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Abstract. The observed seasonal cycles in atmospheric po-

tential oxygen (APO) at a range of mid- to high-latitude sur-

face monitoring sites are compared to those inferred from

the output of six Earth system models (ESMs) participat-

ing in the fifth phase of the Coupled Model Intercompar-

ison Project phase 5 (CMIP5). The simulated air–sea O2

fluxes are translated into APO seasonal cycles using a matrix

method that takes into account atmospheric transport model

(ATM) uncertainty among 13 different ATMs. Three of the

ocean biogeochemistry models tested are able to reproduce

the observed APO cycles at most sites, to within the large

TransCom3-era ATM uncertainty used here, while the other

three generally are not. Net primary production (NPP) and

net community production (NCP), as estimated from satellite

ocean color data, provide additional constraints, albeit more

with respect to the seasonal phasing of ocean model produc-

tivity than overall magnitude. The present analysis suggests

that, of the tested ocean biogeochemistry models, the com-

munity ecosystem model (CESM) and the Geophysical Fluid

Dynamics Laboratory (GFDL) ESM2M are best able to cap-

ture the observed APO seasonal cycle at both northern and

southern hemispheric sites. In most models, discrepancies

with observed APO can be attributed to the underestimation

of NPP, deep ventilation or both in the northern oceans.

1 Introduction

Ocean physical and biogeochemical processes have profound

influences on Earth’s climate. Phytoplankton in the sunlit

part of the ocean convert carbon from inorganic to organic

form via photosynthesis, thereby establishing the base of the

ocean food chain. Primary production and subsequent export

of organic carbon from the mixed layer (export production,

EP) and remineralization at depth are key components of

the so-called biological pump, which regulates the partition

of carbon between the ocean and atmosphere (Gruber and

Sarmiento, 2002; Boyd and Doney, 2003).

Net community production (NCP) and the related process

of EP are also important for understanding the distribution of

dissolved O2 within the ocean and the flux of O2 (FO2) at the

air–sea interface. NCP is defined here as the net amount of

organic carbon fixed through photosynthesis over the depth

of the mixed layer after accounting for grazing and both au-

totrophic and heterotrophic respiration. NCP is closely linked

to FO2, since each mole of photosynthetically fixed carbon

that persists beyond the timescale of air–sea exchange (2–

3 weeks) leaves a stoichiometric amount of O2 available for

release to the atmosphere. This release of O2 to the atmo-

sphere in association with NCP occurs mainly in the spring

and summer at extratropical latitudes (Keeling et al., 1993).

EP more or less balances NCP when averaged over a full year

or if the upper ocean is in a long-term steady state and advec-
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tive fluxes are zero (Laws et al., 2000). The exported carbon

subsequently is respired in the subsurface ocean, leading to

O2 depletion at depth. O2 is replenished by absorption from

the atmosphere when deep waters mix back to the surface in

fall and winter. Deep ventilation and NCP thus are distinct

processes that are largely separate in time and space but are

both closely linked to the biological pump that draws car-

bon out of surface waters and is critical for ocean uptake of

atmospheric CO2.

To explore the impacts of future climate change on Earth’s

climate and ecosystems, the Coupled Model Intercomparison

Project phase 5 (CMIP5) relies on three-dimensional numeri-

cal Earth system models (ESMs), which incorporate descrip-

tions of biogeochemical impacts of land and marine biota.

Projections of future atmospheric CO2 levels and associated

climate warming in the CMIP5 depend not only on fossil fuel

use projections but also on assumptions about uptake and

storage of carbon by the land and ocean. The oceans have

absorbed approximately one-third of the anthropogenic car-

bon released to the atmosphere since the beginning of the

industrial era (Khatiwala et al., 2009), but this fractional rate

of uptake is unlikely to continue in the future as the buffering

capacity of surface waters declines and the export of carbon

from the surface to the deep ocean fails to keep pace with

anthropogenic fossil fuel combustion (Arora et al., 2013).

Changes in ventilation of abyssal deepwater are an additional

possible consequence of future climate forcing that current

models may or may not be able to predict accurately (Sig-

man et al., 2010).

Recent studies have tested the present-day skill of the

ocean components of ESMs and some have also examined

future projections (Schneider et al., 2008; Steinacher et al.,

2010, Bopp et al., 2013; Anav et al., 2013). These evaluations

have compared model output to both hydrographic measure-

ments and remotely sensed ocean color products, most com-

monly net primary production (NPP). The models predict

spatial–annual patterns in NPP that reproduce some of the

main features seen in satellite data, but differ over a fac-

tor of 2 in NPP magnitude. Some evaluations have exam-

ined seasonal variability and have found that ocean models

tend to underestimate observed NPP at high latitudes (pole-

ward of 44◦) in the Northern Hemisphere and overestimate

it in the Southern Hemisphere. The models also fail to cap-

ture the timing of the observed high-latitude peak in NPP in

both hemispheres, with predictions that are often 1–2 months

earlier than observations (Anav et al., 2013; Henson et al.,

2013). However, ocean color-derived NPP values are uncer-

tain, especially in the Southern Ocean, reducing confidence

in the observed constraints.

Many biogeochemical processes that are expected to oc-

cur in the future, such as responses to warming and stratifi-

cation, are also highly relevant on seasonal timescales (Keel-

ing et al., 2010; Anav et al., 2013). Thus, challenging models

against known seasonal variations can aid in the development

of credible predictions of future changes. Here, we evaluate

six ESMs used in the CMIP5 against two cross-cutting met-

rics, which test the models’ ability to account for changes in

ocean biogeochemistry on seasonal time frames. This work

is intended primarily as a demonstration of method using an

available subset of the CMIP5 ESMs rather than as a compre-

hensive evaluation of all the CMIP5 models. The first metric

is based on satellite-derived estimates of ocean color, focus-

ing on NPP and NCP. The second metric is based on the sea-

sonal cycles in atmospheric potential oxygen (APO), an at-

mospheric tracer that varies seasonally mainly due to air–sea

exchanges of O2 (Stephens et al., 1998; Manning and Keel-

ing, 2006).

EP is the ocean color-derived flux most relevant to the bi-

ological pump, but cannot be directly observed by remote

sensing. It is derived by a combination of remote measure-

ments and poorly constrained models, which inherently in-

creases its uncertainty (Schneider et al., 2008; Nevison et al.,

2012a). The quantity actually observed from space is spectral

top-of-the-atmosphere radiance, which is used to estimate

chlorophyll (or another proxy of phytoplankton biomass);

chlorophyll and other variables such as photosynthetic radia-

tion are used to estimate NPP and, finally, NPP is used to es-

timate EP. The first step, estimation of chlorophyll, is known

to have significant bias (underestimation by ∼ 2–3 times) in

the Southern Ocean which is transferred to higher level prod-

ucts. We correct for that bias by using algorithms tuned to

Southern Ocean data sets blended with more or less standard

products elsewhere (Mitchell and Kahru, 2009; Kahru and

Mitchell, 2010). While our satellite estimates of EP are im-

proved, they are still subject to high uncertainty.

