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Abstract. We estimate the uncertainty of CO2 flux esti-
mates in atmospheric inversions stemming from differences
between different global transport models. Using a set of
observing system simulation experiments (OSSEs), we es-
timate this uncertainty as represented by the spread be-
tween five different state-of-the-art global transport models
(ACTM, LMDZ, GEOS-Chem, PCTM and TM5), for both
traditional in situ CO2 inversions and inversions of XCO2
estimates from the Orbiting Carbon Observatory 2 (OCO-
2). We find that, in the absence of relative biases between
in situ CO2 and OCO-2 XCO2, OCO-2 estimates of terres-
trial flux for TRANSCOM-scale land regions can be more
robust to transport model differences than corresponding in
situ CO2 inversions. This is due to a combination of the in-
creased spatial coverage of OCO-2 samples and the total col-
umn nature of OCO-2 estimates. We separate the two effects
by constructing hypothetical in situ networks with the cover-
age of OCO-2 but with only near-surface samples. We also
find that the transport-driven uncertainty in fluxes is com-
parable between well-sampled northern temperate regions
and poorly sampled tropical regions. Furthermore, we find
that spatiotemporal differences in sampling, such as between
OCO-2 land and ocean soundings, coupled with imperfect
transport, can produce differences in flux estimates that are
larger than flux uncertainties due to transport model differ-
ences. This highlights the need for sampling with as com-
plete a spatial and temporal coverage as possible (e.g., using
both land and ocean retrievals together for OCO-2) to min-

imize the impact of selective sampling. Finally, our annual
and monthly estimates of transport-driven uncertainties can
be used to evaluate the robustness of conclusions drawn from
real OCO-2 and in situ CO2 inversions.

1 Introduction

Atmospheric measurements of CO2 show that on average
half of the anthropogenic emissions of CO2 are taken up
each year by the land and oceans (Ballantyne et al., 2012).
Allocating this global sink to specific regions, or even parti-
tioning it between land and oceans, has proved challenging
(Schimel et al., 2014). Understanding the mechanisms be-
hind this allocation, and their response to climate variability,
is crucial for accurately estimating the carbon cycle impact
on future climate scenarios (Friedlingstein et al., 2014). Cur-
rent approaches to quantify the spatial distribution and tem-
poral variation of carbon sources and sinks can be broadly
classified into two categories, “top down” and “bottom up”.
Bottom-up methods, such as biosphere models and ocean
biogeochemistry models, calculate the surface exchange of
CO2 between two reservoirs by modeling the physical pro-
cesses in the reservoirs that lead to such exchanges. Top-
down methods, generally speaking, infer surface fluxes of
CO2 from measured spatiotemporal gradients in tracer con-
centrations in either reservoir.
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The most common top-down method for estimating sur-
face fluxes of CO2 from atmospheric measurements is an at-
mospheric inversion. An inversion infers surface fluxes from
observed spatiotemporal gradients of CO2 in the atmosphere
by simulating atmospheric transport to connect the two. Most
inversions are Bayesian in nature, in that they calculate cor-
rections from a prior flux scenario (typically from bottom-
up models) under constraints of assumed errors in the prior
fluxes and atmospheric measurements. The flux estimates
from an inversion, therefore, are subject to the assumed prior
flux map and its error structure, the atmospheric transport
model, the set of atmospheric observations assimilated and
the assimilation technique. Due to the diversity of each of
these elements in the current suite of atmospheric inver-
sions, estimates of CO2 fluxes from biomes and ocean basins
vary widely across inversions, even though they agree on the
global CO2 budget (Peylin et al., 2013), as would be expected
from mass balance considerations.

Peylin et al. (2013) showed that the northern extra-tropical
sink was fairly consistent across inversions of in situ CO2
data, but the partitioning between the tropics and the south-
ern extra-tropics was more variable. The tropics were found
to be responsible for most of the interannual variability of
the global CO2 growth rate, and northern Asia was found to
be responsible for an increasing northern land carbon uptake
between 1990 and 2008. However, the tropics and northern
Asia were also the regions most severely undersampled by
the surface CO2 observation network used by the inversions
in Peylin et al. (2013). Therefore, it remained an open ques-
tion whether their conclusions were real or artifacts of insuf-
ficient observational constraints.

Satellite estimates of atmospheric CO2 mole fraction, in
principle, can add observational constraints over remote ar-
eas that are difficult to sample with surface sampling sites,
such as the tropics, boreal Eurasia and much of the oceans.
This was the chief motivation behind the Greenhouse gases
Observing SATellite (GOSAT), launched in 2009 (Kuze
et al., 2009). GOSAT near-infrared (NIR) spectra of reflected
sunlight have been analyzed to estimate the column average
CO2 mole fraction under its orbit. It was hoped that these
column averages – hereafter called XCO2 – assimilated by
atmospheric inversions would help constrain the CO2 flux
over regions such as the tropics and northern Asia. Houwel-
ing et al. (2015) showed that assimilating GOSAT XCO2 in-
deed reduced the spread in tropical land flux estimates across
a suite of atmospheric inversions. However, the year-round
coverage of GOSAT did not extend beyond ±36◦ latitude,
limiting its ability to draw conclusions about high-latitude
fluxes. Over the tropics, despite the year-round coverage,
GOSAT retrievals were sparse due to cloud cover and high
aerosol loading from biomass burning, also limiting its abil-
ity to constrain tropical fluxes. The balance between tropi-
cal and temperate fluxes estimated from GOSAT soundings
was also inconsistent with information from independent air-

craft profiles, raising questions about its validity (Houweling
et al., 2015).

In 2014, the next CO2 observing satellite, Orbiting Carbon
Observatory 2 (OCO-2), was launched (Crisp et al., 2017; El-
dering et al., 2017). Compared to GOSAT, OCO-2 has more
extensive spatial coverage, both in the density of soundings
and in their latitudinal extent. Its higher measurement signal-
to-noise ratio allows for higher-precision retrievals of XCO2,
and higher spatial sampling density enables easier valida-
tion with the ground-based Total Carbon Column Observ-
ing Network, or TCCON (Wunch et al., 2017). OCO-2 also
has a smaller footprint than GOSAT, potentially enabling
more retrievals over the tropics by looking through gaps in
clouds, over scenes that GOSAT might have treated as cloud-
contaminated. Due to the more extended spatial coverage,
higher sampling density, higher precision and better valida-
tion opportunity, OCO-2 can potentially provide better con-
straints on surface CO2 fluxes than what has hitherto been
possible from the surface network and GOSAT. Several in-
verse modeling groups are currently engaged in investigating
this potential.

One of the key problems in estimating CO2 fluxes from
GOSAT retrievals is the presence of small but spatially co-
herent biases in the retrievals arising from, for example, a
dependence of the retrieved XCO2 on aerosols or surface
albedo (Cogan et al., 2012; Guerlet et al., 2013; Wunch et al.,
2011). Some synthetic data studies such as Chevallier et al.
(2007) warned that such sub-parts-per-million (sub-ppm) bi-
ases might significantly reduce the utility of satellite XCO2
retrievals, but most earlier studies either did not consider
this complication (Rayner and O’Brien, 2001; Hungershoe-
fer et al., 2010) or claimed that it was easily fixable (Miller
et al., 2007). In practice, these biases were found to strongly
affect estimated fluxes in atmospheric inversions of GOSAT
data (e.g., Basu et al., 2013; Feng et al., 2016). Initial analy-
ses suggest that OCO-2 estimates of XCO2 likely suffer from
similar biases (Wunch et al., 2017), although they can be bet-
ter characterized due to the increased density of soundings.
Efforts are underway to characterize and remove such biases
through improvements in the radiative transfer and surface
reflectance models. Current validation strategies for satellite
XCO2 have their own limits, since their truth metrics (e.g.,
TCCON XCO2) may not be sufficiently accurate (Basu et al.,
2011). Therefore, as satellite retrieval algorithms achieve
higher accuracy, they will need better validation strategies in
the future. It is likely that with further progress in those di-
rections, XCO2 biases will go down to the point, where they
no longer limit our ability to infer regional CO2 fluxes.

Even with completely unbiased XCO2 retrievals, surface
flux estimates would still be subject to uncertainties related
to the atmospheric transport model, the optimization tech-
nique employed, and the balance between data and prior flux
errors. At present, it is not clear whether the divergence in
flux estimates seen in intercomparisons such as Houweling
et al. (2015) is driven primarily by the variety of XCO2 re-
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trievals assimilated or the other factors mentioned above,
although more limited intercomparisons suggest that those
other factors may be at least as important as the differences in
XCO2 assimilated (Chevallier et al., 2014). It is possible that
the uncertainty in a regional flux estimate stemming from
factors specific to the inverse modeling setup is larger than
what we can tolerate for detecting, say, the climate impact on
those fluxes. In that case, even perfectly accurate estimates of
satellite-based XCO2 will not enable us to answer the carbon
cycle questions we hope to answer with current and future
CO2 sensing satellite missions. It is therefore crucial that we
quantify the impact of factors specific to an inverse modeling
setup on the uncertainty of inferred surface fluxes.

In this study, we consider one of those factors, namely
the atmospheric transport model. Using a series of observ-
ing system simulation experiments (OSSEs), we quantify
the uncertainty in flux estimates due to differences between
present-day state-of-the-art atmospheric transport models.
The approach is similar to that used by earlier work (Cheval-
lier et al., 2010; Houweling et al., 2010; Locatelli et al.,
2013):

1. From a common set of surface fluxes (henceforth called
“true” fluxes), we use a suite of different atmospheric
transport models to produce a suite of time-varying
three-dimensional atmospheric CO2 fields.

2. We sample these fields to produce synthetic observa-
tions of CO2 at in situ and OCO-2 sampling locations.

3. We assimilate these synthetic observations in a single
data assimilation system with a single transport model.

4. For a given data stream (e.g., in situ observations or
OCO-2 land nadir), the spread in the posterior fluxes is
an estimate of the uncertainty driven by transport model
differences.

