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Abstract

We investigate the complexity of deciding whether a given regular language
can be expressed by a deterministic regular expression. Our main technical
result shows that deciding if the language of a given regular expression (or,
non-deterministic finite automaton) can be defined by a deterministic regular
expression is PSPACE-complete. The problem becomes EXPSPACE-complete if
the input language is represented as a regular expression with counters and NL-
hard if the input language is given by a minimal deterministic finite automaton.
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1. Introduction

Schema information is highly advantageous when managing and exchanging
XML data. Primarily, schema information is crucial for automatic error detec-
tion in the data itself (which is called validation, see, e.g., [2, 3, 4, 5]) or in
the procedures that transform the data [6, 7, 8]. Furthermore, schemas pro-
vide information for optimization of XML querying and processing [9, 10], they
are inevitable when integrating data through schema matching [11], and they
provide users with a high-level overview of the structure of the data. From a
software development point of view, schemas are very useful to precisely specify
pre- and post-conditions of software routines that process XML data.

In their core, XML schemas specify the structure of well-formed XML doc-
uments through a set of constraints which are very similar to extended context-
free grammar productions. Such schema are usually abstracted as a set of rules
of the form

Type — Content

*This work was supported by grant number MA 4938/2-1 of the Deutsche Forschungsge-
meinschaft (Emmy Noether Nachwuchsgruppe).
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where Content is a regular expression that defines the allowed content inside
the element type specified in the left-hand side. As such, regular expressions
are a central component of schema languages for XML.

The two most prevalent schema languages for XML data, Document Type
Definition (DTD) [2] and XML Schema Definition (XSD) [12], both developed
by the World Wide Web Consortium, do not allow arbitrary regular expressions
to define Content. Instead, they require these expressions to be deterministic.
We refer to such deterministic regular expressions as DRFs. In order to get
a good understanding of schema languages for XML, it is thus important to
develop a good understanding on DREs. Furthermore, since the concept of
determinism in regular expressions is rather foundational, we believe our results
to be relevant in a larger scope as well.

Intuitively, a regular expression is deterministic if, when reading a word from
left to right without looking ahead, it is always clear where in the expression
the next symbol can be matched. For example, the expression (a + b)*b(a + b)
is not deterministic, because if we read a word that starts with b, it is not clear
whether this b should be matched in the expression if we do not know what the
remainder of the word will be. As such, determinism in regular expressions is
very similar to determinism in finite automata: Let IV be the automaton where
we consider each alphabet symbol in an expression as a state and where we
consider transitions between positions in the expression that can be matched by
successive symbols. Then the expression is deterministic if and only if N (which
is known as the Glushkov automaton of the expression) is deterministic.

Deterministic regular expressions or DREs have therefore been a subject of
research since their foundations were laid by Briiggemann-Klein and Wood [13,
14]. Their important contribution is a characterization of languages definable by
DREs in terms of structural properties on the minimal DFA. In particular, this
characterization showed that some regular languages cannot be defined with a
DRE. One such language is defined by the expression (a + b)*b(a + b). Further-
more, Briiggemann-Klein and Wood showed that it is decidable whether a given
regular language is definable by a DRE. Since then, DREs have been studied in
the context of language approximations [15], learning [16], descriptional com-
plexity [17, 18] and static analysis [19, 20]. Recently, it was shown that testing
if a regular expression is deterministic can be done in linear time [21].

Determinism has also been studied for a more general class of regular ex-
pressions which allows a counting operator [22, 23, 24]. This operator allows
to write the expression a'%190 defining the language that contains words of
length 10 to 100 and labeled with only a’s. The motivation for the counting
operator again comes from schema languages, because the operator can be used
to define expressions in XML Schema. Determinism for expressions with coun-
ters seems to pose more challenges than without the counting operator. For
example, already testing whether an expression with counters is deterministic
is non-trivial [25].

Contributions. In this paper we study the following problem:

Given a regular expression, can it be determinized?



This rather fundamental question has first been studied about 20 years ago [13]
but the precise complexity is still open, despite the rich body of research dis-
cussed above. The best known upper bound is from Briiggeman-Klein and
Wood, who showed that the problem is in EXPTIME (by exhibiting an algo-
rithm that works in polynomial time on the minimal DFA [14]) and the best
known lower bound is PSPACE-hardness [15, 26]. The main result of this paper
settles this question and proves that this problem is PSPACE-complete. Our
proof is rather technical and provides deeper insights in the decision algorithm
of Briiggemann-Klein and Wood. A central insight, which is a cornerstone of
our proof, is that the recursion depth of the algorithm is only polynomial in the
size of a smallest NFA for the given regular language.

Since regular expressions with counters are important in the context of W3C
XML Schema, we also study the complexity of deciding if a given expression with
counters can be written as a DRE. This problem turns out to be EXPSPACE-
complete. We complement these completeness results by proving that it is
NL-hard to decide if a given DFA can be written as a DRE. At the moment, it
is not clear to us whether this lower bound can be improved. The problem is
known to be in polynomial time by [14].

2. Definitions

For a finite set S, we denote its cardinality by |S|. By X we always denote
an alphabet, i.e., a finite set of symbols. A (X-)word w over alphabet X is a
finite sequence of symbols a; - - - a,,, where a; € 3 for each i = 1,...,n. The set
of all 3-words is denoted by X*. The length of a word w = a; - - a, is n and is
denoted by |w|. The empty word is denoted by €. A language is a set of words.

2.1. (Nondeterministic) Finite Automata

A (nondeterministic) finite automaton (or NFA) N is a tuple (Q, X, 6, qo, F),
where @ is a finite set of states, ¢ : Q x ¥ — 29 is the transition function, ¢q is
the initial state, and F' C @ is the set of accepting states. We sometimes denote
that g2 € 6(q1,a) as 1 — g2 € 6 to emphasize that, when N is in state ¢y, it
can go to state go when reading an a. A run of N on word w = a1---a, is a
sequence qq - - - g, where, for each i = 1,...,n, we have ¢;_1 —» ¢; € 6. Word w
is accepted by N if there is such a run which is accepting, i.e., if ¢, € F. The
language of N, also denoted L(N), is the set of words accepted by N. By 6* we
denote the extension of ¢ to words, i.e., §*(g, w) is the set of states which can
be reached from ¢ by reading w. The size |N| of an NFA is the total number of
transitions, i.e., 3° . [0(¢,a)|. An NFA is deterministic, or a DFA, when every
0(q, a) has at most one element. Throughout the paper, we use the notation Py
for the power set automaton of N and [N] for the minimal DFA for L(N). It
is well-known that [N] is unique for N and that it can be obtained by merging
states of Py [27]. In this paper, we assume that all states of an automaton are
useful unless mentioned otherwise, that is, every state appears in some accepting
run. This implies that every state can be reached from the initial state and that,



from each state in an automaton, an accepting state can be reached. This also
implies that we use minimal DFAs without sink state and that Py by default
only contains the useful subsets of states of N. We sometimes abuse notation
and also denote by () the minimal DFA with no states.

Furthermore, we often see an NFA as a graph, which is obtained by consid-
ering its states as nodes and its transitions as (labeled) directed edges. Then,
we also refer to a connected sequence of transitions in N as a path.

