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Introductory paragraph 23 

The African continent is facing one of the driest periods in the past three decades and continuing 24 

deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for 25 

improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we used 26 

a new satellite data set based on vegetation optical depth derived from low frequency passive micro-27 

waves (L-VOD) to quantify annual aboveground woody carbon changes in sub-Saharan Africa be-28 

tween 2010 and 2016. Gross gains in carbon stocks (+1.74 Pg C y-1) were slightly overbalanced by 29 

gross losses (-1.84 Pg C y-1) of which ~40% (-0.7 Pg C y-1) occurred in drylands (53% of the land 30 

area). The overall net change in drylands was -0.07 Pg C y-1 associated with drying trends, and a net 31 

change of -0.03 Pg C y-1 was observed in humid areas. These trends reflect a high inter-annual varia-32 

bility with very wet years (2011 and 2013; net changes  +0.33 and +1.13 Pg C) and a very dry year 33 

(2015; net change -1.1 Pg C) associated with carbon gains and losses respectively. This study demon-34 

strates, first, the applicability of L-VOD to monitor the dynamics of carbon loss and gain due to 35 

climate variations, and second, the importance of the highly dynamic and vulnerable carbon pool of 36 

dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area. 37 

Introduction 38 

The forests and savannahs of Africa have attracted particular attention because both climate change 39 

and land-use pressure have large impacts on the carbon stocks of woody vegetation, with immediate 40 

consequences for the global carbon balance1-4. Whereas deforestation is a well-known threat to rain-41 

forests2,5-8, savannahs occur in areas of climatic extremes and the mostly sparse vegetation is very 42 

sensitive to dry years9. However, the net balance of carbon stocks in the savannah vegetation, changes 43 

in plant growth rates (negatively impacted by humans and dry periods but positively affected by ele-44 

vated CO2
1) and altered mortality of the woody vegetation are currently unknown10,11. We also do not 45 

know if semi-arid Africa, which was identified as an important carbon sink with a peak in the ex-46 

tremely wet year of 201112, has become a carbon source following the recent extreme El Nino in 47 



2015-201613. Recent work showed that the number of trees in global drylands has been greatly un-48 

derestimated14: a carbon stock neglected in global assessments15. Knowledge of the amount, distribu-49 

tion, and turnover of carbon in African vegetation is crucial for understanding the effects of human 50 

pressure and climate change16, but the shortcomings of optical and radar satellite products and the 51 

lack of systematic field inventories have led to considerable uncertainty in documenting patterns of 52 

carbon stocks, and their long-term change over the African continent3,4. Static carbon maps have been 53 

developed based on field plots and satellite data using LIDAR, visible/infrared reflectivities and radar 54 

backscattering. These maps constitute the best benchmarks to date for carbon stored in the live woody 55 

vegetation17-21. The application of different techniques, however, complicates the direct comparison 56 

of these maps, and results differ in magnitude and spatial patterns20. Importantly, also the temporal 57 

dynamics of carbon stocks cannot be derived from the above benchmark maps, impeding timely, 58 

repeated, and reliable carbon assessments22. 59 

  60 

In contrast, the vegetation optical depth (VOD) derived from high frequency (>5 GHz) passive mi-61 

crowave-based satellite systems has been used to monitor changes in vegetation carbon23,24. Although 62 

the coarse spatial resolution of passive microwaves (43 km gridded at 25 km) has limited their appli-63 

cation for detecting the spatial extent of deforestation, this technology is an attractive alternative to 64 

other remote sensing systems because  microwaves at frequencies lower than 15 GHz are almost 65 

insensitive to atmospheric and cloud effects. However, high frequency VOD saturates over forested 66 

areas and is generally not considered as an accurate tool for carbon monitoring5,7. The Soil Moisture 67 

and Ocean Salinity (SMOS) mission launched in 2009 was the first passive microwave-based satellite 68 

system operating at L-band (1.4 GHz) frequency25. These low frequencies allow the satellite to sense 69 

deeper within the canopy layer with less influence by the green non-woody plant components. The 70 

VOD derived from SMOS, henceforth L-VOD, is thus less sensitive to saturation effects26, marking 71 

an important step forward in the monitoring of carbon as a natural resource. In this study, we apply 72 

for the first time L-VOD to quantify the inter-annual dynamics of aboveground carbon stocks for the 73 



period 2010-2016. This study does not attempt at improving current aboveground carbon stock maps 74 

nor at a comparison with state-of-the-art data and maps on carbon stocks24,19,21. Based on calibrated 75 

relationships between L-VOD and an existing benchmark map we present and analyse temporal pat-76 

terns of gains and losses in different humidity zones of sub-Saharan Africa in response to recent dry 77 

years. 78 

 79 

RESULTS 80 

 81 

Estimating Africa’s carbon stocks with passive microwaves 82 

L-VOD averaged for 2010-2016 was linearly correlated with a benchmark map on aboveground live 83 

biomass carbon (hereafter the term carbon stocks is used) over Africa20 (Fig. 1a). Although the bench-84 

mark map contains bias and uncertainties (Supplementary Fig. 1, Supplementary Table 1), the com-85 

parison clearly demonstrates the strong relationship between L-VOD and carbon stocks. The refer-86 

ence map20 was thus used as a training set to convert L-VOD to carbon per unit area (Mg C ha-1). The 87 

