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Abstract We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystemmodels of the
TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange
(NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated
GPP (MTE-GPP) andMTE-NEE obtained by interpolatingmany flux towermeasurements with amachine-learning
algorithm, (3) atmospheric CO2 mole fraction measurements at surface sites, and (4) CO2 total columns (XCO2)
measurements from the Total Carbon Column Observing Network (TCCON). For comparison with
atmospheric CO2 measurements, the LMDZ4 transport model was run with time-varying CO2 fluxes of each
model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude
of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine
models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE.
Comparison with surface atmospheric CO2 measurements confirms that most models underestimate the
seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with
TCCON data also shows that the seasonal amplitude of XCO2 is underestimated by more than 10% for seven
out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the
TCCON data using LMDZ4. From CO2 columns measured routinely at 10 TCCON sites, the constrained
amplitude of NEE over the Northern Hemisphere is of 1.6 ± 0.4 gC m�2 d�1, which translates into a net CO2

uptake during the carbon uptake period in the Northern Hemisphere of 7.9 ± 2.0 PgC yr�1.

1. Introduction

Terrestrial ecosystem models are used to assess the impacts of climate change on ecosystems [e.g., