analysis (LDA), Logistic Regression
(LR) and Support Vector Machine (SVM) [32]. LDA is com-
monly used for dimensionality reduction of data and pattern
classification in applications offering somewhat linear distri-
bution. The LR uses logistic functions for carving linear re-
lationships between dependent and non-dependent variables.
LR is mostly used for classification of binary dependent vari-
ables. SVM finds a hyper-plane that separates the given data
into different classes.

3.4 Methodology
Figure 2 presents an abstract view of the proposed method-

ology involving LDA, LR, and SVM models. NIGHTs-
WATCH bases its detection on following 3 distinctive phases.

Figure 2: Abstract view of ML-based detection mechanism.

3.4.1 Phase-I: Training of ML Models
In the first phase, we train the machine learning models

being used by NIGHTs-WATCH by profiling both RSA and
AES crypto-systems, separately, under Attack and No Attack
scenarios and variable load conditions. We collect signifi-
cant samples of low-level data (roughly 1-Million) at a pre-
determined granularity by profiling the performance counters
using PAPI library. We use appropriate hardware events
(listed in Section 3.2) for profiling, which are responsible for
differentiating between a victim/benign process and an attack
process for both RSA and AES crypto-systems, separately.
With the training data set of 1-million samples collected, we
combine samples from all execution scenarios and train our
ML models on these labeled data. We perform cross valida-
tion using K−fold cross validation technique for all models
on the training data before applying them for the run-time
profiling and detection.

3.4.2 Phase-II: Run-time Profiling
In the second phase, NIGHTs-WATCH performs run-time

sample collection from hardware events. Here, sampling
granularity plays an important role, as it exhibits a direct im-
pact on the performance of the victim process and its shared
library compared to normal execution. Moreover, it also ef-
fects detection speed and accuracy, which are crucial for real-
time intrusion detection. NIGHTs-WATCH offers fine-grain
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and coarse-grain profiling modes for run-time sample collec-
tion from the hardware events. These modes allow trade-off
between performance impact and the detection speed. In fine-
grain profiling mode, it collects samples at a much higher
frequency to offer early detection at increased performance
cost for the system, while in the coarse-grain profiling mode,
it takes samples at relatively low frequency, which takes a
little longer to detect intrusion, but incurs much less perfor-
mance cost. In both cases, it can successfully detect SCAs
much earlier than the attack completion.
3.4.3 Phase-III: Classification & Detection

In the last phase, NIGHTs-WATCH uses run-time data
collected in previous phase for classification and subsequent
detection of anomaly. The data from second phase are passed
on to the ML models/classifiers in real-time at a prefixed
frequency, which serve as trained anomaly detectors. Based
on these run-time data, each model classifies samples into
Attack and No Attack categories to report intrusion detection.
Detection accuracy of each classifier varies depending on how
well it is trained. Detection speed and performance impact,
however, is subject to the sampling frequency selected by the
NIGHTs-WATCH as discussed in Section 3.4.2.

4. EXPERIMENTS AND DISCUSSION
We create two experimental case studies to demonstrate

detection of F+R and F+F attacks. In each case study, we
evaluate the performance of our ML models under realistic
system load conditions. To do so, we vary the system load
from No Load (NL), Average Load (AL), to Full Load (FL)
conditions by using selected SPEC benchmarks [33] that of-
fer memory-intensive computations such as; gobmk, mc f ,
omnet pp, and xalancbmk, to run in the background as both
attacks would be targeting/affecting caches and they would
create realistic execution scenarios for evaluation. A NL con-
dition involves only Victim and Attacker processes running,
an AL condition involves at least two SPEC benchmarks
running along with Victim & Attacker processes, and a FL
condition involves at least four SPEC benchmarks running
along with Victim & Attacker processes.
4.1 Case Study-I: Detecting Flush+Reload

Our first case study presents experimental results on the
detection of F+R attack presented in Section 2.2.1.
4.1.1 Detection Accuracy

Detection accuracy is the foremost performance indicator
in our evaluation metric for NIGHTs-WATCH ML Models.
Results in Tables 2 through 4 show our experimental results
for LDA, LR, and SVM models, respectively. Under No
Load (NL) conditions, the accuracy of NIGHTs-WATCH is
very consistently high across models, i.e., up to 99.51% for
both LDA and LR models whereas up to 98.82% for SVM
model. Average Load (AL) conditions seem not to bother
the accuracy of LDA and LR models as it still remains the
same, but for SVM model, accuracy reduces to 90%. Under
Full Load (FL) conditions, all three ML models achieve an
accuracy of 95%-above. Almost all existing state-of-the-art
detection mechanisms measure detection accuracy under NL
conditions while our results demonstrate a very high detection
accuracy for F+R under variable and more realistic system
load conditions. Results on high accuracy of ML models

can be cross-validated by looking at the run-time behavior of
features under different load conditions as shown in Figures
4 & 5. All features exhibit better-defined differences under
NL condition, while only one feature (TOT_CYC) exhibits
partially indiscernible behavior under FL condition. Such
distribution of features leads the models to more accurate
detection in general.