L-VOD carbon density map was strongly and linearly correlated with the reference map (cross vali-88 

dated r²=0.92 and RMSE=12 Mg C ha-1, p<0.01, n=26199) (Supplementary Figs 1,2). Baccini et al.20 89 

reported the total C stocks of Africa to be 64.5 Pg C (±13 at the 95% confidence level (CL)), which 90 

was reproduced (Fig. 1b) using L-VOD predicting a C stock of 64.0 Pg C (±10 at the 95% CL, esti-91 

mated by 10-fold cross validated RMSE). In contrast to L-VOD, high-frequency X-band VOD24 from 92 

AMSR-2 saturated for values >100 Mg C ha-1 (Fig. 1b) and optical satellite data for values >50 Mg 93 

C ha-1 (Supplementary Fig. 2). 94 

We stratified the L-VOD time series analysis of African vegetation into (1) drylands versus humid 95 

areas, as defined by the ratio between annual precipitation and potential evapotranspiration14, and (2) 96 

four merged land cover classes27 (Supplementary Table 1). The ability of L-VOD to predict C stocks 97 

was similarly strong for both drylands at 10.5±2.9 Pg C  (r²=0.74, p<0.01, RMSE=2.4 Mg C ha-1, 98 

n=13418) and for humid areas at 53.1±7.9 Pg C (r²=0.92, p<0.01, RMSE=7.5 Mg C ha, n=12781). 99 



The spatial distribution of carbon stocks at continental scales was relatively even among the land 100 

cover classes, with open trees/shrubs (including agricultural lands) comprising almost half the carbon 101 

stocks of rainforests (Supplementary Table 1). Mean carbon density was correlated with mean soil 102 

moisture and mean annual rainfall with changing classes of land cover along the rainfall gradients 103 

(Fig. 1c,d). The correlation between carbon density and rainfall disappears at around 1600 mm rainfall, 104 

and carbon density was markedly higher for rainforests than for the remaining classes (Fig. 1d).  105 

 106 

 107 

Figure 1: Relationships between carbon density in biomass and VOD in sub-Saharan Africa. a, 108 

Regression between biomass carbon density from Baccini et al.20 (obtained from GLAS space-borne 109 

data and forest inventories 2007/2008) and average low frequency L-VOD (2010-2016) from this 110 

study, showing no saturation in the relationship. b, Same regression with high frequency X-band VOD 111 

from AMSR-2 (average 2012-2015); This relationship saturates at biomass values > 100 Mg C ha-1. 112 

c, Relationship between L-VOD estimated carbon density (mean 2010-2016) and SMOS-IC surface 113 

soil moisture (mean 2010-2016) and with d, mean annual rainfall (CHIRPS) for 2010-2016 (colours 114 



attribute a land-cover class to each pixel of 25 x 25 km). 115 

 116 

Africa’s carbon stocks are highly dynamic 117 

To compute annual changes in C stocks, the coefficients derived from the relationship between Bac-118 

cini’s aboveground biomass carbon map20 and mean L-VOD (Fig. 1a) were applied for each yearly 119 

median L-VOD map separately. This space-for-time substitution was applied because no inventory 120 

data at such a fine temporal resolution were available. Significant trends in carbon were found using 121 

per-pixel linear trends in annual carbon density for 2010-2016 (p<0.05, 7 years) (Fig. 2a). Carbon net 122 

changes (increases and decreases) were computed by comparing the difference in C stocks between 123 

the years 2010 and 2016 (Supplementary Table 1). Gross losses and gains were calculated by cumu-124 

lating positive (respectively, negative) changes between all the consecutive years from 2010 to 2016 125 

(Fig. 2b-f). Gross changes are larger than net changes as losses and recovery occur in the same 126 

pixel/region over the study period. The balance between gross gain and gross loss equals the net 127 

changes and is shown in Fig. 2b.  128 

Over the study period, net changes in carbon were relatively balanced in most latitudinal bands (Fig. 129 

2c). Across sub-Saharan Africa, gross gains (+1.74 Pg C y-1) were offset by gross losses (-1.84 Pg C 130 

y-1) with an overall negative net carbon budget for Africa (-0.1 Pg C y-1). The majority of the net 131 

losses occurred in drylands (-0.07 Pg C y-1) and humid areas experienced a smaller carbon loss (-0.03 132 

Pg C y-1). Notably, a gross carbon loss of -0.7 Pg C y-1 occurred in drylands and is partly compensated 133 

by a gross gain of +0.63 Pg C y-1. This gross loss per year represents ~5% of the dryland total carbon 134 

stocks in Africa (10.3±3.2 Pg C in 2010) (Fig 2f). By contrast, yearly gross losses from humid areas 135 

represent ~2% (-1.13 Pg C y-1) of the total stock (54.9±8.1 Pg C in 2010), with noticeable areas in the 136 