In earlier work, Chevallier et al. (2010) performed their
analysis for the GOSAT instrument, while Houweling et al.
(2010) focused on the (planned) A-SCOPE active sensor. Our
methodology is closest to that of Locatelli et al. (2013), who
estimated the transport-model-driven uncertainty of CH4
fluxes assimilating only surface layer data. In our analysis,
we try to answer two specific questions:

1. For atmospheric inversions assimilating OCO-2 XCO2
retrievals, what are the uncertainties in posterior flux es-
timates – at different spatiotemporal scales – that arise
due to the divergence of present-day state-of-the-art at-
mospheric tracer transport models?

2. Are the uncertainties larger or smaller if we assimi-
late only in situ measurements of CO2? In other words,
does assimilating space-based total column XCO2 such
as OCO-2 XCO2 magnify or diminish transport-model-
related uncertainties in the flux estimates?

The second question stems from a long-standing hypothesis
that simulating XCO2 in a model is less sensitive to trans-
port errors such as errors in the modeled planetary bound-
ary layer (PBL), making XCO2 assimilations less sensitive
to transport errors than PBL CO2 assimilations (Rayner and
O’Brien, 2001). This is plausible, since modeling convection
and the formation of the PBL are leading-order uncertain-
ties in present-day transport models (Parazoo et al., 2012).
Any error in modeling the exact PBL height and vertical mass
flow translates into an error in estimated fluxes if the primary
assimilated data for an inversion are PBL CO2 mole frac-
tions. On the other hand, the column average XCO2 is rela-
tively insensitive to convective transport errors and the exact
PBL height, so those types of transport errors may have less
influence on estimated fluxes if the primary data are XCO2.
However, the spatiotemporal variations in XCO2 due to sur-
face fluxes are smaller than corresponding variations in PBL
CO2. Therefore, XCO2 inversions starting from biased pri-
ors (true for most if not all current inversions) may be less
accurate than PBL CO2 inversions. In the net, it is not clear
whether lower transport errors in modeled XCO2 can com-
pensate for lower flux signals to give us more accurate fluxes
(Houweling et al., 2010; Chevallier et al., 2010).

2 Data and methodology

As described earlier, we ran a suite of transport models with
the same boundary conditions (initial mole fraction field and
surface fluxes), sampled them to produce a suite of synthetic
observations and then assimilated those observations in the
same inversion framework to come up with an estimate of
flux uncertainty due to transport model differences. We de-
scribe the individual elements of this process below.

2.1 “True” fluxes

Synoptic differences between transport models are likely cor-
related with surface fluxes, since they are influenced by com-
mon drivers such as temperature, precipitation and insola-
tion. Therefore, it is important to use realistic fluxes to gen-
erate the true scenario. We produce the true surface fluxes by
assimilating CO2 data from the National Oceanic and Atmo-
spheric Administration’s (NOAA) Global Greenhouse Gas
Reference Network (GGGRN) and the TCCON in a TM5
4DVAR atmospheric inversion (described later in Sect. 2.4).
The inversion spanned 1 June 2014 to 1 April 2016. This en-
sured that the true fluxes had realistic land and ocean sinks
consistent with the observed global CO2 growth rate. At
the end of the optimization, TM5 4DVAR wrote out global
1◦× 1◦ 3-hourly total CO2 fluxes for transport models to in-
gest in the next step.
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2.2 Generation of CO2 fields

We ran a suite of transport models between 1 June 2014 and
1 April 2016 with the true fluxes produced earlier, starting
from the same initial CO2 mole fraction field as the inversion
used to produce the true fluxes. The suite consisted of TM5,
LMDZ, ACTM, PCTM and GEOS-Chem. Details of the in-
dividual models can be found in the respective references in
Table 1. It is important to note here that this suite of mod-
els spans the range of transport models currently being used
by various members of the OCO-2 Science Team to assim-
ilate OCO-2 XCO2 retrievals. Moreover, these models are
driven by four different meteorological reanalysis products:
ECMWF ERA-Interim (TM5, LMDZ), MERRA (PCTM),
GEOS FP (GEOS-Chem) and JMA-55 (ACTM). These four
products span the gamut of meteorological fields used by
most atmospheric inversions today. Therefore, the divergence
of flux estimates seen in this study can be taken to be a rea-
sonable measure of the divergence expected in real data in-
versions with these transport models.

The transport models produced hourly (PCTM) or 3-
hourly (TM5, LMDZ, ACTM, GEOS-Chem) CO2 fields at
their individual lateral and vertical resolutions, which are
listed in Table 1. Note that the temporal granularity listed is
the time step at which the CO2 mole fraction field was writ-
ten out; the time step of the models for calculating transport
is usually smaller. The models also wrote out the geopoten-
tial heights and atmospheric pressures at the vertical layer
edges. As a first check, we verified that global average CO2
mole fractions from the different models, calculated from
their own pressure and CO2 fields, closely matched the ex-
pected time series from the true fluxes diluting into an at-
mosphere of 5.123× 1018 kg, the total dry air mass of TM5.
Figure 1 shows these time series. It is evident that, while
all the colored lines are very close to the dashed black
line, there are small differences that are seasonally coher-
ent. These differences arise from differences in the molar
mass of carbon assumed by the models (e.g., 12 g mole−1

vs. 12.01115 g mole−1), small differences in the air mass be-
tween different models and the handling of water vapor in
the model atmosphere. Rather than standardize the models
to remove these small differences, we decided to keep them
since they reflect legitimate differences between the models
that would express themselves in real data inversions.

2.3 Generation of synthetic data

The five different modeled dry air mole fraction CO2 fields
were sampled with the same code to produce synthetic obser-
vations of CO2 from in situ and satellite platforms. Table 2
gives the number of samples per year from each data stream,
and the generation of pseudo-data are described below.
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Figure 1. Time series of the global average CO2 mole fraction ex-
pected from the true flux scenario (bold black dashed line) and cal-
culated from the individual model outputs (colored lines). The flux
scenario only provides increments of the mole fraction, so these in-
crements were added to the initial mole fraction of TM5 to calculate
the black line.

2.3.1 In situ sampling

Synthetic in situ samples corresponded to the times and lo-
cations of CO2 measurements at network sites maintained by
NOAA and partner agencies, as contained in ObsPack ver-
sions GV 2.1 (Cooperative Global Atmospheric Data Inte-
gration Project, 2016) and NRT 3.2.2 (NOAA Carbon Cycle
Group ObsPack Team, 2017). The following data filtering
was applied:

1. Campaign data from aircrafts – such as CALNEX,
SONGNEX and ORCAS – were excluded. In situ CO2
data from the CONTRAIL program were also excluded.

2. At low-altitude sites, only mid-afternoon hourly aver-
ages were used.

3. At mountaintop sites, only late-night hourly averages
were used.

4. For coastal sites, where the sampling protocol differ-
entiated between background and non-background air,
only background samples were used.

5. Bi-weekly to monthly NOAA aircraft profiles, mostly
over North America, were included. Flask CO2 data
from the CONTRAIL program were also included.

Note that these filters were applied to come up with a set
of sampling coordinates (locations and times) to represent
realistic sampling frequency and density for real data inver-
sions. No actual CO2 measurements were used from either
ObsPack version. In addition, the sampling times and loca-
tions corresponding to mid-afternoon CO2 samples from six
towers belonging to the Japan–Russia Siberian Tall Tower
Inland Observation Network (JR-STATION) were also in-
cluded in our in situ network (Sasakawa et al., 2013).
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Table 1. The different atmospheric transport models run in this study to produce CO2 fields.

Model Resolution (lon× lat) Vertical layers Temporal granularity Meteorology Reference

TM5 3◦× 2◦ 25 3 h ERA-Interim Krol et al. (2005)
LMDZ 3.75◦× 1.875◦ 39 3 h ERA-Interim Hourdin et al. (2006)
ACTM 1.125◦× 1.125◦ 32 3 h JRA-55 Patra et al. (2009)
PCTM 1.25◦× 1◦ 40 1 h MERRA Kawa et al. (2004)
GEOS-Chem 5◦× 4◦ 47 3 h GEOS FP Nassar et al. (2010)

Table 2. Number of pseudo-observations per year from the different
observing systems and sampling strategies.

Data stream Observations/year

MBL 37 558
IS 107 963
LN 49 311
LG 46 103
OG 163 452

Each model CO2 field was sampled at these sampling co-
ordinates, adhering as closely as possible to the sampling
protocol that a model would use in a real data inversion.
For example, if a site’s elevation places it in the lowermost
model layer, TM5 samples it one layer above to avoid sur-
face effects, while the other four models sample it in the sur-
face layer. This distinction was kept while sampling the five
models. The set of synthetic observations generated with this
sampling, and corresponding flux estimates, will be referred
to as “IS” in the rest of this paper. During this work, we dis-
covered an artifact in our version of PCTM at the South Pole,
which was fixed by moving the South Pole site 2◦ N along
0◦ longitude (details in Appendix A).

In addition, we also considered a subset of the IS sam-
ples that corresponded closely to the network used by Baker
et al. (2006). The network used in that TRANSCOM 3
model intercomparison experiment chiefly consisted of ma-
rine boundary layer and background sites, suitable for as-
similation in coarse-resolution flux estimation systems of the
time. Since then, many continental sites have come online.
These sites are located closer to terrestrial fluxes and there-
fore have larger flux-induced variations in the CO2 mole
fraction. However, modeling these variations accurately de-
pends on modeling the continental boundary layer accu-
rately, which is one of the most uncertain aspects of atmo-
spheric transport modeling. By comparing the spread in our
IS flux estimates to that from assimilating a more limited
set of mostly background sites comparable to Baker et al.
(2006), we sought to answer the question of whether the cost
of increased model uncertainty in the continental PBL out-
weighed the benefit of more measurements from the non-
background sites.

