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ABSTRACT

Statisticalmethods to bias correct global or regional climatemodel output are now common to get data closer to

observations in distribution. However, most bias correction (BC)methods work for one variable and one location

at a time and basically reproduce the temporal structure of the models. The intervariable, spatial, and temporal

dependencies of the corrected data are usually poor compared to observations. Here, the authors propose a novel

method for multivariate BC. The empirical copula–bias correction (EC–BC) combines a one-dimensional BC

with a shuffling technique that restores an empirical multidimensional copula. Several BC methods are in-

vestigated and compared to high-resolution reference data over the FrenchMediterranean basin: notably, (i) a 1D

BC method applied independently to precipitation and temperature fields, (ii) a recent conditional correction

approach developed for producing correct two-dimensional intervariable structures, and (iii) the EC–BCmethod.

Assessments are realized in terms of intervariable, spatial, and temporal dependencies, and an objective

evaluation using the integrated quadratic distance (IQD) is presented. As expected, the 1D methods cannot

produce correct multidimensional properties. The conditional technique appears efficient for intervariable

properties but not for spatial and temporal dependencies. EC–BC provides realistic dependencies in all re-

spects: intervariable, spatial, and temporal. The IQD results are clearly in favor of EC–BC. As many BC

methods, EC–BC relies on a stationarity assumption and is only able to reproduce patterns inherited from

historical data. However, because of its ease of coding, its speed of application, and the quality of its results,

the EC–BC method is a very good candidate for all needs in multivariate bias correction.

1. Introduction

The use of simulations from climate or meteorological

models at large or regional scales is now common in

many impact studies, such as hydrological, environ-

mental, or economic studies among others, or more

generally in studies on consequences of climate change

and adaptation. Although those simulations provide

much useful information, they are in general not directly

comparable to observations: for example, many obser-

vations are point measurements, whereas simulated data

represent volume-integrated dynamical variables. More-

over, simulated data are associatedwith potential biases in

the sense their statistical distribution differs from the

distribution of the observations. This is partly because

global climate models (GCMs) have too low a spatial

resolution to be employed directly in most of the impact

models (e.g., Meehl 2007; Christensen et al. 2008). Re-

gional climate models (RCMs) reduce some of the biases

but not those unrelated to spatial resolution (Maraun

2013; White and Toumi 2013). Statistical bias correction

methods—correcting the distribution (e.g., the cumulative

distribution function)—are then commonly applied to

transform the simulated data into new data with no or at

least fewer statistical biases with respect to reference,

generally observed time series. In general, there is no clear

distinction between a change of support problem (i.e.,

downscaling or upscaling) and bias correction.

In all the following, capital letters (e.g., X) represent

random variables, while small letters (e.g., x) are used
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for realizations or values of a random variable. Themost

employed bias correction (BC) methods are based on

quantile association. The most famous is certainly the

so-called quantile-mapping approach (Panofsky and

Brier 1958; Haddad and Rosenfeld 1997; Wood et al.

2004; Déqué 2007; Piani et al. 2010a; Gudmundsson et al.

2012), trying tomap amodeled value x [with a cumulative

distribution function (CDF) FX] to an observed value

y (with a CDF FY) through a function f, such that their

distributions are equivalent (Piani et al. 2010b),

y5 h(x) such that FY(y)5FX(x) . (1)

This mapping function h can be derived from distribu-

tions and regression-like transformations: in both cases

either parametric or nonparametric (for some details,

see, e.g., Gudmundsson et al. 2012). A very popular

distribution-derived nonparametric approach (e.g.,

Déqué 2007) directly uses the constraint FX(x)5 FY(y)

to derive the corrected value y from the modeled value

x through the so-called empirical quantile mapping

(EQM),

y5F21
Y [FX(x)] , (2)

where F21 is the inverse function of the CDF F, with

both modeled nonparametrically.

One major issue of such quantile-mapping methods

and their variants (e.g., Michelangeli et al. 2009) is that

they are essentially univariate: they work only for one

variable at a time and one location at a time and basi-

cally reproduce the temporal structure of the climate

models. Hence, although the resulting marginal (i.e.,

one-dimensional) statistical distributions of the cor-

rected data are improved, those one-dimensional tech-

niques suffer from various limitations. Among the latter,

one major limitation for many impact studies is that,

because they are applied to one location at a time, the

spatial and temporal structures of the corrected time

series are misrepresented (Colette et al. 2012; Maraun

2013) and basically correspond to the structures of the

model to be corrected. This leads to potentially signifi-

cant inadequacies when used as forcing: for example, in

a hydrological model, where spatialization and chro-

nology of the input rainfall are of importance. More-

over, as most of the BC methods correct one variable at

a time (e.g., temperature is corrected separately and

independently from precipitation), the corrected vari-

ables can be inconsistent between each other and then

generate unrealistic situations (e.g., Chen et al. 2011;

Muerth et al. 2013).

Such (spatial, temporal, and intervariable) issues also

appear when BC is applied to de-bias GCM outputs

prior to downscaling with regional climate models.

Although Colette et al. (2012) and White and Toumi

(2013) showed that such a prior correction of the large-

scale inputs for RCMs with a quantile-association-

based method clearly improves the quality of the

RCM simulations, White and Toumi (2013) found that

it can nevertheless produce undesirable results in the

RCM simulations.

Recently, efforts have beenmade to improve or create

BC models that solve (some of) those issues. Piani and

Haerter (2012) developed a BC methodology to bypass

the problem of physical consistency between two vari-

ables (e.g., temperature and precipitation) to be cor-

rected. Their approach consists in applying a univariate

BC to the time series of one variable (e.g., precipitation)

conditionally on the bias-corrected values of the time

series for the other variable (e.g., temperature). Their

results show the clear improvement of the temperature–

precipitation dependence representation with respect to

the traditional separate univariate temperature and

precipitation bias corrections.