Table 2: Results using LDA model for F+R attack detection
System Condition Accuracy

(%)
Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

No Load 99.51 0.98 99.60 0.40
0.94Average Load 99.50 0.98 98.42 1.58

Full Load 99.44 0.98 87.76 12.24

Table 3: Results using LR model for F+R attack detection
System Condition Accuracy

(%)
Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

No Load 99.51 0.98 100 0
1.63Average Load 99.50 0.98 98.82 1.18

Full Load 99.47 0.98 92.28 7.72

Table 4: Results using SVM model for F+R attack detection
System Condition Accuracy

(%)
Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

No Load 98.82 0.98 33.72 66.28
1.29Average Load 90.01 0.98 1.70 98.30

Full Load 95.79 0.98 76.29 23.71

4.1.2 Detection Speed
Intrusion detection speed is another very important perfor-

mance indicator for run-time detection mechanisms. It is a
trade-off between timely intrusion detection and detection
overhead. F+R is a single encryption round attack. Therefore,
in case of NIGHTs-WATCH, we define detection speed as a
percentage of bits being encrypted before it can successfully
detect an attack. For RSA performing 1024−bit encryption
under F+R attack, the percentage of secret key bits being
encrypted before the ML models can raise flag will reflect
their detection speed. Authors of various attacks [3], [34]
claim that, theoretically, it is enough to retrieve up to 50%
secret key, while the rest can be attained through reverse-
engineering. Therefore, a safe bound on detection speed can
be detection as late as up to 50% of the secret key is being re-
trieved by F+R attack. Our experimental results reveal that all
three ML models used by the NIGHTs-WATCH were able to
detect F+R attack on 1024−bits RSA encryption in less than
2% of its completion, i.e., within the first 20−bits being en-
crypted by the victim under attack! Tables 2 through 4 refer to
detection speed of individual models. This speed is achieved
at the highest profiling granularity of NIGHTs-WATCH at
which it samples hardware events after every 10−bits being
encrypted. Each model cross-validates its detection results
on at least two consecutive True Positives before raising the
flag. We have tested our models with a coarse-grain sampling
of every 50− and 100−bits being encrypted. Resulting accu-
racy remains the same while system overhead reduces further,
which we discuss in Section 4.1.4.

4.1.3 Confusion Matrix
Confusion matrix gives a summary of prediction results on

a classification problem by showing the number of correct
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Figure 3: Receiver Operating Characteristic (ROC) Curves
for LDA & LR Models while detecting F+R Attack.

and incorrect predictions broken down by each class. Con-
fusion Matrix compliments the understanding of detection
accuracy for our models. We analyze each ML model sep-
arately to elaborate its Confusion Matrix. Tables 2 shows,
for all load conditions, the LDA model remains highly accu-
rate (up to 99.51%). A closer look at the miss-classifications
performed by model (0.49%) reveals that majority of them
are False Positives (FP). Table 3 shows similar results for LR
model with even lesser number of False Negatives (FN). For
SVM model, Table 4 shows that, though the accuracy remains
above 90%, the number of FPs and FNs vary significantly
under different load conditions. No Load and Average Load
conditions incur more FNs compared to Full Load condition.
SVM model in this case did not prove as effective as LDA
or LR models. Figures 3 show ROC curves for LDA & LR
models illustrating their diagnostic ability for F+R attack un-
der variable load conditions. ROC curves represent the ratio
between the attack cases classified as attack (True Positive)
to the no attack cases misclassified as attack (False Positive)
for LDA & LR classification models. The values for Area
Under the Curve (AUC) provide specific performance of each
model in Figure 3. Results in ROC curves show high rate
of True Positives, which reflect better accuracy and low rate
of False Positives. These results are motivated by the fact
that features under both NL & FL conditions offer significant
separation for better classification as shown in Figures 4 & 5.
4.1.4 Performance Overhead