We constructed this limited subset of IS, henceforth re-
ferred to as “MBL” (short for marine boundary layer), as fol-
lows. We subselected our IS data set for sites that were used
by Baker et al. (2006). Three sites used by Baker et al. (2006)
– namely CMN, GSN and HAT – did not exist in our IS data
set and therefore were not used. ITN and JBN in Baker et al.
(2006) were replaced by SCT (Beech Island, South Carolina)
and DRP (Drake Passage), respectively, two currently opera-
tional sites (cruises in the case of DRP) geographically near-
est to the discontinued ITN and JBN. The resulting MBL
network corresponded as closely as possible to the mostly
background network used by Baker et al. (2006), while also
reflecting changes in the CO2 sampling network since then.

2.3.2 OCO-2 sampling

The five different model CO2 fields were sampled at
the locations and times of OCO-2 retrievals from the
ACOS version 7r algorithm (O’Dell et al., 2012), as
archived at https://disc.gsfc.nasa.gov/datasets/OCO2_L2_
Lite_FP_7r/summary (last access: 23 March 2017). Real
data inversions of OCO-2 typically only use retrievals of
“good” quality, selected by xco2_quality_flag=0. We
performed the same selection of the sounding locations to
mimic realistic spatiotemporal coverage. The vertical profiles
of CO2 from all the models were convolved with the OCO-
2 column averaging kernels and prior profiles of the corre-
sponding real retrievals to produce sets of synthetic OCO-2
XCO2. These synthetic XCO2 were classified according to
sounding mode and surface type of the original soundings,
to come up with land nadir (LN), land glint (LG) and ocean
glint (OG) synthetic OCO-2 XCO2 for each transport model.

OCO-2 takes 24 samples every second, which span∼ 7 km
along track. Column average CO2 is expected to be highly
correlated over these short length scales (Worden et al.,
2017), and therefore these 24 retrievals do not provide inde-
pendent information about XCO2. However, most trace gas
inversions – including TM5 4DVAR – treat all measurements
as independent. Moreover, most global transport models have
grid cells hundreds of kilometers in size and therefore cannot
model or interpret the small-spatial-scale XCO2 variations
seen by OCO-2. To avoid highly correlated measurements
being treated as independent measurements in our assimila-
tion, and to bring the spatial resolution of the retrievals more
in line with the resolution of transport models used in most
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global inversions, we average the synthetic XCO2 in 10 s bins
along orbit, which results in one value per orbit per ∼ 70 km
bin along track. The averaging is done in two steps. First,
retrievals are averaged over 1 s bins, with weights inversely
proportional to the square of the posterior retrieval uncer-
tainty for each retrieval. Next, over a 10 s interval, all 1 s bins
with at least one valid retrieval are averaged to create a 10 s
average. This two-step averaging is done to avoid weighting
the 10 s average disproportionately towards one part of the
∼ 70 km track which might have a lot of retrievals. Sound-
ings of different modes (LN, LG or OG) are averaged sepa-
rately to create different 10 s averages for each mode. OCO-2
averaging kernels and prior profiles are similarly averaged to
create 10 s mean averaging kernels and prior profiles.

2.3.3 In situ sampling at OCO-2 sounding locations

The difference between OCO-2 and in situ samples are
twofold: (i) the first is a column measurement, while the sec-
ond is a point measurement, and (ii) the spatiotemporal cov-
erages of the two systems are vastly different. Differences
between OCO-2 and in situ inversions convolve the two and
therefore cannot be used to test the hypothesis of Rayner
and O’Brien (2001) that inversions of column data are less
sensitive to transport model errors than inversions of in situ
data. To test this hypothesis, we devised two purely theoret-
ical in situ networks, called “IS-LNLG” and “IS-OG”. The
IS-LNLG (IS-OG) network consists of PBL samples of the
CO2 mole fraction at locations and times of all OCO-2 land
(ocean) soundings from Sect. 2.3.2. The five different model
fields were sampled at the IS-LNLG and IS-OG networks,
30 m above ground level as defined by the 1 arcmin global
relief model ETOPO01 (Amante and Eakins, 2009). The dif-
ference in fluxes between inversions of IS-LNLG (IS-OG) in
situ pseudo-data and LNLG (OG) OCO-2 pseudo-data can be
expected to reflect the difference between PBL and column
sampling over land (ocean), and not differences in spatiotem-
poral coverage between actual in situ and OCO-2 samples.

2.4 Inversion framework

TM5 4DVAR is a state-of-the-art variational inversion sys-
tem that has been used to estimate surface fluxes of CO2
(Basu et al., 2013), CO (Krol et al., 2013), CH4 (Bergam-
aschi et al., 2013) and N2O (Corazza et al., 2011). Given a
set of prior fluxes xa with their error covariance Sa , a set of
measurements y with their error covariance Sε and a trans-
port modelK connecting fluxes to measurements, a Bayesian
flux estimation system tries to minimize the cost function J :

J =
1
2
(Kx−y)T S−1

ε (Kx−y)+
1
2
(x−xa)

T S−1
a (x−xa). (1)

The posterior estimate of x, usually denoted x̂, is given by
(Rodgers, 2000)

x̂ = xa +SaKT
(
KSaKT

+Sε
)−1

(y−Kxa)

= xa +G(y−Kxa) , (2)

where G= SaKT
(
KSaKT

+Sε
)−1 is called the Kalman

gain matrix and determines the weighting between prior in-
formation and observations. Details about TM5 4DVAR have
been documented by Meirink et al. (2008). In this work we
use the ability of TM5 4DVAR to assimilate in situ and to-
tal column CO2 measurements as documented by Basu et al.
(2013). We run the TM5 transport model (K in the equation
above) at global 3◦× 2◦× 25-layer resolution and solve for
ocean and land fluxes at 3◦× 2◦ globally. We have already
described our method for constructing the synthetic observa-
tions y. Below we describe the remaining elements of this
inversion, namely Sa , Sε and xa .

2.4.1 Prior flux (xa) and covariance (Sa)

Prior ocean and land fluxes were constructed as the multi-
year (2000–2015) mean of CarbonTracker 2016 posterior
fluxes (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/,
last access: 20 October 2017). Hence, the prior did not have
any interannual variability but did have a land sink con-
sistent with the decadal trend of atmospheric CO2 growth
rate. Fossil fuel emissions, for both the true and prior fluxes,
were taken from the ODIAC inventory (Oda and Maksyu-
tov, 2011) and not optimized. Both the land and ocean
fluxes were optimized on a weekly timescale, on a global
3◦× 2◦ grid. Ocean and land fluxes had 3-hourly variations
within each week, which were not optimized. The fossil fuel
flux had daily and hourly variations according to Nassar et al.
(2013). Errors in the weekly prior ocean fluxes were as-
sumed to be 1.57 times the absolute flux in each grid cell,
with a spatial correlation of 1000 km and a temporal correla-
tion of 3 weeks. Errors in the weekly prior terrestrial fluxes
were assumed to be half the heterotrophic respiration in each
grid cell from the CASA biosphere model (Randerson et al.,
1996), with a spatial correlation of 250 km and a temporal
correlation of 1 week. The grid scale uncertainty in terres-
trial fluxes thus constructed was typically an order of magni-
tude higher than for ocean fluxes. However, due to the shorter
error correlation lengths and times assumed for terrestrial
fluxes, the uncertainties in the global totals for 2015 were of
the same order of magnitude, 0.44 PgC yr−1 for oceans and
0.53 PgC yr−1 for land. The ocean uncertainty constructed
this way corresponds roughly to the uncertainty in the ocean
sink imposed by decadal measurements of the atmospheric
O2 /N2 ratio (Keeling and Manning, 2014), while the land
flux uncertainty is large enough to allow sufficient summer-
time uptake over North America and Eurasia (Basu et al.,
2016).
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2.4.2 Data error (Sε)

The analytical error of a flask-air or continuous in situ mea-
surement of CO2 is very small, typically 0.1–0.2 ppm. How-
ever, even with perfect fluxes and an unbiased transport
model, we do not expect to fit all observations to that pre-
cision, because a coarse-resolution transport model cannot
adequately represent sub-grid-scale variations that lead to the
measured mole fraction at a point. Therefore Sε also contains
the representativeness error of the transport model, which
can be considered to be a random error contributed by the
model. This representativeness error is computed by evaluat-
ing the norm of the spatial gradient of the modeled CO2 mole
fraction at the scale of TM5’s lateral resolution at each sam-
pling time and location. The total error in Sε is the quadrature
sum of this model error and an analytical error of 0.2 ppm.
Figure 2 shows the total and analytical errors at three ex-
ample sites at times when CO2 samples were taken. Tutu-
ila, American Samoa (SMO), is a remote marine boundary
layer site with little model variability, with a model error of
∼ 1 ppm. Niwot Ridge (NWR) is a background mountain-
top site within the continental US and therefore has higher
model variability. Finally, Beech Island (SCT) is a tall tower
in the southeastern US where seasonally coherent transport
variability is convolved with strong local fluxes. It should be
noted here that the numbers in Fig. 2 are somewhat smaller
than typical values in the literature (e.g., Baker et al., 2006;
Peylin et al., 2013). Therefore, our estimate of the transport
uncertainty for in situ CO2 inversions is likely to be on the
higher side.

The formal reported uncertainty of OCO-2 XCO2 re-
trievals is an underestimate (Worden et al., 2017). Therefore,
the errors estimated for the 10 s averages are likely underes-
timates as well. Moreover, Sε in Eq. (1) is not just the mea-
surement error but the covariance of the model–observation
mismatch. Therefore, we construct the data error for XCO2
as the sum of two components, σ 2

10 s = σ
2
meas+ σ

2
model.

The measurement part, σ 2
meas, is calculated in two steps.

