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Abstract: In aircraft design, Ground/Flight Vibration Tests (GVT/FVT) are conducted to extract aircraft’s modal 
parameters (natural frequencies, damping ratios and mode shapes) also known as the modal basis. The main 
problem in aircraft modal identification is the large number of sensors needed, which increases operational time 
and costs. The goal of this paper is to minimize the number of sensors by optimizing their locations in order to 
reconstruct a truncated modal basis of N mode shapes with a high level of accuracy in the reconstruction. There 
are several methods to solve Sensors Placement Optimization (SPO) problems, but for this case an original 
approach has been established based on an iterative process for mode shapes reconstruction through an 
adaptive Kriging Metamodeling approach so-called EGO-SPO. The main idea in this publication is to solve an 
optimization problem where the sensors locations are variables and the objective function is defined by 
maximizing the trace of criteria so-called AutoMAC. The results on a 2D wing demonstrate a reduction of sensors 
by 30% using our EGO-SPO strategy. 

 

1. Introduction 

Experimental Modal Analysis (EMA) is a common experimental methodology to estimate the dynamic 
characteristics of a structure. The identification process consists of estimating the modal parameters from a set of 
Frequency Response Functions (FRF). Sensor Placement Optimization (SPO) is a common problem encountered 
in many engineering applications, that has led to the development of several techniques [1,2,3]. The SPO 
techniques have been applied to various mechanical, aerospace, and structural systems for designing the best 
sensing locations, which are used to estimate modal parameters based on vibration responses [4,5].  

Vibration tests on large structures such as aircrafts are however a costly and time consuming work. 
Typically, in aircraft design this involves a set of 500 accelerometers that, in addition to the difficulty to place them 
where it is appropriate, also add masses and may modify significantly then the real dynamic characteristics of the 
structure. In particular, the position of these vibration sensors influences the modal identification quality of 
structures, which for a given number of sensors is usually estimated in terms of correlation between the natural 
modes using the Modal Assurance Criterion (MAC) [7].  

In the past, several works have already tried to tackle the SPO problem by various methods. Thus, Jung 
et al [8] have recently proposed a discrete-type optimization problem using Genetic Algorithm (GA). This latter 
was formulated by defining the sensor positions and the MAC as the design variables and the objective function, 
respectively. Schulze et al [9] have also introduced a GA approach but with a weighted off-diagonal criterion. For 
wind turbine identification, this approach notably yields the sensor configuration with the highest quality. Tong et 
al [10] have presented an improved simulated annealing (SA) algorithm to solve the sensor placement problem. 
The proposed method has been tested on a numerical slab model that consists of two hundred sensor location 
candidates using three types of objective functions: the determinant of the Fisher Information Matrix (FIM), the 
MAC and the Mean Square Error (MSE) of mode shapes. It may also be worth mentioning that optimal sensor 
placement is also a current trend in Structural Health Monitoring (SHM). Yi et al. has developed innovative 
algorithms for optimizing system sensor arrays in civil engineering [11, 12]. 
 

Besides the foregoing approaches, we have discussed in our previous work [13] of the metamodeling 
capability of Kriging for mode shapes reconstruction. As a different application, this paper aims now at extending 
our original approach to the SPO aims. Recently a global optimization strategy so called Efficient Global 
Optimization (EGO) has been developed using the Kriging’s variance information [16] and its (improved) use is 
here of interest as an alternative to the previous approaches. In short, Kriging or Gaussian Process regression is 
a method of interpolation for which the interpolated values are modeled by a Gaussian Process governed by a 
prior covariance [15]. More recently it has been extended on bridge structures using an improved version of 
kriging, called robust kriging (RK) [14]. The basic idea of kriging is to predict the value of a function at a given 
point by computing a weighted average of the known values of the function in the neighborhood of the point.  