Observed seasonal cycles in APO provide a new bench-

mark for the ocean biogeochemistry model components

of ESMs. They offer evaluation metrics complementary to

ocean color products by providing additional information

on deep ventilation processes unavailable from satellite data

alone. The main drawback of APO seasonal cycles is that

atmospheric transport models (ATMs) are needed to trans-

late ocean model air–sea O2 fluxes into a seasonal APO sig-

nal, which inevitably introduces uncertainty (Stephens et al.,

1998; Nevison et al., 2012a). A first attempt has been made to

use APO seasonal cycles to evaluate ocean-only marine bio-

geochemistry models (Naegler et al., 2007), but the models in

that study implemented a simplified parameterization of the

biological processes affecting O2 and CO2 air–sea fluxes and

were considerably less advanced than the current ecosystem

dynamics and biogeochemical components used in state-of-

the-art ESMs. Further, while Naegler et al. (2007) asserted

that the uncertainty introduced by ATMs was too large to pro-

vide a strong constraint on ocean model fluxes, their study re-

lied on only two ATMs. Here, we translate the model air–sea

fluxes into APO signals using a wider range of ATMs and

show that, in many cases, the discrepancies between mod-

eled and observed APO seasonal cycles transcend ATM un-

certainty.
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2 Methods

2.1 Ocean biogeochemistry models

The CMIP5 models analyzed in this study include the Geo-

physical Fluid Dynamics Laboratory (GFDL) ESMs (depth-

based ESM2M and density-based ESM2G vertical oceans;

Dunne et al., 2012) from Princeton, New Jersey; the In-

stitut Pierre Simon Laplace Coupled Model 5 in its low-

resolution version (IPSL-CM5A-LR, hereafter referred to as

IPSL) model from Paris, France; the community ecosystem

model (CESM) from the National Center for Atmospheric

Research in Boulder, CO; the Max Planck Institute for Mete-

orology (MPIM) ESM, version MPI-ESM-LR, from Ham-

burg, Germany; and the Norwegian ESM (NorESM1-ME,

hereafter referred to as NorESM1). The ocean biogeochemi-

cal models embedded in the respective ESMs are represented

by the Tracers of Phytoplankton with Allometric Zooplank-

ton (TOPAZ) (GFDL) (Dunne et al., 2013), Pelagic Inter-

action Scheme for Carbon and Ecosystem Studies (PISCES)

(IPSL) (Aumont and Bopp, 2006), biogeochemical elemental

cycling (BEC) (CESM) (Moore et al., 2002, 2004, 2013), and

Hamburg Ocean Carbon Cycle (HAMOCC) (MPIM) (Ilyina

et al., 2013). NorESM1 uses a variant of HAMOCC, adapted

to a sigma-coordinate ocean circulation model (Tjiputra et

al., 2013).

The six ESMs differ in their physical components and im-

plement ocean biogeochemical schemes that vary in their

specifics, but have many common features. All include ex-

plicit representations of upper ecosystem dynamics that dis-

tinguish at least one phytoplankton group and one size class

of zooplankton. Four of the models (CESM, both GFDL vari-

ants and IPSL) divide phytoplankton further into at least two

size classes: large (micro) and small (nano + pico). GFDL

and CESM also explicitly model diazotrophs. Phytoplankton

growth rates in all models are co-limited by light, temper-

ature and nutrient (N, P, Si, Fe) availability. Carbon export

flux is closely linked to ecosystem structure and dynamics,

with higher sinking rates assumed for large phytoplankton,

representing, e.g., diatoms.

For each model, the following output fields were obtained

for the CMIP5 standard historical simulation, which is driven

by prescribed atmospheric CO2 from 1850 to 2005: car-

bon export flux at 100 m depth (EP100), vertically integrated

NPP, net air–sea O2 and CO2 fluxes, net surface heat flux

(Q), and sea surface salinity and temperature (SST). Many

of these fields were available through public web interfaces,

but some variables, particularly Q, required assistance from

the individual modeling groups, which effectively limited the

study to the six models listed above. The EP100 and NPP

fields were compared directly to the corresponding satel-

lite ocean color products. The remaining five output fields

were used in the estimation of APO time series, with the

final three fields used to estimate air–sea N2 fluxes based

on the Q(dS/dT )N2
/Cp equation (Keeling et al., 1993; Man-

Figure 1. TransCom3 Level 2 ocean regions used in the matrix-

based atmospheric transport method. Locations of the five APO

monitoring sites featured in Fig. 2 are superimposed.

izza et al., 2012) with modifications from Jin et al. (2007).

In this equation, Q is heat flux, (dS/dT )N2
is the tempera-

ture derivative of the N2 solubility coefficient and Cp is the

heat capacity of sea water. The resulting N2 fluxes, together

with the prognostic O2 and CO2 air–sea fluxes, were used as

described below to force atmospheric transport model sim-

ulations to compute atmospheric time series of APO (Nae-

gler et al., 2007; Nevison et al., 2008; 2012a). Since all

the ocean models operated on an irregular, off-polar grid

with two-dimensional latitude and longitude coordinates,

these were first interpolated to a regular 1◦× 1◦ latitude–

longitude grid using climate data operator (CDO) freeware

(https://code.zmaw.de/projects/cdo). The climate data opera-

tor interpolation was not mass conservative, but resulted in

global O2 flux differences generally of less than 1 %. An ex-

ception was the CESM, whose output was converted conser-

vatively to a regular grid using a CESM-specific mapping

file.

2.2 Atmospheric transport model simulations

2.2.1 Matrix method

A matrix method was used to translate the ocean model

air–sea O2, N2 and CO2 fluxes into corresponding annual

mean cycles in atmospheric potential oxygen (APO). The

method was based on the pulse-response functions from the

TransCom3 Level 2 (T3L2) ATM intercomparison. Each

of the 13 ATMs that participated in T3L2 conducted for-

ward simulations in which a uniformly distributed CO2 flux,

normalized to 1 PgC yr−1, was released from each of 11

ocean regions (Fig. 1) for each of 12 emission months, i.e.,

January–December, allowed to decay for 35 months, using

an annually repeating cycle of meteorology that was model

specific for each ATM, and sampled every month at a range

of surface monitoring sites (Gurney et al., 2003; 2004). The

APO code was developed from an earlier pulse-response ma-

trix code, which has been described in detail in Nevison et

www.biogeosciences.net/12/193/2015/ Biogeosciences, 12, 193–208, 2015
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al. (2012b), that translates terrestrial net ecosystem exchange

(NEE) fluxes of carbon into the corresponding annual mean

cycles in atmospheric CO2. The matrix method is consid-

erably faster than a full forward ATM simulation, allowing

annual mean cycles in APO from 13 different ATMs to be

computed in seconds, rather than the days or weeks required

for a single forward simulation.

