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ARTICLE

Causes and implications of the unforeseen 2016
extreme yield loss in the breadbasket of France
Tamara Ben-Ari1, Julien Boé 2, Philippe Ciais3, Remi Lecerf4, Marijn Van der Velde4 & David Makowski1

In 2016, France, one of the leading wheat-producing and wheat-exporting regions in the world

suffered its most extreme yield loss in over half a century. Yet, yield forecasting systems

failed to anticipate this event. We show that this unprecedented event is a new type of

compound extreme with a conjunction of abnormally warm temperatures in late autumn and

abnormally wet conditions in the following spring. A binomial logistic regression accounting

for fall and spring conditions is able to capture key yield loss events since 1959. Based on

climate projections, we show that the conditions that led to the 2016 wheat yield loss are

projected to become more frequent in the future. The increased likelihood of such compound

extreme events poses a challenge: farming systems and yield forecasting systems, which

often support them, must adapt.
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Crop yield forecasting systems rely on a combination of
expert knowledge, data mining and analysis, and
mechanistic and/or statistical models1–3. The increased

extreme weather conditions in recent years4, have challenged
these systems. Heat waves and drought events take the largest toll
on production5, and are anticipated to increase in frequency and
severity in the northern mid-latitudes6. Extreme yield losses also
can occur, however, due to events resulting from insidious con-
stellations of climate variables forming a compound extreme. The
2016 extreme loss of wheat harvest in the breadbasket region of
France is one such example, and we present here an in-depth
analysis of this event and its implications for wheat yield
forecasting.

France ranks fifth in the global league table of national wheat
production, and despite its limited arable area, produces more
wheat than any other country in the European Union (EU). This
is achieved because of very high yields. Recent French yields equal
about 7.4 t ha−1. In comparison, China, India, Russia and the
United States, the world’s four largest wheat producers, harvest
about 5, 2.5, and 3 t ha−1, respectively7. Between 2000 and 2013,
France was the EU’s main grain exporter, exporting about 17
million tonnes of wheat mainly to North Africa, where local
production covers only 10–50% of the demand7.

The 2016 winter-wheat harvest was disastrous. Yields in the
breadbasket region dropped on average by 27.7% compared to
trend expectations (Fig. 1) and by 39.5% compared to 2015. This
equates to a shortfall of about 8 million tonnes compared to the
24.5 million tonnes usually harvested in this region or of about 11
million tonnes compared to the record 27.5 tonnes harvested in
20158. These extremely low yields combined with lower exchange
prices on international markets compared to 2015 induced a
substantial income loss for farmers and about 2.3 billion dollars
loss for France’s trade balance9.

None of the public forecasting systems anticipated the mag-
nitude of this loss. Even just before the disastrous harvest, fore-
casts predicted average yields of 7.23 t ha−1, close to the 5-year
average10, overestimating the actual value by about 2 t ha−1.
Towards the end of the growing season, there were concerns
among regional experts about heavy rainfalls leading to flooding

and saturated agricultural soils in the Seine river basin, and
about high incidences of foliar diseases. High observed wheat
biomass at the very end of winter on the one hand and a strong
confidence on the effectiveness of fungicides on the other, pos-
sibly explain that close-to-average yield values were anticipated by
most experts until harvest started unfolding in mid-July.
Although technical experts have since investigated the possible
causes of this extreme yield loss, no quantitative study has
characterized the precise climatic conditions that led to it—we
still have little understanding of why yield forecasts failed by such
a large amount in 2016. Here, we analyse long-term yield and
climate time series at the scale of departments (administrative
units) from 1959 to 2016 and address the following research
questions: (i) how exceptional were climate conditions, indivi-
dually and combined, in the breadbasket region during the
2015–2016 growing season? (ii) Can 2016 help us improve
forecasting systems? And (iii) will such events become more
frequent in the future?

We first search for single and compound climatic extremes that
occurred during the 2015–2016 growing season. We then perform
a statistical analysis to model severe and extreme wheat yield
losses since 1959 based upon these climate variables. We show
that the huge wheat yield loss in 2015–2016 can be predicted
from a combination of climate variables related to higher tem-
perature in autumn and wetter conditions in spring. Finally,
based on future climate warming projections, we show that the
specific conditions that led to the 2016 wheat yield loss are
projected to become more frequent towards the end of the
century.