2 
 

The aforementioned EGO method becomes popular as it is an adaptive sequential method that balances local 
and global search, i.e. balance exploitation of some metamodels and exploration of the design space [17]. These 
metamodels, or surrogate models (also called experts) are notably mathematical functions tuned for 
approximating a black-box functions. An enhanced version of EGO was first introduced in the pioneering 
work of Forrester and Jones [18] where they succeed in optimizing the geometry of a passive vibration isolating 
truss. Besides, the machine learning community has generalized Kriging’s theory into a versatile computational 
framework called GPML [19]. This methodology is well known in machine learning/engineering optimization for 
reaching a global optimum at a fixed budget even at in a high dimensional constrained optimization problem [20]. 
It also has been validated in aerodynamic shape optimization [21,22] using a modified EGO algorithm based on 
Mixture of Experts (MOE).  
Regarding the present work, we derive the fixed budget approach, normally used to limit costly computer 
experiments, to a sensor placement optimization problem. More precisely, we want to automate the sensor 
placement methodology using an adaptive strategy derived from EGO for mode shapes reconstruction (a basis of 
N modes). Starting from few sensor locations (initial design of experiments), the method iteratively adds new 
sensors at positions that tend to maximize the function trace(MAC). MAC is widely used for comparing mode 
shapes which is normally computed between the selected mode shapes and targeted mode shapes. In a 
supervised approach the targeted modes can be an analytical or FEM based. In an unsupervised methodology, 
the AUTOMAC can be used [7]. An equivalent objective function is to minimize norm(MAC – I), where I is the 
identity matrix. The EGO approach consists in using an analytical criterion, so-called Expected Improvement, to 
minimize/maximize an objective function. 
 

The paper will be divided into three main parts. We first introduce theoretical background for modal analysis 
and metamodeling. Then the EGO-SPO original strategy will be presented step by step. A supervised test case 
will permit to validate EGO-SPO in 1D. Finally, two test cases based on aircraft wings will be introduced: the first 
one in 1D, the second one in 2D to reveal the ability of Kriging based method for mode shapes reconstruction. 
 
2. Theoretical background  

2.1.  From EMA to mode shape estimation 

The equations of motion for a vibrating structure are commonly derived by applying Newton’s second law: 

𝑀𝑥 𝑡 + 𝐶𝑥 𝑡 + 𝐾𝑥 𝑡 = 𝑓 𝑡 	 (1)	

  
The excitation forces f(t) and responses x(t) are functions of time (t) while M, C, K are the mass, damping and 
stiffness constants respectively. The equivalent frequency domain form of the dynamic model of equation in (1) 
can be represented in terms of transfer function 𝐻 𝑗𝜔  as: 

 

𝐻 𝑗𝜔 = 0 12
3 12

= 4
5 12 678 12 79

	 (2)	

 
Modal parameter estimation is a special case of system identification where the a priori model of the system is 
known to be in the form of modal parameters. The identification process considers a set of Frequency Response 
Functions (FRF) as input. Identification of the FRF by means of spectral analysis is usually considered well-
investigated. A unified matrix frequency-based approach can be found for instance in [23]. 
We must precise however here that this paper is not dealing with errors of FRF estimation (H1, H2 etc…) [24] and 
so with the choice of optimal FRF estimator. The current approach in modal identification involves using numerical 
techniques to separate the contributions of individual modes of vibration in measurements such as FRF. Each 
term of the FRF matrix in Equation (2) can be represented in terms of pole location and a mode shape:  
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In Equation (3), kr  is the (n by n) shape for the kth mode (* designates complex conjugates); kl is the pole value 

for mode k = 
21

kkkk j zwwz -+- where, k
w = undamped natural frequency and k

z = damping ratio of 

mode k. 
 
Given that this work is dedicated to find the optimal spatial sensor locations while focusing only mode shapes 
reconstruction techniques, one major hypothesis for this aim is that the mechanical system under study must be 
linear. Then the only inputs for our methodology are the estimated mode shapes (also call modal vectors, or again 
eigen-vectors) that could be stored in a modal basis (or again a set of eigen-vectors associated to eigen-values). 
Practically, it can be viewed as the response of displacement sensors giving the out-of-plane information at a 
certain frequency for a unitary amplitude excitation. The MAC is calculated as the normalized scalar product of the 
two sets of vectors {ϕA} and {ϕB}. The resulting scalars are arranged into the MAC matrix: 

𝑀𝐴𝐶 𝑟, 𝑞 = 	 @A B
C @D E

6

@A B
C @A B @D E

C @D E
	 (4)	

 
In Equation (4), the matrix component MAC(r,q) is computed between mode r of the first family and mode q of the 
second family. MAC values oscillate between 0 and 1, the unitary value meaning a perfect correlation. In practice, 
a value greater to 0.9 is commonly recognized as acceptable to establish the correspondence between two mode 
shapes. The symbols A and B represent the two sets of mode shapes which usually refer respectively to 
simulation (analytical or FEA) and experimental data; the MAC matrix gives so quantitatively a good idea of the 
closeness between two families of mode shapes. 
 