Democratic Republic of Congo, Ethiopia, Uganda, Ivory Coast, Ghana and Nigeria (Fig. 2b,d). Gross 137 

gains in humid areas were +1.10 Pg C y-1 mainly located around the central African forest of the 138 

Congo basin (Fig. 2b,c,e,f). The magnitude of gross fluxes being much larger than net fluxes illus-139 

trates the highly dynamic variations of carbon stocks during the study period. 140 



Areal and net changes in carbon stocks were close to zero when averaged per land cover class at 141 

continental scale (Fig. 2h) except in the open trees/shrubs class with gross gains being 0.09 Pg C y-1 142 

below gross losses (Supplementary Fig. 5, Table 1). Using Senegal as a case study site, the observed 143 

L-VOD decrease was related with a mass dying of shrubs (2013-2015) caused by a prolonged dry 144 

period which was documented by very high spatial resolution satellite and field data from 2015, see 145 

ref 28 for further documentation of this event (Fig. 3, Supplementary Fig. 6). Stocks of woodlands 146 

considerably increased north ~10°S but decreased further south. Gross losses in rainforests were -0.3 147 

Pg C y-1, presumably caused by deforestation (Fig. 2b-d). Gross gains (-0.29 Pg C y-1) almost com-148 

pensated C losses in rainforests. Using a simple bookkeeping model, Houghton et al.29 reported an 149 

annual carbon loss from deforestation of -0.4 Pg C y-1 in Africa, which is comparable to our observed 150 

values for rainforests (-0.3 Pg C y-1), although below-ground biomass carbon changes and delayed 151 

soil carbon emissions after deforestation, which are part of the bookkeeping model29, are not included 152 

in the L-VOD based carbon estimates. 153 

For individual years, the largest net losses (-1.1 Pg C for all Africa, -0.39 for drylands and -0.73 Pg 154 

C for humid areas) were for found in 2015 (Fig. 2g), which is a comparable numbers as the net carbon 155 

fluxes measured by the Orbiting Carbon Observatory-2 for tropical Africa  (-0.8 Pg C) during the 156 

severe El Niño30. Overall positive net changes were observed in 2011 (+0.33 Pg C) and 2013 (+1.12 157 

Pg C). Interestingly, net changes in 2014 were positive in drylands.(+0.16 Pg C) but negative in humid 158 

areas (-0.28 Pg C). Contrastingly, the year 2016 was a considerable C source in drylands (-0.42 Pg C) 159 

but a sink for humid areas (+0.2 Pg C). 160 

We applied two ecosystem models to test the performance of state-of-the-art methods commonly used 161 

to assess large-scale temporal C dynamics. The spatial patterns of carbon stored in woody vegetation 162 

simulated by LPJ-GUESS (r=0.85, p<0.01) and ORCHIDEE-MICT (r=0.87, p<0.01) agreed reason-163 

ably well with L-VOD carbon estimations (Fig. 2i; Supplementary Fig. 2). Drylands, however, 164 

showed a share of the total pool of African carbon stocks of 17% in L-VOD but only 6% in LPJ-165 

GUESS and 8% in ORCHIDEE-MICT, possibly because models describe vegetation as either grass 166 



or tree plant functional types but do not incorporate mixed types occurring in savannahs.  167 

 168 

 169 

Figure 2: Changes in carbon stocks for 2010-2016. a, Pixels of significant (p<0.05) positive (green) 170 

and negative (red) changes (linear trend; p<0.05) in aboveground carbon density based on L-VOD 171 

for the 2010-2016 period. b, Net changes in C density between 2010 and 2016. c, latitudinal sums of 172 

gross losses and gains. d, Cumulative gross losses (time integral of losses) and e, cumulative gross 173 

gains in C density. f,  Fractional gross losses and gains per year in the L-VOD data. g,  Net carbon 174 

changes for individual years. h, Areas affected by significant (p<0.05) positive (green) and negative 175 



(red) changes in carbon density for L-VOD 2010-2016 summed per latitude band. i, Latitudinal av-176 

erages of L-VOD carbon density (dark grey) compared to LPJ-GUESS (orange) and ORCHIDEE-177 

MICT (purple) simulated values of above ground biomass carbon. 178 

 179 

 180 

Figure 3: Shrub die off in Senegal. a, Pixels of significant changes (linear trend; p<0.05) in L-VOD 181 

carbon density (2010-2016). b, L-VOD carbon density (average of pixels in the circle) decreased 182 

rapidly after 2013, reflecting widespread mortality of Guiera senegalensis shrubs between 2013 and 183 