Results
Extreme loss and unprecedented weather conditions. We focus
this study on the breadbasket region, comprising 27 departments,
and which together accounts for more than 67% of France’s total
wheat production (average since 1959). In 2015, these depart-
ments for example produced more wheat than all of Ukraine and
slightly less than all of Canada. All 27 departments suffered
extreme yield losses in 2016, leading to the spatio-temporal
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Fig. 1 Spatio-temporal pattern of the 2016 extreme yield loss. a Wheat yield anomalies in 2016 relative to expected values defined in each department by
the long-term yield trend (e.g., −0.1 corresponds to a loss of 10% compared to expectation, see Methods). The breadbasket region of France is delineated
in bold black contours. Note that a similar figure is presented for each year in the data set in the Supplementary Movie 1. The map was generated with R
based on the yield data used in the analyses. b Boxplot of the distribution of anomalies in the breadbasket (1959–2016). Decades are separated with thin
dotted lines. Anomalies in 2016 are highlighted in red. Yearly median anomalies are presented in Supplementary Fig. 1b
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pattern shown in Fig. 1 and Supplementary Fig. 1. Before 2016,
yields never dropped by more than 15% of the long-term mean,
on average over the study area, except during the extreme
drought of 1976 when the loss was about 16%. By contrast, in
2016, yields were between 17 and 45% below their expected
values. The year 2016 thus suffered the single most extreme loss
experienced over the past five decades (Fig. 1b, Supplementary
Fig. 1b, Supplementary Movie 1).

To characterize climate conditions in the breadbasket region,
we present monthly and seasonal distributions for seven growing-
season climate variables from the autumn of 1958 to the 2016
harvest using data from the SAFRAN analysis11. The 2015–2016
growing season is singled out and indicated by red dots (Fig. 2,
Supplementary Fig. 2). Both maximum and minimum tempera-
tures in the late autumn (here November and December) of 2015
were exceptionally high (Fig. 2a, Supplementary Fig. 2a), resulting
in a dramatic reduction of the number of vernalizing days (see
Supplementary Fig. 2b). Vernalization is a critical process that
controls the development of wheat through exposure to cold
temperatures. Temperatures were also high in January and
February of 2016 (i.e., close to the third quartile) and, overall, the
winter of 2016 was relatively wet compared to the average over
1959–2015. The data in Fig. 2 also show that the spring (here
April to July inclusive) of 2016 was extremely wet, with mean
precipitation of 2.66 mm day−1, conditions associated with
abnormally low potential evapotranspiration (in particular in
May and June see Supplementary Fig. 2c). We found only three
other years with whole spring conditions within 10% of spring
2016 values (i.e., 1983, 2000, and 2012). Note that seasonal values
hide between-months variability. In April 2016, precipitation was
close to average, but in May it reached a record high of 4.39 mm
day−1, which had never occurred since 1959. June 2016, the
month preceding harvest, was also characterized by the
persistence of high precipitation (Fig. 2b, Supplementary Fig. 2d).
Daily average solar radiation was low during most of the spring in
2016, with a record low value of 160Wm−2 in June 2016
(Supplementary Fig. 2e).

Overall, the 2015–2016 growing season was characterized by a
unique combination of abnormally warm temperatures in the late
autumn and abnormally high precipitation, with concurrent low
radiation and potential evapotranspiration, in the spring. These
variables were outside the 95th percentile of their distributions.
The joint probability of all the 2015–2016 growing season climate
conditions was null, which makes this event a compound
extreme.

Relating yield loss to autumn and spring conditions. We
designed an ensemble of statistical models to diagnose yield loss
occurrence as a function of time series of climate variables in each
department since autumn 1958. We considered probabilities of
yield losses below −10 and −15% (respectively corresponding to
a loss below one standard deviation and below the 10th percen-
tile). In the rest of the manuscript we refer to these levels as severe
and extreme yield losses and present results for net yield losses
(i.e., negative yield anomalies) in the supplement.