Stubbs and Park [25] have extended the Whittaker–Nyquist–Kotelnikov–Shannon sampling theorem to spatial 
data for avoiding the well-known problem called “aliasing”. In figure 1, we can see that 9-grid points measurement 
are not enough precise to reconstruct the (3,1) mode shape. This example illustrates the importance of sensor 
placement when the natural modes of flexible structure are extracted by experiment using a limited number of 
vibration sensors. 
 

 
Figure 1 : (3,1) mode of vibrating plate plus regular grid distribution of sensors in white circles (a) and The cubic interpolation which shows a 

spatial aliasing in mode shape reconstruction (b). A regular grid of 9 sensors (white circles) permits only to reconstruct the (1,1). 

 
In this case, there are insufficient measured degrees-of-freedom in order to discriminate between the different 
modes. The only solution is to measure more degree-of-freedom. However, the MAC can tell us whether there are 
enough measurement points. This is done using a version of the MAC called the AutoMAC in which a set of 
modes are correlated with themselves.  
 
2.2.  Metamodeling for mode shapes reconstruction 
 
In this paper, we will concentrate in particular on some approaches which are demonstrated to be very successful 
at finding global solutions of black-box global unconstrained optimization problems. The main idea behind these 
methods is to iteratively construct metamodels to approximate the black-box functions (globally) and use them to 
search for optimal solutions. Complementary reviews can be found in [26,27]. A common algorithm for 
metamodel-based methods is as follows: 
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Phase 1 (design): Let k := 0. Select and evaluate a set x0 of starting points. 
While stopping criteria are not met: 

 
Phase 2 (model): From the data {(x,f(x)) |x ∈ Sk}), 

construct a metamodel mk(.) that approximates the black-box function 
 

Phase 3 (search): Use mk(.) to search for a new point x to evaluate. 
Evaluate the new chosen point, update the data set Sk. Assign k := k + 1. 

Algorithm 1. Surrogate based optimization 
 
Phase 1 is commonly referred to as sampling (also called design of experiments, DOE) [28]. Its purpose is to find 
a set of points uniformly spread over the domain, so that, if we evaluate the function at these points, we might 
obtain a global representation of its range. Latin Hypercube Sampling (LHS) is the most popular method to 
perform sampling [29]. 
 
In Phase 2, various models can be used to approximate black-box functions. In the next section, we will introduce 
some of the most popular models, including polynomials, radial basis functions (RBF) and kriging.  
 
Phase 3 is the crucial step in this common algorithm. Given the information from the current metamodel, we need 
to choose which point(s) should be evaluated in the subsequent step (so called enriching point). The most 
common strategy is to select the next point for evaluation as the one that maximizes (or minimizes) the merit 
function (also known as cost function).  
 
 
2.3. Definition of the chosen metamodeling techniques 

 
In this section, we choose to introduce the chosen metamodeling techniques and explain them using in few basic 
steps. Three models will be studied here: Polynomial Approximation (PA), Radial Basis Function (RBF) and 
Kriging. 
 
A polynomial approximation of 𝑓	of order m can be written, in the one-variable case, as: 

𝑓	 𝑥,𝑚, 𝑤 = 	 𝑤I𝑥I	J
IKL 		 (5)	

We want to estimate the weight vector w = {w0, …, wm}T in Equation (5) through the solution of y = Φw, where Φ is 
the Vandermonde’s matrix. The maximum likelihood estimate of w is w = Φ+y, where Φ+=(ΦT Φ)-1ΦT is the Moore-
Penrose pseudo-inverse matrix. This gives an estimation of w at chosen order m.  Obviously, the problem can be 
extended to more variables, while considering this general equation: 

𝑓	 𝑥 = 	 𝑤I𝜓 I 	OP
IK4 	 (6)	

	

In Equation (6), the ψ are picked from a basis truncated at order m. For example, with m = 2, ψ(i) ∈ {1, x1, x2, x1x2, 
x1

2, x2
2}.   