The pulse-response matrix code was applied separately to

the O2, N2 and oceanic CO2 fluxes from the last 12 years of

the historical simulations, spanning 1994–2005, converting

from carbon to oxygen or nitrogen units where appropriate,

to create three separate time series of atmospheric O2, N2

and CO2 as mole fraction anomalies (µmol mol−1) on a H2O-

free basis, where the O2 and N2 anomalies are computed as

though O2 and N2 were trace gases, similar to CO2. These

were combined to calculate a 9-year time series in APO in

per meg units, spanning 1997 to 2005, according to Eq. (1)

(Stephens et al., 1998):

APO=
1

XO2

(O2)−
1

XN2

(N2)+
1.1

XO2

(CO2), (1)

where XO2
and XN2

are the dry air mole fractions of O2

and N2 in H2O-free air, treated here as constants (0.2094

and 0.7808, respectively). The mean seasonal cycle was com-

puted by detrending the time series with a third-order polyno-

mial and then taking the average of the detrended data for all

Januaries, Februaries, etc. The matrix method involves cal-

culating separately the components of APO at each measure-

ment site arising from fluxes from each ocean region. These

components are then summed to compute the net APO sig-

nal. The model definition of APO in Eq. (1) ignores contribu-

tions to APO from land biospheric exchanges at ratios other

than 1 : 1 and fossil fuel burning, but these are very small in

comparison to oceanic contributions on seasonal timescales

(Manning and Keeling, 2006; Nevison et al., 2008).

2.2.2 Evaluation of matrix method based on APO

TransCom

An evaluation exercise was conducted in which the APO

pulse-response matrix code was forced by climatological O2

and N2 fluxes from Garcia and Keeling (2001) and used to

compute the mean seasonal cycle in APO as described above

using Eq. (1) (minus the oceanic CO2 term). The matrix-

based results were evaluated against the mean seasonal cy-

cles from archived station output from the forward ATM sim-

ulations of the APO TransCom Experiment, which also used

the Garcia and Keeling O2 and N2 forcing fluxes (Blaine,

2005; Nevison et al., 2012b). This evaluation was conducted

using a subset of 9 of the original 13 T3L2 ATMs that also

participated in APO TransCom. For this subset, the matrix

method performed well in relatively homogeneous regions

like the Southern Ocean and at northern high-latitude sites

like Barrow, Alaska (BRW) and Alert, Canada (ALT). It was

less reliable in capturing the forward simulation cycle at sites

located within northern mid-latitude ocean regions, includ-

ing Cold Bay, Alaska, and La Jolla, California, where the

uniform distribution of fluxes assumed by T3L2 did not ac-

curately capture the impact of strong heterogeneity in air–sea

fluxes from these regions (Tables S1, S2 and Figs. S1, S2 in

the Supplement). These same North Pacific stations are sub-

ject to large uncertainty in full forward ATM simulations due

to uncertainty in vertical mixing (Stephens et al., 1998; Bat-

tle et al., 2006; Tohjima et al., 2012). We therefore focus in

Sect. 3 on ALT, BRW and three Southern Ocean sites, in-

cluding Macquarie Island (MQA), Palmer Station, Antarctica

(PSA) and the South Pole (SPO) in our use of APO to eval-

uate the ESM-simulated air–sea O2, N2 and CO2 fluxes. The

locations of these five sites with respect to the T3L2 ocean

regions are shown in Fig. 1.

While the evaluation exercise indicates that the matrix

method reproduces the shape and phase of the seasonal cy-

cles with high reliability at the above sites, it tends to un-

derestimate the seasonal amplitude by about 4–5 % at ALT

and BRW and by 11–12 % at MQA and SPO and to slightly

overestimate the amplitude at PSA. In applying the matrix

code to the ESM oceanic fluxes, we therefore scaled up the

estimated cycles by site and ATM-specific scaling factors ob-

tained from the evaluation exercise (Tables S1, S2, Fig. S2).

Since these scaling factors were only available for the sub-

set of 9 of the 13 T3L2 ATMs that also participated in APO

TransCom, we subsequently (Sect. 3.1) compare observa-

tions alternatively to the scaled nine-model subset, or to all

13 unscaled models.

2.2.3 Component O2 fluxes

The net air–sea O2 flux for each ESM can be divided into

three components, associated with NCP, deep ventilation and

thermal processes (Nevison et al., 2012a):

FO2,total = FO2,NCP+FO2,vent+FO2,therm. (2)

These in turn can be used to force the matrix model and the

resulting total APO cycle can be presented as the sum of

component signals according to Eq. (3).

APO= APONCP+APOvent+APOtherm (3)

Here, the APOtherm term also includes the effects of N2

fluxes, as per the second right-hand term in Eq. (1). The at-

mospheric signal due to oceanic CO2 (last term in Eq. 1) is

not easily included in any of the component terms in Eq. (3)

based on available ESM output, but in principle all three

component processes may lead to changes in CO2 fluxes as

well as O2 fluxes. In practice, CO2 has only a small influence

on the amplitude and phasing of APO in most of the ESMs

and thus is ignored in the component analysis. An exception

is the MPIM, in which the oceanic CO2 signal has a peak–

trough seasonal amplitude of up to 5 ppm in the Southern

Ocean that opposes the O2 cycle, as noted previously (Anav

et al., 2013) and discussed further below.

Biogeosciences, 12, 193–208, 2015 www.biogeosciences.net/12/193/2015/
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Table 1. Vertically integrated NPP, EP at 100 m (both in PgCyr−1) and EP/PP for six CMIP5 models and two satellite products.

Model CESM ESM2M ESM2G IPSL NorESM1 MPIM VGPM SPGANTa

Global

EP 7.97 7.78 5.27 7.02 8.00 8.26 8.20 N/A

NPP 56.3 82.2 66.5 33.6 41.0 57.9 45.42 N/A

EP/NPP 0.14 0.095 0.08 0.21 0.20 0.14 0.18 N/A

40–60◦ N

EP 0.71 0.83 0.53 0.75 0.66 0.51 1.47 N/A

NPP 3.85 4.71 3.92 2.42 3.45 3.77 4.97 N/A

EP/NPP 0.19 0.18 0.14 0.31 0.19 0.13 0.30 N/A

60–90◦ N

EP 0.34 0.33 0.21 0.19 0.15 0.08 0.46 N/A

NPP 1.48 1.35 0.95 0.58 0.74 0.75 1.29 N/A

EP/NPP 0.23 0.24 0.22 0.33 0.20 0.11 0.36 N/A

40–60◦ S

EP 1.25 1.18 0.82 1.42 1.93 1.77 1.60 2.85

NPP 6.77 9.36 8.53 5.24 10.3 12.5 6.01 8.81

EP/NPP 0.18 0.13 0.10 0.27 0.19 0.14 0.27 0.32

a SPGANT totals are only shown for the 40–60◦ S band because the algorithm is optimized for the Southern Ocean but not well

validated in the Northern Hemisphere.