First, variances are calculated for 1 s averages by summing
the inverse variances of all the soundings in that average,
as reported by the retrieval algorithm. A lower threshold of
ε2

base/Nret is set on that variance, where Nret is the number of
retrievals in the 1 s average, and εbase is an error floor that is
0.8 ppm over land and 0.5 ppm over oceans. If the 1 s vari-
ance calculated this way is denoted σ 2

1 s, then the variance
of the 10 s average is calculated as σ−2

meas = (1/10)
∑
σ−2

1 s ,
where the sum goes over the 1 s bins in the 10 s average. Note
that the final error σmeas does not drop by

√
10 because of the

factor 1/10 in the front.
The model part, σmodel, is calculated by considering a suite

of inverse models optimized against in situ data and calculat-
ing their difference with OCO-2 XCO2 retrievals. The differ-
ences are binned by latitude band, month and OCO-2 sound-
ing mode, and averaged. For each month/latitude/mode bin,
the cross-model spread in the average differences is taken to

be 2×σmodel for that bin. While there is no unique way of de-
riving a σmodel, this algorithm creates a σmodel that includes
model variability across multiple state-of-the-art transport
models driven by realistic fluxes. In practice, σmodel is usu-
ally larger than σmeas for most 10 s averages. On average,
σ10 s is ∼ 1.5 ppm and ∼ 0.9 ppm for land and ocean sound-
ings, respectively.

One final point to note is that in OSSEs random pertur-
bations are often added to the data to simulate random mea-
surement error (e.g., Chevallier et al., 2010). However, that
is relevant when the goal is to get an accurate estimate of the
analytical posterior uncertainty of the flux. In this work, how-
ever, the goal is to estimate the spread in flux estimates due
to the relative bias between different transport models. More-
over, inversion groups assimilating real OCO-2 and surface
data do not add random error to those measurements, so dif-
ferences in flux estimates between different groups have no
contribution from this kind of added random measurement
error. Therefore, in this work we have not added any pertur-
bations to our synthetic measurements.

2.4.3 Note about the impact of transport models

If two different transport models (K1 and K2) are used to
assimilate data y starting from the same prior xa and with the
same error matrices Sa and Sε , then their respective posterior
flux estimates will be (Rodgers, 2000)

x̂i = xa +
(

I− ŜiS−1
a

)
(xt − xa), (3)

Ŝi =
(

S−1
a +K

T
i S−1

ε Ki

)−1
, (4)

where xt is the true flux. Therefore the difference between
the two flux estimates will be

x̂1− x̂2 =
(

Ŝ2− Ŝ1

)
S−1
a (xt − xa). (5)

That is, the transport-related flux difference depends on the
distance from the prior to the true flux, as well as Ŝi , which
is determined by the interaction between the error matrices
and the transport model Ki . However, Eq. (5) makes a cru-
cial assumption, namely that both transport models are unbi-
ased, or y =Kixt + ε, where ε is the random error of y. In
practice, this is never the case, and for flux inversions the er-
ror due to a transport model is usually because the transport
model is biased with respect to true atmospheric transport,
at spatiotemporal scales of interest. In our experiment, we
mimic this by letting “nature” be each of five transport mod-
els (TM5, PCTM, LMDZ, ACTM, GEOS-Chem) in turn. As
long as these models span the range of transport in nature
(Patra et al., 2011), the uncertainty in fluxes coming out of
our experiment will be a reasonable estimate of the uncer-
tainty due to the difference between modeled and true atmo-
spheric transport. In our experiment, the difference between
two flux estimates from pseudo-data produced by two differ-
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Figure 2. Analytical (blue) and total (red) uncertainty of in situ measurements in the Sε matrix at three example sites, at times of actual
CO2 measurements. SMO is a remote marine boundary layer site with little model variability, while LEF and WKT are continental sites with
significant model variability.

ent transport models K1 and K2 is

x̂1− x̂2 = ŜKT S−1
ε (K1−K2)xt , (6)

where xt are the true fluxes in our OSSE, and x̂i is the flux
estimate when synthetic observations produced by model Ki
are assimilated in TM5 4DVAR. K represents the transport
and observation operator of TM5, while Ŝ depends on K ,
Sa and Sε . In a real data inversion, flux estimates from two
different inversion frameworks that happen to use transport
models K1 and K2 will not necessarily differ by the amount
given in Eq. (6), because of other choices made in setting up
the inversion systems. Rather, Eq. (6) can be thought of as
the range of flux estimates possible in a typical flux inver-
sion (TM5 4DVAR in our case) if K1 and K2 span the range
of possible real atmospheric transport. It should be noted that
the range as expressed in Eq. (6) does not depend on the flux
prior xa , but only on the prior uncertainty Sa through its in-
fluence on Ŝ.

2.5 Difference between transport models

OCO-2 has a local overpass time of 13:30, and most sur-
face measurements assimilated in flux inversions – except
for mountaintop sites – are from the afternoon once a fully
mixed PBL has formed. Therefore, the mid-afternoon CO2
mole fraction difference between models, both in the PBL
and in the total column, would contribute to flux differences
in our experiment. The zonal average of those differences
between 1 Dec 2014 and 1 Mar 2016 are plotted in Fig. 3,
where the lowest 150 hPa is an approximation for the mid-
afternoon PBL depth. Maps of these differences for summer,
winter and the annual average are shown in Figs. B1 and B2
in the Appendix. For each grid cell, the median CO2 mole
fraction of all five models was subtracted from each model
to highlight model differences instead of large-scale features
common to all models. All modeled CO2 fields were mapped
to a global 1◦× 1◦ grid while conserving mass. Since the
models had varying resolutions and grid registrations, this re-
sulted in unavoidable checkered patterns in the differences in

Fig. 3. That, however, did not impact the large-scale model-
to-model differences shown.

In Fig. 3, the agreement across models is generally bet-
ter over the Southern Hemisphere (SH) than over the north.
This is primarily driven by larger ocean masses in the south
than in the north, since, as Figs. B1 and B2 show, the agree-
ment across models is generally higher over oceans than over
land. This is expected because (a) vertical transport, one
of the major axes of variability across models, is stronger
over land than over oceans, and (b) surface flux variability is
also higher over land than over oceans, amplifying the dif-
ference between transport models when viewed in the CO2
concentration space. Models driven by the same parent me-
teorology do not necessarily show the same features in the
modeled CO2 field. In the Northern Hemisphere (NH) sum-
mer, LMDZ shows faster exchange between the continen-
tal PBL and the free troposphere (FT) than TM5, evidenced
by higher CO2 mole fractions in the continental PBL in
Fig. B1. By similar logic, PCTM shows much slower PBL–
FT exchange than GEOS-Chem. In the NH winter, contrary
to summertime, at the northern temperate latitudes PCTM
and TM5 exhibit faster PBL–FT exchange than GEOS-Chem
and LMDZ, respectively. The two models driven by GEOS-
derived winds (GEOS-Chem and PCTM) are significantly
different in the PBL over North and South America, East
Asia and tropical Africa throughout the year. The corre-
sponding difference between the two models driven by ERA-
Interim winds (LMDZ and TM5) are smaller. ACTM has an
overall low bias of ∼ 0.5 ppm in the PBL, which shows up
to a lesser extent in the total column (Fig. 3) and the total
atmospheric CO2 mass (Fig. 1). However, such an overall
bias should not affect fluxes estimated from ACTM pseudo-
observations (henceforth “pseudo-obs”). ACTM also appears
to trap more (compared to the model median) of the win-
tertime respiration signal from boreal Eurasia in the PBL
(Fig. B1), which should have implications for boreal flux es-
timates.
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Figure 3. The zonal average difference between each model (ACTM, GEOS Chem, LMDZ, PCTM and TM5) and the cross-model median
at 13:30 local time, in ppm CO2, between 1 December 2014 (2014.915) and 1 March 2016 (2016.164). (a) depicts differences in the lowest
150 hPa, which is an approximation for the PBL. (b) depicts differences in column averaged CO2. Each column has its own color bar. Since
transport differences in the total column are smaller than in the PBL, the dynamic range of (b) is half that of (a).
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In the total column, GEOS-Chem and PCTM look very
different in the NH summer, with PCTM trapping more of the
NH summertime uptake and SH wintertime respiration sig-
nals in the respective hemispheres. In the NH winter, GEOS-
Chem displays the tropical Asian biomass burning signal
more strongly in the total column than PCTM, while the
East Asian fossil fuel enhancement is higher in the GEOS-
Chem XCO2 throughout the year. In the NH summer, LMDZ
appears to transport more of the temperate and boreal up-
take signal to the south than TM5, leading to slightly higher
XCO2 values in the north. In the NH winter, conversely, TM5
appears to transport more of the northern respiration signal to
the south.

3 Results

Figure 4 shows the range of the annual CO2 flux from assim-
ilating synthetic observations produced by the five different
transport models. For each region, the black horizontal line
denotes the estimate from assimilating pseudo-obs generated
by TM5; i.e., it is the “perfect-transport” OSSE. The other
four models are not distinguished here for visual clarity, but
Fig. D1 in Appendix D marks them separately. The range
of the annual flux estimates across the five forward models
in Fig. 4, which is a measure of the transport model uncer-
tainty in the flux estimates, is tabulated for all regions and
data streams in Table C1 in the Appendix.

Real satellite retrievals of XCO2 have spatially coher-
ent and sampling-mode-dependent biases due to interfering
species such as aerosols and water, surface effects such as
albedo and elevation, and geometric effects such as the so-
lar zenith angle. However, synthetic data generated by the
five transport models, which serve as the input in our inver-
sions, do not have such biases. Hence the range of flux es-
timates from different data sets is purely determined by the
coverage difference between different sampling modes and
the type of measurement (total column versus near-surface
point), while the differences between the flux estimates from
pseudo-obs generated by different models (horizontal lines
within each color bar in Fig. 4) is a measure of the inter-
model transport difference as sampled by a particular observ-
ing mode/network. In this context, the horizontal black lines
in Fig. 4 represent perfect-transport inversions, meaning the
synthetic observations were generated and assimilated with
the same transport model. Therefore, the difference between
those lines (TM5) and true fluxes (white circles) in the fig-
ure represents the balance between Sa and Sε in our setup
of TM5 4DVAR, and a smaller difference from a different
model (any other horizontal line) should not be interpreted
as significant. It should also be noted that our goal is not to
rank models according to their proximity to true fluxes in
Figs. 4 and D1, but rather to quantify the spread across dif-
ferent models used to generate the synthetic data and how
that spread varies with sampling and coverage.