The influential parsimonious subset of climate variables was
selected using the Bayesian Information Criterion (BIC) inde-
pendently for each yield loss level. We considered both monthly
and seasonal climate variables with autumn defined as
October–December, winter as January–March and spring as
April–July, inclusive. We first computed BIC for each variable
independently and select a subset of four best covariates relying
on the extreme climate events characterizing the 2015–2016
growing season. Climate variables in the selected three best
models are consistent across the levels of loss considered. These
are: (1) the number of days with maximum temperatures between
0 and 10 °C in December, (2) precipitation in November, (3)
precipitation in spring (or in May), and (4) minimum
temperature in June. Interactions among these variables are
considered (see full description of each model in Supplementary
Table 2). The same variables are selected when the models are
fitted to normalized anomalies (See Supplementary discussion
and Supplementary Fig. 3).
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Fig. 2 Maximum temperatures and precipitation over the 1959–2016 wheat growing seasons. Boxplot of a daily maximum temperature and b daily
precipitation averaged each year over the study area for the period 1959–2015. Whiskers extend to maximum and minimum values. Values in the
2015–2016 growing season are presented as red dots (for other climate variables see Supplementary Fig. 2)
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The influential climate variables statistically associated with
yield losses over 1959–2016 include those identified by the French
academy of agriculture, extension services or specialized journal-
ists after the 2016 harvest (summarized in Supplementary
Table 1). The selected best models, combining the four-
abovementioned variables and between-seasons interactions,
trained on the entire data set, are used to assess the risk of net,
severe, and extreme yield loss in the breadbasket over all harvest
years (Fig. 3, Supplementary Fig. 4).

The models successfully capture a series of key yield-loss
events, e.g., extreme losses in 1976, 2003, and 2016 and severe
losses in 1966, 1970, and 2007. As an example, the estimated
probability of extreme yield loss reaches a median (10th–90th
percentiles) across departments of 0.39 (0.21–0.74) during the
severe drought year of 1976, the second worst yield on record and
of 0.33 (0.15–0.59) for the heatwaves of 2003 (Fig. 3). Note that
probabilities computed by our statistical models need to be
interpreted as a departure from prior probabilities defined as the
frequency of actual losses in the data set (Supplementary Table 3).
For example, the prior value for extreme losses is 0.081, computed
probabilities thus correspond to an increase of roughly 5 and 4-
folds in 1976 and 2003 respectively. Notably, the years 1976,
2003, and 2016 are highly contrasted in terms of autumn and
spring conditions (Supplementary Fig. 5).

We find that the selected statistical models all include an
interaction between the number of days between 0 and 10 °C in
December and spring precipitation (p= 0.0027, Supplementary
Table 2) suggesting that the strength of the relationship between
high precipitation in the spring and the probability of yield loss
increases with temperatures in the late autumn. For example,
according to our model, if the number of days between 0 and
10 °C in December drops from 20 to 10 and the following spring
is characterized by average precipitation levels, the probability of
severe yield loss increases from 0.12 to 0.2. But when
precipitation in the following spring is above one standard
deviation this probability increases from 0.2 to 0.51 (Fig. 4a). In
other words, the effect of excess precipitation in the spring is
stronger if it follows warmth in late autumn. Such an effect is also
observed for extreme (Fig. 4b) or net losses (Supplementary

Fig. 6). Selected models also include an interaction between
temperatures in June (i.e., flowering period) and precipitation
over the spring for all yield loss levels (see discussion section).

Our results illustrates the importance of taking into account
the joint occurrence of multiple yet specific climate predictors
during the growing season12 if we are to successfully predict the
impacts of compounded extremes like the one of 2016. Although
we did not attempt to use our models for neighboring countries,
we note that similar weather anomalies in autumn and spring
were recorded in Belgium, which also suffered an extreme yield
loss of about 24%13. Our results could thus probably be
extrapolated to other similar agro-ecological areas, provided
wheat-cropping systems use similar varieties and agricultural
practices.