Performance overhead plays an important role in deploya-
bility of detection mechanisms in real systems. As mentioned
in Section 4.1.2, detection granularity, which determines how
aggressively the detector profiles hardware events and makes
subsequent decisions, impacts performance overhead of de-
tection mechanisms. Our results, presented in Tables 2-4,
show only 1− 2% performance overhead of profiling and
detection combined for LDA, LR, and SVM models. These
results imply that the perceivable performance overhead of
NIGHTs-WATCH using any of these models is very low. We
measured these results at the highest sampling frequency
for hardware events. With reduced sampling frequency, this
overhead will be minimal.
4.2 Case Study-II: Detecting Flush+Flush

Our second case study presents experiments & results on
the detection of F+F attack. Current state-of-the-art reports

Figure 4: Selected ML Features under No load conditions for
RSA encryption: With & Without F+R Attack.

Figure 5: Selected ML Features under Full load conditions
for RSA encryption: With & Without F+R Attack.

that any detection mechanism for F+F attack does not exist.
It is a fast and high-resolution cache-based SCA that also
targets LLC with the exception that it is stealthier than F+R
attack. This stealthiness comes from the fact that F+F does
not make any memory accesses, contrary to any other cache
attack. Thus, itself as a running process, it causes no cache
misses and the number of cache hits is reduced to a mini-
mum due to the constant cache flushes. Authors in [35] claim
that the spy process in this case cannot be detected based
on cache hits and misses, or using state-of-the-art detection
mechanisms. The F+F attack does cause, however, more
cache misses and memory accesses for its victim process due
to constant and high speed flushing. We build our argument
around the the fact that detection mechanisms should indi-
cate the presence or absence of intrusion from the victim’s
perspective. Thus, specifically identifying which particular
process happens to be malicious is often not a requirement
to apply protection. If, and when, an intrusion is detected on
the victim process, the OS can take preventive measures such
as completely isolated or critical section execution of victim
process and/or relocation of co-located VMs etc. To the best
of our knowledge, in this work, we are the first to practically
demonstrate that F+F attack is successfully detectable using
hardware performance counters and machine learning mod-
els. We achieve considerably high detection accuracy on F+F
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attack. Next, we provide our results.
4.2.1 Detection Accuracy

Tables 5 through 7 show the detection accuracy achieved
by all ML models under different load conditions. LDA
model is able to show very high accuracy under all load con-
ditions, i.e., 99.97%, 98.74% and 95.20% for NL, AL and
FL conditions, respectively. The other two models perform
well under NL, but suffer from greater inaccuracy under FL
conditions. These results indicate that F+F, although a stealth-
ier attack, can be detected accurately by NIGHTs-WATCH.
In order to explain higher inaccuracy shown by LR and SVM
models under FL conditions, we can observe the behavior of
architectural features used by ML models as shown in Figure
6 and 7 for NL and FL conditions, respectively. Under NL
condition, most of the features show distinguishable behavior
while under attack and no-attack scenarios. However, in case
of FL condition, it is evident that all the features start to over-
lap under attack and no-attack scenarios as shown in Figure 7.
This behavior is in contrast to F+R attack where there were
at-least few features that showed distinguishable behavior
under FL as shown in Figure 5. This behavior of overlapping
features makes it harder for ML models to properly discern
attack scenario from no-attack scenario. However, it is very
interesting to see that the LDA model is still able to show
very good accuracy in case of FL conditions (95.20%).
4.2.2 Detection Speed

As indicated in the work of Gruss et al. [8], F+F attack on
AES requires at least 350-400 encryption rounds to reliably
guess the upper 4 bits of a secret key byte. Therefore, this
value sets an upper bound on detection speed in the sense
that a detection would be useful if it is done anytime before
400 encryption rounds are performed by AES while F+F
attack is in progress. We provide the detection speed of ML
models in terms of number of encryption rounds by which
the attack is detected by the ML model taken as a percentage
of 400 encryption rounds. For example, 25% detection speed
means that the attack was detected by the first 100 encryption
rounds. Tables 5 to 7 show worst-case detection speed for all
ML models used by NIGHTs-WATCH. F+F attack is always
detected by at most first 100 encryption rounds in all cases.
In the best-case scenario, we achieve detection speed as high
as within first 50 encryption rounds. The number of extra
cache misses incurred during each AES encryption round
while it is under F+F attack is not significant. Thus, high
sampling frequency does not help. It can become difficult
for ML models to discern attack and no-attack scenarios if
hardware events are sampled per encryption round or within
each encryption round (as values of hardware counters would
not be very distinguishable). That’s why hardware events are
sampled at lower granularity (at least after each 50 encryption
rounds) in case of F+F attack. This explains why detection
speed for F+F is lower compared to F+R in terms of number
of encryption rounds performed by the encryption algorithm.