 
As an alternative, a more interesting metamodel can be used. The radial basis function approximation is given by: 

𝑓	 𝑥 = 	𝑤S𝜓	 = 	 𝑤I𝜓
OT
IK4 𝑥 − 	𝑐(I) 		 (7)	

 
In Equation (7), c(i) denotes the ith of the nc basis function centers and ψ is the nc -vector containing the values of 
the basis functions ψ evaluated at the Euclidean distances between the prediction site x and the centers c(i) of the 
basis functions. The classical basis function used is the cubic one ψ(r)= r3. Whether we choose a set of 
parametric basis functions or fixed ones, w is easy to estimate, via interpolation condition. Albeit the equation is 
linear in terms of the basis function weights w, yet the predictor 𝑓 can express highly nonlinear responses. It is 
easy to see that one of the conditions of obtaining a unique solution is that the system must be square, that is nc = 
n. Simplifications arise if the bases actually coincide with the data points, that is c(i) = x(i), which leads to the 
equation Ψw = y, where Ψ is the Gram matrix, defined as ΨI,1 = 	𝜓 x(I) − 	x(1) 	for i,j = 1,…, n. The fundamental 
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step of the parameter estimation process is to calculate w = Ψ-1 y. Of course, the choice of the basis functions can 
have important effects on the metamodel prediction [17].  
 
Finally, we will present a more versatile metamodel so called Kriging. Originally developed for geostatistic 
purposes, Kriging is a method of interpolation for which the interpolated values are modeled by a Gaussian 
process governed by prior covariances [15]. It assumes that the spatial variation of an attribute is neither totally 
random, nor deterministic. Today, it is widely used in other domain of engineering and often called Gaussian 
Process Regression (GPR). This method uses a linear combination of all sampling values, their weights 
determined by their distances from the interpolation point. This requires therefore some knowledge about the 
relation between the distance and the covariance to be described. The Kriging method is merely built by injecting 
a basis function in Equation (7) defined as:  
 

𝜓(I) = 𝑒𝑥𝑝 − 𝜃1]
1K4 𝑥1

(I) − 𝑥1
^_ 	 (8)	

  
In equation (8), the vector θ allows to vary the width of the basis function from variable to variable. This equation 
(8) is also known as Standard Exponential (SE) kernel. Interested reader can find the detailed procedure used in 
[17].  The exponent p can vary for each dimension in x. We denote this by using a set of random vectors Y = 
{Y(x1), …, Y(xn)}T. The random variables are correlated with each other with the Kriging basis function ψ(i), from 
which it’s possible to construct the correlation matrix Ψ and the covariance matrix cov(Y,Y)=σ2Ψ of size n. This 
assumed correlation between the sample data reflects our expectation that an engineering function will behave in 
a certain way. The correlations depend on the absolute distance between the sample points and on the 
parameters p and θ. For example, with a very low value of p there is no immediate correlation between the points. 
The parameter θ is a width parameter that affects how far a sample point’s influence extends. A low θ means that 
there is high correlation between points; a high θ means the contrary. We can also consider θ as a measure of 
how ‘active’ is the function that we are approximating. The main problem is then to choose p and θ. A solution can 
be maximizing the likelihood of y using classical optimizer (gradient based, genetic algorithms etc…) [16-19].  
 
We can then compute the prediction and so-called predict function using the Forrester’s toolbox [17]: 

𝑦 𝑥 = 𝜇 + 𝜑S𝜓d4 𝑦 − 𝐼𝜇 	 (9)	

	

The parameter 𝜇 (mean) can be defined as: 

 𝜇 = gChijk
gChijg

	 (10)	

The associated variance 𝑠n as: 

 𝑠n 𝑥 = 𝜎n 1−𝜑S𝜓d4𝜑 + (4dgChij@)n
gChijg

		 (11)	

where 𝜎n = (kdgp)Chij(kdgp)
O

. 
 
 
2.4.  Illustrative example on a clamped plate (supervised case) 

 
Let us precise our problem of mode shapes reconstruction. The design space belong to R3 and can be defined as 
(x,y,Z). Here (x,y) represents the sensor location, and Z is the local mode shape value. The goal is to learn from 
this database of examples the true mode shape basis. Thus, the estimation of mode shapes reconstruction 
accuracy will increase together with the sampling density. Of course, the complexity will grow when taking into 
account triaxial sensors but this is not in the scope of this paper. The performance of our algorithm is defined by 
the number of evaluations needed (so called fixed budget) until an acceptable (global) solution is found. One 
stopping criterion can be the maximum number of sensors.  The objective is to optimize the locations of sensors 
for the purpose of making the most accurate predictions of the mode shapes at unmeasured locations. We use a 
MATLAB based Finite Element model (FEM) of a plate, an eigenvalue solver for modal analysis. The presented 
test case is a clamped plate. The Fixed-Free plate has one clamped edge and three free ones (CFFF). It has 
been done to build a supervised data. Thus, we can compute standard prediction criteria such as Root Mean 
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Square Error (RMSE). This is a frequently used measure of the differences between values predicted by a model 
or an estimator 𝑦 and the values actually observed y. The RMSE expresses the average model prediction error in 
units of the variable of interest. It is calculated as:  