On the prediction of the 2016 extreme yield loss. Figure 5
presents odds ratios computed from estimated probabilities
of severe and extreme yield loss over each unit of the breadbasket
from logistic models trained in the study area on a dataset
excluding 2016 (out-of-sample procedure). Odds ratios
indicate the relative chance of severe or extreme yield losses.
According to our statistical models, the odds of an extreme
yield loss in 2016 were 35 times higher than expected (i.e., from
prior values, Supplementary Table 3). This is equivalent
to a risk ratio of about 11. In other words, our statistical
models estimates a probability of extreme yield loss 11 times
higher than a priori expected. Our models also predict between
1.8 and 4.6 more chance of losing yield severely in 2016 than in
an average year. Estimated probabilities of severe and extreme
yield loss in 2016—based on two separate models excluding
2016 from the training datasets—are on average of 0.46 and 0.71,
respectively (Supplementary Table 3). Note that these values
hide important local disparities (Supplementary Fig. 7); both the
confidence intervals and the inter-unit ranges are
larger for extreme yield losses reflecting the smaller number of
occurrences of such events in our data set. The results obtained
are robust to a change in the training and test data sets
(see Methods section).
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Thus, providing that all weather data were available in time, the
use of our statistical model before the 2016 harvest would have
indicated strong evidence of a severe to extreme yield loss. Unlike
an actual forecast, however, the influential set of climate
covariates were selected from a data set including the
2015–2016 growing season. The implication of this result lies in
the key information provided by 2016 extreme wheat yield loss:
outlining the necessity of considering late-autumn climatic
conditions for winter wheat forecasting.

What 2016 presages for the future. Based on climate projections
from the Coupled Model Intercomparison Project phase 5
(CMIP5), we assessed how regional climate change will impact
the likelihood of climate conditions similar to the ones experi-
enced during the 2015–2016 wheat growing season. All four

climate variables identified as influential were extracted from
model outputs. Very small changes in spring and November or
spring precipitation over northern France are projected under the
RCP2.6 scenario, i.e., the frequency of 2016-like precipitation
anomalies hardly changes over the twenty-first century (Fig. 6a,
b). On the other hand, as a result of the warming trend under the
RCP2.6 scenario, the number of days with Tmax between 0 and
10 °C in December is projected to decline by on average 5 days
(around 22%) by the end of the twenty-first century compared to
the 1950s (Fig. 6c). The likelihood of a temperature anomaly at
least as severe as during the 2015–2016 growing season is
extremely small in the 1950s (~2%), slightly greater in the current
decade (~6%), and increases moderately by the end of the twenty-
first century (~12%). The ensemble-mean June minimum tem-
perature is projected to increase by 1.5 °C during the twenty-first
century under the RCP2.6 scenario (Fig. 6d). The relative
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cumulative frequency of the positive June 2016 minimum tem-
perature anomaly in the CMIP5 ensemble decreases from around
90% in 1951–1980 to 70% in the 30-year period centered on 2016
and 50% at the end of the twenty-first century.

Despite the near-absence of projected change in springtime
precipitation (here including July), given the strong projected
twenty-first century increase in warm minimum temperature
anomalies in June and the decrease in the number of days
between 0 and 10 °C in December, climate conditions favorable to
yield loss are projected to become more frequent under the
RCP2.6 scenario. Our results also suggest that the warming trend
observed in France over the last several decades—and partly
attributable to anthropogenic forcings14,15—have already
increased the probability of 2016-like climate conditions
occurring.

The potential benefits of the aggressive mitigation policies
required to follow a low warming scenario like RCP2.6 are
obvious when the previous results are compared to the ones
obtained with the RCP8.5 scenario (dashed blue lines in Fig. 6—
see inter-model spread in Supplementary Fig. 8). In this intensive

warming scenario, a number of vernalizing days as small as in
December 2015 becomes the norm by 2070 and, even if associated
with a slight drying of spring months, would drastically increase
the probability of a 2016-like event. Also, June 2016 minimum
temperature, unusually warm relatively to the mid-twentieth
century climatology, would become characteristic of an extremely
cold June by the end of the twenty-first century (Supplementary
Fig. 8c).

Note that we did not address the possible effects on wheat
yields of an increase in atmospheric CO2 concentration. CO2

effects are expected to manifest through increased leaf-level
carboxylation rates and stomatal closure. Both processes interact
with each other, and stomatal closure has the dual consequence of
saving soil water and increasing surface temperature by reducing
transpiration. It is thus expected that elevated CO2 would
improve yields under dry condition16,17.