Furthermore, to overcome the lack of realistic spatial

variability and temporal persistence in precipitation and

temperature fields simulated by a numerical weather

prediction (NWP) model, Clark et al. (2004) presented

a method for reordering NWP outputs to recover the

space–time variability. In this approach, each time series

is ranked and matched with observation data. The ele-

ments of the time series are then shuffled to match the

original order of the historical dataset. Based on this

shuffling technique, Clark et al. (2004) correctly re-

constructed the space–time variability of forecasted

precipitation and temperature fields. This technique has

seen great success in hydrological applications (e.g., for

flood forecasts; Voisin et al. 2010, 2011), to construct

ensemble forecasts from single-value forecasts of pre-

cipitation and temperature (Schaake et al. 2007), or for

ensemble postprocessing (Verkade et al. 2013; Robertson

et al. 2013). The ensemble copula coupling (ECC) is

an adaptation thereof to multivariate ensemble post-

processing (Schefzik et al. 2013; Möller et al. 2012;
Schuhen et al. 2012; Thorarinsdottir et al. 2015). Related

methods are also described in Johnson and Bowler

(2009), Pinson (2012), and Roulin and Vannitsem (2012).

Wilks (2015) compares the ‘‘Schaake shuffle’’ and the

ECC in the context of ensemble postprocessing. To the

best of our knowledge, the shuffle technique has not yet

been applied for the purpose of multivariate bias cor-

rection or downscaling of climate simulations.

The main objective of this article is to promote a tech-

nique that is readily available and easy to apply. This

technique will be referred to as the empirical copula–bias

correction (EC–BC) approach, and it combines
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a univariate BC method with the shuffling technique

presented by Clark et al. (2004). We further provide an

intercomparison of this method with a one-dimensional

BC method and the conditional approach of Piani and

Haerter (2012).

This article is organized as follows: In the next sec-

tion, the data to be corrected and the reference data are

first presented, as well as the experimental cross-

validation setup. In section 3, a short description of

the 1D bias correction method used as a benchmark in

this study is provided. Then, theoretical and technical

details are given concerning the bivariate and multi-

variate bias correction methods compared in this arti-

cle in section 4: namely, the ‘‘conditional’’ technique,

the shuffling-based method, and the EC–BC approach.

Section 5 contains the results of the intercomparison in

terms of intervariable, spatial, and temporal analyses.

Finally, general conclusions are given in section 6

as well as a discussion concerning the underlying

assumptions and some potential adaptations of the

various approaches.

2. Reference and model data

In this article, the reference data are daily temperature

and precipitation time series from the Système d’Analyze

Fournissant des Renseignements Atmosphériques à la
Neige (SAFRAN) reanalysis data (Quintana-Segui et al.

2008) over the southwest region of France (28–7.58E,
428–458N) corresponding to 1506 continental grid

cells with an approximate 8 km 3 8 km spatial resolu-

tion. Figure 1a displays the map of France with the re-

gion of interest in a box, as well as the mean cumulated

annual precipitation (Fig. 1b) and the mean daily tem-

perature (Fig. 1c). The SAFRAN dataset allows one to

avoid gaps in the time series. It has been employed as

a reference for evaluation of different statistical or dy-

namical downscaling approaches in various studies (e.g.,

FIG. 1. (a) Map of France with the region of interest in a box, (b) the mean cumulated annual precipitation, and (c) the mean daily

temperature.
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Lavaysse et al. 2012; Vrac et al. 2012). A detailed de-

scription of SAFRAN, its validation, and its application

over France is given by Quintana-Segui et al. (2008).

Model data to be corrected are the Interim European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Re-Analysis (ERA-Interim) daily reanalysis temperature

and precipitation data with a 0.758 by 0.758 spatial re-

solution. Using an improved atmospheric model and

assimilation system from those used in 40-yr ECMWFRe-

Analysis (ERA-40; Simmons and Gibson 2000), ERA-

Interim represents a third-generation reanalysis system

(Dee et al. 2011). ERA-Interim reanalyses are nowwidely

employed (e.g., Vautard et al. 2013) and serve as meteo-

rological forcing of the downscaling models involved in

the Coordinated Regional Downscaling Experiment

(CORDEX) initiative (http://wcrp-cordex.ipsl.jussieu.fr/).

For both model and reference datasets, data have

been extracted from 1 January 1980 to 31 December

2009. Then, each ERA-Interim grid cell has been col-

located with the SAFRAN grid cell the closest to its

center. Hence, each ERA-Interim gridcell time series to

be corrected has a unique reference SAFRAN grid cell.

Moreover, in the following, all bias correctionmethods

are applied separately to two periods of the year: from

15 October to 14 April (referred to as winter) and from

15 April to 14 October (referred to as summer). The

calibration of the following BC methods is performed

over the period 1980–94 and all evaluations are per-

formed over the period 1995–2009.

3. Univariate bias correction

A variant of EQM has been recently developed by

Michelangeli et al. (2009) and applied in many climate-

related studies (e.g., Oettli et al. 2011; Colette et al. 2012;

Tisseuil et al. 2012; Vrac et al. 2012; Vigaud et al. 2013;

among others). This variant first estimates the distribu-

tions FYp and FXp for the random variablesY andX over

the projection time period (either future or simply

evaluation time period) before applying a distribution-

derived quantile mapping as defined in (2) in replacing

X and Y by Xp and Yp, respectively. If FXp can be di-

rectly modeled—parametrically or not—from the data

to be corrected in the projection period, the modeling of

FYp is based on the assumption that a mathematical

transformation T allows to go from FX to FY in the cal-

ibration period,

T[FX(z)]5FY(z) (3)

for any z in the domain of X and Y, and that T is still

valid in the projection period: that is,

T[FXp(z)]5FYp(z) . (4)

Replacing z by F21
X (u) in (3), where u is any probability

in [0, 1], we obtain

T(u)5FY [F
21
X (u)] , (5)

corresponding to a simple definition for T. Inserting (5)

in (4) leads to a modeling of FYp,

FYp(z)5FYfF21
X [FXp(z)]g . (6)

Once FXp and then FYp are modeled, a distribution-

based quantile-mapping is applied as in (2). Hence, this

so-called cumulative distribution function transform

(CDFt) approach, as named byMichelangeli et al. (2009),

includes the information about the distributions over the

projection time period in the quantile-mapping tech-

nique. Some more details about CDFt can be found in

Vrac et al. (2012).

In the following, only the CDFt univariate bias cor-

rection approach will be applied. Indeed, preliminary

analyses showed that EQM and CDFt display equiva-

lent results in the context of the present study. Although

this has not been tested, we strongly expect other uni-

variate bias correction techniques (parametric or not,

distribution based or not) to behave relatively similarly.

Hence, the univariate BC method CDFt is first applied

independently to precipitation (PR) and 2-m tempera-

ture (T2) from ERA-Interim. This will provide the

benchmark bias-correctedERA-Interim dataset towhich

some bivariate or multivariate correction procedures will

be compared.