2015 due to a prolonged dry period. This event was documented by c, field photos (2015) and d, very 184 

high spatial resolution satellite imagery (from the WorldView-2 and QuickBird-2 satellites; Supple-185 

mentary Fig. 6)28. 186 

 187 

Recent dry periods have reduced carbon stocks in dryland areas 188 

Soil moisture31 showed similar latitudinal patterns as L-VOD carbon density and explained a large 189 

fraction of the observed dynamics in carbon stocks between 2010 and 2016 (Fig. 4a,b). Although the 190 

fire frequency increased in 2016, fewer fires occurred in areas of major L-VOD decreases (Fig. 4c). 191 

These recent decreases in L-VOD estimated carbon stocks were most dramatic in southern Africa, 192 

which was approximately reproduced by the ecosystem models (Fig. 4d,e). Moreover, rainfall data32 193 

and vegetation greenness indicated abnormally dry conditions in most parts of Africa in recent years, 194 

particularly during the severe El Niño episode of 2015/2016 (Fig. 4f,g), indicating that dry years have 195 



caused the changes in L-VOD, rather than impacts from human disturbance and fires. Prior to 2010, 196 

conditions were stable and extraordinarily positive anomalies in carbon density and soil moisture 197 

were recorded for 2011 (Fig. 4a,b), confirming previous studies based on ecosystem models and 198 

greenness satellite data12. After 2011, carbon stocks estimated by L-VOD and simulated by ecosystem 199 

models decreased considerably (Fig. 4b,d,e) and southern Africa turned from being a carbon sink into 200 

a source, with considerable carbon losses in 2015/2016. Simulations by ecosystem models suggested 201 

that the negative trend in dryland carbon stocks persisted over the 1982-2015 period, beyond the 202 

SMOS observation era (Fig. 4h-j). Simulated increases in humid areas around 5°N-10°S were less 203 

strong in L-VOD (Fig. 4e), but observed decreases around 0° were not shown in the climate driven 204 

ecosystem models, suggesting deforestation.  205 

Overall, most of the detected decreases in carbon stocks were related with abnormally low soil mois-206 

ture (Fig. 5a). Note however that neither rainfall nor soil moisture can explain the large-scale in-207 

creases of carbon for ~5ºN that may either reflect non-symmetrical net primary productivity responses 208 

to wet years (positive convexity), improved forest management or a decrease in wood fuel gathering 209 

in regions affected by conflicts and migration to urban areas (such as South Sudan, Central African 210 

Republic). At country scale, carbon stocks were found to increase in Sudan, the Central African Re-211 

public, Cameroon, Gabon, Congo, Somalia, and Tanzania (Fig. 5b), in spite of mostly dry conditions 212 

and significant FAO reported deforestation in these countries33. Carbon stocks decreased considerably 213 

in Ghana, Ivoy Coast, Nigeria, Uganda and Zambia, which may partly be caused by deforestation. 214 

Despite their lower woody covers compared to forested areas, large losses of carbon were found in 215 

South Africa, and are related with dry years. 216 

The sensitivity of inter-annual variability in carbon density to dry years was assessed by a Spearman 217 

rank correlation between carbon density and soil moisture (Fig. 5c; Supplementary Fig. 7). This 218 

showed that country level carbon stocks were less sensitive to dry years in countries of humid regions 219 

whereas stocks were most sensitive in countries of drylands.  220 

 221 



 222 

 223 

Figure 4: Hovmöller diagrams showing anomalies (z-score) for Africa for each year and latitude. 224 

a, Anomalies for 2010-2016 of SMOS soil moisture, b, L-VOD carbon density, c, MOD14CMH fire 225 

frequency d, LPJ-GUESS simulated aboveground woody carbon density. Model results for the year 226 

2016 could not be displayed because harmonized gridded climate forcing data were not available to 227 

drive these models at the time of this analysis. e, Change of aboveground carbon density simulated 228 

by the ecosystem models and observed in the L-VOD product between 2010 and 2015. f, Anomalies 229 

for 1982-2016 of the number of rainy days (>1 mm), g, vegetation greenness (annually summed nor-230 

malised difference vegetation index (NDVI)), carbon density simulated with the ecosystem models h, 231 

LPJ-GUESS and i, ORCHIDEE-MICT. j, Linear trends of above-ground carbon density in the eco-232 

system models for 1982-2015. 233 

 234 



 235 

 236 

Figure 5: Soil moisture as driver of carbon stock dynamics. a, Direction and magnitude of carbon 237 

change (2016 compared with 2010; summed per latitude) are shown for areas with positive (green) 238 

and negative (red) linear trends in soil moisture (2010-2016). b, Average carbon density(in Mg C ha-
239 