Among the terms in Eq. (2), FO2,total was provided out-

right by the ESMs and the thermal component FO2,therm

can be derived easily from standard ESM output follow-

ing the approach described above for N2. The remaining

terms, FO2,NCP and FO2,vent are more challenging to esti-

mate from available ESM output. In Nevison et al. (2012a),

FO2,NCP was estimated from EP multiplied by a molar ra-

tio of 1.4 mol O2 per mol C exported. The assumption that

FO2,NCP = 1.4 EP was shown in Nevison et al. (2012a) to

yield reasonable results for EP derived from satellite data

(and indeed was applied to the satellite data described be-

low in Sect. 2.3), but this approach proved unsatisfactory for

EP100 from the ESMs, especially in the Southern Ocean as

discussed further below, since it yielded an atmospheric sig-

nal that was unreasonably small. The assumption also led

to phasing uncertainties for some models (IPSL, NorESM1

and MPIM) that use finite sinking velocities for particulate

organic carbon (as opposed to instantaneous vertical redis-

tribution, as assumed, e.g., by CESM) with a resulting de-

lay in EP100 relative to NPP. Since the timing of FO2,NCP is

likely to be more closely related to NPP than EP100 (Nevi-

son et al., 2012a), we estimated FO2,NCP from the ESMs al-

ternatively as 1.4 EP100 and 1.4 ef∗ NPP, where NPP is the

standard, vertically integrated ESM output variable and ef is

the model-specific annual mean EP100/NPP ratio, integrated

over the 40–60◦ N or 40–60◦ S latitude band for northern and

southern stations, respectively (Table 1).

Finally, FO2,vent in principle can be estimated as a residual

of the other three terms in Eq. (2). FO2,vent was estimated

with reasonable success at the northern hemispheric sites,

but generally looked unreasonable in the Southern Ocean

for most models, with the exception of the IPSL. The sig-

nals were judged to be unreasonable on the basis of whether

the APOvent term, if estimated as a residual from Eq. (3),

dominated the APONCP term in driving the springtime rise

in APO. In reality, the APONCP term must be primarily re-

sponsible for this rise (Keeling et al., 1993; Bender et al.,

1996; Nevison et al., 2012a). We therefore do not attempt to

explicitly resolve or present APOvent signals in the Southern

Hemisphere. While the problems with APOvent necessarily

imply a corresponding problem in one or both of the other

component terms APONCP and APOtherm, as discussed be-

low, the shape of these latter terms is still informative and is

less sensitive to the uncertainties inherent in the residually

estimated APOvent term.

2.3 Satellite ocean color data

The primary output product of satellite ocean color mea-

surements historically has been the concentration of chloro-

phyll a (Chl), which is also the main input to most satellite-

based ocean primary productivity models (Behrenfeld and

Falkowski, 1997). However, the standard Chl product based

on empirical band ratios of reflectances represents primar-

ily the coefficient of total absorption of blue light and is

inherently biased if the distributions of the optically active

components deviate from the global mean (Lee et al., 2011;

Siegel et al., 2005; Sauer et al., 2012). In the Southern Ocean

www.biogeosciences.net/12/193/2015/ Biogeosciences, 12, 193–208, 2015
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Figure 2a. Results of the pulse-response code forced by O2, N2 and

CO2 air–sea fluxes from six ESM ocean biogeochemistry model

components. The dark green line and light green window show the

mean and standard deviation, respectively, of the nine ATMs par-

ticipating in both T3L2 and APO TransCom. The amplitudes are

scaled for each ATM and monitoring site based on the validation

exercise described in Sect. 2.2.2 and illustrated in the Supplemen-

tary material. The gray window shows the full range of responses

from all 13 T3L2 ATMs, uncorrected based on the APO TransCom

validation exercise. The heavy black line shows the observed APO

mean annual cycle. (a) Results at South Pole, compared to SIO ob-

servations.

the standard Chl algorithms underestimate in situ Chl by 2–

3 times (Mitchell and Kahru, 2009), whereas in the Arctic

they overestimate it (Mitchell, 1992). These errors are di-

rectly transferred into errors in estimates of NPP and EP.

For the Southern Hemisphere we used an empirical Chl al-

gorithm (Scripps Photobiology) that was tuned to in situ Chl

in the Southern Ocean and spatially blended with the stan-

dard SeaWiFS OC4 algorithm (Kahru and Mitchell, 2010).

The same blending scheme was applied when blending NPP

between two versions of the Vertically Generalized Produc-

tivity Model (VGPM) algorithm (Behrenfeld and Falkowski,

1997): the Southern Ocean version and the low-latitude ver-

sion of Kahru et al. (2009). EP was calculated using a modi-

fied version of the Laws (2004) model according to Nevison

et al. (2012a). The mean annual cycles for Chl, NPP and EP

were calculated for 1997–2009 using data derived from Sea-

WiFS.

For the Northern Hemisphere we used NPP data calculated

according to the standard VGPM using MODIS-Aqua Chl.

NPP was downloaded from http://science.oregonstate.edu/

ocean.productivity. EP was calculated according to Dunne

et al. (2005). The mean annual cycles for NPP and EP were

calculated for 2002–2011 using monthly composites derived

from MODIS-Aqua. While the Laws (2004) and Dunne et

al. (2005) methods of deriving EP are not identical, they both

estimate export efficiency as a function of sea surface tem-

perature and NPP, are fitted to in situ data, and generally pro-

duce similar estimates. In Nevison et al. (2012a) the Southern

Ocean EP derived with the Laws (2004) model was modified

by constraining to the bulk nutrient budget estimated in the

ocean inversion of Schlitzer (2002). That reduced the unreal-

istically high export efficiency of the Laws (2004) model at

cold temperatures and brought it into closer agreement with

the Dunne et al. (2005) export efficiency.

Both the SPGANT and VGPM/OSU (Oregon State Uni-

versity) satellite algorithms for NCP were converted to air–

sea O2 fluxes using FO2,NCP = 1.4 NCP, where 1.4 refers

to the molar ratio between O2 produced and carbon fixed

in photosynthesis. FO2,NCP was used to force the pulse-

response code to estimate the corresponding APO signal as-

sociated with NCP as per Nevison et al. (2012a).

2.4 APO data

APO is a unique atmospheric tracer of ocean biogeochem-

istry that is calculated by combining high precision O2 and

CO2 data according to APO =O2+1.1CO2 (Stephens et al.,

1998). By design, APO is mostly insensitive to exchanges

with the land biosphere, which have a nearly fixed stoichiom-

etry that produces compensating changes in O2 and CO2. In

contrast, the exchanges of O2 and CO2 across the air–sea in-

terface are not strongly correlated, largely because variability

in dissolved CO2 is strongly damped by carbonate chemistry

in seawater on seasonal timescales. As a result, seasonal vari-

ability in APO reflects changes in atmospheric oxygen occur-

ring almost solely due to oceanic processes (Manning and

Keeling, 2006).

Atmospheric O2 data, reported in terms of deviations in

the O2 /N2 ratio, were obtained from the Scripps Institution

of Oceanography (SIO) and Princeton University (PU) net-

works. Data are available from the early to mid-1990s, de-

pending on the station (Bender et al., 2005; Manning and

Keeling, 2006). In Fig. 2, we use SIO data from SPO, PSA

and ALT and PU data from MQA and BRW. Details of

the station locations and time spans of data used to cal-

culate the mean seasonal cycle are listed in Table S2 and

shown in Fig. 1. For MQA (1997–2007) and BRW (1993–

2008), the time spans overlapped mostly but not perfectly

with the CMIP5 model output (1994–2005) and the satellite

data (1997–2009 for SPGANT, 2002–2011 for VGPM).