To summarize, there are two key climatic factors associated
with the 2016 loss: autumn temperature for which we know with
great confidence that 2016 is going to move closer to an average
year and spring precipitation for which we do not detect a
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noticeable time trend. Qualitatively, 2016-like years are very likely
to become more frequent in the future since one of the two
extreme factors will no longer be extreme anymore. However, a
robust quantification of future yield loss probability from a 2016-
like growing season is beyond the scope of our study and possibly
hampered by the high uncertainty associated with projected
changes in precipitation.

Discussion
The experts who have been analysing the possible cause of the
extreme yield loss, all recognized a posteriori the abnormal pre-
cipitation and radiation conditions in the spring of 2016 and,
some of them, the warmth of the preceding late autumn. Cited
mechanisms most often include lodging, and more widespread
occurrence of pests and diseases (Supplementary Table 1).

A decrease in the number of days between 0 and 10 °C in
December (i.e., vernalizing days18)—corresponding to warmth in
a usually cold month—may have direct and/or indirect effects on
wheat yield. The lack of sufficient vernalizing days can modify
subsequent phenological development18. Vernalization for
example affects the number of leaves and tillers, floral initiation
time or flowering phenology19. Warmth during the vernalization
period can delay the onset of the reproductive stage increasing the
risk of exposure to high temperatures during anthesis20.This
effect alone is unlikely, however, to explain the loss observed, at
least in 2016, because most soft wheat varieties cultivated in
France require only about 40 vernalizing days21, and this
requirement was still fulfilled by the end of the winter, despite
warm temperatures (Supplementary Fig. 2b). This is corroborated
by the independent observation that spring varieties—with no
vernalization requirement—were also strongly affected in 2016
(i.e., about −20% at the national scale8). But, winter warmth is
also known to shift the phenology of pests and diseases, causing
earlier colonization of crops and earlier spreading of vector-borne
viruses22–24 resulting in more frequent and severe infections25. In
addition, positive precipitation anomalies or persistent moisture
facilitates the development and spread of fungal diseases in the
spring25. A plausible hypothesis to our findings is that the
combination of a mild autumn/winter favors a build-up of
parasites and a persistence of inoculum, which subsequently leads
to large-scale disease prevalence in the field provided conducive
spring precipitation conditions would occur26. 2016 was marked
by very high to abnormal precipitation levels in the spring;
conditions indeed favorable for the spread of diseases. Moreover,
localized extreme precipitation events—a phenomenon observed
in the field in 2016—may also induce flooding which subse-
quently leads to anoxia and lodging27,28.

The 2016 wheat harvest assessment revealed lower grain
numbers and very low grain weight, suggesting impaired grain
filling29. Minimum temperatures around June determine the
length of the grain-filling period, with higher temperatures low-
ering kernel weights30,31. In 2016, the minimum temperatures in
June were abnormally high (Supplementary Fig. 2a). In our
models, minimum June temperature indeed appears to be an
important co-factor influencing yield loss. Additionally, we find a
significant interaction between June temperatures and spring
precipitation: the latter modulate the probability of yield loss
from June heat. We find that increased spring precipitation can
slightly downplay the importance of high minimum temperatures
in June in the models whereas dry conditions increase loss
probability from high temperatures in June (e.g., for net yield
losses in Supplementary Fig. 6). This interaction more generally
reflects the impact of heat and water stress on photosynthetic
activity. Finally, and consistent with earlier analyses for wheat
and maize yield32,33, the best statistical models also found a small

positive relationship between November precipitation (i.e.,
between sowing and emergence) and yield loss. This could sug-
gest a negative effect of waterlogging on root growth34 and/or
point to enhanced survival or growth of soil-borne diseases35.
Note that November 2015 precipitation was close to the 50-year
average (Fig. 2b).