2.2. Regular Expressions and Variants

We define the class of regular expressions (RE) over ¥ as follows: ¢ and every
Y-symbol is a regular expression; and whenever r and s are regular expressions
then so are (r - s), (r + s), and (s)*. In addition, we allow () as a regular
expression, but we do not allow (} to occur in any other regular expression.
For readability, we usually omit concatenation operators and parentheses in
examples. The language defined by an RE r, denoted by L(r), is defined as
usual. Whenever we say that expressions or automata are equivalent, we mean
that they define the same language. The size |r| of r is defined to be the total
number of occurrences of alphabet symbols, epsilons, and operators, i.e., the
number of nodes in its parse tree.

The regular expressions with counters (RE(#)) extend REs with a counting
operator. That is, each RE-expression is an RE(#)-expression. Furthermore,
when r and s are RE(#)-expressions then so are (r-5s), (r+s), (r*), and 7% for
k € Nand ¢ € Nt U{oco} with k& < ¢. Here, N* denotes N\{0}. For a language L,
define LF* = Uf:k L' and L(r®*) = Uf:k L(r)t. Thus, L(r*) = L(r®*). The
size of an expression in RE(#) is the number of nodes in its parse tree, plus the
sizes of all numbers k, ¢ € N, where a natural number k has size [logk] if k& > 0
and size 1 if £ = 0.

In the following, we introduce determinism for REs. Deterministic reqular
expressions (DREs) put a restriction on the class of REs. Let 7 stand for the
RE obtained from r by replacing, for every integer i and alphabet symbol a,
the i-th occurrence of a in r by a; (counting occurrences from left to right). For
example, for r = b*a(b*a)* we have 7 = biai(biaz)*. A regular expression r is
deterministic (or one-unambiguous [14] or a DRE) if there are no words wa;v
and wa;v’ in L(7) such that ¢ € ¥ and ¢ # j. The expression (a + b)*a is
not deterministic since both words as and ajas are in L((a; + b1)*az). The
equivalent expression b*a(b*a)* is deterministic. Briiggemann-Klein and Wood
showed that not every regular expression is equivalent to a deterministic one and,
therefore, that the set of DREs forms a strict subset of REs. We call a regular
language DRE-definable if there exists a DRE that defines it. The canonical
example for a language that is not DRE-definable is (a 4 b)*b(a + b) [14].



2.3. Problem of Interest

In this paper, we investigate variants of the following problem.
— DRE-DEFINABILITY: Given a regular language L, is L DRE-definable?

We consider the problem for various representations of regular languages: reg-
ular expressions, regular expressions with counters, NFAs, and DFAs. When-
ever we consider such a variation, we put the respective representation between
braces. For example, DRE-DEFINABILITY(RE) is the problem: Given a regular
expression r, is L(r) DRE-definable?

We study the complexity of DRE-definability for NFAs and REs in Sec-
tion 3 and the complexity of DRE-definability for RE(#)s and minimal DFAs
in Section 4.

3. DRE-Definability for REs and NFAs

DRE-DEFINABILITY was first studied by Briiggemann-Klein and Wood who
showed that the problem can be solved in polynomial time in the size of the
minimal DFA of a language [14]. Their algorithm (henceforth referred to as the
Bxw-Algorithm) is not at all trivial and gives good insight in DRE-definable
regular languages. In the following we present this algorithm and show how one
can implement the algorithm for NFAs in PSPACE.

3.1. The BKw Algorithm for DRE-Definability

We recall the Bkw-Algorithm together with some definitions and known
results. Moreover, we define level automata which we use to analyse the BKw-
Algorithm.

Orbits and gates. For a state ¢ in an NFA N, the orbit of q, denoted O(q), is
the maximal strongly connected component of N that contains q. We call ¢ a
gate of O(q) if q is accepting or ¢ has an outgoing transition that leaves O(q).
If an orbit consists only of one state ¢ and g has no self-loops, we say that it
is a trivial orbit. We say that a transition ¢; — ¢» is an inter-orbit transition
if g1 and g2 belong to different orbits. The orbit automaton of state q is the
sub-automaton of N consisting of O(g) in which the initial state is ¢ and the
accepting states are the gates of O(q). We denote the orbit automaton of ¢
by Ny. The orbit language of q is L(N,). The orbit languages of N are the orbit
languages of states of N.

Orbit property. An NFA N has the orbit property if, for every pair of gates ¢1
and ¢o in the same orbit in N, the following properties hold:

1) ¢ is accepting if and only if g2 is accepting; and,

2) for all states ¢ outside the orbit of ¢; and go, there is a transition ¢; Ly
if and only if there is a transition ¢z — ¢.



Consistent symbols. A symbol a € ¥ is N-consistent if there is a state f(a),
such that every accepting state ¢ of N has a transition ¢ % f(a). We refer to
the corresponding transitions as consistent transitions of N. A set S C ¥ is
N-consistent if every symbol in S is N-consistent. Whenever we consider V-
consistent sets S in the remainder of the paper we assume that they are maximal,
i.e., there does not exist an a € ¥ that is not in S and is N-consistent. Hence-
forth, we always refer to the N-consistent set. For the set S of N-consistent
symbols, the S-cut of N, denoted Ng, is obtained by removing all consistent
transitions from N. Using these notions, Briiggemann-Klein and Wood give the
following characterization of the class of DRE-definable languages.

Theorem 1 (Briiggemann-Klein and Wood [14]). Let D be a minimal
DFA and S the set of D-consistent symbols. Then the following are equivalent:

1) L(D) is DRE-definable;
2) D has the orbit property and all orbit languages of D are DRE-definable;
3) Dg has the orbit property and all orbit languages of Dg are DRE-definable.

Furthermore, if D consists of a single, nontrivial orbit and L(D) is DRE-
definable, then there is at least one D-consistent symbol.

Towards a polynomial time algorithm for DRE-DEFINABILITY, they show the
following result:

Lemma 2 (Briiggemann-Klein and Wood [14]). Let D be a minimal DFA
and S be the set of D-consistent symbols.

(1) If Dg has the orbit property, then (Dg)q is minimal for each state q in D.

(2) If p and g are states in the same orbit of Dg, then L((Dg),) is DRE-
definable if and only if L((Ds)q) is DRE-definable.

Point 1 of the above lemma is immediate from combining Lemmas 5.9 and 5.10
from [14]. Point 2 is immediate from the fact that DRE-definable regular lan-
guages are closed under derivatives [14]. Notice that, in general, Dg does not
have to be a minimal DFA. In particular, it can have states that are not reach-
able from the initial state. However, these results lead to a recursive test that
decides whether the language of a minimal DFA is DRE-definable. We present
this test in Algorithm 1. Notice that Lemma 2 ensures that we never have to
effectively minimize the DFA that we give to the recursive call in line 11 of the
algorithm.

In the remainder of this article, D always denotes a minimal DFA. We now
investigate the recursion depth of Algorithm 1 and examine how, for a state ¢
of D, the orbit of ¢ evolves during the recursion. Therefore, we define level
automata which exactly describe the structure of the orbit of some state g at
a specific point in time of the algorithm. Remember that, in one iteration of
Algorithm 1 we always delete two kinds of transitions, if they are present: the
consistent transitions (which we delete to obtain Dg from D) and the inter-orbit
transitions in Dg (which we delete to obtain (Dg),).