Table 5: Results using LDA model for F+F attack detection
System Condition Accuracy

(%)
Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

No Load 99.97 25 75 25
1.18Average Load 98.74 25 89.26 10.74

Full Load 95.20 12.5 95.43 4.57
4.2.3 Confusion Matrix

Table 6: Results using LR model for F+F attack detection
System Condition Accuracy

(%)
Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

No Load 91.73 12.5 0 100
1.103Average Load 83.09 25 84.32 15.68

Full Load 75.86 25 98.39 1.61
Table 7: Results using SVM model for F+F attack detection

System Condition Accuracy
(%)

Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

No Load 97.42 12.5 0 100
0.79Average Load 70.64 12.5 94.56 5.44

Full Load 63.16 12.5 98.14 1.86

Similar to F+R attack detection, our ML models exhibit
miss-classification in this case as well. Tables 5 to 7 show
breakdown of miss-classifications in terms of False Positives
(FP) and False Negatives (FN). In most of the cases, the
majority of miss classifications are False Positives. The only
two exceptions are LR and SVM models under NL conditions.
For both cases, all miss classifications are False Negatives
shown in Tables 6 and 7. Figure 8 shows ROC curves for
LDA and LR models illustrating their diagnostic ability for
F+F attack. The ROC curves in this case show significant
variations under Full Load conditions. These ROC curves
validate our findings related detection speed and accuracy.
4.2.4 Performance Overhead

The profiling and detection overhead incurred by all three
algorithms is very small and ranges from 1.18%, 1.103%
and 0.79% for LDA, LR and SVM models, respectively, as
shown in table 5 to 7. This overhead can be further reduced
if hardware events are sampled at lower frequency. However,
sampling at lower frequency can result into delayed detection.

Figure 6: Selected hardware events under NL conditions for
AES encryption: With & Without F+F Attack.
5. CONCLUSIONS AND FUTURE WORK

This paper presents a novel detection mechanism, called NIGHTs-WATCH,
for access-driven cache-based side-channel attacks on modern processors.
NIGHTs-WATCH uses multiple ML models for detection purpose. These
models use real-time data from hardware performance counters to determine
cache-based intrusions on RSA and AES crypto-systems. The paper presents
experiments using two state-of-the-art access-driven cache-based SCAs to
demonstrate the detection capability and effectiveness of NIGHTs-WATCH.
We provide detailed analysis of results on detection accuracy, speed, system-
wide performance overhead and confusion matrix for used models. One
of the strengths of this work is that we provide experimental evaluation
using realistic system load conditions. We use standard SPEC benchmarks
to create No Load, Average Load, and Full Load conditions to train and
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Figure 7: Selected hardware events under FL conditions for
AES encryption: With & Without F+F Attack.

Figure 8: Receiver Operating Characteristic (ROC) Curves
for LDA and LR Models while detecting Flush+Flush Attack.
evaluate ML models. NIGHTs-WATCH shows considerably high detection
efficiency under variable system load conditions.

Our results show detection accuracy of 99.51%, 99.50% and 99.44%
for F+R attack in case of NL, AL and FL conditions, respectively, with
performance overhead of < 2% at the highest detection speed, i.e., within
1% completion of a single RSA encryption round. In case of Flush+Flush
(stealthier) attack, our results show 99.97%, 98.74% and 95.20% detection
accuracy for NL, AL and FL conditions, respectively, with performance over-
head of < 2% at the highest detection speed, i.e., within 12.5% completion
of 400 AES encryption rounds needed to complete the attack.

We also experimented with tree-based ML models like Random Forest
(RF) in this work, which shows good detection accuracy for both attacks.
Although, tree-based models achieve good accuracy, their implementation
complexity makes it harder to use them in real-time attack detection mech-
anisms like NIGHTs-WATCH. Moreover, in order to prove portability, we
performed experiments on different hardware such as Intel’s core i3−2120
CPU running on Linux Ubuntu 4.4.0−116−generic at 3.30-MHz. Our re-
sults show consistency. Due to space constraints, however, we have omitted
results on other ML models and hardware platforms. Timely detection of
intrusion using actual variations in process’s execution, measured directly
from hardware (particularly caches), can help the operating system to take
preventive measures such as halt or killing of identifiable malicious process,
completely isolated or critical section-first execution of victim process, or
relocation of co-located VMs etc. In future, we intend to integrate more ML
models in NIGHTs-WATCH and apply it on other cache-based SCAs.
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