The failure of yield forecasts in 2016 needs to be understood in
the context of a difficulty in simulating winter crops compared to
spring crops36 yields. This is perhaps because of the wide range of
growth drivers and limiting factors in wheat33,37, whereas maize
yields are for example more evidently driven by water and heat
stresses38. An additional deficiency of deterministic wheat fore-
casts is the difficulty in simulating development stages in coin-
cidence with climate events. A common example is the impact of
heat stress during39–41 or after42 anthesis. Complex and localized
phenomena such as flooding, lodging, or the prevalence of pests
and diseases, which can take a large toll on production, are
ignored in both process-based and statistical models43. Spatially-
explicit reliable information of initial soil water conditions,
rooting depth or soil drainage and soil water-holding capacity44–
47 should be included in assessing the risk-benefit balance of wet
years such as 2016. Models could also benefit from region-specific
parameterization of agro-management practices or onset-
adaptation strategies. To overcome the shortcomings of using a
single crop model, the use of model ensembles is arguably the way
forward48,49, but this strategy is not yet routine in seasonal crop
forecasting and would imply implementing the above-mentioned
mechanisms. Finally, there is readily available information that
could be harnessed to improve forecast systems. A regional plant
health bulletin, for example, is published each month in France50,
and hydrological anomalies are regularly updated51. These
observational data could complement forecast estimates by
improving an analyst’s judgment. Turning available information
from local sources into harmonized data sets at regional scale,
updated on an operational basis should probably be a key priority
to improve wheat yield forecasts in Europe. Early-warning pro-
cedures making real-time information available to farmers in
exchange for targeted field observations could also help improve
forecasts (e.g., early yield estimates collected during harvest
through social media52).

Other abnormal climate conditions have affected primary
production in the past. These most often occurred during
droughts: for example, the 2003 heatwave, which caused tre-
mendous damage to vegetation in France53, had an enormous
societal impact54. This was also true in 1976, a growing season
with similar limiting factors. Those visible impacts of water and
heat stresses in the spring may actually have hidden other mul-
tivariate climatic events with similar or higher impacts on wheat
harvests (e.g., in 1970, 1987, 2007, or 2016).

Based on long-term wheat yield and the department-scale cli-
mate time series, we show that the compound interaction between
temperature in the late autumn/early winter and precipitation in
the spring is the key to understanding the severe yield drop of
2016. A series of red flags were identified that could have enabled
experts to anticipate the event. Our results also show that prob-
abilistic approaches can be very helpful for anticipating yield
losses provided that they are properly trained on the right com-
bination of climate variables. Depending on the nature of decision
makers’ demand, crop yield analysts may consider combining a
deterministic approach with probabilistic analyses.

Wheat growing in the breadbasket region is overwhelmingly
composed of highly-mechanized wheat monocultures heavily
relying on the use of fertilizers and pesticides55. Despite the
steady use of fungicides56 over the last decade, and intensified use
of chemical inputs in 2016, a widespread disease occurrence
severely impacted wheat yields. There are ecological arguments
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suggesting that monocultures are less resilient to abnormal cli-
mate events57 and more sensitive to disease outbreaks than more
complex cropping systems or landscapes58–60. On the other hand,
is the call for a loosening of government restrictions on the use of
herbicides and pesticides in order to deal with yield fluctua-
tions61. These opposing recommendations will not only shape
future wheat production in France but also its transformative
path toward climate change adaptation.

Methods
Yield and climate data. We analysed winter-wheat yield time series in France for
the period 1958–2016 at the spatial scale of departments (administrative units
known in French as départements) based on official survey data8. In each
department we applied a detrending method to crop-yield data to remove the long-
term effect of technological improvements within the study period. Relative yield
anomalies ai;t are defined as:

ai;t ¼
ðYi;t � μi;tÞ

μi;t
; ð1Þ

where Yi,t is the yield value and μi,t the expected yield value in the ith unit at year t.
Expected yield values, μi,t are estimated using local regressions (loess). We define
severe and extreme yield loss from relative anomalies below −10 and −15% of
expected yields. We also define net yield loss as having all negative relative
anomalies.