Algorithm 1 The Bkw-Algorithm [14].
Algorithm Bkw
2: Input: Minimal DFA D = (Q, X%, 6, qo, F)
Output: true if L(D) is DRE-definable, else false
4: S < the maximal set of D-consistent symbols
if D has only one trivial orbit then return true

6: if D has precisely one orbit and S = () then return false
compute the orbits of Dg
8: if Dg does not have the orbit property then return false
for each orbit O in Dg do
10: choose a state ¢ in O
if not Bkw((Dg),) then return false

12: return true

Level automata. For a state ¢ of a minimal DFA D and k € N we inductively
define the level k automaton of D for the state q, denoted levy (D, q), as follows:

— levg(D,q) = D.
— Let S be the maximal set of consistent symbols in D. Then
(Ds)q if D has more than one orbit and
Dg has the orbit property;

(Dg)q if S # 0 and Dg has the orbit property;
1] otherwise.

levl (D7 Q) =

— For k > 1, let B :=levy_1(D, ¢) and Si_1 be the maximal set of consistent
symbols in B. Then

levi(D, q) = {éBSk_l)q if Sx—1 # 0 and Bg,_, fulfills the orbit property

otherwise.

The above definition follows precisely the construction in Algorithm 1 if state ¢
is chosen every time in line 10. The definition makes clear that the top level
recursion of the BKw-Algorithm (in which we construct levq(D,q)) is slightly
different from the others: the input DFA D of the top level can have multiple
orbits, whereas this is not the case for deeper recursive levels. According to
Lemma 2, levg(D, q) is always minimal.

Example 3. Figure 1 provides an example to illustrate the notion of level au-
tomata. Consider the minimal DFA D from Figure 1(a) and its state qo. By def-
inition, levo(D, qo) is the automaton D itself. In order to build levy (D, qo) (see
Figure 1(b)), observe that D has two orbits and its set of consistent symbols S
is empty since no transitions leave state ¢5. Furthermore, Dg, which equals D,



(¢) The Si-cut of levi (D, qo). (d) leva(D, go), S2 = 0.

Figure 1: An example of level automata for a minimal DFA D.

fulfills the orbit property since all transitions that leave O(gg) go to state gs.
As such, levy(D, qo) equals (Dy)g,, the orbit automaton of ¢p in D. We now
explain how to obtain levy(D, qo) (see Figure 1(d)). First notice that S; = {a}
is the maximal set of consistent symbols in levy (D, qp). Furthermore, the S;-cut
of levq(D, qo) (illustrated in Figure 1(c) without unreachable states) fulfills the
orbit property. The automaton leve(D, qo) is the orbit automaton of ¢p in the
Si-cut of levy (D, qo) (that is, leva(D, qo) = (levi(D,qo)s, )q,)- Finally, observe
that levo (D, qo) has only one orbit and no consistent symbols which implies that
levs(D, qo) = 0. Also, in accordance with the Bkw-Algorithm, this means that
L(D) is not DRE-definable.

The following lemma summarizes the link between DRE-definability and
level automata.

Lemma 4. Let D be a minimal DFA. Then the following are equivalent:
(1) L(D) is DRE-definable;
(2) for every state q of D and k € N, L(lev(D,q)) is DRE-definable;

(3) for every state q of D and k € N, L(levg(D,q)) is DRE-definable and
lev(D, q)s, has the orbit-property.



ProoF. The implications (3) = (2) and (2) = (1) are trivial.

It remains to show that (1) = (3) holds. Assume that there exist a state g
of D and k& € N such that levy(D,q) is not DRE-definable or levy(D,q)s,
does not have the orbit-property, where Sy is the set of consistent symbols in
levi(D,q). By (2) in Lemma 2, we know that the choice of a state in line 10
of the BKw-Algorithm is arbitrary. Therefore, consider a run of the Bkw-
Algorithm on D where, at each recursion level i < k, state ¢ is chosen in line 10
when the current orbit O contains q. Then, at level k, the algorithm is called
on levg(D, q) and returns false by definition of the Bkw-Algorithm, i.e., L(D)
is not DRE-definable. O

8.2. The Recursion Depth of BKW

Now, we are ready to prove deeper properties of the BKkw-Algorithm which
are the basis of further results in the paper. First we observe that, once a state
becomes a gate in the BKw-Algorithm, its outgoing transitions disappear in
deeper recursion levels.

Lemma 5. Let D be a minimal DFA and q be a gate in levg(D,q) for some
k > 0. Then either levy11(D,q) = 0 or q has strictly less outgoing transitions
in levgr1(D, q). In the latter case, q is also a gate in levg1(D,q).

PROOF. Since k > 0, levg (D, q) has precisely one orbit. Therefore there exist
no inter-orbit transitions in levg(D,q). Thus, since ¢ is a gate, it is accept-
ing. Assume that the set of consistent symbols Sy in levg (D, ¢q) is not empty
and that levg (D, q)g, fulfills the orbit property. By definition, levyy1(D,q) =
(levi(D, q)s,)q which is obtained from levy (D, q) by first removing transitions
that are outgoing of an accepting state and labeled with a symbol in Sy and,
secondly, taking the orbit automaton of g afterwards. Since ¢ is accepting and
Sk # 0, it follows that ¢ must have consistent transitions in levg (D, q) which
are not in levy(D,q)s,, and thus are not in levgyi(D,q). If levi(D,q) has
no consistent symbols or levy (D, q)s, does not fulfill the orbit property, then
levi4+1(D, q) = 0 by definition. O

Since in a minimal DFA every state has at most |3| outgoing transitions the
following results holds.

Lemma 6. Let D be a minimal DFA and q be a gate in levy(D,q). Let n =
|4+ 1if k=0 and let n = |X| if k > 0. Then either q is a trivial orbit in
levgrn (D, q) or leviyn(D,q) = 0.

PrOOF. Choose n as defined above and assume that levyi, (D, q) # 0, as other-
wise the lemma is shown. By definition, ¢ exists and is a gate in levy¢(D, q) for
every 0 < ¢ < n. Because ¢ has at most |3| outgoing transitions in levy (D, q),
the assumption holds directly by Lemma 5. O

From Lemma 6, we can infer how long it takes for a state p to become a gate.



Lemma 7. Let D be a minimal DFA and p be a state of levp(D,p) for some
k € N. Let £ be the length of the shortest path from p to a gate in levy(D,p).
Then either levyy s|.e41(D,p) =0 or p is a gate in levyy|s|.e41(D, D).

PROOF. Let ¢; be the length of the shortest path from p to a gate in lev;(D,p).
If ¢; =0, pis a gate. If £; > 1, we show that within |X| recursion levels (|X]| +1
levels if j = 0), this value decreases strictly.

Let ¢ be a gate, such that there is a path of length ¢; from p to ¢ in lev;(D, p)
and let the corresponding path be:

P=Dpo—=pP1— 7 Py—-1 7 Pe; =4q-

First notice that ¢; cannot increase as long as no transition on the path is
removed. (If ¢ is a gate at some level, it remains a gate at the next level).
Assume now that some transition p; — p;41 is removed from lev,,,(D,p) for
some m € N. By definition of level automata, the transition is either consistent
(out-going from an accepting state), or an inter-orbit transition. In both cases p;
is a gate in lev; (D, p) and thus ¢;,, < ¢;. Therefore, £; cannot increase when
considering ascending levels.