4. Bivariate/multivariate bias correction

a. A short reminder on statistical dependence and
copulas

The notion of (spatial, temporal, or intervariable)

dependence structure is in close relationship with the so-

called copula functions (e.g., Nelsen 2006). An introduc-

tion of the copula approach for climate research is given in

Schölzel and Friederichs (2008). The basis of the copula

approach is Sklar’s theorem (Sklar 1959), which states that

every multivariate or joint CDF can be expressed by the

marginal CDFs of the univariate components of the

multivariate random variable and the copula. The copula

is a joint CDF that describes the statistical dependence of

the transformed random variables Uj 5FXj
(Xj), where

Xj is the jth component of the multivariate random

variable X 5 (X1, . . . , Xd)
T and FXj

is the respective

marginal CDF. Sklar’s theorem states that every joint

CDF FX can be expressed as

FX5CX(FX
1
, . . . ,FX

d
) , (7)
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where CX is the copula of X. Both bivariate and multi-

variate BC methods presented next are designed to re-

store the dependence structure and therefore the

underlying copula function.

b. The bivariate conditional approach

Piani and Haerter (2012) developed a bivariate BC

method whose the main idea is to apply a univariate BC

to precipitation time series conditionally on the bias-

corrected values of temperature classified into binned

temperature values. This conditional approach works in

three steps: First, a standard 1D BC method is applied

separately to model temperature. Then, the (tempera-

ture, precipitation) pairs are grouped into temperature

quantile bins. Finally, a standard 1D BC method is ap-

plied for precipitation within each temperature bin.

They concluded that this approach improved the 2D

temperature–precipitation copula and that even a rela-

tively small number of temperature bins allows to sig-

nificantly improve the dependence structure (i.e., the

copula) between the two physical variables. Technical

details can be found in Piani and Haerter (2012). In the

following, this conditional approach is applied both

ways to our data: to bias correct precipitation time series

conditionally on the bias-corrected values of tempera-

ture and to bias correct temperature time series condi-

tionally on the bias-corrected values of precipitation.

For precipitation given temperature, five quantile bins

have been used. Higher numbers of bins have also been

tested but the quality of the results did not change sig-

nificantly (not shown). For temperature given pre-

cipitation, only three quantile bins have been used (with

the first interval bin including all zeros) to avoid the size

of the bins being too much different because of a larger

number of dry days. Note that this 2D approach is rel-

atively independent of the 1D BC method since the

conditional correction can be performed with most of

the classical 1D BC techniques. This is a very interesting

feature that makes the procedure flexible.

However, this conditional approach reproduces only

the 2D intervariable dependences: we may want to

correct the spatial and or temporal structures as well.

Then, other techniques have to be employed.

c. The Schaake shuffle method

Clark et al. (2004) highlighted another shuffling

technique—sometimes called the Schaake shuffle after

Dr. J. Schaake (National Weather Service Office of

Hydrologic Development)—in the context of correcting

forecasts from NWP models. This method was adapted

by Schefzik et al. (2013) and Möller et al. (2012) in the

context of ensemble postprocessing. Here, the Schaake

approach is adapted and presented in the context of bias

correction of time series generated by (global or regional)

climate models—potentially previously dynamically or

statistically downscaled—whose spatial, temporal, and/or

intervariable properties have to be corrected.

The Schaake shuffle as illustrated in Table 1 is very

simple to implement. Assume we have a reference

sample of length 4 for the variable Z. The reference

sample has a certain rank structure given by the rank

k of an element in the sample with respect to the other

data in the sample. When new samples arrive (e.g., from

model output or from 1D bias-corrected data), the main

idea is to reorder the new samples such that their rank

structure is identical to that of the reference sample. Let

us take the example of the variable Z with reference

sample ZR 5 (0.3, 0.5, 0.9, 0.8) and prediction sample

(i.e., the sample data to be corrected) ZP 5 (0.7, 0.5, 0.2,

0.9). The associated ranks ofZR are k(ZR)5 (k(0.3)5 1,

k(0.5) 5 2, k(0.9) 5 4, k(0.8) 5 3) [noted as k(ZR) 5
(1, 2, 4, 3)] and those of ZP are k(ZP) 5 (k(0.7) 5 3,

k(0.5)5 2, k(0.2)5 1, k(0.9)5 4) [noted as k(ZP)5 (3, 2,

1, 4)]. The shuffling procedure consists in reordering the

elements of ZP into a new sample Zshuffled such that

the rank of this new sample is identical to the rank of the

training sample: k(Zshuffled) 5 k(ZR) 5 (1, 2, 4, 3).

Hence, based on the present example, the first element

of Zshuffled must be the element of ZP with rank 1 (i.e.,

0.2); the second element of Zshuffled must be the element

of ZP with rank 2 (i.e., 0.5); the third element of Zshuffled

must the element of ZP with rank 4 (i.e., 0.9); and the

four element of Zshuffled must the element of ZP with

rank 3 (i.e., 0.7. Therefore, Zshuffled 5 (0.2, 0.5, 0.9, 0.7)

and satisfies k(Zshuffled)5 k(ZR). See Clark et al. (2004)

for a more technical and mathematical formulation of

TABLE 1. Reference data of sample size 4 for the illustration of the Schaake shuffle (SS). The k() term indicates the rank within the sample.

Training Prediction Schaake shuffle

x
(i)
T k(x

(i)
T ) y

(i)
T k(y

(i)
T ) x

(i)
P k(x

(i)
P ) y

(i)
P k(y

(i)
T ) x

(i)
P k(x

(i)
TSS

) y
(i)
P k(y

(i)
PSS

)

0.3 1 1.1 1 0.7 3 1.3 2 0.2 1 1.1 1

0.5 2 1.7 3 0.5 2 1.8 4 0.5 2 1.4 3

0.9 4 1.2 2 0.2 1 1.1 1 0.9 4 1.3 2

0.8 3 1.9 4 0.9 4 1.4 3 0.7 3 1.8 4
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the shuffling procedure. Note that ZR represents the

dataset from which the dependence structure is

‘‘learned.’’ In our case, it represents one time series in

the SAFRAN reference dataset during the training pe-

riod. The term ZP represents the prediction, which in

our study is the corresponding ERA-Interim time series,

which is either bias corrected or not. The main differ-

ence between the shuffling methods mentioned in the

introduction—namely, the Schaake shuffle and the

ECC—is the dataset that determines the dependence

structure (i.e., the ranks).