1) and changes in carbon stocks at the country level (2016 compared with 2010) summed for each 240 

country (in Pg C). Trends in annual soil moisture (slope of linear regression for 2010-2016) averaged 241 

for each country are shown as purple (negative trend) and blue (positive trends) circles. c, Correla-242 

tions between annual carbon stocks and annual soil moisture (Spearman’s rho, n=26711) averaged 243 

along the latitudes.  244 

 245 

Discussion 246 

Assessing aboveground carbon stocks and their changes using repeated inventories with a gridded 247 

sampling scheme is laborious and impossible to implement in all African countries, so assessments 248 

with short intervals for understanding changes in stocks from year to year are unrealistic at continental 249 

scale18. SMOS-IC L-VOD data provide a valuable alternative and the first tool for rapid monitoring 250 

of carbon stocks and their changes. Our comparison with an existing benchmark map20 provided 251 

highly satisfactory correlations, supporting the utility of the data. The coarse spatial resolution (25 252 



km) sets clear limits for the operational application of the L-VOD data set in relation to local scale 253 

forest monitoring, yet it is a major leap forward in assessments of C dynamics at the regional to global 254 

scale. Also, the applied benchmark map inevitably includes propagated uncertainty (Supplementary 255 

Table 1), and also the conversion adds some uncertainty to the final prediction. However, a deviation 256 

of L-VOD does not imply that the benchmark map is closer to reality, and an independent calibration 257 

of L-VOD with field survey, LIDAR and very high spatial resolution imagery for a stand-alone bio-258 

mass product is a logical next step. For this study, however, the strong correlation between L-VOD 259 

and the benchmark map enabled us to provide a first application of low frequency passive microwaves 260 

to estimate temporal changes in C units at the sub-continental scale. The method applied in this study 261 

is preferable to optical remote sensing, because the L-VOD data are only controlled by the biomass 262 

of the vegetation and do not seem to saturate in forests. Moreover, although high frequency X-band 263 

VOD has been successfully applied for global biomass mapping24, the X-VOD sensor is more sensi-264 

tive to green vegetation and restricted to the upper green canopy layer when the vegetation is dense23. 265 

This is visible from a higher inter-annual variability in mean annual values of X-VOD (0.2±0.16 SD) 266 

than we observed in L-VOD (0.04±0.02 SD), and also intra-annual variations of monthly L-VOD 267 

data are low (mean amplitude of 0.2±0.13 SD). The advantage of L-VOD over previous methods is 268 

thus that it allows the continuous monitoring of carbon stocks, annually or even more frequently, for 269 

both forests and savannahs. Our results demonstrated the potential utility of L-VOD as a complemen-270 

tary data source for quantifying and monitoring carbon stocks for national reports and large-scale 271 

efforts, such as the United Nations Framework Convention on Climate Change (UNFCCC) and the 272 

Intergovernmental Panel on Climate Change (IPCC), especially for semi-arid regions with little in-273 

ventory data.  274 

Continuing deforestation and forest degradation supposedly contributed to the high cumulative C 275 

losses in humid areas. Forest degradation does not strongly reduce carbon stocks and is followed by 276 

permanent recovery, hence it needs to be explored whether this process may be concealed by satura-277 

tion or whether it could be detected from L-VOD.  278 



In spite of C losses presumably caused by deforestation, we found that carbon stocks in rainforests 279 

remained relatively stable over the period 2010-2016 and were not evidently correlated with varia-280 

tions in rainfall and soil moisture. On the other hand, carbon stocks outside densely forested areas 281 

were much more variable and were highly sensitive to climatic fluctuations, with two extreme events 282 

consisting of a very wet year in 2011 and a very dry one in late 2015-early 2016. Earlier studies1,34,12 283 

have often reported global increases in dryland carbon stocks, which has led to the general under-284 

standing that drylands may serve as carbon sinks. Our study found that dry years have reversed this 285 

trend for 2010-2016 in areas where such increases in woody vegetation (and thus carbon stocks) have 286 

occurred in the past (e.g. southern Africa and Senegal1,34.35,36), demonstrating that climate controls 287 

short-term variations in carbon stocks at large scales. 288 

Previous studies of carbon dynamics in Africa were based on ecosystem models and optical satellite 289 

observations both only measuring changes in the green fraction rather than in biomass. Our observa-290 

tional data on dryland vegetation C stocks showed substantially higher values than simulated in the 291 

two ecosystem models, suggesting that models underestimate the crucial role of woody vegetation in 292 

savannahs as carbon sinks and sources14,20. The large losses of carbon from African drylands during 293 

2010-2016 support the view that the large area of drylands and their highly variable carbon stocks 294 

make these ecosystems important in the global accounting of the carbon balance, even though mean 295 

carbon stocks are generally quite low per unit area. With such inter-annual variability, it is difficult to 296 

conclude from the 7 years of observation presented here if the observed trends reflect quasi-decadal 297 

variations or if it is a sign of longer-term dynamics. However, considerable losses were observed in 298 

2010-2016, so we need to reassess whether, in the long term, woody vegetation in African savannas 299 

will indeed continue to be a carbon sink37. If dry years become more frequent38, large-scale carbon 300 

losses may exacerbate climate change, particularly in dry areas. Our study thereby highlights the 301 

importance of timely monitoring of both tropical deforestation and the highly dynamic woody carbon 302 

stocks of savannah ecosystems for assessments of global carbon stocks.   303 



Data and Methods 304 

 305 

Passive microwaves for soil moisture, VOD and carbon estimation. The estimates of biomass were 306 

computed from the SMOS L-VOD product in the IC version39. It is a global product gridded at 25 km 307 

spatial resolution and 1-day temporal frequency. The SMOS products (soil moisture and L-VOD) are 308 

computed from a two-parameter inversion of the L-MEB model (L-band Microwave Emission of the 309 