From Lemma 6, we know that after at most n = |X| recursion levels (|X|+1
if we start from level j = 0) the orbit automaton lev;i, (D, ) is either empty or
trivial. But this means that the transition p;; 1 — ¢ is an inter-orbit transition
in lev;n(D,q), ie., p,—1 is a gate. Thus ¢;;,, < {;, which proves that ¢;
strictly decreases within |3| recursion levels (|X|+1 if j = 0). Altogether, after
at most j = ¢-|X| 4 1 recursion levels, either levyy;(D,p) is empty or ¢; = 0,
which means p is a gate in levy4; (D, p). O

Next, we want to combine Lemma 7 with a simple observation about NFAs
versus their minimal DFAs; namely that paths to accepting states are short.

Lemma 8. Let N be an NFA with size n. Then for every state of [N] there is
a path leading to some accepting state of length at most n — 1.

PROOF. We prove the assumption by examining the states in Py. Let N =
(Q,%,0,q90, F) and p = {q1,...,qr} be a non-empty subset of ) (that is, a
state in Py ). Notice that, we consider only NFAs where all states are useful.
Therefore, for every state ¢ € @, there exists a path to some accepting state
q’ € F of length at most n — 1. In particular, this means that there is such a
path from ¢; to q{. Then, by definition of Py, there exists a path from p to
some state p/ that contains q{ of length at most n — 1 in Py. Clearly, p is
accepting in Py. Let w be a word such that 65 (p,w) = p/ and |w| =n — 1.
We have 0y, ([p], w) = [p/], which concludes the proof. O

Combining Lemma 6, 7 and 8 we have an upper bound on how long states

can be present in the recursion of the BKw-Algorithm, compared to the size of
an NFA for the language.

10



Lemma 9. Let N be an NFA with size n. Then, lev,.s12([N],p) = 0 for every
state p of [N].

PROOF. Let p be a state in [N]. By Lemma 8 there exists a path from p to
some accepting state ¢ in [N] of length at most n— 1. Clearly, ¢ is a gate in [N].
Thus the length of the shortest path from p to a gate in [N] is smaller or equal
to n—1. Furthermore, [N] = levo([N], p) by definition. Therefore, by Lemma 7,
state p is a gate in lev(,_1y.;z|+1([N],p), or lev(,_1).s+1([N], p) is empty. In
the latter case the lemma is shown. If p is a gate in lev(,_1).;5)4+1([V], p) then,
by Lemma 6, p is a trivial orbit in lev,. gj+1([V],p). Thus it follows that
lev,,.|s|4+2([N],p) = 0, which concludes the proof. O

Summarized, we know that the recursion depth of the BKw-Algorithm is poly-
nomial in the size of a minimal NFA for a language.

Theorem 10. Let N be an NFA with size n. The recursion depth of Algo-
rithm 1 on [N] is at most n - |X| + 2.

8.8. Consistency Violations

In the following, we analyze the possible causes of failure for the BKw-
Algorithm. We identify three properties such that the Bkw-Algorithm fails if
and only if one of them holds for some orbit automaton at some level k. Then,
our PSPACE algorithm searches for one of these properties (resp. violations) in
the input automaton.

From the BKw-Algorithm, we can immediately see that there are two situ-
ations in which it can reject: (in line 6) at some point in the recursion, when
the automaton consists only of one orbit which has no consistent symbols or (in
line 8) at some point in the recursion, when the S-cut of the automaton does
not have the orbit property. The latter means that there exist two gates of the
same orbit in the S-cut, such that either they do not have the same transitions
to the outside or one of them is accepting while the other one is not. We now
formalize these different types of violations and prove afterwards that the BKw-
Algorithm fails if and only if one of these violations is found at some point in
the recursion. Let D be a minimal DFA and S be its set of consistent symbols.
Then D can have the following violations:

OuT-CONSISTENCY VIOLATION: There exist gates ¢; and g2 in the same orbit O
of Dg and there exists a state q outside O such that there is a transition ¢, — ¢
and no transition gz — ¢.

ACCEPTANCE CONSISTENCY VIOLATION: There exist gates ¢; and g2 in the
same orbit of Dg such that ¢; is accepting and ¢ is not.

ORBIT CONSISTENCY VIOLATION. There exists an accepting state ¢; such that,
for every symbol a, there exists another accepting state go in O(¢;) in D, such
that for every state ¢, at most one of the transitions ¢; — ¢ and ¢a — ¢ exists.!

INotice that 6(q1,a) may be empty if D only has useful states.
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Notice that, similar to the BKw-Algorithm the first two violations focus
on Dg and the last one on D. Altogether we also say that a DFA D has a
violation if and only if it has at least one of the above violations. We show that
these violations are a valid characterization of DRE-definable languages.

Theorem 11. Let D be a minimal DFA. Then it holds that L(D) is not DRE-
definable if and only if there exist a state q of D and k € N such that levg (D, q)
has a violation.

PrOOF. We prove the direction from right to left first. Therefore, we distinguish
three cases depending on the violation that occurs in levg (D, gq).

If, for some state ¢ of D and k € N, we have that levy(D, q)s, has an out-
consistency violation or an acceptance consistency violation, then levy(D,q)s,
does not fulfill the orbit property. By Lemma 4, this means that L(D) is not
DRE-definable.

If levg (D, ¢) has an orbit consistency violation, then lev (D, ¢) has no con-
sistent symbol. If £ > 1 then levy (D, q) has only one orbit. This implies that
levi(D,q) is not DRE-definable by Theorem 1. By Lemma 4, the language
L(D) is not DRE-definable. If k¥ = 0, then levy (D, q) is the orbit automaton
of ¢ in D. This automaton consists of a single orbit, whose states are the ones
in the orbit of ¢ in D. (Because D has no consistent symbols, it holds that
Dg = D.) Furthermore, levy (D, q) still does not have a consistent symbol be-
cause all accepting states of the orbit of ¢ in D are still accepting in levy (D, q).
Therefore, again by Lemma 4, the language L(D) is not DRE-definable.

It remains to prove the direction from left to right. Therefore, assume
that L(D) is not DRE-definable. By Lemma 4, there exist k and ¢, such that
L(levy(D, q)) is not DRE-definable. This means that the BKw-Algorithm fails
when given levy (D, q) as input. Assume it fails in line 6. Then levy (D, q) has
no consistent symbol, which means that an orbit consistency violation occurs
in levg(D,q). Assume it fails in line 8. Then levy(D,q)s, does not have the
orbit property, which means that either an out-consistency violation occurs in
levi(D,q)s, , or an acceptance consistency violation occurs in levy (D, q)s, . This
concludes the proof.

8.4. A PSPACE Algorithm for DRE-Definability

We are now ready to re-examine the complexity of DRE-DEFINABILITY for
NFAs and REs. Our PSPACE algorithm for DRE-definability for REs and NFAs
exploits Theorem 11 in the following way. Given an NFA N, we search for a
level k and a state p of [N] such that levy([N],p) has a violation. As PSPACE
is closed under complement, the result follows.

Notice that, in general [N] can be exponentially larger than N and therefore
we cannot simply compute [N] in space polynomial in |N|. To overcome this
difficulty, we use the following two ideas:
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1) Use the fact that the maximal recursion depth of Algorithm 1 on [N] is
polynomial in the size of the NFA N (Theorem 10).