Figures 5 and 6 show the range of monthly fluxes from
TRANSCOM-like land and ocean regions for each type of
synthetic data stream assimilated. For visual clarity, only the
range across the five models has been shown instead of indi-
vidual flux estimates. The land regions in Fig. 5 are identical
to the TRANSCOM regions except that Africa has been par-
titioned into Saharan and sub-Saharan Africa instead of north
and south of the Equator.

4 Discussion

4.1 Global budget

All five models were run from the same initial CO2 field with
the same surface fluxes. The resulting global burden of CO2
in the models were close but slightly different, as shown in
Fig. 1. The increase in the global average CO2 mole fraction
between 1 January 2015 and 1 January 2016 ranged from
2.89 ppm (TM5) to 2.97 ppm (LMDZ). That 0.08 ppm range
in the mole fraction, given the dry air mass of TM5, corre-
sponds to a range of 0.16 PgC in the change in the global
CO2 burden over 2015. Therefore, even if our pseudo-data
inversions nail the global CO2 budget for 2015 exactly, we
can expect a variation of up to 0.16 PgC in that budget owing
to the small model-to-model differences in Fig. 1.

The global total CO2 flux in Fig. 4 shows a spread of
∼1.5 PgC yr−1 for in situ inversions, which is larger than
the spread seen in earlier inverse model intercomparisons
such as Peylin et al. (2013). This is because intercomparisons
such as Peylin et al. (2013) typically report the constraint on
the multi-year average global growth rate, while here we are
looking at the constraint on a single year’s growth rate from
in situ samples. Houweling et al. (2015) compared eight dif-
ferent inverse models of a single year using in situ data and
found a spread of 1.73 PgC yr−1 across models for the an-
nual growth rate, with a standard deviation of 0.5 PgC yr−1.
The inversions in Houweling et al. (2015) were less con-
trolled than our setup, since they used different flux and mea-
surement covariances as well as different transport models.
Therefore, in our more controlled experiment, a spread of
1.5 PgC yr−1 is reasonable among the different in situ data
streams. It is noteworthy that the spread in the global to-
tal flux in Fig. 4 for the OCO-2 pseudo-data inversions is
∼ 0.25 PgC yr−1, close to the previously calculated limit of
0.16 PgC yr−1. This reduction in the spread from in situ to
OCO-2 inversions is primarily due to the more spatially ex-
tensive sampling of OCO-2 and not because of OCO-2’s sen-
sitivity to the total column (as opposed to the surface layer),
evidenced by the ∼ 0.25 PgC yr−1 spread in the global CO2
flux from IS-LNLG and IS-OG inversions in Fig. 4. This sug-
gests that, compared to the current in situ network, a more
spatially extensive sampling strategy, whether total column
or PBL, can provide a stricter constraint on the global CO2
budget that is less sensitive to transport model specifics.
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4.2 Large-scale partitioning of the global budget

The global atmospheric growth rate of CO2 (denoted C be-
low) is determined by the fossil fuel (Fff) emissions and the
global sink from the land biosphere (Fbio) and oceans (Foce):

dC
dt
= Fff+Fbio+Foce, (7)

where Fbio includes fire emissions. CO2 inversions typically
assume a known Fff and estimate Fbio and Foce from atmo-
spheric observations of CO2. Therefore, in a suite of inver-
sions assuming the same Fff, the global total sink Fbio+Foce
is constrained to a number whose uncertainty is determined
by how well the global CO2 budget is determined by the
CO2 observations assimilated. A plot of the estimated Foce
vs. Fbio from the suite should therefore be clustered around
a straight line with a slope of −1. The same logic applies
for any other two-way partitioning of the global sink, such as
Northern versus Southern Hemisphere. Figures 7 and 8 show
four different two-way partitionings of the global total CO2
sink from our ensemble of inversions of synthetic data. The
straight line with slope −1 corresponds to the global total
sink of −3.64 PgC yr−1 in our true fluxes used to generate
the observations. For each inversion estimate, the distance
from that straight line is a measure of how much the esti-
mated global budget deviates from the true global budget for
2015, while the position along the line is an indication of how
the inversion splits the global budget into the two partitions.
Table 3 contains summary statistics from Figs. 7 and 8. For
each data stream (e.g., MBL) and partitioning (e.g., Equator,
which corresponds to the partitioning between the Northern
and Southern Hemisphere), the table contains the spread in
the sum and difference of fluxes between the two partitions.
The spread in the sum is a measure of the uncertainty in the
global budget as constrained by that data stream, while the
spread in the difference is indicative of the uncertainty in the
partitioning.

The global budget for a single year is constrained poorly
by inversions with IS and MBL pseudo-data, evidenced by
the large spread of the global sum in Table 3 and the scatter
of the IS and MBL points around the−3.64 PgC yr−1 straight
line in Figs. 7 and 8. This is consistent with the larger spread
in the global sink estimate of inversions with IS and MBL
data in Fig. 4. Among the models, PCTM pseudo-obs seem
to demand a higher CO2 flux consistently, while ACTM and
GEOS-Chem pseudo-obs demand slightly lower CO2 fluxes.
Since growth in the atmospheric CO2 burden was the same
for all the models in 2015 (Fig. 1), these differences are due
to large-scale transport differences sampled by the in situ net-
work.

Since the OCO-2 pseudo-obs in this OSSE are bias free,
differences in the partitioning from different sounding modes
(LN, LG, OG and land or LNLG) are purely due to sampling
differences. This includes the obvious difference of sampling
the atmosphere over land and ocean surfaces, and also a more

subtle difference in the timing of the samples, coming from
the fact that during the early part of the OCO-2 record up
to July 2015 the satellite operated continuously for 16 days
in nadir (glint) mode before switching to glint (nadir). As a
result, land nadir and land glint samples over the same loca-
tion could be separated by up to 16 days. Since CO2 fluxes
can change significantly over 16 days, this may give rise to
differences in LN and LG derived flux estimates. The im-
pact of spatiotemporal differences in sampling are evident in
Fig. 7. Among assimilations of OCO-2 pseudo-obs (LN, LG,
LNLG, OG) simulated by a single forward model, there can
be a ∼ 0.5 PgC yr−1 spread in the partitioning across a lat-
itude, whether the Equator or one of the tropics, while the
land–ocean partitioning is more uncertain, with a spread of
up to ∼1.5 PgC yr−1. Interestingly, the land–ocean partition-
ing seems to be better pinned down by OCO-2 ocean sound-
ings than land soundings, evidenced by the smaller inter-
model spread when assimilating OG pseudo-obs than when
assimilating LN, LG or LNLG pseudo-obs. The same does
not appear to hold for any latitudinal partitioning.

Finally, we contrast the partitioning from LNLG (OG)
with that from IS-LNLG (IS-OG) to gauge the impact of
transport error on PBL versus total column measurements.
The IS-LNLG (IS-OG) network, which has spatially exten-
sive PBL sampling only over land (ocean), has a much larger
spread in the land–ocean partitioning than the LNLG (OG)
network of column samples. This suggests that, if the goal is
to partition land and ocean fluxes, PBL sampling can amplify
differences across transport models, which are larger in the
PBL than in the total column (Rayner and O’Brien, 2001).
Moreover, comparing the spreads of IS-LNLG and IS-OG
inversions suggests that these transport differences are larger
over land than over ocean. If the goal, however, is to partition
the global budget across a latitude (i.e., the other three par-
titionings in Table 3), column sampling does not appear to
have an obvious advantage over PBL sampling. This is likely
because of the fast zonal mixing of the CO2 flux signal; i.e.,
the flux signal missed by PBL samples at one location due
to incorrectly modeled vertical mixing will be seen by PBL
sites downstream within the same zonal band.

4.3 Annual fluxes at zonal, continental and
TRANSCOM scales

The spread in flux estimates across the five forward models,
or the transport-driven uncertainty, is very similar in Fig. 4
and Table C1 between IS and MBL data streams for most
regions. Over some land regions that have seen a significant
increase in measurement density since Baker et al. (2006),
such as North America and Europe, the additional measure-
ments in IS result in a smaller uncertainty compared to MBL.
Over land regions where the coverage of IS and MBL are
almost identical, such as Africa and tropical Asia, the un-
certainties are (not surprisingly) comparable between IS and
MBL. Over ocean regions, the IS and MBL uncertainties are
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Figure 4. Annual flux estimates from land (a) and ocean (b) regions and zonal bands (c). For each region, the prior and true fluxes are shown
by a gray diamond and a white circle, respectively. The different color bars correspond to different synthetic data streams assimilated: IS
stands for in situ; LN, LG and OG stand for OCO-2 land nadir, land glint and ocean glint, respectively; and LNLG=LN+LG (all land
soundings). The data streams IS-LNLG and IS-OG are theoretical PBL sampling networks at OCO2 sounding locations and times, described
in Sect. 2.3.3. For each color, the vertical extent of the bar denotes the range (minimum to maximum) of the flux estimates from pseudo-
data produced by the five transport models for that data stream. The black horizontal line through each bar denotes the estimate from TM5
pseudo-obs, while the fainter horizontal lines denote the estimates from the pseudo-obs produced by the other four models. The individual
models are not distinguished here for visual clarity but are marked separately in Fig. D1 in Appendix D.