𝑅𝑀𝑆𝐸 = 			 4
O

𝑦1 − 	𝑦1
nO

1K4 		 (12)	

	

 

The used geometrical and material properties are: length=width= 0.8m, height= 0.01m, E = 210e9 Pa, nu = 0.33, 
rho = 7700. A dedicated mesh is used to obtain the truncated reduced basis {Φ1 ,Φ2 ,..,ΦN }. In practice we use 
the nine first bending modes from mode (1,1) to mode (3, 3). Each classical reconstruction method has been 
compared with these supervised data. Three types of sampling have been used (regular grid, random grid, and 
pseudo random grid). Appendix A illustrates the result for a regular grid of 24 sensors with the mode (3,3). The 
pseudo-random grid is made for a half part with uniformly spaced sensors while sensors are added randomly for 
the other half part. Table 1 resumes the results of the presented metamodeling techniques (averaged 10 times). 

CFFF PLATE 

REGULAR GRID RANDOM GRID PSEUDO RANDOM GRID 

Average Max 
RMSE 

Average Mean 
RMSE 

Average Max 
RMSE 

Average Mean 
RMSE 

Average Max 
RMSE 

Average 
Mean 
RMSE 

M
ET

H
O

D
 

RSM cubic 1,4624 0,4024 3,0812 0,7632 34,3243 6,9853 

RBF cubic 0,2091 0,0741 0,1731 0,1026 0,4333 0,1364 
Kriging (from 

[15]) 0,2051 0,0699 0,1500 0,0707 0,2449 0,0963 

Kriging 
(ordinary) 0,3757 0,1520 0,3341 0,2007 0,4450 0,2026 

Table 2. Summary of RMSE for each reconstruction method for the entire modal basis (9 first bending modes of the CFFF plate). Kriging from 
[17] exhibits the lowest RMSE from all the selected methodology. 

 
This preliminary study confirms that Kriging is very well adapted to the mode shape reconstruction problem 
because it gives in each case the lowest RMSE. 
 
 
 
3. Sensor Placement Optimization inspired from Efficient Global Optimization 

 
3.1. EGO 

As already mentioned, the EGO algorithm [16] is an adaptive optimization method based on kriging. An initial 
design of experiment is used to build a first metamodel. In the present study, the MATLAB function, lhsdesign, 
was used to obtain the LHS points with the default criterion (maximin). This criterion maximizes the minimal 
distance between points: it proceeds by iteratively generating a number of LHS samples at random and chooses 
the best one based on the criterion maximin. To generate the experimental design (sample), the number of 
sample points is specified. A new point that maximizes a criterion is chosen as optimizer candidate at each 
iteration. The criterion uses a tradeoff between the metamodel value and the conditional variance. Then the new 
point is evaluated using the original model and the metamodel is re-learnt on the extended design of experiment. 
The original criteria use the Kriging variance information to maximize the Expected Improvement (so called EI). 
The EGO algorithm tends to explore the design space while trying to exploit the region with the global optimum. 
Given equations 6 and 7, EI is given by: 

𝐸 𝐼 𝑥 = 	
𝑦JIO − 𝑦 𝑥 𝛷 kuvwdk x

y x
+ 𝑠𝜑 kuvwdk x

y x
									𝑖𝑓	𝑠 > 0

0																																																																																																											𝑖𝑓	𝑠 = 0
				 (13)	
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Here Φ .  and 𝜑 .  are the cumulative distribution function and probability density function respectively. In many 
situations maximizing 𝐸 𝐼 x  will prove to be the best way to finding the global optimum [16]. In the equation (10) 
it is possible to see two terms separated by ‘+’. The first one is the exploitation term and is based more on the 
improvement at x, while the second one is the exploration term and is based more on the amount of the error. As 
advocated by the literature, one of the strong points of EGO is the balance between exploration and exploitation.  
But one can give more importance to one of these terms (depending on the problem), simply by adding a “weight” 
(Hybrid Criteria in [16]). In particular, sometimes the EI can present very strong peak. Sassena et al [30] proposed 
a smoother criterion so-called WB2 often preferred to EI. 
 