2) Adapt Algorithm 1 using Theorem 11 and apply it on the minimal DFA
by only partially constructing it on-the-fly from the NFA.

In the following we explain how we can detect if there occurs a violation in the
minimal DFA for some NFA on the fly, i.e., without constructing the DFA explic-
itly. To this end, we fix the following notations for the remainder of the section.
By N = (Qn,%,0n,q%, Fy) we always denote an NFA. So, in particular, we
always denote by @Qx the state set of N. For a set of states ¢ C Qn, we denote
by [g] the corresponding state in the minimal DFA [N]. More formally, [g] is
the set of words {w | 3t € ¢ s.t. o3 (t,w) N Fx # 0}, i.e., the Myhill-Nerode
class of ¢g. Also, whenever we talk about levy ([N, [¢])s,, the set Sy is the set of
consistent symbols in levy ([/V], [¢]). The key result (Lemma 23) is to show that
we can detect if a violation occurs in a level k for [IV] in space polynomial in &
and |N|. Here are the precise problems we consider. For each of them the input
is an NFA N and k € N:

OUuT-CONS-VIOLATION:  Given N and k, is there a ¢ C Qn such that
levi([N], [q])s, has an out-consistency violation?

Acc-CoONs-VIOLATION:  Given N and k, is there a ¢ C QQn such that
levi([N], [q])s, has an acceptance consistency
violation?

ORBIT-CONS-VIOLATION: Given N and k, is there a ¢ C Qn such that
levi([N], [q]) has an orbit consistency violation?

We first study the complexity of the following subproblems which we use
later to solve the above problems (see e.g. Lemma 23). The input is always a
subset of an NFA N, non-empty sets p,q C Qn, a € X, k € N that is relevant
to the problem.

EDGE: Given (N, p,q,a, k:) s [p] = [q] a transition in levy([N], [p])?
REACHABILITY: Given (N, p, ¢, k), i [q] reachable from [p] in levy ([N], [p])?
SAMEORBIT:  Given (N, p,q, k), are [p] and [¢] in the same orbit of
tevi ([N, [p))?
INTERORBIT:  Given (N, p, k), is there an inter-orbit transition [p] = [¢]
for some label a and ¢ in levg ([N], [p])?
ACCEPTANCE: Given (N, p, k), is [p] accepting in levg ([N], [p])?
ISGATE: Given (N, p, k), is [p] a gate in levy([N], [p])?

Notice that SAMEORBIT and INTERORBIT are only non-trivial if £ = 0. Fur-
thermore, for some of the above problems X we consider a variation called
X-CuT in which, with the same input, we want to decide if the problem X is
true for automaton levy([N], [p])s, (instead of levy([N], [p])).

We will heavily use the following result:

Theorem 12 (Corollary to Savitch’s Theorem). Let f(n) > logn be a non-
decreasing polynomial function. Then NSPACE(f(n)) C SPACE(f?(n)).
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Our proof is a careful mutual induction on the above defined problems.
First we show that EDGE, EDGE-CUT, and ACCEPTANCE can be computed in
polynomial space on level 0 and then we prove a set of implications of the sort
if we can solve X on level k, then we can solve Y on level k (or level k + 1).
All the lemmas have to be carefully put together in the right order.

Lemma 13. Given N and p,q C Qn, we can test whether [p| = [q] in space
O(IN?).

PrOOF. We describe how a non-deterministic Turing Machine can test in non-
deterministic space O(|N|) whether [p] # [¢]. The statement then follows from
Theorem 12 and the Immerman-Szelepscényi Theorem.

In this proof, we consider the power set automaton of N with its useless
states. We do this to be able to elegantly state a procedure that is correct even
if p or q are not states of Py. To this end, let Py = (Qp1, %, 01, {a¥}, Qpy )
be the power set automaton of N with useless states. That is, Qp; is the power
set of Qn and dp; (¢,a) = {s | It € gs.t. s € dn(t,a)}.

The non-deterministic Turing Machine checks if there exists a ¥-word w
such that exactly one of the two states 5*],V(p,w) and 6*&(q,w) is accepting.
This would show that the two states p and ¢ are in different Myhill-Nerode
congruence classes. To test this, the Turing Machine first checks if exactly one
of the two states p or g are accepting in Pj;. If so, it immediately accepts. (This
situation would correspond to w = € above.) Otherwise, it guesses the word
w = aj - -+ ap symbol by symbol and, for every ¢ = 1,...,k keeps the current
states 5*],V(p, ay---a;—1) and 6*1'\7 (¢,a1 ---a;—1) on tape and updates these two
states after every new guess of a; € ¥. This test requires O(|N|) space since
every state in Pj; is a set of states of N. O

In the following, whenever we say that we solve a problem for N at level k,
we mean that we solve it for the NFA N and arbitrary sets of states p,q C Qn,
a € X, and k. The basis of our entire mutual induction relies on being able to
test if a certain transition is present in the minimal DFA equivalent to N, if it
is present in its S-cut, or if some state is accepting.

Lemma 14. EDGE, ACCEPTANCE and EDGE-CUT for N at level 0 can be
solved in space O(|N|?).

Proor. We first show how to check, for a given non-empty set p C @,
whether [p] is a state in [N], i.e., whether it is useful. As N only has use-
ful states, there exists a path from [p] to some accepting state in [N]. Thus it
is enough to check whether there is a path from [{¢%/}] to [p]. This clearly can
be done by a nondeterministic algorithm working in space O(|IV|). This algo-
rithm would guess a word symbol by symbol, simulate Py on the fly, starting
from {¢% } and test at each step whether the reached state g is equivalent to p,
ie., if [p] = [q] (see e.g., proof of Lemma 13). By Theorem 12, this can also be
done by a deterministic algorithm working in space O(|N|?).
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We now turn our attention to EDGE with some input (N, p, ¢, a,0). We must
decide if [p] % [q] is a transition in [N]. Since [N] does not have useless states,
this means that we should test two things:

— both [p] and [q] are states in [N];
— [6py (p,a)] = [q], where Py is the power set automaton of N.

The former can be solved in O(|N|?), as we mentioned before. It remains to
prove the latter. Given p and a, we can easily compute dp, (p,a) in space
O(|N]). According to Lemma 13, we can then decide if [0p, (p,a)] = [g] in
space O(|N|?).

We now show how to solve ACCEPTANCE for N at level 0 with an input
(N,p,0). Notice that [p] is accepting in levo([N],[p]) if and only if [p] is a
(useful) state in [N] and if pN Fy # 0. By aforementioned reasoning the former
can be done in space O(|N|?). The latter can be easily done in space O(|N|).