Table 3. The spread in the flux partitioning across five models from the assimilation of different pseudo-data streams. This is a tabulated
summary of the information in Figs. 7 and 8. For each pseudo-data stream (e.g., MBL) and each partitioning (e.g., 23.5◦ N, which is the
dividing line between the northern extra-tropics and the rest), the table contains the spread across five models of the sum and difference of
the fluxes between the two partitions. All numbers are in PgC yr−1.

Partitioning
MBL IS LN LG LNLG OG IS-LNLG IS-OG

sum diff sum diff sum diff sum diff sum diff sum diff sum diff sum diff

Equator 1.71 2.27 1.51 3.02 0.22 1.44 0.24 1.59 0.24 1.49 0.29 1.81 0.33 1.66 0.29 2.13
Land–ocean 1.71 3.74 1.51 2.49 0.22 1.99 0.24 1.86 0.24 2.35 0.29 0.75 0.33 9.71 0.29 1.92
23.5◦ N 1.71 1.67 1.51 2.08 0.22 1.80 0.24 1.59 0.24 2.03 0.29 2.20 0.33 1.62 0.29 1.65
23.5◦ S 1.71 2.37 1.51 2.12 0.22 1.44 0.24 1.59 0.24 1.46 0.29 1.95 0.33 1.61 0.29 1.84
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Figure 5. Monthly flux estimates from TRANSCOM-like land regions and global total land. The different colors correspond to different
synthetic data streams assimilated, as in Fig. 4. The different models used to generate the synthetic data have not been distinguished here to
minimize visual clutter. The theoretical PBL networks IS-LNLG and IS-OG have also been omitted for the same reason. Plots of seasonal
fluxes over many more regions, with the models distinguished, are included in the Supplement.

very similar, except over the Pacific, where the increased cov-
erage in IS on the west coast of North America is likely re-
sponsible for the reduction in uncertainty. The uncertainty
in the global uptake and the global land and ocean fluxes are
slightly smaller for the IS network than for the MBL network.
However, for most other zonal regions the IS and MBL un-
certainties are roughly equal, likely because of the fast zonal
mixing in the atmosphere.

The regional annual flux estimates of Fig. 4 show that the
spread among land flux estimates when assimilating OCO-2
pseudo-data over land (LN, LG and LNLG) is often smaller
than when assimilating in situ data (IS, MBL). This could be
a combination of the total column nature of OCO-2 pseudo-
data and its increased spatial homogeneity of coverage. To
separate the two effects, we look at IS-LNLG, which has

the same coverage as LNLG but only PBL samples instead
of total columns. Over certain regions, such as temperate
North and South America, and temperate Eurasia, the IS-
LNLG spread is larger than the IS spread, which is larger
than the LNLG spread. This suggests that over those re-
gions the transport model error – relative to the flux sig-
nal – in the total column is smaller than in the PBL, lead-
ing to lower transport-drive uncertainty in total column CO2
assimilations than in situ CO2 assimilation. Sampling the
PBL more densely over those regions is likely to increase
transport-driven uncertainty in fluxes. This is consistent with
the hypothesis of Rayner and O’Brien (2001). However, over
some other regions, such as boreal Eurasia and tropical South
America, the IS-LNLG spread is much smaller than the IS
spread, suggesting that over those regions, the reduction in

www.atmos-chem-phys.net/18/7189/2018/ Atmos. Chem. Phys., 18, 7189–7215, 2018
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Figure 6. Same as Fig. 5 except over TRANSCOM ocean regions and global total ocean.
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Figure 7. The partitioning of the 2015 global CO2 sink into two geographical domains, with the tropics being defined as 23.5◦ N and S
latitudes. Each color represents one type of synthetic data assimilated, while each symbol shape represents one model used to generate the
synthetic data. The diagonal gray line represents the 2015 global sink of 3.64 PgC yr−1 in the true fluxes used to generate the synthetic data,
while the large plus sign denotes their partitioning. The scales are identical across all four panels, but not the origins.
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Figure 8. The partitioning of the 2015 global CO2 sink into two geographical domains, with the tropics being defined as 23.5◦ N and S
latitudes. This is similar to Fig. 7, except that we have compared two real OCO-2 and one real in situ sampling schemes (LNLG, OG, IS)
with the two theoretical in situ ones (IS-LNLG, IS-OG) of Sect. 2.3.3. The scales are identical across three of the four figures and the same
as Fig. 7; the partitioning of global and ocean fluxes had significantly more spread and required a different scale.

uncertainty going from IS to LNLG is primarily due to the
more uniform spatial coverage and not due to total column
sampling. In fact, over tropical South America the IS-LNLG
spread is smaller than the LNLG spread, suggesting that the
transport error in the total column is larger than that in the
PBL. Finally, over regions such as Europe, the ordering of
IS, IS-LNLG and LNLG uncertainties suggests that the re-
duction in uncertainty in going from IS to LNLG is partly
due to the more spatially uniform coverage and partly due to
total column sampling.

Over some ocean regions such as the temperate North Pa-
cific and South Atlantic, the IS-OG spread is larger than the
OG spread, suggesting that modeling the PBL is more uncer-
tain than modeling the total column over those regions. How-
ever, the opposite is true over several other ocean regions,
such as the temperate North Atlantic and South Pacific. Thus,
the hypothesis of Rayner and O’Brien (2001) cannot be said
to hold over most ocean regions. Finally, one striking fea-
tures of ocean fluxes in Fig. 4 is worth pointing out here.
The transport-derived uncertainty for IS-LNLG estimates is
often the largest among all data streams, which leads to a
large uncertainty in the global land–ocean partitioning us-
ing the IS-LNLG network. This suggests that increasing the
PBL sampling only over land – where the transport models
disagree more – is likely to worsen ocean flux estimates in
the presence of imperfect-transport models.

The global uptake and its partitioning between land and
ocean, or the Northern and Southern Hemisphere, are less
uncertain for XCO2 assimilations than for in situ CO2 as-
similations IS and MBL. Looking at the IS-LNLG and IS-
OG inversions, we conclude that the improvement in the
global budget and its north–south partitioning is likely due
to a more uniform spatial coverage, while the improvement
in land–ocean partitioning is likely due to the total column
nature of the OCO-2 pseudo-data. Partitioning the budget in
zonal bands – i.e., northern extra-tropics, tropics and south-
ern extra-tropics – has (roughly) the same uncertainty across
all inversions. This is likely due to the fast zonal flow in

the free troposphere, which ensures that surface flux signals
missed by one set of measurements – perhaps due to imper-
fect transport – are seen by other measurements in the same
zonal band.

Traditionally, inversions of surface CO2 data have had
larger uncertainty in tropical flux estimates than in northern
temperate regions, stemming from the sparse observational
coverage in the tropics (Peylin et al., 2013). The larger in-
terannual variability of the tropical flux, seen by several in-
version studies including Baker et al. (2006) and Peylin et al.
(2013), is also ascribed partly to the higher uncertainty in
tropical flux estimates. In contrast, the uncertainty in flux
estimates stemming from uncertainties in modeled transport
does not have the same correlation with observational cov-
erage. For inversions with in situ data, the relatively well-
covered regions of temperate North America and Europe
show the same transport-derived uncertainty as the poorly
covered regions of temperate South America and tropical
Asia (Fig. 4). In general, we do not find that the uncertain-
ties in flux estimates due to transport model errors are lower
over the northern temperate latitudes than over less measured
tropical and southern temperate areas.

One final noteworthy aspect of the flux estimates of Fig. 4
is that for some regions (such as temperate South Amer-
ica, Atlantic tropics, Southern Ocean, south Indian temper-
ate, tropical oceans, Indian Ocean, the southern extra-tropics
and southern extra-tropical land) the range of in situ flux es-
timates does not overlap with the range of LN, LG or LNLG
(and sometimes OG) flux estimates. For some other regions
such as the Indian Ocean and the Southern Ocean, there is
no overlap between the OCO-2 land (LN, LG, LNLG) and
ocean (OG) estimates. Since there are no biases between the
IS, OCO-2 land and ocean pseudo-data, these flux differ-
ences suggest that spatiotemporal coverage differences be-
tween different observation networks and OCO-2 sampling
modes can lead to flux differences that are larger than uncer-
tainties due to transport.

www.atmos-chem-phys.net/18/7189/2018/ Atmos. Chem. Phys., 18, 7189–7215, 2018
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4.4 Monthly fluxes

Figures 5 and 6 show the monthly flux estimates for 2015
from TRANSCOM-like land and ocean regions. As before,
only the spread across the pseudo-data generated by the five
transport models is shown for visual clarity. The reduced sen-
sitivity of OCO-2 pseudo-data inversions to transport model
uncertainty is obvious for most months over both land and
ocean regions. As before, this reduced sensitivity is from a
combination of two factors: (a) spatially uniform coverage
of OCO-2 compared to the in situ network and (b) the assim-
ilation of column average XCO2 as opposed to PBL CO2.
The relative importance of the two factors – as gauged by
the relative sizes of the bars between the OCO-2 (LN, LG,
LNLG, OG), real in situ (IS) and hypothetical in situ (IS-
LNLG, IS-OG) data streams in Figs. 5 and 6 – varies by
region and season. For example, in October in sub-Saharan
Africa, going from the sparse IS network to the more uniform
IS-LNLG network reduces the flux uncertainty significantly,
but going from PBL measurements (IS-LNLG) to the total
column (LNLG) does not reduce the uncertainty further. In
contrast, over the same region in December, the increased
PBL sampling of the IS-LNLG network inflates the flux un-
certainty compared to the IS network, while going from PBL
sampling (IS-LNLG) to the total column (LNLG) brings that
uncertainty down significantly. In general, over most land re-
gions and most months, given OCO-2’s spatiotemporal sam-
pling, assimilating total column CO2 (LNLG) results in equal
or lower transport-driven uncertainty than assimilating PBL
CO2 (IS-LNLG). The same relationship holds between IS-
OG and OG inversions over ocean regions with a few excep-
tions (e.g., south Indian temperate in June and July). How-
ever, the relationship between the real (IS) and hypothetical
(IS-LNLG, IS-OG) networks is less general and reflects the
impact of different sampling.