Biosphere) from the multi-angular and dual-polarized SMOS observations26,40. Soil moisture and L-310 

VOD products are independent and weakly correlated (Fig. 1c). In the newly developed IC version, 311 

these products are independent of the use of auxiliary data from other space-borne observations or 312 

simulations from atmospheric models (only surface temperature estimates from ECMWF (European 313 

Centre for Medium-Range Weather Forecasts) products are used in the L-MEB inversion). We applied 314 

several steps of filtering to retrieve relatively robust and stable annual estimates: First, water bodies 315 

and pixels with on average less than 30 valid observations per year were masked out from the analysis. 316 

Then, daily L-VOD values were aggregated to yearly (median) values for 2010-2016. If less than 50 317 

observations were valid for a particular year, the pixel values of these years were replaced by the 318 

long-term mean. This left 82% (2010), 93% (2011), 95% (2012), 92% (2013), 93% (2014), 94% 319 

(2015) and 93% (2016) of the pixels with more than 50 observations per year which were used for 320 

the analysis. SMOS L-VOD was then converted to carbon density using the biomass map from Bac-321 

cini at al.20 (which was obtained with GLAS space-borne data and forest inventories from 2007/2008) 322 

as a reference (aggregated to 25 km by averaging) by a linear regression with mean L-VOD (2010-323 

2016). Biomass was converted to carbon by using a factor of 0.520. The coefficients from the regres-324 

sion were used to convert L-VOD into carbon density (Mg C ha-1), which was then applied separately 325 

to each year from 2010 to 2016 to quantify the dynamics in Mg C ha-1. Conversion to carbon stocks 326 

weas achieved by multiplying carbon density with the amount of hectare covered by a pixel. C stock 327 

statistics per land-cover/humidity class were derived by summing the values of the pixels. 328 

Uncertainty. Due to the coarse spatial resolution of the SMOS data, a pixel may contain a mix of 329 



deforestation, regeneration, livestock pressure, conservation, fires, shrub encroachment and other 330 

events, resulting in a mix of carbon gains and losses that cannot be singled out. Moreover, different 331 

land cover types (e.g. forests, cropland and savannas) are often mixed within a single pixel. The coarse 332 

spatial resolution therefore renders the clear attribution of carbon changes to specific events impos-333 

sible, unless they are large scale events (like climate perturbations). Our analysis thus presents the 334 

results of large scale averages (e.g. latitudinal) and concentrates on temporal rather than spatial vari-335 

ations. Furthermore, although annual median values have shown to be stable, remaining noise cannot 336 

be entirely excluded, and may locally impact on inter-annual variations. It is, however, unlikely that 337 

averages per latitude, land cover class or per humidity zone are biased by noise, which is supported 338 

by the very low inter- and intra-annual variations of L-VOD (on average 0.04 and 0.2 respectively). 339 

This study does neither aim at improving existing biomass maps nor did we assume the values of the 340 

benchmark map as free of errors and representing reality. The benchmark map includes propagated 341 

uncertainties from allometric equations, the LIDAR model and the random forest extrapolation20. 342 

These uncertainties are shown in Supplementary Table 1 and the numbers have to be taken into ac-343 

count when interpreting the results; we refer to Baccini et al.20 for further details. Furthermore, the 344 

conversion of L-VOD to carbon density propagates uncertainty which was assessed by a 10-fold cross 345 

validation. Here the data were randomly split in 10 folds of equal size, which were used to predict the 346 

omitted values. The root of the mean squares of all folds gives the cross validated RMSE. We reported 347 

the median RMSE at the 95% confidence level for different classes as ±xy; for a full list, see Supple-348 

mentary Table 1. 349 

Yearly anomalies were calculated by the z-score: (value - mean)/standard deviation. Net C changes 350 

were estimated by the difference of the carbon maps of 2010 and 2016. Gross losses (gains) were 351 

calculated by cumulating negative (positive) differences between the consecutive years. This allows 352 

to quantify the effect of deforestation (or dry years) without considering regeneration. That calcula-353 

tion assigns a per-pixel deforestation fraction per pixel and per year, with a corresponding amount of 354 

C regrowth being deduced from the deforestation rate during the next year.  355 



 356 

As for L-VOD, soil moisture from the SMOS mission29,40 was applied in the IC version39. A 30-day 357 

median was averaged for each year as a robust proxy for available soil moisture in the root zone. 358 

Although soil moisture was derived from the same sensor as L-VOD, the variables are independent 359 

thanks to the multi-angular capabilities of the SMOS sensor40 and Fig. 1c shows that the correlation 360 

between SM and L-VOD is weak. 361 

 362 

Rainfall data. We used CHIRPS (v2) daily rainfall data32, aggregated to SMOS resolution (average). 363 