Finally, we focus on EDGE-CUT. Notice that levo([N], [p])s = [N]g, where S
is the set of consistent symbols in [N]. Let (IV,p, ¢, a,0) be the input for EDGE-
Cut. We must decide if [p] < [q¢] is a transition in [N]g, that is, a transition
in [N] which is not deleted in the S-cut. We can test whether [p] % [q] is
a transition in [N] in space O(|N|?) by the test for EDGE we just proved. If
[p] = [q] is a transition in [N], we test whether [p] is accepting, which we can
do in space O(|N|?) (as we just proved). If [p] is accepting, then [p] = [q] is
a transition in [N]g if and only if a is not consistent in [N]. To decide this,
we iterate over all states p’ C Qn of Py, test whether [p/] is accepting in [NV],
and whether [p’] does not have an a-transition to [¢]. Formally, we test, for
every state p’ of Pn, whether ACCEPTANCE for [p/] returns true and EDGE for
(N, [p'], [4], a,0) returns false. Again, we can solve both in space O(|N|?), which
we just proved for EDGE and ACCEPTANCE. This concludes the proof. O

In the following we show that, if we can solve EDGE or EDGE-CUT at a
certain level then we can use it to make more complex tests.

Lemma 15. Assume that we can solve EDGE for N at level k in space f(k,|NJ).
Then we can solve

— REACHABILITY for N at level k in space f(k,|N|) + O(|N|?);
— SAMEORBIT for N at level k in space f(k,|N|) + O(|N|?); and
— INTERORBIT for N at level k in space f(k,|N|)+ O(|N|?).

Analogously, if we can solve EDGE-CUT for N at level k in space f(k,|N|), then
we can solve REACHABILITY-CUT, SAMEORBIT-CUT, and INTERORBIT-CUT
for N at level k in space f(k,|N|) + O(|N|?).

PROOF. We prove the statements for REACHABILITY, SAMEORBIT, and IN-
TERORBIT. The CUT-variants of the problems are proved completely analogous
where we use always EDGE-CUT instead of using EDGE.
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First we show that REACHABILITY can be solved in (deterministic) space
f(k,|N]) + O(|N|?). The proof is analogous to the one of Savitch’s Theorem
(that shows that graph reachability is in space O(log? n)). Thereby, the proof of
Savitch’s Theorem can be sketched as follows. Let G be a graph, = and y nodes
in G, and ¢ an integer, then the predicate PATH(G, x, y, £) denotes whether there
is a path from z to y in G of length at most ¢. The proof then shows that this
predicate can be decided deterministically in space O(log® |G|) which is done by
a recursive algorithm that searches for a mid-point in the path. In our case, we
are given N, p,q C Qn, and k, and we want to know whether there exists a path
from [p] to [¢] in levi([N], [p]). Then the procedure runs in the same way as in
the proof of Savitch’s Theorem. The only difference is that in the case where we
need to test if there is a transition we use the procedure for solving EDGE for N
at level k. Since the size of [N] is O(2IN1), we obtain the f(k,|N|) 4+ O(|N|?)
upper bound.

Next we show how to implement SAMEORBIT for N at level k for given N,
p,q C Qn, and k. We know that [p] and [g] are in the same orbit if and only
if REACHABILITY is true for (N, p, ¢, k) and for (N, q,p, k). That is, [¢] should
be reachable from [p] and vice versa in levg([N], [p]). Therefore, if we can solve
REACHABILITY for N at level k in space f(k,|N|) + O(]N|?) then we can also
solve SAMEORBIT for N at level k in space f(k,|N|) + O(|N|?).

Finally, we show how to solve INTERORBIT for N at level k. Given that
SAMEORBIT is in space f(k,|N|) + O(|N|?), we can solve INTERORBIT by
enumerating all ¢ € ¥ and testing whether [p] and [0p, (p,a)] are not in the
same orbit, i.e., checking if SAMEORBIT returns false. This requires space
f(k,|N|)+ O(IN|? + |N| + log |Z]) = f(k,|N|) + O(|N|?) in total. O

The next lemmas prove that we can compute the structure of the automaton
at level £ + 1 under the assumption that the automaton at level k is already
computed. In this way, the next lemmas show a single induction step of our
overall proof for DRE-Definability(NFA) is in PSPACE.

Lemma 16. Assume that we can solve EDGE and ACCEPTANCE for N at
level k in space f(k,|N|). Furthermore, assume that levg([N], [p]) has no viola-
tion. Then we can solve EDGE-CUT for N at level k in space f(k,|N|)+O(|N]).

PROOF. Let the input for EDGE-CUT at level k be (N, p, g, a, k). Then there is
a transition [p] = [¢] in levi([N], [p])s, if and only if all of the following hold:

— there is a transition [p] % [¢] in levy([N], [p]);
— [p] & [q] is not deleted in the Sk-cut; and
— levi([N], [p]) has no violation.

From the lemma statement, we know that levy([N], [p]) has no violation and

that we can test whether there is a transition [p] % [¢] in levy ([N], [p]) in space
f(k,|N|). In order to check whether it is deleted in the Sg-cut we test whether [p]
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is accepting in levy ([N], [p]). This can also be done in space f(k, |N|) according
to lemma statement. Afterwards, we check whether there is a state p’ C Qn
in [N], such that [p’] is accepting, and does not have an a-transition to [g]
in levg([N], [p]). Again, both can be solved in space f(k,|N|) by assumption.
Overall we need space O(|N|) to keep p, ¢, p’ and a in the memory and f(k, |N|)
to solve EDGE and ACCEPTANCE, which concludes the proof. O

Lemma 17. Assume that we can solve EDGE-CUT and ACCEPTANCE for N
at level k in space f(k,|N|). Furthermore, assume that levg([N],[p]) has no
violation. Then we can solve ACCEPTANCE for N at level k + 1 in space
f(k,INT) + O(IN?).

PrOOF. Let (N,p, k+1) be the input of the ACCEPTANCE problem. Then [p] is
an accepting state in levgy 1 ([NV], [p]) if and only if levy ([V], [p])s, has the orbit
property and either

— [p] is accepting in levy ([N], [p]); or
— [p] has an outgoing inter-orbit transition in levg ([N], [p])s, -

Since levy ([N], [p]) has no violation we know that levy([V], [p])s, has the orbit
property. By Lemma 15 we can solve whether [p] has an outgoing inter-orbit
transition in levy ([N],[p])s, in space f(k,|N|) + O(|N|?). O

k

Lemma 18. Assume that we can solve EDGE-CUT for N at level k in space
f(k,IN|). Furthermore, assume that lev,([N],[p]) has no violation. Then we
can solve EDGE for N at level k + 1 in space f(k,|N|) + O(|N|?).

PROOF. Let the input for EDGE at level K+ 1 be N, p, ¢ C Qn, and a € X.
Then there is a transition [p] = [g] in levyy1([N], [p]) if and only if all of the
following hold:

— there is a transition [p] = [q] in levg([N], [p])s,;
— [p] and [g] are in the same orbit in levy ([V], [p])s,; and
— levi([N], [p]) has no violation.

By assumption we know that levg([V], [p]) has no violation and that we can
test whether there is a transition [p] = [g] in lev,([N], [p])s, in space f(k,|N]|).
By Lemma 15 we can check whether [p] and [g] are in the same orbit in
lev ([N],[p])s, in space f(k,|N|) + O(|N|?). O

Lemma 19. Assume that we can solve EDGE and ACCEPTANCE for N at
level k in space f(k,|N|). Furthermore, assume that levy([N], [p]) has no vi-
olation. Then we can solve EDGE and ACCEPTANCE for N at level k + 1 in
space f(k,|N|) + O(IN]?).
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PROOF. According to Lemma 16 we can solve EDGE-CUT for N at level k in
space f(k,|N|)4+ O(|N|). Then by Lemma 17 we can solve ACCEPTANCE for N
at level k + 1 in space f(k,|N|) + O(]N|?). Finally, we can solve EDGE for N
at level k + 1 in space f(k,|N|) + O(]N|?) by Lemma 18. O

Lemma 20. Assume that for 0 < i < k — 1 all automata lev;([N], [p]) have
no violation. Then EDGE and ACCEPTANCE for N at level k are in space
O((k + 1)|N|?).