In the present work, for practical reasons, the rank

associated with exact same values (e.g., zeros for pre-

cipitation) is supposed to be increasing with time. In

other words, if zt1 5 zt2 5 0 are precipitation values at

times t1 and t2 respectively, with t1 , t2, then

rank(zt1 ), rank(zt2 ). In the context of a three-

dimensional data matrix (e.g., n time steps, s grid cells

or stations, p physical variables), the Schaake method is

applied separately to the n-component vector resulting

from each combination ‘‘one grid cell 3 one variable’’

(i.e., it is applied s 3 p times). The remarkable effect is

that, simply by reordering the data independently in

time, not only the temporal but also the intervariable

and spatial dependencies are restored. How powerful

the Schaake shuffle is will be shown in section 5.

Why is Sklar’s theorem [(7)] of relevance for the

shuffling method presented here? An important prop-

erty of the transformed random variables Uj is that if Zj

has the CDF FZj
then Uj 5FZj

(Zj);Unif(0, 1): that is,

Uj are uniformly distributed on the interval [0, 1]. Let us

now assume we have a sample z
(i)
j , i5 1, . . . , N of Zj

without knowing FZj
, then u

(i)
j 5FZj

(z
(i)
j ) is generally

estimated as the rank k
(i)
j of z

(i)
j with respect to the

sample z
(i)
j , i5 1, . . . , N divided by N 1 1: that is,

û
(i)
j 5 k

(i)
j /(N1 1). Hence, reshuffling of the multivariate

data with respect to their ranks k
(i)
j has the potential to

restore (parts of) the dependence structure: namely, the

copula CZ. It is the same reason why rank correlation is

an adequate measure to assess dependence between

random variables. An important consequence of Sklar’s

theorem [(7)] is that the BC of the marginals and the

restoration of the dependence structure can be per-

formed independently, at least as long as the BC of the

marginals does not affect the ranks of the data (this is

generally given since transfer functions are usually

monotonic functions). In the following, the application

of the Schaake shuffling technique to previously 1D

bias-corrected time series will be referred to as EC–BC.

d. Raw and shuffled ERA-Interim reanalyses

For comparison purposes, the raw ERA-Interim data

(i.e., without any correction) as well as the Schaake

shuffling technique are directly applied to ERA-Interim

without any preliminary univariate bias correction are

also evaluated. Hence, in section 5, the following BC

methods are intercompared:

d the independent univariate bias corrections (CDFt) of

the ERA-Interim reanalyses of precipitation and

temperature;
d CDFt on ERA-Interim followed by the Schaake

shuffle method (i.e., the EC–BC approach);
d the conditional approach based on CDFt on ERA-

Interim (with precipitation corrected conditionally on

temperature and the other way around);
d the raw ERA-Interim data (i.e., without any correc-

tion); and
d the Schaake shuffling technique directly applied to

ERA-Interim without any preliminary univariate bias

correction.

5. Results

The various BC methods are evaluated according to

three different angles: How do the corrected data re-

produce the intervariable statistical properties? How do

they reproduce the spatial properties? How do they re-

produce the temporal properties? In the following, be-

cause of the large number of figures available, only

winter evaluations are shown. However, summer plots

are fairly equivalent or provide equivalent conclusions

and are provided as auxiliary material.

a. Intervariable correlations

For many impact models (e.g., hydrology, agricul-

ture), the correlation between variables—precipitation

and temperature here—is an important feature that

must be accurately modeled by the meteorological input

data. Hence, Fig. 2 shows maps of intervariable Spear-

man correlation coefficients between PR andT in winter

over the evaluation period for the various BC models as

well as for the SAFRAN dataset. While the Pearson cor-

relation coefficient is the most widely used, the Spearman

correlation is employed here. Indeed, the Pearson co-

efficient measures the strength of the linear relationship

between normally distributed variables. However, pre-

cipitation is not normally distributed and, besides, the

relationship between temperature and precipitation is

not supposed to be linear. Hence, in that context, it is

more appropriate to use the Spearman correlation that

does not require a linear relationship or the variables to

be normally distributed (e.g., Hauke and Kossowski

2011). In Fig. 2, only correlations that are statistically

equivalent to the SAFRAN correlation (i.e., not signif-

icantly different at 95%) are shown in those plots. A
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bootstrap technique (Efron and Tibshirani 1993) with

block replacement of 10-day blocks has been applied to

determine if the correlations were significantly different

or not at 95%. The procedure was the following for each

grid cell: (i) take the N daily observations in the verifi-

cation period; (ii) generate 1000 times N-day-long

bootstrapped samples with replacement [i.e., each

sample is constituted of (N/10) 10-day blocks]; and

(iii) compute the 2.5% and 97.5% percentiles from the

1000 correlations as the 95% uncertainty interval: if the

correlations of the BC data are outside this range, they

are considered as significantly different. The length of

the blocks (10 days) has been chosen to account for

temporal correlations: that is, the effective number of

degrees of freedom in the daily time series is signifi-

cantly smaller than N. In each panel of Fig. 2, the per-

centage of grid points with correlation significantly

different (%GPCSD) from that of SAFRAN is also in-

dicated. As expected, ERA-Interim correlations appear

clearly as inappropriate (%GPCSD is more than 66%).

This is true also for the correlations from the univariate

BC method that roughly reproduce the ERA-Interim

pattern (%GPCSD ’ 61%). Interestingly, the condi-

tional approach does not give the same correlations

when applied to correct temperature given the pre-

cipitation (Fig. 2d) or to correct precipitation given the

temperature (Fig. 2e): the former provides much better

correlations in the present setting (about 30% versus

FIG. 2. Maps of intervariable (PR and T) spearman

correlations for the different approaches in winter:

(a) SAFRAN; (b) ERA-Interim; (c) independent BC

(through CDFt); (d) conditional BC of T2 given PR;