The number of rainy days per year were counted as days with rainfall >1 mm. Yearly anomalies in 364 

rainfall and soil moisture were calculated using the z-score: (value - mean)/standard deviation. 365 

 366 

Landcover and humidity classes. ESA’s CCI L4 land cover27 for 2015 was aggregated to 25 km 367 

(majority). We reduced the number of classes to four (open trees/shrubs, shrubland, woodland, and 368 

rainforest), sorted by potentially increasing woody cover and carbon density. We merged all classes 369 

having scattered trees and shrubs in the class open trees/shrubs, which includes croplands along all 370 

rainfall zones, open trees, sparse vegetation and grassland. Note that areas converted from forest to 371 

cropland (e.g. in West Africa, Madagascar) are thus included in this class, which thus also includes 372 

remnants of forests, i.e. cropland/forest mosaics (Supplementary Fig. 3). Moreover, due to the large 373 

pixel size, a pixel free of trees or shrubs does not exist. Shrublands potentially have a dense woody 374 

cover, but the general capacity to store C is low due to the small size of the shrubs. Woodlands include 375 

open and closed tree cover, mostly located in the sub-humid and humid zones. This included the 376 

Miombo woodlands. Rainforest are closed forest areas around the equator and at the West African 377 

coast, located in areas above 1500 mm rainfall per year. 378 

 379 

Additional data. Commercial satellite data were available via the NextView licence from Digital-380 

Globe Inc. and were used for illustration (Fig. 3 and Supplementary Fig. 6). The images were from 381 



the WorldView-2 and QuickBird-2 satellites and included multispectral imagery, which were 382 

pansharpened to a spatial resolution of 50 cm28. GIMMS-3g NDVI was used as a proxy for vegetation 383 

greenness. We summed the bi-monthly NDVIs for each year for 1982-2016 which is widely used to 384 

estimate the annual activity of green vegetation42. Annual fire frequency was derived from 385 

MOD14CMH by averaging monthly values.  386 

 387 

Ecosystem models. ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) is a 388 

process-based dynamic global vegetation model (DGVM) developed for simulating carbon fluxes, 389 

and water and energy fluxes in ecosystems, from site level to global scale43. In this study, an updated 390 

version known as ORCHIDEE-MICT (aMeliorated Interactions between Carbon and Temperature) 391 

revision 4080 was run on an African grid using the 6-hourly CRU+NCEP reconstructed climate data 392 

at 2o × 2o spatial resolution44. The ESA CCI Land Cover product27 for the year 2010 was used to 393 

produce a Plant Functional Type (PFT) map used in ORCHIDEE-MICT model, following the meth-394 

odology presented by Poulter et al.45,46. An updated release of the historical land-use forcing dataset 395 

LUHv2h (http://luh.umd.edu/data.shtml; updated from LUHv147 were applied to this reference PFT 396 

map to constrain the land-cover changes of forest, natural grassland, pasture, and cropland during the 397 

period 1860-2015 using the backward method (BM3) following Peng et al.48. The simulation run for 398 

this study used forced vegetation distribution maps and outputs on woody carbon density (sap- & 399 

heartwood) were resampled to L-VOD resolution (bilinear). 400 

 401 

LPJ-GUESS49 is a dynamic vegetation model that simulates the global distribution of vegetation as 402 

well as the carbon and nitrogen cycling within vegetation and soils. It applies a set of 12 plant func-403 

tional types (PFTs) with different morphological, phenological and physiological characteristics, of 404 

which 10 represent tree types and 2 represent herbaceous vegetation. For the simulation of woody 405 

aboveground biomass, LPJ-GUESS was forced with monthly gridded meteorological station data at 406 

a spatial resolution of 0.5°×0.5° from the Climatic Research Unit of the University of East Anglia 407 



(CRU ts 3.24.0150), monthly model-derived estimates of nitrogen deposition51 and annual atmos-408 

pheric CO2 concentration based on ice core data and atmospheric observations52,53 in a simulation for 409 

the period 1901-2015. The simulation was preceded by a 500-year spinup applying the first 30 years 410 

from the climate forcing in a repeated manner. Land use was represented with a simple implementa-411 

tion following Ahlström et al.34, applying historical reconstructions of land use from Hurtt et al.47. 412 

Annual maps of woody carbon density (sap- & heartwood) were resampled to L-VOD resolution 413 

(bilinear). 414 

Data availability. CHIRPS rainfall data is freely available at the Climate Hazard Group 415 

(http://chg.geog.ucsb.edu/data/chirps/). SMOS-IC soil moisture and L-VOD data will be made pub-416 

licly available via CATDS (Centre Aval de Traitement des Données SMOS) upon acceptance of the 417 

manuscript. Also available for public are soil moisture and L-VOD in the versions L3 and L4 at 418 