Climate conditions are spatially uniform at the scale of these administrative
units (typically 30–100 km across), thus ensuring coherence between climate data
sets and the impacted wheat yield. The studied area is also relatively homogenous
in terms of wheat production systems55 topography or weather conditions. No crop
mask was used because initial tests showed no difference in climate between the
entire territory of administrative units and their cropland-covered fraction (not
shown). The winter-wheat growing season starts with sowing in October,
undergoes a vernalizing period in winter, and ends at harvest in the following July.
We refer to the growing season using harvest years (e.g., 2016 encompasses
October 2015 to July 2016). Our data set covers October 1958 to July 2016 for
harvests occurring from 1959 to 2016. Input climate data are from the SAFRAN
reanalysis11,62 updated by the French weather service from October 1958 to July
2016. The data cover France on an 8 × 8 km grid on a daily time step. We
computed monthly values in each grid cell for the following variables: average
maximum (Tmax) and minimum temperatures (Tmin) (°C), average precipitation
(mm d−1), average solar radiation (Wm−2), average Penman-Monteith potential
evapotranspiration (mm d−1), number of days with Tmax between 0 and 10 °C
(i.e., vernalizing days18) average number of rainy days with precipitation per
month, from October to July (the wheat growing season). Monthly data were also
averaged during October–November–December (OND) and April–May–June–July
(AMJJ) henceforth called autumn and spring. Climate data were then aggregated
over the territory of each administrative unit.

We calculated the frequency of occurrence of climate conditions more extreme
than those of the 2015–2016 growing season as follows. Let Xi,t be the value of a
climate variable (monthly or seasonal mean) during the tth growing season
(1959–2015) in the ith administrative unit. Xi,2016 is the value of the same variable
during the 2015–2016 growing season

Ii;t ¼ 0 if Xi;t � Xi;2016

Ii;t ¼ 1 if Xi;t>Xi;2016

The frequency of a value X strictly superior to the one of the 2015–2016 growing
season is given by

Freqi ¼
PN

t¼1 Ii;t
N

; ð2Þ

where N is the number of growing seasons (N = 58). We then averaged Freqi over
all administrative units (n= 27) within the study area into Freqi and identified
extreme regional variables during the 2015-2016 growing season as those with
Freqi<0:05 or Freqi>0:95 (i.e., the average of occurrence frequencies of X across all
the administrative units is lower than 0.05 or higher than 0.95).

The number of years with maximum (alt. minimum) temperatures in December
exceeding the value of December 2015 is null in all of the 27 administrative units.
November was also extremely warm (Fig. 2). Temperatures during the autumn of
2015 have a frequency of occurrence of 0–0.05. For May precipitation, May
potential evapotranspiration and radiation in June, the frequency of years
exceeding the value of 2016 is also below 5%, Similarly, no more than 5% of the
years have a minimum temperature over the growing season higher than that of
2016.

Considering the conjunction of October–November–December temperatures
and April–May–June–July (spring) precipitation averaged over the study area, the

year 2016 is a single outlier, in conditions opposed to the ones of the drought year
1976 (the second most important yield drop on the time period considered,
Supplementary Fig. 5). On average over the study area, the closest years to 2016 for
autumn temperatures and spring rainfall are 2007 followed by 2012, 2001, and
1995. The years 1987, 2013, and 2001 were those with the highest number of
administrative units close to 2016 for of spring precipitation. The year 1995 was the
closest to 2016 for the total (low) number of vernalizing days. Years 2012, 2007,
and 1995 were the closest to 2016 for autumn maximum temperatures.

Statistical analyses. We used a suite of binomial logit regression models trained
using climate and yield data to estimate the probability of net, severe and extreme
yield loss from climate inputs. Both monthly and seasonal averages of climate data
were used to construct different models. Among all possible models including a
single input variable, we selected the most parsimonious ones, according to their
Bayesian Information Criteria (BIC), to identify the most influential predictor
climate variable. We then used a stepwise selection procedure to identify the best
combinations of input variables, with and without interactions. The model with the
lowest BIC was finally selected for each level of yield loss independently (i.e., three
best models, one per level of yield loss, Supplementary Table 2). During the model
selection process, each model was fitted by maximum likelihood to binary data
indicating occurrence of net, severe and extreme yield losses (see SI). Computations
were done with the functions glm (family= binomial), predict.glm, and step.glm of
R (Version 3.1.0).

The variables found to be influential for predicting yields are consistent over all
three best models (Supplementary Table 2). These variables are:

● The number of days with Tmax between 0 and 10 °C in December
● November precipitation or average number of rainy days in November
● Minimum June temperature
● AMJJ or June precipitation.