PRrROOF. To prove the desired upper bound we show that there exists a constant
¢ > 0 such that EDGE and ACCEPTANCE for N at level k£ can be solved using
at most space c(k + 1)|N|?. By Lemma 14 we know that there exists a con-
stant ¢; such that EDGE and ACCEPTANCE for NV at level 0 can be solved in
space c1|N|?. Similarly, let co be the constant from Lemma 18, such that EDGE
and ACCEPTANCE for N at level k+ 1 can be solved in space f(k,|N|)+ c2|N|?.
Notice that, co does not depend on k. We take ¢ = max{cy,ca}.

The proof is by induction on k. For the base case, k& = 0, the lemma
statement holds directly by Lemma 14. Assume that the lemma is true for k,
i.e., EDGE and ACCEPTANCE can be solved for N at level k in space c(k+1)|N|?.
By Lemma 18, EDGE and ACCEPTANCE can be solved for NV at level k£ + 1 in
space c(k + 1)|N|? + c2| N|? < ¢(k + 2)|N|?. This concludes the proof. O

Lemma 21. Assume that, for 0 < i < k — 1, all automata lev;([N], [p]) have
no violation. Then ISGATE-CUT for N at level k is in space O((k + 1)|N|?).

ProOOF. Let N and p C @Qn be the input for ISGATE-CUT at level k. Then
state [p] is a gate in levg ([N], [p])s, if and only if levg([N], [p]) has no violation
and at least one of the following hold:

— [p] is accepting in levy ([N, [p])s,;
— [p] has an outgoing inter-orbit transition in levy([N], [p])s, -

By assumption levy([N], [p]) has no violation. By Lemma 20 we can solve Ac-
CEPTANCE for N at level k in space O((k + 1)|N|?). By the same lemma, we
also get that EDGE for N at level k is in space O((k + 1)|N|?). Therefore, by
Lemma 15, INTERORBIT for N at level k is in space O((k + 1)|N|?). O

We are now ready to show that we can compute all the aforementioned prop-
erties of the level k£ automaton in polynomial space. For technical reasons, we
need the assumption that all lower level automata lev;([N], [p]) have no viola-
tion. This is because, otherwise, the level k£ automaton would be empty. The
proof is basically a careful induction that puts together the previous lemmas.

Lemma 22. Assume that, for 0 <1i < k—1, all automata lev;([N], [p]) have no
violation. Then EDGE, REACHABILITY, SAMEORBIT, INTERORBIT, ACCEP-
TANCE and EDGE-CUT, REACHABILITY-CUT, SAMEORBIT-CUT, INTERORBIT-
Cut, and ISGATE-CUT for N at level k can be solved in space O((k + 1)|N|?).
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PRrROOF. By Lemma 20 we can solve EDGE and ACCEPTANCE for N at level k
in space O((k + 1)|N|?). For IsGATE-CUT the statement holds by Lemma 21.
Thus we have that, for Lemma 15 and 16, f(k,|N|) € O((k-+1)|N|?). Therefore,
the assumption holds for REACHABILITY, SAMEORBIT, INTERORBIT, REACH-
ABILITY-CUT, SAMEORBIT-CUT, INTERORBIT-CUT, and EDGE-CUT. O

By Lemma 22 we can decide on-the-fly which transitions are present and
which states are accepting in a level k automaton (still assuming that no vi-
olations occur in more shallow levels). Since these properties give the entire
structure of a level k& automaton, we can now also test for violations on level k.

Lemma 23. Assume that, for 0 <1i < k—1, all automata lev;([N], [p]) have no
violation. Then OUT-CONS-VIOLATION, ACC-CONS-VIOLATION and ORBIT-
CONS-VIOLATION for N at level k can be solved in space O((k + 1)|N|?).

PROOF. Let N be the input for OUT-CONS-VIOLATION at level k. We know
an out-consistency violation occurs at level k of N if and only if there exist
p,q C @Qn such that all of the following hold:

all automata lev;([N], [p]) for 0 <4 < k — 1 have no violation;

— both [p] and [¢] are gates in levy ([N], [p])s,;

both [p] and [¢] are in the same orbit of levy([N], [p])s,; and

in levi([N], [p])s, there exist a symbol a € ¥ and [¢'] outside the orbit of
[p] such that [p] = [¢] but [q] + [¢']

By assumption all lev;([N], [p]) for 0 < i < k — 1 have no violation. According
to Lemma 22 we can solve ISGATE-CUT and SAMEORBIT-CUT for N at level k&
in space O((k + 1)|N|?). The last point can then be solved by enumerating all
a € ¥ and states ¢ C Qun where for each we check whether

— [p] & [¢] exists while [¢] % [¢'] does not; and
— [p] and [¢'] are in different orbits.

By Lemma 22, this can be done in space O((k + 1)|N|?), which concludes the
proof for OUT-CONS-VIOLATION.

Now, let IV be the input for Acc-CONS-VIOLATION at level k. We know an
Acc-CoNs-VIOLATION occurs at level k of NV if and only if there exist p,q C Qn
such that all of the following hold:

all automata lev;([N], [p]) for 0 <4 < k — 1 have no violation;

— both [p] and [¢] are in the same orbit of levy([N], [p])s,;

both [p] and [¢] are gates of levy([N], [p])s,; and

exactly one of [p] and [q] is accepting in levy([N], [p])s, -
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By assumption all lev;([N], [p]) for 0 < ¢ < k—1 have no violation. According to
Lemma 22 and Lemma 21, SAMEORBIT-CUT, ISGATE-CUT and ACCEPTANCE
at level k for N can be solved in O((k + 1)|N|?), which concludes the proof.

Finally, let NV be the input for ORBIT-CONS-VIOLATION at level k. We know
an ORBIT-CONS-VIOLATION occurs at level k of N if and only if there exists a
set g1 € @y such that:

— all automata lev;([N], [¢1]) for 0 < i < k — 1 have no violation;
— [q1] is accepting in levy([N], [¢1]); and

— for every symbol a, there exists an accepting state [ga] € O([¢1]) such
that, for every state [g] € [N], at most one of the transitions [q;] — [g]
and [go] % [q] exists in levg([N], [q1])-

By assumption all lev;([N],[q1]) for 0 < ¢ < k — 1 have no violation. Ac-
cording to Lemma 22 SAMEORBIT, ACCEPTANCE and EDGE can be solved in
O((k+1)|N|?). Additionally, we need space O(|N|) to keep [q1], [g2], [q], and a
in the memory. (]

We now have all the ingredients to prove our main result.

Theorem 24. DRE-DEFINABILITY(NFA) and DRE-DEFINABILITY(RE) are
PSPACE-complete.

PrOOF. DRE-DEFINABILITY(RE) is known to be PSPACE-hard [15, 26]. Since
an RE can be translated in polynomial time into an equivalent NFA, the lower
bound also holds for NFAs.