(e) conditional BC of PR given T2; (f) EC–BC; and

(g) Schaake shuffle on ERA-Interim. The %GPCSD

from that of SAFRAN is indicated in each panel.
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75% for the %GPCSD). One explanation is that, while

a given PR interval provides useful constraints on the

possible range of associated temperatures, the opposite

is not true: temperature is not a good predictor of pre-

cipitation that remains relatively highly variable even

for a given small interval of temperatures. The EC–BC

method generates equivalently good results in terms of

intervariable dependence and provides satisfactory

correlations (%GPCSD ’ 27%). This is true also when

the Schaake shuffle is applied directly to ERA-Interim

(%GPCSD ’ 38%). It is interesting to note that some

‘‘not significantly equivalent correlations’’ regions are

different from one model to another. Some additional

analyses and experiments (not shown) illustrate that the

EC–BC method is not sensitive to the choice of the

univariate BC method (CDFt or EQM) as preliminary

step. This is not exactly the case for the conditional

approach where some differences appear between

‘‘Cond. CDFt’’ and ‘‘Cond. EQM’’ (not shown) and one

must be cautious to this point when applying the bi-

variate conditional approach.

b. Spatial correlations

The statistical spatial properties are also very impor-

tant in many impact studies. A very common way to

investigate spatially coherent variability is a principal

component analysis (PCA). It is first noted that the

dominant empirical orthogonal function (EOF) for both

temperature and precipitation represents almost con-

stant changes over the entire region. This is due to the

small spatial extent of the region, where day-to-day

weather variability is large and affects the whole domain

in a very similar way. We thus first investigate the vari-

ability of the area-mean temperature and precipitation

times series, which is then removed from the data for

the PCA.

Figure 3 represents bivariate histograms of area-mean

2-m temperatures. We here consider the complete ver-

ification period taking summer andwinter data together.

To also show equivalent figures for the reference data,

we generated a perturbed series of observed area-mean

temperatures by randomly changing the order of the

years while preserving the order of the day in the year.

The reference data reveal a distinct seasonal cycle with

an amplitude of more than 15K. The seasonal cycle

seems well reproduced in the bias-corrected tempera-

ture, whereas it is largely underestimated in ERA-

Interim (Figs. 3b,f). Thus, univariate BC is helpful to

correct the amplitude of the seasonal cycle. EC–BC or

conditional BC do not seem to significantly improve the

distribution of the area-mean values.

Since the distribution of precipitation is highly

skewed, we set the zero precipitation values to a small

value different from zero (0.000 33) and work in the

following on the logarithm of precipitation. For area-

mean precipitation (Fig. 4), no obvious seasonal cycle

exists. The effect of the Schaake shuffle (e.g., cf. Figs. 4b,f)

seems to concentrate the area-mean precipitation values,

presumably because the Schaake shuffle increases the

spatial variability of ERA-Interim precipitation (i.e.,

FIG. 3. Bivariate histogram between area-mean 2-m temperature of reference data and (a) annually exchanged reference data,

(b) ERA-Interim without bias correction, (c) bias-corrected ERA-Interim data using independent bias correction, (d) conditional ap-

proach with T2 given PR, (e) EC–BC (solid line), and (f) Schaake shuffle on ERA-Interim.
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induces more small-scale structures by shuffling). The

conditional BC seems to shift the modus of the pre-

cipitation values to lower values. None of the area-mean

precipitation series seems superior from this analysis.

For the PCA we now removed the area mean from

the data at each time step. We concentrate on winter

data, but the results are similar for summer. Figures 5

and 6 show the eigenvalues and explained variance

fractions of the leading EOF for temperature and log

precipitation, respectively. Zero precipitation values

were again set to a small value of 0.000 33. Note that

a principal component analysis for the still non-

Gaussian log-precipitation fields should be inter-

preted with caution. We think, however, that in our

case it is a valuable tool to compare spatially coherent

modes of variability.

FIG. 4. As in Fig. 3, but for precipitation.

FIG. 5. (left) Eigenvalues and (right) explained variance of leading EOFs of the 2-m temperature reference data

(circles), bias-corrected ERA-Interim data using independent bias correction (dashed line), ERA-Interim without

bias correction (long dashed line), conditional approach with T2 given PR (dotted line), EC–BC (solid line), and

Schaake shuffle on ERA-Interim (dotted–dashed line).
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The eigenvalue spectra for temperature in Fig. 5 show

that the total variance (i.e., the sum of the eigenvalues)

is generally largest for the reference data and smallest

for ERA-Interim, either shuffled or not. Thus, one im-

portant effect of BC is to correct for total variance of the

data. The conditional BC approach has a realistic vari-

ance spectrum, whereas the EC–BC provides an eigen-

value spectrum very close to that of the reference data.

The explained variance spectra in Fig. 5 in turn give an

indication of the relative importance of the leading EOF.

A flat spectrum indicates weak coherence in the spatial

patterns, whereas a steep spectrum generally indicates

the presence of large-scale coherent structures. Since

‘‘independent BC’’ inherits the spatial dependence of

ERA-Interim, they both have a very dominant first EOF.

The explained variance spectra for the conditional and

the EC–BC approaches are very realistic.

Similar results are obtained for precipitation (Fig. 6).

The total variance of ERA-Interim and the shuffled

ERA-Interim data is much too small, whereas BC has

a very positive effect even for the independent BC. The

conditional BC seems to underestimate the variance of

the first EOF. The explained variance spectra show only

small differences. Precipitation generally has much

more small-scale variability, which is reflected in the

small explained variance fraction of the leading EOF.

ERA-Interim and independently bias-corrected ERA-

Interim exhibit slightly larger-scale dominant patterns.

The differences become even more evident in the

structure of the leading EOFs. The leading EOF for

temperature (Fig. 7) in the reference data represents

a dipole pattern with higher than normal temperatures

near the Mediterranean coast and colder temperatures

in the northern and northeastern parts of the region. All

BC methods, except those that apply the Schaake

shuffle, reproduce the checked pattern imposed by the

ERA-Interim grid structure and an east–west dipole.

The conditional approach only slightly modifies the

large-scale pattern. This effect also pervades higher-

order EOFs (not shown). In contrast, the EC–BC has

a very realistic leading EOF and, albeit with a smaller

amplitude, the first EOF is also well reproduced in the

shuffled ERA-Interim dataset.

For log precipitation (Fig. 8), the results are similar.

Again, the leading EOF of the EC–BC dataset is very

close to that of the reference data. The conditional BC

introduces some noise, but besides this its first EOF is

very close to the first EOF of ERA-Interim. Note that

the conditional approach has been applied here to

model temperature conditionally on precipitation

(Figs. 5 and 7) or the other way around (Figs. 6 and 8):

that is, in an intervariable context and not a spatial one.