3.2 EGO like Strategy: EGO-SPO 

In this section, we explain our strategy by introducing how the sensor placement optimization problem for modal 
basis reconstruction (involving N modes) is solved step-by-step. It can be seen using Equation (4) that the 
orthogonality between the modal bases increases as the off-diagonal values decrease to zero while the diagonal 
terms approach to unity. That is, the modal identification of flexible structure by experiment becomes more 
accurate as the sensor placement produces the MAC closer to the above-mentioned ideal one. 
Here, the MAC is always a function of x, the sensor set locations. In the general (unsupervised) case, we only 
have a set of experimental measurements X, so we use compute AutoMAC as:  

𝐴𝑢𝑡𝑜𝑀𝐴𝐶 𝑟, 𝑞 = 	 @� B
C @� E

6

@� B
C @� B @� E

C @� E
	 (14)	

 
We will solve two equivalent unconstrained bounded optimization problems solved using EGO. The equation (15) 
introduces the maximization of trace(AutoMAC) for blind reconstruction: 
 

x
𝑚𝑎𝑥 trace AutoMAC(x) 		 

 
with	respect	to	x	 ∈ D									 

	 (15)	

 
 

 
Where x is the sensor set locations, D is the geometry of the structure under study, I is the identity matrix of size 
N.  
 
The following equation gives an equivalent minimization: 
 

x
𝑚𝑖𝑛 norm AutoMAC(x) − I 		 

	 
with	respect	to	x	 ∈ D 

	 (16)	

 
In the supervised example of the next paragraph, we will use standard MAC to compare analytical mode shapes 
(modal basis A) to reconstructed mode shapes (modal basis B). It will be then possible to compute RMSE and 
control the robustness of our methodology. 
 
EGO-SPO strategy consists in a two steps metamodels construction (Figure 2): first we build the mode shapes 
Mk(.) from an initial DoE, then we compute a prediction of the objective function mk(.) according to Algorithm 1. It 
can be noticed that one stopping criterion can also be a maximal number of sensor (at fixed budget). Both 
objective functions have been tested and the results are very close for each test case. 
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Figure 2. Steps used for the EGO-SPO strategy 

 
 
 
3.3 Supervised Case with analytical data: Cantilever Beam 

We use in this paragraph a supervised approach in order to compare the results of our reconstruction 
methodology to analytical results. In this case since we have the analytical solution AutoMAC is not needed. The 
mode shapes of a cantilever beam are given by the analytical formula: 

𝜑O 𝑥 = 	𝐴O 𝑐𝑜𝑠ℎ𝑚O𝑥 −𝑐𝑜𝑠𝑚O𝑥 −
yIO�Jw�dyIOJw�
��y�Jw�7��yJw�

𝑠𝑖𝑛ℎ𝑚O𝑥 −𝑠𝑖𝑛𝑚O𝑥 	 (17)	

 
Here 𝐴O is a constant (It can be used to normalize the mode shape), 𝑚O = 2𝑛 − 1 𝜋/2𝐿, L is the length of the 
beam and n is the number of the mode.  
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Figure 3 shows the iterations that will lead to add a new sensor. The figure 3b shows the construction of the 
function “prediction of trace(MAC)”, in which only five initial points have been used. Then, evaluating the EI at 
each iteration (each reconstruction) a new point is added, where EI is maximal, and the function is updated (figure 
3a). The new sensor will be located where the “prediction of trace(MAC)” is maximal (figure 3b).  
 

  
(a) (b) 

 
Figure 3. Inside the strategy. On the left, the EI that determines the updating. On the right, the updating of prediction of trace(MAC). 

 
In the figure 4, convergence of the objective function is shown for three different LHS initial DOE. All the sensors 
(maximum budget) have been added and trace(MAC) is maximized (equal to N, the modal basis size).  
 