The transport-derived uncertainty in monthly fluxes has
clear seasonality over most land and ocean regions. In gen-
eral, over temperate and boreal land regions, the uncertainty
is higher in the summer than in the winter, likely due to
stronger convective transport and higher horizontal wind
shear in the summer months. Temperate oceans sometimes
display the opposite behavior (e.g., temperate North Atlantic
and North Pacific), whereby transport-driven uncertainty is
lower in the summer and higher in the winter. This is likely
because advective, and not convective, transport uncertainty
is the dominant uncertainty over oceans. Over the tropics the
distinction is less clear cut, with no clear commonality be-
tween tropical Asia and tropical South America. Over the
tropical Indian Ocean, the uncertainty is lowest in the last
third of the year, whereas in the tropical Pacific the uncer-
tainty is lowest in the middle of the year.

Over certain ocean regions (e.g., Atlantic tropics, east Pa-
cific tropics, south Indian temperate, Southern Ocean), the
range of monthly fluxes obtained from synthetic XCO2 over
land (LN, LG and LNLG) often does not overlap at all with

the range obtained from either the ocean data (OG) or in
situ data (IS). Sometimes, the OCO-2 land pseudo-data in-
versions overlap with the ocean pseudo-data inversions but
not with the true fluxes (e.g., temperate North Atlantic and
North Pacific). Since there are no coherent biases in OCO-
2 pseudo-data in these synthetic data experiments, the dif-
ferences between land and ocean XCO2 inversions, or be-
tween either set and the true fluxes, can only be due to dif-
ferences in sampling the same CO2 field with different sets
of sampling times and locations. These sampling differences
can lead to flux differences that are larger than the transport-
driven uncertainty in fluxes. As noted earlier, this implies that
in real data inversions biases can appear between land and
ocean XCO2 inversions, or between OCO-2 and in situ inver-
sions, purely due to an imperfect-transport model sampling
the same field according to different sampling patterns. This
can, for example, lead to biased flux estimates when ocean
fluxes are inferred using OCO-2 land soundings, even when
the retrievals are unbiased.

5 Conclusions

In this work, we have used five different transport models in
an OSSE to estimate the uncertainty in inversion-derived flux
estimates due to the uncertainty of the modeled transport in
flux inversions. The five transport models were driven by four
different state-of-the-art reanalyzed meteorological data sets
that are commonly used in the flux inversion community and
therefore could be expected to span the spectrum of transport
model behavior. In the OSSE, we created synthetic in situ
and column CO2 measurements by running the five transport
models forward with the same boundary conditions and then
assimilated those measurements in a single flux inversion
system. The spread in the flux estimates was therefore purely
due to the spread among the five transport models. We tested
this setup for different sampling protocols: (a) an in situ set
corresponding to NOAA’s present-day cooperative air sam-
pling network; (b) an in situ set of mostly background sites
corresponding to the network used by Baker et al. (2006)
for the TRANSCOM 3 model intercomparison experiment;
(c) a set of XCO2 measurements corresponding to OCO-2
land nadir, land glint and ocean glint soundings, convolved
with corresponding OCO-2 averaging kernels and priors; and
(d) a set of in situ samples within the PBL at the times and
locations of OCO-2 land and ocean soundings. This allowed
us to test the interaction of imperfect transport, observational
coverage and the assimilation of column versus PBL mole
fractions. Our use of the OCO-2 data – both the temporal
averaging and the errors in those averages – followed the
current protocol used by OCO-2 flux modelers, and there-
fore our results should be directly usable by the modelers to
draw conclusions about their real data inversions. There are
four important take-home messages from this work that we
would like to convey.
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5.1 MBL vs. IS

A comparison of the spread of flux estimates from the MBL
and IS inversions suggests that the added coverage from
mostly continental sites on top of the mostly background net-
work considered by Baker et al. (2006) can reduce transport-
induced uncertainty over land regions, despite the uncer-
tainty in transport over continents. This is likely due to the
added observations averaging out some of the transport vari-
ability. The added coverage has minimal or negative benefit
in reducing transport-induced uncertainty of ocean flux esti-
mates, and estimates over zonal bands, except for the Pacific
ocean and its temperate and tropical subdivisions.

5.2 Geographical distribution of transport uncertainty

For inversions of in situ data, flux estimates over the trop-
ics have been historically less certain than estimates over
the northern temperate regions, owing to lower observational
coverage over the former. In previous work, the uncertainty
of fluxes purely due to transport was also found to be slightly
higher over tropical regions than over extra-tropical regions
(Baker et al., 2006). However, in this work, we see that that
demarcation does not hold for flux uncertainty stemming
from transport model uncertainty. For example, the spread
among IS inversions over temperate North America or Eu-
rope in Fig. 4 is as large as their spread over tropical Asia or
temperate South America, respectively, despite the first two
being much better covered with CO2 samples.

5.3 Column vs. PBL CO2

Rayner and O’Brien (2001) hypothesized that inversions of
column average CO2 may be less sensitive to vertical trans-
port errors than PBL CO2, since redistribution of CO2 in the
vertical does not change the column average. However, the
variation of column CO2 due to fluxes is also much smaller
than in the PBL. The transport model sensitivity of col-
umn CO2 inversions depends on the balance between this
smaller flux signal and smaller transport error. In our ex-
periments, we see that over TRANSCOM-scale and larger
land regions (except tropical South America) inversions us-
ing column CO2 data over land (LNLG) are indeed less sensi-
tive to transport errors than inversions using PBL CO2 at the
same locations and times (IS-LNLG). Over TRANSCOM-
scale ocean regions, however, the picture is more ambigu-
ous, as several regions (e.g., Atlantic Ocean, South Pacific
temperate, North Atlantic temperate, Southern Ocean) dis-
play a smaller uncertainty when assimilating PBL CO2 (IS-
OG) than column CO2 (OG). This is likely because the un-
certainty in convective transport over oceans is smaller than
on land. The global budget and the partitioning across zonal
bands are constrained equally well by column and PBL CO2
samples, provided they have the same spatiotemporal cover-
age. The partitioning across land–ocean boundaries is notice-

ably more uncertain when using PBL samples over land than
column samples, likely because vertical transport differences
near the surface are larger over land than oceans.

It should be noted here that the low sensitivity of col-
umn measurements to PBL CO2 variations is often consid-
ered a weakness, since surface flux signals are the largest in
the PBL. Efforts are currently underway to construct active
remote-sensing instruments that are preferentially sensitive
to the lower troposphere (Wang et al., 2014). Our OSSEs
suggest that, were such an instrument to be deployed, the
uncertainty of surface flux estimates derived from that in-
strument might very well be larger than from an OCO-2-
like column CO2 instrument due to transport model uncer-
tainty near the surface. In the long term, significant improve-
ment in transport modeling will be needed to benefit from
a remote-sensing instrument preferentially sensitive to near-
surface CO2.

5.4 Impact of coverage

In our synthetic data inversions, the difference between the
fluxes inferred from the same forward-model run but differ-
ent sampling strategies is purely due to the interaction be-
tween non-ideal transport and data coverage, and not because
of biases between the different samples. Despite this lack of
bias, there are several regions where the entire spread of flux
estimates across the five forward models has no overlap be-
tween certain types of data, or with the truth. For example,
LN, LG and LNLG annual flux estimates from the Indian
Ocean have no overlap with either IS or OG estimate or the
truth, while XCO2 estimates of temperate South American
fluxes are completely detached from all IS estimates. This
effect is even more pronounced for monthly flux estimates.
This suggests that, in the presence of imperfect transport and
no measurement bias, different coverage and sampling can
generate biases in flux estimates that are larger than their un-
certainty due to transport. We should therefore avoid infer-
ring, say, oceanic fluxes by using only OCO-2 land sound-
ings.

6 Applicability of our work and future steps

While we have not used any real in situ or OCO-2 data in
this work, the transport-driven uncertainty estimates we have
presented can be used by other inverse modeling studies to
test the robustness of their conclusions, when using a sim-
ilar network of in situ and column CO2 measurements. In
future inversion intercomparisons along the lines of Houwel-
ing et al. (2015) and Peylin et al. (2013), which aggregate
multiple model results, our uncertainty estimates can be used
to infer whether the inter-model spread is driven primarily
by transport model spread or by non-transport factors such
as data selection and inversion methodology. We also plan to
extend our work to multiple years to answer the question of
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whether the interannual variability (IAV) of flux estimates is
more robust to differences in modeled transport than individ-
ual years. Baker et al. (2006) considered the same question
for in situ data but did not have IAV in their meteorology.
By extending our study to multiple years in the future, we
will be able to separate out the impact of transport model
differences on the IAV for different sampling networks and
observing platforms.