Furthermore, the upper bound for REs follows from the upper bound for
NFAs. We therefore show that DRE-DEFINABILITY for an NFA N is in space
O(|N|*), which proves the theorem. We assume w.l.o.g. that |%| < |N|. Accord-
ing to Theorem 11, a language L(N) is not DRE-definable if and only if one of
OuT-CONS-VIOLATION, ACC-CONS-VIOLATION and ORBIT-CONS-VIOLATION
occurs at some level k for N. According to Theorem 10, the recursion depth of
Algorithm 1 is at most |N|?+2, i.e., only levels k from 0 to |N|?>+2 are relevant
for the problem.

Therefore, our PSPACE algorithm checks for violations starting from level 0
and moving to higher levels up to |N|?2+2. For every single level k violations can
be detected in space O((k+1)|N|?) by Lemma 23. Notice that, when can apply
the above lemma because we know that all smaller levels are checked before and
do not contain any violation. Altogether, we can solve DRE-DEFINABILITY for
an NFA N in space O((k + 1)|N|?) for k = |[N|> + 2, i.e., in O(|N|%). O

4. Definability for DFAs and for RE(#)s

In this section we give minor results for variations of DRE-DEFINABILITY
where the input is an RE(#) or a minimal DFA. First, we show that DRE-
DEFINABILITY (RE(#)) is EXPSPACE-complete.
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Theorem 25. DRE-DEFINABILITY(RE(#)) is EXPSPACE-complete.

PRrROOF. The upper bound is immediate from Theorem 24 and the fact that
we can translate an RE(#) into an RE of exponential size by unfolding the
counters.

We prove the lower bound by a reduction from the universality problem for
RE(#). This problem is known to be EXPSPACE-complete which is due to
Meyer and Stockmeyer. In [28], they showed that universality for regular ex-
pressions with squaring (i.e., regular expressions that only allow counters (2, 2))
is EXPSPACE-complete. The reduction, which is analogous to the reduction
in [26] that shows DRE-DEFINABILITY(RE) is PSPACE-hard, is defined as fol-
lows: Let r be the expression X*#(a + b)*a(a + b) + e#X* where e is a RE(#)
and # is a symbol that is not used in the language of e. To prove correctness for
the reduction, observe that L((a+b)*a(a+b)) is not DRE-definable. Therefore,
L(r) is DRE-definable if and only if L(e) = £*. O

As mentioned before, DRE-DEFINABILITY can be solved in polynomial time
when the input is a minimal DFA [14]. We prove that the problem is NL-hard.
The precise complexity for arbitrary regular languages remains open.

Theorem 26. DRE-DEFINABILITY(minDFA) is NL-hard.

PRrROOF. We prove this result via a log-space reduction from the complement
of the reachability problem in directed acyclic graphs (DAGs). This problem
asks, given a DAG G = (V, E), a source node s, and a target node ¢, whether ¢
is reachable from s by a directed path. The DAG reachability problem is well-
known to be NL-complete [29].

In this proof, we use the fact that finite languages are always DRE-definable.
(This can be checked through the Bkw-Algorithm which discovers immediately
that all orbits are trivial.) For the reduction, let G = (V, E), and nodes s,t € V
be an instance of DAG reachability. We construct a minimal DFA D such that
L(D) is DRE-definable if and only if vertex t is reachable from vertex s in
graph G.

Based on the graph G we build an automaton D = (Q,%,4,qo,{qs}) as
follows. The set @ of states is the disjoint union of the vertices V' of G, plus
two distinguished states go (which is D’s initial state) and g (which is D’s only
accepting state). The alphabet ¥ is defined as (V W {qo,qs})?. The transitions
of D are defined as follows. Let V = {vy,...,v,} be the vertices of G:

— for each edge (v;,v;) € E, the transition 6(v;, (vi,v;)) = v, is in D;

— for each vertex v;, the transitions d(qo, (g0, v;)) = v; and 6(v;, (vi, q5)) = g5
are in D; and

— the transition d(¢, (¢,s)) = s is in D.

As such, every transition has its unique label. This concludes the reduction,
which can be conducted in logarithmic space.
In order to complete the proof we need to show the following two facts:
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1) D is minimal,
2) L(D) is DRE-definable if and only if ¢ is not reachable from s in G.

Fact 1) is immediate because all transitions are labeled by a unique symbol,
which means that D has no Myhill-Nerode equivalent states.

We now show 2), that L(D) is DRE-definable if and only if ¢ is not reachable
from s in G. We first show that, if there is no path from s to ¢ in G then L(D)
is DRE-definable. To this end, assume that there is no path from s to ¢t in G.
We argue that the underlying graph of D is a DAG. Towards contradiction,
assume that there is a cycle in D. It clearly contains neither gy nor gy, thus
it uses only transitions which originate from the edges of G and possibly the
transition ¢ — s. Since G is a DAG, the transition t — s is necessarily used.
Thus the rest of the cycle forms a path from s to ¢, which contradicts our
assumption. Thus, the underlying graph of D is a DAG. This means that D
defines a finite and therefore DRE-definable language.

It remains to show the implication from left to right, i.e., that the DRE-
definability of D implies that ¢ is not reachable from s. Towards contradiction,
assume that t is reachable from s in G. Thus, s and ¢ are in the same orbit of D
which is not the orbit of g¢ because g¢ has no outgoing transitions. Therefore,

) t, . . s
the transitions s M qs and t % gy are inter-orbit transitions and s

and ¢ are gates of the same orbit. However, their transitions to g¢ are not
out-consistent and D does not fulfill the orbit property, i.e., L(D) is not DRE-
definable. This contradicts our assumption and concludes the proof. O

5. Conclusions

We have pinned down the exact complexity of testing whether a regular
expression can be determinized (or, equivalently, be expressed by a deterministic
regular expression) and considered several minor variations of this problem:

— Deciding if a regular expression can be determinized; or if the language of
a given RE or NFA can be expressed by a deterministic regular expression
is PSPACE-complete ([15] and Theorem 24).

— Deciding if the language of a given RE(#) can be expressed by a deter-
ministic regular expression is EXPSPACE-complete (Theorem 25).

— Deciding if the language of a given minimal DFA can be expressed by a
deterministic regular expression is in PTIME [14]. We proved that this
problem is NL-hard (see Theorem 26).

The precise complexity of the last question remains open. Our proofs provide
additional insights on such DRE-definable languages and on the decision algo-
rithm of Briiggemann-Klein and Wood.

We would like to conclude by mentioning an open problem regarding the
determinization of regular expressions. What is the worst-case blow-up in the
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determinization process when converting a regular expression to an equivalent
deterministic one? At the moment, we only know that a single exponential
blow-up cannot be avoided [18] but the best known upper bound is double
exponential. While our proofs seem to give some insight in how to improve
this upper bound, testing whether a language is DRE-definable and actually
constructing a minimal equivalent DRE are quite different matters. It is not yet
clear to us how our techniques can be leveraged to obtain better upper bounds
for this question.

Note. Several results in this work are obtained independently by Ping et al. [30].
Ping et al. present an alternative proof for the PSPACE upper bound for Theo-
rem 24 which additionally shows that only quadratic space is needed. Further-
more, they show that DRE-DEFINABILITY (minDFA) is in NL when the size of
the automaton’s alphabet is at most logarithmic in the number of states.
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