CATDS (https://www.catds.fr/). Baccini’s biomass map including an uncertainty map is freely avail-419 

able from Global Forest Watch. Model results and the L-VOD carbon maps are available from the 420 

authors upon request.  421 
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Supplementary 571 

 572 

Table 1 | Changes in carbon per land cover and humidity zone. Carbon density, above-ground bio-573 

mass carbon stocks, net and gross (cumulative gain or loss of the consecutive years) changes and 574 

area per land cover class and humidity zone (drylands=arid+semi-arid+dry-subhumid). The cross 575 

validated RMSE is shown as ±, the propagated uncertainty from the benchmark map is shown in 576 

brackets (both uncertainty values at the 95% CL). Note that open trees/shrubs include croplands and 577 

appear along all rainfall zones (Fig 1c). Woodlands are located in sub-humid and humid zones (>600 578 

mm rainfall) and rainforests around the equator with rainfall being above 1500 mm. See also Sup-579 

plementary Figs 3,4. 580 

 C density 

(Mg C ha-1) 

 

C stock 

2010 

(Pg C) 

C stock 

2016 

(Pg C) 

 

Net C 

change * 

(Pg C y-1) 

 

Gross C 

gain # 

(Pg C y-1) 

Gross C 

loss ## 

(Pg C y-1) 

 

Area 

(km² 

*1000) 

Land 

cover clas-

ses 

Shrubland 13.1 ±3.6 (2.8) 5.3±1.4 (1) 5.3±1.4 (1) 0.002  +0.35 -0.35 4 123 

Open 

trees/shrubs 

15.8 ±2.6 (3.3) 11.2±2.3 

(2.1) 

10.4±2.1 

(2.1) 

-0.08 +0.45 -0.54 7 030 

Woodland 41.6 ±6 (12) 22.9±3.4(7) 22.9±3.4(7) -0.004 +0.58 -0.57 5 550 

Rainforest 112 ±12 .7(22) 24.2±3 (5) 24.1±3 (5) -0.008 +0.29 -0.30 2 214 

Humidity 

classes 

Drylands 10.2 ±2.4 (2) 10.3±3.2 

(1.8) 

9.8±3.1 

(1.8) 

-0.07 +0.63 -0.70 11 322 

Humid areas 56.6 ±7.5 (14) 54.9±8.1 

(11) 

54.6±8.0 

(11) 

-0.03 +1.10 -1.13 9 923 

Africa 32.5 ±4.5 (7.5) 65.5±11 

(13) 

64.8±11(13) -0.1 +1.74 -1.84 21 245 

 581 

* defined as the difference between 2016 and 2010 582 

# defined as the time integral of all carbon gains counted positively since 2010 583 

## defined as the time integral of all carbon losses counted negatively since 2010  584 



 585 

 586 

 587 

Figure 1 | a, Difference in carbon density estimated with SMOS-IC L-VOD and Baccini’s benchmark 588 

map1. Positive (red) values mean higher values in L-VOD carbon density and negative (blue) values 589 

mean higher values in Baccini’s carbon density. b, Carbon density estimated with SMOS-IC L-VOD 590 

(mean 2010-2016). 591 

 592 

 593 

Figure 2 | Comparing a, optical (annually summed GIMMS-3g NDVI, mean 1982-2016). b, OR-594 

CHCIDEE-MICT and c, LPJ-GUESS simulated carbon density are compared with SMOS-IC L-VOD. 595 

 596 



 597 

 598 

Figure 3 | ESA CCI 2015 simplified land-cover classes3 and humidity zones. Please note that the 599 

class open tree/shrub includes croplands. 600 

 601 

 602 

Figure 4 | Carbon density of the bioclimatic zones4. Note that the xeric, mesic, and moist zones (grey 603 

bars) include the remaining sub-zones. 604 

 605 



 606 

 607 

Figure 5 | Annual dynamics in L-VOD-estimated C density (in Mg C ha-1), as well as rainfall and 608 

soil moisture anomalies per land cover class.  609 

 610 

 611 

Figure 6 | The mass death of Guiera senegalensis shrubs induced by dry years in large parts of Sen-612 

egal detected by L-VOD was also documented by very high spatial resolution satellite photos and 613 

field photos. The satellite images show live woody plants as red objects. a, The red was captured by 614 

the near-infra-red channel sensing photosynthetically active leaves, which were very dense after a 615 



wet period in 2010. Images are from late December (2010) and early February (2015), both dates 616 

where G. senegalensis typically has green leaves. b, Very limited shrub cover survived the dry period, 617 

and only large trees had photosynthesizing leaves in 2015. Photos by M. Brandt October 20155. See 618 

Brandt et al.5 for further details on the die-off. 619 

 620 

 621 

Figure 7 | a, Spearman correlation between annual C density and soil moisture, averaged per country. 622 

b, Left: changes in carbon density with no relationship to soil moisture (Spearman’s rho <0.2). Right: 623 

changes in carbon density with a relationship to soil moisture (rho >0.2). 624 
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