One can expect this conditional technique to work bet-

ter if applied in a spatial one: for example, if the station

i is modeled according to the station j. Nevertheless, one

could get as many references as stations j. Hence, the

correction is then not unique and therefore may be quite

complicated to interpret. Besides, the combinatory of

BC to be applied can quickly increase and make the

practical implementation intractable.

FIG. 6. (left) Eigenvalues and (right) explained variance of leading EOFs of the precipitation reference data

(circles), bias-corrected ERA-Interim data using independent bias correction (dashed line), ERA-Interim without

bias correction (long dashed line), conditional approach with PR given T2 (dotted line), EC–BC (solid line), and

Schaake shuffle on ERA-Interim (dotted–dashed line).
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Globally, EC–BC shows the most satisfying spatial

variance pattern, whenever designed with CDFt or EQM

(not shown for EQM). The results are also satisfactory—

to a lesser extent—for the Schaake shuffle directly ap-

plied to the raw ERA-Interim data. To assess the simi-

larity of spatial variance patterns more objectively, we

performed a reduction of spatial degrees of freedom.

To this end, we calculate the EOF of the reference data

and project all data onto the leading 10 EOFs of the

reference data. We thus obtain 10 times series (i.e., ex-

pansion coefficients) for each dataset. The analysis is now

performed within the 10-dimensional subspace spanned

by the 10 leading EOFs.

We first examine the covariance matrices of the re-

duced datasets for 2-m temperature (Fig. 9). By con-

struction, the expansion coefficients of the reference

data show a diagonal covariance matrix. The co-

variances between the expansion coefficients are zero

since the eigenvectors of the covariance matrix are

statistically orthogonal. This is not anymore the case

for the other datasets. Here, the covariances between

the expansion coefficients are generally nonzero. The

degree to which the off diagonal is different from zero

indicates how different the respective variation pat-

terns are. EC–BC seems to project very well on the

EOF of the reference data; all other methods show

substantial differences. For precipitation (Fig. 10), re-

sults are similar. The similarity of the covariancematrix

obtained from EC–BCwith that of the reference data is

again striking.

We finally want to quantify the quality of each of

the approaches by using a distance function between the

empirical (multivariate) distribution of the reference

data and each of the BC methods. As a distance mea-

sure, we use the integrated quadratic distance (IQD),

which is a proper divergence function (Thorarinsdottir

et al. 2013). It measures the distance between two dis-

tribution functions. The IQD between two distribution

functions F and G is defined as the integral

d(F, G)5

ð
V
[F(v)2G(v)]2 dv , (8)

FIG. 7. First EOF of 2-m temperature for (a) reference, (b) ERA-Interim, (c) independent bias correction,

(d) conditional approach with T2 given PR, (e) EC–BC, and (f) Schaake shuffle on ERA-Interim without BC.
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whereV represents the sample space. The IQD is closely

related to the energy score used in forecast verification

(Gneiting and Raftery 2007). It may be empirically es-

timated using the equivalent formulation

d(F, G)5EkX2Yk2 1

2
EkX2X0k

2
1

2
EkY2Y0k , (9)

where X, X0, Y, and Y0 represent independent draws
from multivariate distribution functions F and G, re-

spectively. The vector norm used here is the Euclidian

norm.

In our application, X and Y are the expansion co-

efficients of the reference and the BC data, respectively.

To get independent random realizations of the differ-

ences we randomly draw 50 000 vectors with re-

placement for X, X0, Y, and Y0 out of the available

datasets of length 2734 winter days, respectively, and

calculate the IQD using (9). To assess the uncertainty of

the IQD, we additionally apply a bootstrap method with

replacement (Efron and Tibshirani 1993). Repeating

this 200 times provides estimates of the uncertainty of

the IQD. Figure 11 shows the IQD estimates together

with the 95% bootstrap sampling uncertainty. The IQD

in Fig. 11 is evaluated hierarchically, first in the subspace

of the leading and then the first 2 leading up to the first

10 leading EOFs of the reference data.

The IQD quantitatively confirms the superiority of

EC–BC. For 2-m temperature (Fig. 11a), the IQD for

the EC–BC data varies closely above zero throughout

the hierarchy. It only slightly increases with a higher

dimensionality. There is a rather clear ranking between

the different approaches, with EC–BC performing best

and conditional BC performing second best when using

more than two EOFs, followed by ERA-Interim with

Schaake shuffle and then independent BC. The raw

ERA-Interim data have the largest IQD, so any ap-

proach provides improvements in terms of IQD. For

temperature, large improvements of the spatial co-

variances are obtained solely by the Schaake shuffle. Its

effect on the IQD is stronger than that of the independent

BC of the marginals. In comparison to independent BC,

FIG. 8. First EOF of log precipitation (zeros set to 0.000 33) for (a) reference, (b) ERA-Interim, (c) independent

bias correction, (d) conditional approach with PR given T2, (e) EC–BC, and (f) Schaake shuffle on ERA-Interim

without BC.
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the conditional BC only slightly improves the spatial

covariances.

For precipitation (Fig. 11b), again EC–BC is clearly

superior, but the ranking is not the same as for tem-

perature and less distinct. EC–BC performs best, fol-

lowed by independent BC. Interestingly, the Schaake

shuffle applied without BC seems to degrade the IQD.

The most important correction here is the BC of the

marginals, whereas the correction for the dependence

structure is less important for precipitation. The condi-

tional approach seems to work less well for precipitation

under this respect.

c. Temporal correlations

We finally investigate the temporal structure of the

time series, which used as input in impact models may

also have great consequences. Its accurate modeling

may then be crucial.

FIG. 9. Covariance matrix of leading 10 PCs of 2-m temperature for (a) reference, (b) ERA-Interim, (c) independent bias correction,

(d) conditional approach with T2 given PR, (e) EC–BC, and (f) Schaake shuffle on ERA-Interim.

FIG. 10. Covariance matrix of leading 10 PCs of log precipitation (zeros set to 0.000 33) for (a) reference, (b) ERA-Interim,

(c) independent bias correction, (d) conditional approach with PR given T2, (e) EC–BC, and (f) Schaake shuffle on ERA-Interim.
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To this end, n-day lag autocorrelations have been

studied for n between 1 and 5. Figures 12 and 13 dis-

play the lag-1 autocorrelations for the different BC

models in winter for temperature and precipitation,

respectively.