APO was calculated according to

APO= δ(O2 /N2)+
1.1

XO2

CO2, (4)

where δ(O2 /N2) is the relative deviation in the O2 /N2 ra-

tio from a reference ratio in per meg units, XO2
= 0.2094

is the O2 mole fraction of dry air (Tohjima et al., 2005),

CO2 is the mole fraction of carbon dioxide in parts per mil-

lion (µmol mol−1), and 1.1 is a qualitative estimate of the

−O2 :C ratio of terrestrial respiration and photosynthesis.

Mean seasonal cycles for observed APO were obtained using

the same detrending and averaging methodology described

in Sect. 2.2.1. The uncertainty in the observed mean seasonal
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Figure 2b. Results at Palmer Station (64.9◦ S, 64◦W), compared to

SIO observations.

Figure 2c. Results at Macquarie Island (54.5◦ S, 159◦ E), compared

to PU observations.

cycles over the timespan of available data is less than 6 %

at extratropical latitudes, reflecting a combination of instru-

mental precision, synoptic variability and interannual vari-

ability (IAV) in the seasonal cycle. The current study is fo-

cused on the mean seasonal cycle in APO as a first-order

challenge for the CMIP5 ocean models. Here, model, APO

and satellite seasonal cycles are evaluated over roughly com-

parable periods that are dictated by data availability. The ex-

amination of IAV is deferred to future research, which will

require ATM simulations of APO driven by interannually

varying meteorology.

2.5 Phase metrics

The time of year of the seasonal maximum in APO and NPP

was used as a phase metric. For APO, monthly mean, station-

specific time series, both modeled and observed, were fit to

a third-order polynomial plus first two-harmonics function.

The harmonic components of the fit were used to construct a

mean seasonal cycle with daily resolution and the day of the

Figure 2d. Results at Barrow, Alaska (71.3◦ N, 156.6◦W), com-

pared to PU observations.

Figure 2e. Results at Alert, Canada (82.5◦ N, 62.5◦W), compared

to SIO observations.

seasonal maximum was identified. The same approach was

used to derive the day of the seasonal NPP maximum, ex-

cept that the fit was applied to monthly mean satellite-derived

and ESM NPP integrals summed from 40 to 60◦ S and 40

to 60◦ N, which were compared to the APO phase metric at

southern and northern stations, respectively.

3 Results

3.1 APO comparison to ESMs

The APO cycles estimated from the six sets of ESM air–

sea fluxes were compared to observations at three South-

ern Ocean and two northern monitoring sites (Fig. 2). In

these plots, the green envelope reflects our best estimate of

the ATM uncertainty in the ocean model APO signal based

on the nine scaled ATM results, while the gray window re-

flects the more complete range of uncertainty using all 13

unscaled ATM results. In general, the distinction between the

green and gray windows is only moderately important, as the
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observed APO cycle in most cases either falls within both

envelopes or lies outside of both envelopes.

The MPIM and related NorESM1 ocean biogeochemistry

models are examples in which the observed APO cycle lies

outside both ranges of uncertainty at all five evaluation sites

(Fig. 2, lower middle and right panels). For these models, the

rise in the APO cycle occurs too early in the springtime in

both hemispheres, while the overall amplitude of the cycle is

too large at all the southern stations. Here, it is notable that

the MPIM APO amplitude would be even larger in the South-

ern Ocean if it were not offset by the unrealistically large

seasonal cycle in oceanic CO2 described above. The large

CO2 cycle, however, does not substantially alter the phase of

APO, which is determined mainly by the timing of the O2

fluxes.

The IPSL is another ocean biogeochemistry model for

which the observed APO cycle lies outside of both the best

guess and full range of uncertainty at all monitoring sites,

with the exception of Palmer Station (64.9◦ S), where ob-

served APO falls within the wider gray window of uncer-

tainty (Fig. 2b, lower left panels). Unlike the MPIM and

NorESM1, the rise in the IPSL APO cycle occurs somewhat

later in the springtime than observed, while the overall am-

plitude of the cycle tends to be underestimated. The under-

estimate is mild at all the southern stations, and even falls

within the broader range of uncertainty at PSA, but is more

pronounced at the northern monitoring sites, where the IPSL

amplitude is too small by nearly a factor of 2.

The CESM is the top performer among the six ESMs

evaluated, consistently yielding green (gray) windows that

encompass the observed APO cycle at most (all) of the

five monitoring sites (Fig. 2, upper left panels). The GFDL

ESM2M (depth-based coordinates) is the second most con-

sistent performer, yielding cycles that generally agree with

observations, with exceptions at BRW, where ESM2M tends

to mildly underestimate the depth of the APO trough, and at

PSA, where the rise in the APO cycle may be up to 1 month

too early. The sigma-coordinate GFDL ESM2G model is the

third best performer, capturing the observed APO cycle rela-

tively well at most southern stations, but underestimating the

seasonal amplitude at the northern stations.

3.1.1 Regional analysis of APO cycle

The matrix method can partition the ocean model APO cy-

cles into regional contributions from the 11 ocean regions

used in T3L2. At the southern stations of SPO, PSA and

MQA, this partitioning reveals, not surprisingly, that the

Southern Ocean (defined as all ocean regions south of 44◦ S)

dominates the APO cycle (not shown). However, at BRW and

ALT at least three regions make important contributions, in-

cluding the temperate North Pacific (extending from 15◦ N

to the Bering Strait around 65◦ N and thus including the sub-

polar region), the temperate North Atlantic (extending from

15 to 48◦ N) and the Northern Ocean (including the Arctic

Figure 3. Partitioning the APO cycle at Barrow, Alaska, into its

main regional contributions, North Pacific (black), temperate North

Atlantic (cyan) and Northern Ocean (magenta), which includes the

North Atlantic north of 48◦ N and the Arctic Ocean. All curves re-

flect the unscaled model mean of the 13 ATMs used in the matrix

method.

Ocean and the North Atlantic north of 48◦ N). The Northern

Ocean is the most important contributor to the APO seasonal

cycle at both BRW (Fig. 3) and ALT and is by far the most

variable component among the six ESMs. The largest APO

amplitudes in the Northern Ocean are produced by the CESM

and NorESM1, which are the only two models that capture

the total observed APO amplitude at BRW (Fig. 2d).

3.1.2 Partitioning of APO cycle among component

signals

To probe further into the underestimate of the APO amplitude

at BRW by most of the ESMs, we partitioned APO into ther-

mal and NCP-related components, as described in Sect. 2.2.3

(Fig. 4). A comparison of the CESM and ESM2M in Fig. 4

indicates that both have similar APOtherm and APONCP sig-

nals, but that the CESM captures total APO more or less

correctly while ESM2M underestimates the total APO am-

plitude. By inference, the missing APOvent term accounts for

the difference. However, as discussed in Sect. 2.2.3, APOvent

can be estimated only as a residual of three other terms us-

ing standard CMIP5 output and thus its shape and phasing

are sensitive to even small uncertainties in those other terms.