(a)  

(b)  

(c)  
 
Figure 4. Convergence of objective function maximization (to 10) with a maximum number of 20 sensors (a) Initial DOE: LHS with 5 points.  (b) 

Initial DOE: LHS with 10 points. (c). Initial DOE: LHS with 15 points 
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Since we are in supervised approach we can compute the RMSE. For all constructed metamodels they achieve 
the fixed tolerance (1E-3) while trace(MAC) is maximized after 20,18 and 16 iterations respectively for initial DOE 
of 5,10,15 respectively. It becomes clear from Figure 4 that the final reconstruction is DOE-dependent. With the 
larger initial DOE, the RMSE is lower for each reconstruction and the convergence of the objective function is 
faster. These conclusions are important for the next chapter. 
  
 
4. Blind reconstruction: Results and discussion  

 
4.1  1D wing: Embraer EMB 120 Brasilia 

In this paragraph, we analyze a 1D Wing but with operational constraints (fuel cells and engine mass are notably 
considered). To extract the modal data, we used a MATLAB toolbox compatible with NASTRAN inputs called 
CoFE [31]. CoFE is an open-source program for structural analysis and design. It supports linear statics, vibration 
eigenpair (eigenvalues and eigenvectors), and buckling eigenpair analysis. Since the code uses NASTRAN 
formatted input, commercial preprocessing tools (e.g. PATRAN) it can be used to create or check the bulk data 
inputs. The mode shapes have here been normalized.  
We choose to analyze only bending modes around the Z axis (Figure 5). The studied wing is a cantilever beam 
with three concentrated masses that represent the engine and two fuel cells of the Embraer EMB 120 Brasilia 
from [32]. It can be found schematically in the following figure: 
 

 
Figure 5. Schematization of the Wing, with Engine and fuel cells length (8m). 

 
We used a test case with a modal basis of size N=12 with maximum 30 sensors. The AutoMAC is used instead of 
MAC for blind reconstruction using trace(MAC) as an objective function. On figure 6, we can see that the 
convergence is fast: only 7 additional sensors are needed (no need to reach the maximum budget). 
 

 
Figure 6. Convergence of the objective function trace(MAC), from mode 1 to 12. Initial DOE: LHS with 15 points. Max number of sensors: 30. 

 
Figure 7 shows only qualitatively the Kriging reconstruction, obtained using an initial LHS design of experiment 
and adding 7 points optimizing the objective function trace(MAC) through the EGO-SPO strategy, is quite good. 
Using this approach, we are optimizing the placement of the sensors for all the desired mode-shapes at once. 
 
 

15 20 25 30
Number of iterations (added sensors)

11.2

11.4

11.6

11.8

12

tra
ce

(M
AC

)

X 

Y 

Z 



11 
 

 
Figure 7. Reconstruction of mode shapes, from 1 to 8. Initial DOE: LHS with 15 points. Added sensors: 7. 

 
 
Qualitatively, it is also relevant to underline the difference between a Kriging and a linear reconstruction of mode 
shapes. Figure 8 shows this difference, where the total number of points is 25, distributed in a regular grid for the 
linear reconstruction, while for the Kriging reconstruction they have been placed with the EGO-SPO strategy.  
 

(a) 

 

(b)  
 

Figure 8. Comparison between Linear Reconstruction and Kriging. (a) first 4 modes, (b) zoom on mode 8 to clearly see the difference between 
classical linear interpolation and Kriging reconstruction 
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In this case the EGO-SPO strategy is capable of good reconstruction even at high frequency (mode 8 on figure 
8b) with few sensors needed (22) compared to standard strategy such as linear reconstruction and Kriging (figure 
8a) 
4.2 2D Wing (Trapezoidal) 

In order to demonstrate EGO-SPO gains on a more realistic example, we choose to analyze a 2D Wing using the 
MATLAB COFE. The wingspan is 4m length. We use Al_2024-T3 materials. The total number of nodes in the FE 
model is approximately 600 to ensure convergence on the highest natural frequency (9th mode). The mode 
shapes have been normalized hereafter. We aim at reconstructing the modal basis (N=9) with at most 25 sensors. 
The AutoMAC is used instead of MAC for blind reconstruction. In this example, we choose to minimize norm(MAC 
– I) starting from an initial DOE of size 15 (Figure 9). The previous supervised test cases help us to tune our 
strategy. 

 
Figure 9. Convergence of the objective function norm(MAC – I), from mode 1 to 9. Initial DOE: Regular Grid with 15 points. Maximum number 

of sensors: 25. 
 