For temperature, the conditional approach (Fig. 12d)

clearly underestimates lag-1 autocorrelations, while, in

that temporal context, the independent BC (Fig. 12c)

gives relatively consistent results, although they are

strongly imperfect because of the structure in ‘‘squares’’

already present in noncorrected ERA-Interim auto-

correlations (Fig. 12b). The shuffling procedure pro-

vides the best temporal dependencies either applied to

CDFt results (i.e., the EC–BC approach; Fig. 12e) or

directly to ERA-Interim data (Fig. 12f). Most of the

conclusions from lag-1 temperature autocorrelation are

still valid for lag-5 autocorrelations (not shown): The

results of the shuffling procedure (on 1D BC or non-

corrected data) are still very close to the reference, while

the conditional approach provides too low correlations

and ERA-Interim data continue to have too high cor-

relations. However, the independent BC method is not

as consistent as for lag-1 results, with too low lag-n au-

tocorrelations for n $ 2.

In terms of precipitation, (Fig. 13), contrary to tem-

perature, lag-1 correlations from independent BC

(Fig. 13c) are not acceptable, showing a pronounced

underestimation. On the opposite, the direct shuffling of

ERA-Interim (Fig. 13f) globally overestimates the 1-day

autocorrelation, especially on the northeast part of the

domain. This was already true (with a smaller magni-

tude) for uncorrected ERA-Interim (Fig. 13b). The EC–

BC approach (Fig. 13e) provides the precipitation lag-1

autocorrelation structures and intensities the closest to

those of the SAFRAN dataset (Fig. 13a), while the

conditional approach (Fig. 13d) gives correct autocor-

relation magnitudes but with relatively inappropriate

structures. For lags longer than 1 day, the precipitation

autocorrelation drops very quickly close to zero for

observations and almost all models (not shown), except

for the direct shuffling of ERA-Interim data that con-

tinues to provide very high (unobserved and unrealistic)

autocorrelations of about 0.8—at least until a 5-day

lag—for the northeast region. This is somehow surpris-

ing since the raw ERA-Interim data (i.e., without any

bias correction) do not show such a strong feature al-

though with a very slight overestimation of the auto-

correlation for this region.

Moreover, to describe more specifically the rainfall

occurrence temporal structure obtained from the BC

methods, the maps of the probability of a dry day given

that the previous day was wet [i.e., Proba(dryjwet), noted
as Pdw] as well as the opposite [i.e., Proba(wetjdry),
noted as Pwd] have been computed and are displayed in

Figs. 14 and 15, respectively. For the maps of Proba

(dryjwet), it is quickly seen that ERA-Interim (Fig. 14b)

and the conditional approach (Fig. 14d) globally

overestimate the probability of a dry day given that

FIG. 11. IQD for (a) 2-m temperature and (b) log precipitation (zeros set to 0.000 33) for bias-corrected ERA-

Interim data using independent bias correction (dashed line), ERA-Interim without bias correction (long dashed

line), conditional approachwith T2 given PR in (a) and with PR given T2 in (b) (dotted line), EC–BC (solid line), and

Schaake shuffle on ERA-Interim (dotted–dashed line).
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the previous day was wet. However, all the other BC

methods provide satisfying Pdw values, close to those

of SAFRAN.

Interestingly, the Pwd maps (Fig. 15) are not com-

pletely the ‘‘symmetric’’ of the Pdw maps. Here, the

conditional approach (Fig. 15d), ERA-Interim (Fig. 15b),

and its direct shuffling (Fig. 15f) underestimate the dry

day probabilities (particularly strongly for the latter two

datasets). The independent BC (Fig. 15c) shows better

Pwd values, although they are too high in the northeast

region. However, the Pwd results the closest to those of

the reference dataset are obtained from the EC–BC

model (Fig. 15e), which shows quite similar values and

spatial structures.

6. Conclusions and discussion

a. Conclusions

In this paper, we have compared several univariate,

bivariate and multivariate bias correction (BC)methods

designed for specific multivariate properties:

d one univariate ‘‘independent BC’’ based on the CDFt

approach;
d the ‘‘conditional approach’’ (Piani and Haerter 2012)

(here, based on CDFt) developed specifically for pro-

ducing a correct two-dimensional intervariable structure;
d the ‘‘Schaake shuffle’’method (Clark et al. 2004) applied

directly to raw (i.e., uncorrected) ERA-Interim pre-

cipitation and temperature time series; and
d the ‘‘empirical copula–bias correction’’ (EC–BC) ap-

proach constituted with the Schaake shuffle method

applied to previously 1D bias-corrected time series

(here through the CDFt method) of precipitation and

temperature.

The Schaake method is based on temporal shuffling of

the elements in each time series such that the temporal

rank structure is reconstructed.

Globally, on those datasets and with this experimental

setting, although it is quite useful for correction of the

marginal distributions, the one-dimension CDFt bias

correction alone is not good at reproducing any of the

FIG. 12. Maps of 1-day lag temperature autocorrelations in winter for (a) reference, (b) ERA-Interim, (c) in-

dependent bias correction, (d) conditional approach with T2 given PR, (e) EC–BC, and (f) Schaake shuffle on ERA-

Interim without BC.
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intervariable, spatial or temporal properties of the ob-

served data. This is true also for the univariate EQM

method (not shown). In contrast, the application of the

EC–BC techniques clearly improves those properties.

The conditional and the shuffling methods improve the

intervariable properties: often, even when applied di-

rectly to ERA-Interim data. This is not the case for

the spatial structure, where the conditional technique,

which was initially designed only for intervariable

structures, is not suitable, whereas the EC–BC approach

is quite efficient in general. This inappropriateness of

the conditional method is also visible in the temporal

properties where autocorrelations are underestimated.

Again, in this temporal context, the EC–BC technique

is relatively satisfying for both temperature and

precipitation.

The global conclusions are as follows:

d The one-dimensional BC method CDFt is not able to

produce correct multidimensional properties (similar

results were obtained with the EQM method, not

shown).

d The conditional technique—at least as applied in this

experimental setup—is only good for intervariable

properties reproduction.
d The EC–BC approach is good for intervariable, spa-

tial, and temporal correlations. The preliminary of 1D

BC before the shuffling procedure is nevertheless an

important requisite for precipitation since the combi-

nation ‘‘1DBC–shuffling’’ generally provides themost

satisfying results.
d Because of its ease of coding, its speed of application

and the good quality of its results for intervariable,

spatial, and temporal properties, the Schaake shuffle

method applied after a 1D BC method (i.e., the EC–

BC approach) is a very good candidate for all needs in

multivariate bias correction.