Code and data availability. All inversions for this work were
performed in TM5 4DVAR, available publicly at https://
sourceforge.net/projects/tm5 (TM5, 2017). The OCO-2 sound-
ings and their quality flags used to sample the models were
obtained from https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_
FP_7r/summary (OCO-2 Science Team, 2015). The in situ sam-
pling locations and times for sampling the models were obtained
from NOAA’s ObsPack portal at https://www.esrl.noaa.gov/gmd/
ccgg/obspack (Cooperative Global Atmospheric Data Integration
Project, 2016; NOAA Carbon Cycle Group ObsPack Team, 2017).
The times and locations of JR-STATION CO2 samples were ob-
tained from the National Institute for Environmental Studies at
http://www.cger.nies.go.jp/en/climate/pj1/tower/ (National Institute
for Environmental Studies, 2017).
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Appendix A: Adjusting PCTM mole fractions at South
Pole

During this analysis, we discovered that the PCTM CO2 field
produced by our version of PCTM had a problem at the
South Pole (SPO). There were low values of modeled CO2
mole fraction high over SPO, which were propagating down
over the sampling site and out over the Ross Ice Shelf. This
caused unrealistically low modeled values and unrealistically
high variations of CO2 in PCTM at the SPO sampling site.
Lacking a fix for this transport model artifact, we moved
the SPO sampling site 2◦ N along the Greenwich meridian,
which greatly reduced the problem. The time series of mod-
eled CO2 from all the models at the NOAA flask sampling
times, along with the fixed sampling in PCTM, is shown in
Fig. A1. We used this modified sampling of PCTM at SPO
in this work. Until this bug is fixed, real data inversions with
PCTM will use this or a similar modified sampling scheme
at SPO as well.
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Figure A1. The modeled time series of the CO2 mole fraction at NOAA flask sampling times at the South Pole station from all the models.
PCTM (“PCTM (flawed)” here) is seen to have a problem, giving unrealistically low CO2 values with unrealistically high variability. Moving
the sampling site north by 2◦ along the Greenwich meridian, just for PCTM, greatly alleviates the problem (“PCTM (adjusted)”).
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Appendix B: Maps of transport differences

Figure 3 showed the temporal evolution of the zonal aver-
age difference between each transport model and the model
median. In Figs. B1 and B2, we show how that difference
is distributed geographically in summer, winter and the an-
nual average. The method of constructing these is exactly the
same as for Fig. 3. All modeled CO2 fields were mapped to a
global 1◦× 1◦ grid while conserving mass. Since the models
had varying resolutions and grid registrations, this resulted in
unavoidable checkered patterns in the differences in Figs. B1
and B2. That, however, did not impact the large-scale model-
to-model differences shown. The color scale of Fig. B2 cov-
ers half the range of Fig. B1, since variations in the PBL are
much larger than variations in the column.
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Figure B1. The difference between each model (ACTM, LMDZ, GEOS Chem, PCTM and TM5) and the cross-model median at 13:30 local
time in the lowest 150 hPa, which is an approximation for the planetary boundary layer (PBL). (a) shows the difference averaged over all of
2015, (b) is averaged over Northern Hemisphere summer months (June–August 2015) and (c) is averaged over Northern Hemisphere winter
months (December 2015 to February 2016). Differences are shown in ppm CO2.
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Figure B2. Same as Fig. B1 except averaged over the total column. The dynamic range here is half that of Fig. B1, since transport differences
in the total column signal are smaller than in the PBL signal.
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Appendix C: Spread in annual flux estimates as a
function of the pseudo-data stream

Figure 4 displays the spread in annual flux estimates over
various geographical regions from assimilating pseudo-data
generated by the five forward models. Table C1 tabulates
these spreads (minimum to maximum) for each region and
choice of assimilated pseudo-data stream.

Table C1. The spread in annual flux estimates for 2015 across the five forward models. These are the vertical extents of the color bars in
Fig. 4. The true and prior fluxes (white circle and gray diamond in Fig. 4) are also included as the last two columns of the table. All numbers
are in PgC yr−1.

Region MBL IS LN LG LNLG OG IS-LNLG IS-OG True Prior

North America 1.86 0.83 0.34 0.24 0.23 0.42 1.31 1.23 0.22 −0.55
South America 2.76 2.01 0.65 0.50 0.48 0.47 1.24 1.57 0.69 0.15
Africa 0.93 1.11 0.45 0.42 0.41 0.57 1.47 1.28 −1.48 −0.35
Asia 1.69 1.28 0.96 0.97 1.09 0.75 2.71 1.65 −1.06 −1.40
North American boreal 0.90 0.41 0.24 0.36 0.31 0.45 0.24 0.47 −1.05 −0.19
North American temperate 1.67 1.03 0.16 0.48 0.18 0.40 1.26 0.82 1.15 −0.37
South American tropical 2.32 1.61 0.72 0.55 0.61 0.51 0.36 1.10 −0.25 0.35
South American temperate 1.02 0.94 0.44 0.35 0.42 0.48 1.18 0.69 1.07 −0.17
Saharan Africa 0.55 0.60 0.09 0.09 0.10 0.13 0.43 0.33 −40.21 −0.07
Sub-Saharan Africa 0.90 0.95 0.53 0.48 0.51 0.54 1.13 0.99 −1.28 −0.28
Eurasian boreal 1.95 1.28 0.29 0.27 0.33 0.35 0.61 1.39 −0.86 −1.06
Eurasian temperate 1.12 1.20 0.80 0.60 0.84 0.67 1.51 1.80 −0.32 −0.57
Tropical Asia 1.27 1.07 0.32 0.37 0.37 0.45 1.11 1.69 0.09 0.20
Europe 1.52 1.09 0.25 0.29 0.30 0.36 0.72 0.64 −0.56 0.03
Australia 0.46 0.37 0.17 0.18 0.19 0.20 0.29 0.14 −0.22 0.07
Pacific Ocean 1.98 1.16 0.20 0.27 0.28 0.84 2.76 1.12 0.07 −0.60
Atlantic Ocean 0.55 0.67 0.80 0.65 1.14 0.86 1.75 0.33 −0.38 −0.58
Indian Ocean 0.28 0.21 0.20 0.39 0.28 0.23 0.60 0.21 −0.22 −0.52
North Pacific temperate 0.89 0.68 0.47 0.45 0.50 0.41 2.23 1.03 −0.39 −0.55
West Pacific tropics 0.17 0.13 0.02 0.02 0.03 0.05 0.19 0.11 0.04 0.04
East Pacific tropics 0.58 0.48 0.34 0.32 0.50 0.22 0.88 0.25 0.78 0.41
South Pacific temperate 0.62 0.51 0.28 0.29 0.41 0.35 0.78 0.20 −0.36 −0.49
Northern Ocean 0.17 0.26 0.10 0.05 0.07 0.11 0.07 0.25 −0.17 −0.19
North Atlantic temperate 0.41 0.84 0.67 0.56 0.89 0.81 1.45 0.23 −0.32 −0.27
Atlantic tropics 0.18 0.10 0.12 0.11 0.17 0.23 0.20 0.20 0.36 0.12
South Atlantic temperate 0.44 0.42 0.13 0.15 0.22 0.31 0.49 0.50 −0.41 −0.43
Southern Ocean 0.32 0.34 0.14 0.19 0.17 0.58 0.47 0.40 −0.41 −0.37
Indian tropical 0.13 0.11 0.05 0.06 0.08 0.11 0.19 0.22 0.10 0.14
South Indian temperate 0.26 0.28 0.18 0.34 0.24 0.26 0.44 0.30 −0.31 −0.66
Northern extra-tropical land 1.08 1.39 1.11 1.00 1.38 1.27 3.38 1.43 −2.20 −2.13
Northern extra-tropical ocean 0.71 1.07 0.95 0.79 1.05 0.51 3.12 0.94 −0.93 −0.93
Northern extra-tropics 1.03 0.95 1.01 0.91 1.13 1.24 0.94 0.90 −3.17 −3.07
Tropical land 2.12 2.10 0.97 1.08 0.93 1.06 1.74 1.16 −0.83 0.22
Tropical ocean 1.02 0.82 0.48 0.51 0.69 0.39 1.63 0.70 1.33 0.44
Tropics 1.49 1.54 1.43 1.44 1.50 1.39 1.48 0.99 0.45 0.67
Southern extra-tropical land 0.90 0.53 0.40 0.37 0.41 0.54 0.60 0.32 0.69 −0.15
Southern extra-tropical ocean 0.54 0.53 0.36 0.53 0.43 0.78 0.44 0.97 −1.51 −1.78
Southern extra-tropics 0.49 0.58 0.72 0.81 0.73 0.95 0.95 0.98 −0.92 −1.92
Global land 2.23 1.83 0.91 0.84 1.17 0.52 4.84 0.93 −2.52 −2.06
Global ocean 1.57 0.94 1.08 1.02 1.22 0.23 4.87 0.99 −1.12 −2.26
Northern Hemisphere 1.99 1.78 0.64 0.73 0.66 0.83 0.69 1.13 −3.71 −3.08
Southern Hemisphere 0.56 1.41 0.81 0.85 0.82 0.98 0.97 1.07 0.06 −1.24
Globe 1.71 1.51 0.22 0.24 0.24 0.29 0.33 0.29 −3.64 −4.32
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Appendix D: Annual flux estimates differentiated by
forward model

In Fig. 4, the range of flux estimates for each data stream is
shown, without distinguishing the flux estimates stemming
from different forward models. Here, for the sake of com-
pleteness, we give the estimates from pseudo-data generated
by each of the five models. In the plots below, different color
bars correspond to different synthetic data streams, while dif-
ferent marker shapes (such as square for TM5 and upright tri-
angle for ACTM) correspond to the different transport mod-
els used to generate the synthetic data.
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(b) Oceanic CO  flux in 2015 from ocean regions
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Figure D1. Annual flux estimates from land (a) and ocean regions (b), and zonal bands (c). The different colors correspond to different
synthetic data streams assimilated: IS stands for in situ, LN stands for land nadir, LG stands for land glint, OG stands for ocean glint and
LNLG is LN+LG. The IS-LNLG and IS-OG are hypothetical PBL networks described in Sect. 2.3.3. For each color, the different symbols
denote the forward model used to produce the pseudo-data that were assimilated by TM5 4DVAR.

In Fig. D1, the TM5 symbols represent a perfect-transport
case, meaning the synthetic observations were generated and
assimilated with the same transport model. Therefore, the
difference between TM5 and truth in the figure represents the
balance between Sa and Sε in TM5 4DVAR, and a smaller
difference from a different data stream (such as LMDZ with
IS data over tropical land) is purely due to chance. It should
also be noted that our goal in presenting the different models
together in Fig. D1 is not to evaluate model performance by
their proximity to either the truth or perfect-transport (TM5)
results, but to evaluate the spread across different models
used to generate the synthetic data and how that spread varies
with sampling and coverage.
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