Thus, the residual ventilation curves in Fig. 4 should be inter-

preted with caution (e.g., the MPIM curve is clearly unrea-

sonable in phasing). The four remaining ESMs have APONCP

cycles of similar or smaller amplitude than the CESM, which

in the case of the ESM2G and MPIM is due primarily to their

relatively low export fraction ratios (ef ratios), and all these

models substantially underestimate the total APO amplitude

at BRW. This suggests that these models probably also un-

derestimate some combination of deep ventilation and NCP.

A similar partitioning of APO was attempted in the South-

ern Ocean, but the estimation of APONCP from model EP100
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Figure 4. Partitioning of the model mean APO cycle into NCP, ther-

mal and residual ventilation components at Barrow, Alaska. The

APONCP components are estimated alternatively based on ocean

model EP at 100m (ProdEP light green, solid curve) and vertically

integrated NPP (ProdNPP) scaled by the mean ratio of EP100 /NPP

(f ratio) between 40 and 60◦ N of the given ocean model (dark

green, dashed curve). All components were translated into atmo-

spheric signals as described in Sect. 2.2.3. Also shown is APOvent

(blue), calculated as a residual of APO – APONCP – APOtherm.

With the exception of observed APO, all curves reflect the unscaled

mean of the 13 ATMs used in the matrix method.

generally did not give plausible results in this region. This

problem is discussed in more detail in Sect. 4.

3.2 Satellite data compared to ESMs

Estimates of NPP display a wide variety of spatial pat-

terns among models and satellite data (Fig. 5). Global to-

tals range over more than a factor of 2 (34–82 Pg C yr−1)

among the ESMs, with most models tending to exceed the

VGPM satellite-based estimate of 45 Pg C yr−1 (Table 1).

Global EP is more consistent among the models, with a value

around 8 Pg C yr−1 in most cases, in good agreement with

the satellite-based estimate. Global EP converges among

the ESMs because the model with the highest global NPP

(ESM2M) has the smallest ef ratio of < 0.1 and the mod-

els with the lowest global NPP (IPSL, NorESM1) have the

largest ef ratios of about 0.2 (Table 1).

The high global NPP totals in the ESMs are driven in large

part by high tropical NPP values, which generally are not re-

flected in the satellite data except along coastlines (Fig. 5). In

this paper, we focus on the 40–60◦ latitude bands, which are

more important than the tropics in driving the seasonal cy-

cles in NPP, EP (NCP) and APO (Garcia and Keeling, 2001;

Anav et al., 2013). In the Southern Ocean 40–60◦ S band,

global NPP ranges among ESMs from 5.2 to 12.5 Pg C yr−1,

encompassing the satellite-based estimates (Table 1, Fig. 6).

However, the ESMs tend to underestimate EP relative to

the satellite-derived values, particularly the SPGANT Laws

(2004) model, due largely to the small model ef ratios. In

the 40–60◦ N band, the ESMs generally underestimate both

NPP and ef ratios relative to the satellite-derived values. This

combination leads to model EP values that are smaller than

satellite EP by a factor of 2 on average (Table 1). In both

hemispheres, the model NPP maximum tends to occur ear-

lier than the satellite-derived maximum, with some mod-

els (IPSL, MPIM) predicting a maximum that is up to 1–

2 months early (Fig. 6).

3.3 Combining APO and satellite data

In the previous sections we considered APO and satellite data

as separate evaluation metrics for ESMs. Below we consider

the two as combined metrics. While this analysis is limited

by uncertainties in the absolute magnitude of satellite NPP

and EP/NCP and our imperfect ability to partition the ESM

total APO signal into its NCP and other components, it nev-

ertheless provides some additional insight into the behavior

of the ESMs.

3.3.1 Phase metrics

The phase metrics defining the timing of the observed and

model seasonal maximum in APO reveal characteristic pat-

terns for each ESM, which are relatively consistent across

APO monitoring sites (Fig. 7). The APO seasonal maxima of

the MPIM and NorESM1 are earlier than observed by about 1

month and 3 weeks, respectively, on average, while the IPSL

APO maximum (with the exception of PSA) tends to be later

than observed by 2–3 weeks. The remaining models, CESM,

ESM2M and ESM2G, have seasonal APO maxima that are

relatively consistent with observations, although with some

variation among different stations.

The observed seasonal maximum of NPP occurs about

30–40 days earlier than the observed APO maximum in the

Southern Ocean stations and about 50 days earlier at BRW

and ALT. Of the models, ESM2G, CESM and ESM2M cap-

ture the phase of the NPP maximum to within about 1–3

weeks, although as noted above in Fig. 6 the model NPP

maxima tend to occur earlier than the satellite-based maxima.

In the MPIM, the NPP maximum is about 1 to 1.5 months

earlier than observed, and the APO maximum is also cor-

responding early (Fig. 7). The IPSL is an outlier from the

general slope of the APO vs. NPP phase relationship, as de-

fined by the rest of the ESMs. The IPSL NPP maximum

occurs about 40 days earlier than observed in the South-

ern Hemisphere and nearly 2 months earlier than observed

in the Northern Hemisphere, but the IPSL, curiously, also

has the latest APO seasonal maximum of any of the mod-

els. NorESM1 is another outlier in the opposite direction off

the general APO vs. NPP phase slope, at least in the North-

ern Hemisphere. There, NorESM1’s seasonal maximum in

NPP has a relatively small lag from the APO maximum com-

pared to the other models. NorESM1 is also unusual in that
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Figure 5. Annual mean NPP (in mg C m−2 day−1). Top row: MODIS-Aqua data input to the VGPM NPP model and (b) SeaWiFS data input

to the SPGANT algorithm as described in Nevison et al. (2012a). Rows 2 and 3 show the corresponding NPP fields from six ESMs for the

mean of 1997–2005.

Figure 6. Comparison of the NPP (PgC month) mean annual cy-

cle as simulated by ESMs and satellite-derived observations inte-

grated over (a) 40–60◦ S, (b) 40–60◦ N, (c) 60–90◦ N. The satellite

data are from SPGANT Laws (2004) model in panel (a) and VGPM

Dunne model in panels (b–c).

the APOtherm seasonal maximum at Barrow occurs about 1

month later than in any of the other ESMs (Fig. 4).

3.3.2 Seasonal amplitudes

In addition to evaluating the phasing of the ocean model APO

and NPP cycles, we examined the amplitude of the cycles,

with the caveat that the absolute magnitude of satellite-based

NPP is not well determined and at present provides a rela-

tively weak constraint on the models. Furthermore, the APO

seasonal amplitude in principle is more closely related to

NCP (or EP) than NPP. However, we chose NPP for the sea-

sonal amplitude analysis due to the strong discrepancies in

ef ratio among models and satellite data indicated in Table 1,

which may unduly bias the results.