Although not tested, the application of these BC

methods to correct GCM outputs instead of reanalysis

data is expected to slightly degrade the results but

produce equivalent rankings: the simpler methods

should perform worse when based on GCM data be-

cause of the GCM weather sequence that generally

FIG. 13. Maps of 1-day lag precipitation autocorrelations in winter for (a) reference, (b) ERA-Interim, (c) in-

dependent bias correction, (d) conditional approach with PR given T2, (e) EC–BC, and (f) Schaake shuffle on

ERA-Interim without BC.
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needs additional corrections, while the EC–BC ap-

proach should continue to work well. More precisely,

the 1D methods (CDFt and EQM) will basically re-

produce the intervariable, spatial, and temporal prop-

erties of the input data. So, if those properties are

wrong from the GCMs, they will be wrong as well

for the 1D corrected data. The conditional approach,

by construction, should work fine to reconstruct an

intervariable dependence close to that of the observa-

tions, even when driven by GCM outputs. However,

the spatial and temporal properties of the data cor-

rected following this approach should stay relatively

close to those of the GCM data. Moreover, although

the use of the Schaake shuffle directly to the GCM

simulations should improve those, it is expected that

EC–BC will provide the best results in terms of the

three types of properties studied in this paper. Hence,

by construction of the EC–BC approach, results similar

to those presented in this article can be expected on

different regions or with different reference or model

datasets.

b. Discussion

The general idea of the EC–BC and shuffling methods

presented here is to reshuffle the predictive multi-

variate spatiotemporal data according to some rank

structure derived from training data. In doing so, the

data in the evaluation set receive a dependence struc-

ture close to the dependence structure of the train-

ing dataset. More concretely, let us assume we have

training and test datasets, each with a multivariate

spatiotemporal structure. With the Schaake shuffle

method, simply by shuffling the test dataset in time

such that the ranks of the data in time are identical to

those of the training data, we restore at least partly

the intervariable, spatial, and temporal dependencies

of the training dataset. Since the univariate BC as

presented above is a monotonic transformation of the

data and is applied to each variable and point in space

independently, it has no influence on the copula func-

tion. Shuffling can be performed prior or after univar-

iate BC.

FIG. 14. Maps of daily probability of a dry rain given that the previous day was wet [i.e., Proba(dryjwet)] in winter

for (a) reference, (b) ERA-Interim, (c) independent bias correction, (d) conditional approach with PR given T2,

(e) EC–BC, and (f) Schaake shuffle on ERA-Interim without BC.
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Note also that, if the CDFt method has been

employed as univariate BCwithin theEC–BC approach,

other techniques can beused.This shuffling postprocessing

can be performed based on most of the standard 1D BC

techniques. This interesting feature makes the procedure

flexible and easily applicable. Note that the shuffling

can even be applied to most (if not all) of the 1D statistical

downscaling (SD) approaches. This application of the

Schaake shuffle to 1D SD outputs should improve their

temporal, spatial, and intervariable properties asmuch as it

has been shown for the BC methods in the present article.

Therefore, it would be interesting to compare such a mul-

tivariate SD based on shuffling postprocessing to statistical

downscaling models, taking explicitly into account the

multidimensional structure of the data to be downscaled

[e.g., Yang et al. (2005), Flecher et al. (2010), and Vrac

et al. (2007), for multisite, multivariable, and temporal

dependences modeling, respectively].

Moreover, other reordering of data might be applied

to restore and preserve some specific structures. The

Schaake method shuffles elements in time. In other

words, one value associated to a given location (grid cell

or station) stays associated to this location but is placed

at another time. However, one may want to allow

shuffling values both in time and in space. This could

improve the reproduction of the spatial dependences.

To do so, it is easy to extend the Schaake approach:

instead of computing ranks and shuffling values within

vectors, this is made within two-dimensional matrices.

Hence, one value initially associated to a given location

at a given time may be placed at another time and an-

other location after this ‘‘full’’ shuffling. This technique

has been tested and the results (not shown) in terms of

intervariable, spatial, and temporal properties are very

similar to those of the Schaake shuffling presented all

along the present study, except for precipitation where

this full Schaake shuffle applied directly to ERA-

Interim is not as efficient as the ‘‘regular’’ Schaake

shuffling. Note that this full shuffling could also be per-

formed for different physical variables at once. If the

variables have the same units (e.g., all variables are

temperature values), this can make sense. However, if

FIG. 15. Maps of daily probability of rain occurrence (i.e., wet day) given that the previous day was dry [i.e.,

Proba(wetjdry)] in winter for (a) reference, (b) ERA-Interim, (c) independent bias correction, (d) conditional

approach with PR given T2, (e) EC–BC, and (f) Schaake shuffle on ERA-Interim without BC.
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the variables are different (e.g., precipitation and tem-

perature), the shuffling of values between the two vari-

ables can be strongly inappropriate and quite difficult to

interpret afterward.

Finally, there are essential assumptions to BC and

EC–BC. Univariate BC estimates a transfer function

(TF) between model and observations from the training

data, and it applies this TF to the evaluation (or pro-

jection) dataset. The main assumption is that the

relation between model and observations remains un-

changed during the projection period. However, if the

distribution of the model data changes in the projection

period, so does the distribution of the projected values.

EC–BC (through the Schaake shuffle) represents

a method to restore the dependence structure within the

projected values, which is inherited from the dependence

structure of the observations in the training dataset. The

dependence structure of the model data is completely

ignored. This is absolutely reasonable in our context of

downscaling, since we know that the dependence struc-

ture in the large-scale model is erroneous. However, EC–

BC also ignores potential changes in the dependence

structure suggested by the model data. This is an impor-

tant assumption: the (spatial, temporal, and/or intervari-

able) dependence structures do not change between the

training period and the projection period. Although this

conservative assumption is reasonable and simplifies the

bias corrections, it may not be valid in a climate change

context where the multivariate properties to be corrected

may evolve as well. Hence, if changes in the dependence

properties or its temporal evolutions are of interest, the

development of models allowing us to make the de-

pendence structures change in time or in function of some

atmospheric covariates would be of great interest for both

the climate and impacts communities.
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