The figure 10 shows the performance of EGO-SPO strategy, comparing reconstructions of 9th mode shape of the 
wing. Each reconstruction is compared to the High-Fidelity model (HF) that practically comes from FEM data and 
is shown on the left wing. Kriging reconstruction without the optimization strategy needs 36 sensors (regular grid) 
to reach a good level of reconstruction, compared to HF data, while the linear reconstruction with 36 sensors does 
not give a good result. This sensor placement strategy allows a reduction of 30.56% of sensors for the entire 
modal basis with only 25 sensors (15 initial regular DOE + 10 added sensors). The results of the EGO-SPO 
strategy is illustrated on the figure 14 in Appendix B. The complexity here, is closed from an industrial test case as 
the chosen modal basis exhibits bending modes, torsion modes, plus some coupling modes (bending & torsion).  
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Figure 10. (a) Comparison between HF FEA results (left) and a Linear Reconstruction with a  

regular grid of 36 sensors (right), for 9th Mode Shape. (b) Comparison between HF FEA results (left) and a Kriging Reconstruction with a 
regular grid of 36 sensors (right), for 9th Mode Shape. (c) Comparison between HF FEA results (left) and EGO-SPO strategy (right) The black 
dots represent the initial DOE (regular grid, 15 sensors). The yellow ones represent 10 added sensors. This sensor placement strategy allows 

a reduction of 30.56% of sensors for the entire modal basis. 
Conclusion 
 
In this paper, we developed a new strategy so called EGO-SPO dedicated to modal analysis based on an 
adaptive Kriging Metamodeling approach. The quality of modal identification is classically estimated using the 
MAC (or AutoMAC) criterion. We first proposed a totally supervised numerical experiments in order to calibrate 
the methodology. Then we proposed some “blind” modal basis reconstruction on 1D and 2D wing structures. The 
performance of the reconstruction outperforms existing methodology (linear reconstruction, RBF, ordinary 
Kriging). The gain is almost 30% less sensor for the same level of reconstruction on the trapezoidal example. The 
developed MATLAB software can be used both for benchmarking (supervised mode), sensor placement strategy 
using FEM (calibration) or experimental data (FVT, GVT). Of course, this methodology is sensitive to the initial 
DOE, we propose to work at fixed sensors budget will help the vibration engineer to make the best choice for his 
experimental test rig. Our future work will be dedicated to aeroelastic calibration of a full aircraft. Co-Kriging will be 
used to build a model with two kinds of data. For example, it will permit to merge lots of low fidelity FE model 
denoted as cheap data with few expensive data (experimental data or high fidelity models) in the same 
metamodel. 
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Appendix A 
 
The figures 11, 12 and 13 illustrate the CFFF plate. This is supervised example, RMSE and R2 can be computed 
using a true (converged mesh) finite element model. The coefficient of determination, denoted 𝑅n. It provides a 
measure of how well observed outcomes are replicated by the model, based on the proportion of total variation of 
outcomes explained by the model. R2 can be calculated as: 

𝑅n = 	
𝑆𝑆� ¡
𝑆𝑆S

	= 1 −	
𝑆𝑆� y
𝑆𝑆S

	= 1 −	
𝑦I − 	𝑓I nO

IK4

𝑦I − 	𝑦 nO
IK4

. 

 
Here SSreg is the regression sum of squares, SSres is the residual sum of squares, SST is the total sum of squares. 
R2 is a measure of how much of the variance in y is explained by the model, f. 
 
 
  
 

 
Figure 11. Reconstruction of Mode Shape (3, 3) of a CFFF plate, with a regular grid of 64 sensors (final grid). RSM cubic reconstruction 

demonstrates the aliasing problem  
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Figure 12. R2 for increasing number of Sensors, from mode (1, 1) to (3, 3), regular grid, CFFF plate. 

 

   
Figure 13. RMSE for increasing number of Sensors, from mode (1, 1) to (3, 3), regular grid, CFFF plate. 
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Appendix B 
 
As an example, the reconstruction of 9 first bending modes of the 2D trapezoidal wing has been inserted in the 
figure 14. The chosen modal basis exhibits bending, torsion, plus some coupling mode (bending and torsion). 
  
 

 
Figure 14. Reconstruction of mode shapes, from 1 to 9. Initial DOE: Regular grid with 15 points. Maximal number of sensors: 25. The initial 

DOE is represented by black dot, the new point chosen by EGO-SPO strategy in yellow. 
 