A cross plot of the seasonal amplitude in APO against

the seasonal amplitude of NPP integrated between 40 and

60◦ S suggests a strong correlation between the amplitudes

of APO and NPP among the ocean biogeochemistry mod-

els, with larger NPP amplitudes associated with larger APO

cycles. The strong correlation holds at all Southern Ocean

stations and is illustrated in Fig. 8a at MQA. The cluster

of top-performing ESMs (CESM, ESM2M, ESM2G) agrees

relatively well with the observed APO and SPGANT ampli-

tudes. Meanwhile both amplitudes are underestimated by the

IPSL and overestimated by the NorESM1 and MPIM.

Cross plots of the seasonal amplitudes of APO and NPP

in the Northern Hemisphere reveal that these amplitudes
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Figure 7. Day of APO maximum plotted against day of NPP

maximum. The observed data point is derived from APO data at

(a) Palmer Station, (b) Macquarie Island, (c) Barrow and (d) Alert

plotted against satellite NPP data integrated over the 40–60◦ lati-

tude band of the appropriate hemisphere.

are positively correlated at BRW (Fig. 8b) and ALT (not

shown), although the correlation is weaker than in the South-

ern Hemisphere. The CESM, ESM2G, ESM2M and MPIM

all capture the satellite-based NPP seasonal amplitude rela-

tively well, while both the CESM and NorESM1 capture the

observed APO amplitude accurately. However, the CESM is

the only model that reproduces both the NPP and APO sea-

sonal amplitudes well relative to the observations.

4 Discussion

4.1 Northern oceans

Most ESMs tend to underestimate substantially the observed

seasonal amplitude of APO at Barrow, Alaska. A combina-

tion of region-specific results (Fig. 3) and O2 component

analysis (Fig. 4) suggests that some combination of fall–

winter deep ventilation and spring–summer EP in the north-

ern oceans (defined to include the North Atlantic north of

48◦ N) in particular may be underestimated in many models.

The combined analysis of the APO vs. NPP seasonal am-

plitudes (Fig. 8b) supports these conclusions and suggests

that, while several models may be capturing primary pro-

duction well in the northern oceans, accurate representation

of EP and deep ventilation is also important for reproducing

the observed APO cycle. The inference from the APO com-

ponent analysis in Fig. 4 that the GFDL models may have

weak ventilation in the North Atlantic appears to contradict

the analysis of Dunne et al. (2012), who found robust North

Atlantic Deep Water (NADW) formation in both the ESM2M

and ESM2G versions, but possibly could be reconciled if the

Figure 8. (a) Seasonal amplitude in APO at Macquarie Island

(MQA), located at 54.5◦ S, 159◦ E, as estimated from the air–sea

O2, CO2 and heat fluxes from six ESMs, plotted against the sea-

sonal amplitude of NPP integrated from 40 to 60◦ S. Error bars rep-

resent the ATM uncertainty in model APO as estimated with the

matrix method. The observed (Obs) data points (in red) are based

on APO data from the PU network at MQA and NPP from the SP-

GANT satellite ocean color algorithms, as described in the text. The

correlation coefficient R refers to regression through ESM points

only, (b) Same as 8a, but plotting seasonal amplitude in APO at

Barrow, Alaska, against the seasonal amplitude of NPP integrated

from 40 to 60◦ N. The observed data point is based on APO data

from the PU network and the VGPM algorithm with MODIS-Aqua

input.

biogeochemical gradients across which deep water formation

acts are too weak.

We investigated several mechanisms that might explain the

differences among models in the APO cycle at high northern

latitudes, including subpolar heat transport and Arctic sea ice

cover. Here, stronger northward heat transport should lead to

more deep ventilation, while lower sea ice cover will permit

more production and ventilation in the Arctic Ocean. Sub-

dividing the northern oceans region into the Arctic Ocean

and North Atlantic components revealed that some models

(IPSL and ESM2G) have a very small component (< 2 per

meg) of APO seasonal amplitude coming from the Arctic

Ocean alone (Fig. 9). In ESM2G this may be related to the

extensive winter sea ice cover, which exceeds the observed

covered area reported by the National Snow and Ice Data

Center (http://nsidc.org/data/seaice_index/archives.html) by

about 2× 106 km2. However, sea ice cover is lower than

observed in the IPSL, suggesting the small Arctic APO
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Figure 9. APO cycle at Barrow, Alaska, from the TransCom north-

ern oceans region, restricted to latitudes north of 65◦ N to estimate

the contribution of the Arctic Ocean. All curves reflect the unscaled

model mean of 13 ATMs used in the matrix method.

component in that model is more related to general underes-

timate of primary and EP (e.g., as shown in Figs. 6b and 8b).

While it seems clear that the strong APO seasonality in the

CESM can be attributed in part to its high productivity and

EP in the northern subpolar and polar regions (Fig. 6 and Ta-

ble 1), a full explanation for the underlying mechanisms of

the CESM fidelity on APO compared to the other models is

not readily apparent from surface-only data. This suggests

the need for a more detailed exploration of ocean interior

ventilation and biological response interactions outside the

scope of the present work.

4.2 Southern Ocean

Compared to the Northern Hemisphere stations, the ESMs

generally are more successful in the Southern Ocean in cap-

turing the observed APO cycle (Fig. 2). Within the range

of ATM uncertainty, at least three models, CESM, ESM2M,

ESM2G (and IPSL at Palmer Station), predict seasonal APO

amplitudes in agreement with observations. Although the

Southern Ocean APO amplitude in these models varies over

as much as 20 per meg, we currently are not able to distin-

guish which of the underlying air–sea O2 flux fields is the

most realistic, due to the uncertainty associated with translat-

ing these fluxes into an atmospheric signal using TransCom3

era model responses to uniformly distributed regional fluxes.

However, even with our current matrix method, the APO con-

straint is sufficiently robust to indicate that the NorESM1 and

MPIM substantially overestimate some combination of pro-

duction and deep ventilation in the Southern Ocean, while

the IPSL probably tends to underestimate these fluxes (Ta-

ble 1, Fig. 8a). Notably, the ESMs that reproduce APO the

best in the Southern Ocean tend to predict a smaller net car-

bon uptake between 44 and 75◦, and are in better agreement

with independent estimates (Lenton et al., 2013) of carbon

Figure 10. Annual mean CO2 uptake in the Southern Ocean for

1997–2005 integrated from 44–75◦ S and plotted vs. mean APO

amplitude at Macquarie Island (MQA) over the same period, as

predicted by six ESMs. Independent estimates of carbon uptake

from ocean inversions and observed pCO2 databases (Lenton et al.,

2013), plotted against the observed APO amplitude at MQA are

shown for reference.

uptake from ocean inversions and observed pCO2 databases

(Fig. 10).