Two interactions are also selected, namely between the number of days between
0 and 10 °C and AMJJ precipitation, and between minimum June temperatures and
AMJJ precipitation. The estimated parameter values of the selected models are
presented in Supplementary Table 2. Probabilities of yield loss in 1959–2016 are
computed in each of the 27 units of the breadbasket using each selected model. To
test the robustness of our results to the definition of the study area, we computed
the probability of loss over a larger number of administrative units (including those
outside of the breadbasket, i.e., 35 and 45 administrative units, see Supplementary
Fig. 7) with the model trained on the study area. To predict the occurrence of yield
loss in 2016, the selected models were fitted to the time series excluding 2016, i.e.,
from 1959 to 2015, and the predictive probabilities of yield loss in 2016 were
computed as above. Results for severe and extreme yield losses are presented in
Fig. 3 and Supplementary Fig. 4 for net losses.

Reported probabilities must be interpreted as a departure from a prior
probability with this probability set to the frequency of yield losses in the samples.
The odds obtained with the prior probabilities and with the statistical model are
defined by:

Oprior ¼ Pprior
1� Pprior

andOstat ¼ Pstat
1� Pstat

ð3Þ

with Pprior equal to 0.47 (alt. 0.46, 2016 excluded) for net yield loss; 0.16 (alt. 0.14,
2016 excluded) for severe yield loss, and 0.083 (alt., 0.077 2016 excluded) for
extreme yield loss. The probabilities Pstat are the ones computed from the statistical
model (with or without the 2016 data). The odds ratio thus corresponds to the ratio
of Ostat to Oprior. We also refer to the risk ratio r, defined by

r ¼ Pstat
Pprior

ð4Þ

Climate projections. Climate projections from the Coupled Model Inter-
comparison Project phase 5 (CMIP5)63 were used for the 1951-2100 time period.
Before 2005, we used the so-called historical simulations, in which the climate
models are forced by the historical evolution of the main natural and anthro-
pogenic forcings. After 2005, the results of two Representative Concentration
Pathways (RCP) scenarios64 are contrasted.

The RCP2.6 scenario (RCP26) assumes aggressive mitigations policies to likely
limit global warming since the pre-industrial period to 2 °C65. This scenario is
therefore close to the objectives of the Paris Agreement on Climate. The
RCP8.5 scenario (RCP85) assumes a “business as usual” approach to the climate
change issue, and results in a global warming close to 4 °C at the end of the 21st
century66.

Climate projections from a subset of 13 models (bcc-csm1-1-m, BNU-ESM,
CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, HadGEM2-ES,
IPSL-CM5A-MR, MIROC5, MPI-ESM-MR, MRI-CGCM3, and NorESM1-M)
were analyzed. Only the models with both the RCP26 and RCP85 scenarios, and all
the variables necessary for our study have been selected. We also only used one
climate model by modeling center, to limit the lack of independence within the
ensemble, given the strong similarity that generally exists between same center
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models67. We then assume the independence of the selected models, as most
studies to date and the IPCC report66.

Different climate variables identified as influential for yield loss are extracted
from raw model outputs on their native grids. Then, the spatial averages are
computed on a domain that encompasses the 27 units of interest and whose
boundaries are: 45.5°N, 51.5°N, −1.5°E, 8°E. Only the grid points with a fraction of
land greater than 75% are used. The same domain is used to compute the spatial
averages for SAFRAN climate indices.

Anomalies relative the 1959–1988 reference period are analyzed to deal
with the potential mean climatological biases in the CMIP5 projections. We then
make the implicit hypothesis that the model distributions for the inter-annual
anomalies are realistic. This assumption is reasonable given the purpose
of our analyses and is not crucial for our conclusions. For instance, the relative
cumulative frequencies of the 2016 anomalies on the 1959–2016 period are close in
the models and SAFRAN (96.5%, 85%, 40%, 3% in the models versus 93%, 90%, 43%,
2% in SAFRAN for, respectively, spring precipitation, June minimum temperature,
November precipitation and the number of vernalizing days in December).

Data availability. The yield data that support the findings of this study are
available from the corresponding author upon reasonable request. SAFRAN data
are accessible here: http://mistrals.sedoo.fr/HyMeX/Data-Access-Registration/?
project_name=HyMeX. CMIP data are accessible here: https://esgf-node.llnl.gov/
projects/esgf-llnl/
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