Reducing ATM uncertainty is a challenge that potentially

can be addressed by using column-integrated APO signals

from aircraft data (Wofsy, 2011), or conversely, by using

vertical profiles to identify top-performing ATMs (Stephens

et al., 2007). In addition, the spread in ATM results has

been reduced substantially for CO2 inversions using post-

TransCom3-era ATMs (Peylin et al., 2013), suggesting that

ATM uncertainty also may be reduced for forward simula-

tions of APO. If this is the case, then new forward simula-

tions with several different modern-era ATMs may be suffi-

cient to characterize ATM uncertainty. Alternatively, it may

be valuable to continue with a matrix-based approach, us-

ing basis functions from many ATMs, but with redefined re-

gional boundaries that are not defined based simply on lat-

itude, as in T3L2 (Fig. 1), but rather that correspond to the

biogeography of major ocean regions (Fay and McKinley,

2014). The definition of such basis functions could help ex-

tend the utility of the matrix approach to lower latitude APO

monitoring sites and allow for the partitioning of the South-

ern Ocean into multiple regions defined around biogeochem-

ical function, while still retaining the advantages of the ma-

trix method, i.e., the ability to quickly and easily compare

multiple ATMs forced with the same air–sea fluxes.

A second complication in the Southern Ocean analysis is

that the EP100 values reported by the ESMs clearly are not di-

rectly comparable to satellite NCP(EP) data, particularly our

SPGANT product, and thus can not be translated with confi-

dence into air–sea O2 fluxes associated with NCP. A likely

problem is that the 100 m depth horizon used to compute

EP may not be comparable across satellite algorithms and
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ocean biogeochemistry models. EP100 will underestimate the

model’s true NCP-related O2 outgassing flux if organic mat-

ter is respired as it sinks from the actual model mixed layer

depth to 100 m depth (Najjar et al., 2007). It is also puzzling

that the ef ratios predicted by the ESMs (Table 1) appear to

have decreased considerably in some cases relative to those

reported for earlier versions of the same models (Steinacher

et al., 2010). For example, the Southern Ocean ef ratios for

the MPIM and IPSL in that earlier study were about 0.2 and

0.4, respectively, compared to 0.14 and 0.27, respectively, in

the current study. The mean global ef ratio for the six ESMs

in the current study is only 0.14 and, even in the Southern

Ocean, is only 0.17 on average, compared to satellite-based

estimates of 0.18 globally and about 0.3 at high latitudes.

The small ef ratios in the GFDL models (of less than 0.1

globally and only 0.10 to 0.13 in the Southern Ocean) ap-

pear consistent with the relatively deep summer mixed layer

depths (MLDs) in the Southern Ocean, which even at their

minimum are often deeper than 100 m in both ESM2M and

ESM2G (Dunne et al., 2012). In the CESM the Southern

Ocean summer MLDs are generally shallower than 100 m

and in many regions are only around 10–40 m deep (Moore

et al., 2013). The shallower summer MLDs may contribute to

the CESM’s larger ef ratio of 0.18, although this ratio is still

small compared to the satellite-based estimates. The small

GFDL ef ratios may also be related to an overvigorous pi-

cophytoplankton component wherein a prochlorococcus-like

form is capable of competing relatively well even in cold po-

lar waters. Small picophytoplankton are more likely to be re-

oxidized and remineralized within the mixed layer, whereas

larger, heavier microphytoplankton (e.g., diatoms) are more

likely to be exported out of the oceanic mixed layer (Uitz et

al., 2010).

4.3 Phase relationships

While much of our analysis focuses on the seasonal am-

plitude of APO and NPP at mid- to high latitudes, both of

these metrics involve relatively large uncertainty. This de-

rives from TransCom3-era uniform flux ATM uncertainty in

the case of APO, while for NPP the uncertainty results from

the lack of strong constraints on the absolute magnitude of

the satellite fluxes. In contrast, we have relatively high con-

fidence in the phasing of model APO, as represented by the

matrix method (see the Supplement) and in NPP observa-

tionally derived from satellite data, based on the close corre-

spondence in phasing between the SPGANT and VGPM al-

gorithms. For these reasons, we used a phase metric, i.e., the

timing of the seasonal maximum, to examine relationships

between observed and model APO and NPP. As in the sea-

sonal amplitude analysis, MPIM, NorESM1 and IPSL dis-

played phasing patterns that tended to deviate from obser-

vations and the other three top-performing models, albeit in

diverging ways. A complete diagnosis of the model physics

responsible for the phasing anomalies (e.g., IPSL’s early NPP

maxima and late APO maxima) described in Sect. 3.3.1 is

beyond the scope of this paper. Here we note mainly that the

phase metrics are a robust and relatively good indicator of

overall model performance with respect to APO.

5 Summary

We have used measurements of the seasonal cycles in APO to

challenge and test the ocean model components of six ESMs.

The model/data comparison reveal that three of the ESMs

tested reproduce the observed cycles reasonably well, within

the range of ATM uncertainty, while three do not. ESM per-

formance in general is more favorable in the Southern Hemi-

sphere than in the Northern Hemisphere, where most mod-

els appear to underestimate the wintertime ventilation of

O2-depleted deepwater that drives the declining branch of

the APO seasonal cycle and many may also underestimate

both primary and EP, particularly at high northern latitudes.

We used NPP and NCP(EP) products derived from satellite

ocean color data as complementary constraints on the mod-

els in an effort to tighten the APO constraint, which reflects

a combination of production and ventilation processes. How-

ever, while the satellite data provide relatively strong con-

straints with respect to phasing, they are more uncertain with

respect to the absolute magnitudes of NPP and NCP(EP).

At least two primary uncertainties limit our ability to place

stronger constraints on ocean model biogeochemistry based

on currently available information from APO and satellite

data: (1) the relatively large ATM uncertainty involved in

translating air–sea O2 fluxes into APO signals. (2) The uncer-

tainty in how model EP100 relates to the true model FO2,NCP

flux and how this relationship varies across models and satel-

lite algorithms. The first of these, ATM uncertainty, is large,

as quantified using our TransCom3-based matrix method.

However, it probably has been overstated in previous anal-

yses, which in some cases went so far as to suggest that APO

does not provide a useful constraint on ocean model fluxes

(e.g., Naegler et al., 2007). Further, ATM uncertainty could

be reduced substantially in future work with modern ATMs

and O2-specific flux patterns, or with new regional bound-

aries defined based on ocean biogeography rather than sim-

ple latitude. Even within the limits of our current approach,

we have shown that half of the six ESMs tested here produce

APO cycles whose mismatch with observed APO clearly

transcends ATM uncertainty, suggesting underlying deficien-

cies in those models’ physics and biogeochemistry.

Improving the understanding of the relationship between

model air–sea O2 fluxes and quantities like NPP, NCP and EP

is a more tractable problem that can be dissected with appro-

priate model diagnostics, e.g., as per Manizza et al. (2012). In

the current analysis, using standard CMIP5 output from six

ocean biogeochemistry models, we encountered difficulties

in relating FO2 to EP and NCP, which hindered our ability to

diagnose the mechanisms responsible for model performance
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and to compare ESM-derived APONCP directly to satellite-

based APONCP signals. Extending model-derived insights to

satellite products likely will require a shift in emphasis from

EP at an arbitrary reference depth to near-surface processes

like NCP, which are more relevant for exchanges of O2 and

CO2 at the air–sea interface and more directly related to up-

ward radiances detected by satellites.

The Supplement related to this article is available online

at doi:10.5194/bg-12-193-2015-supplement.
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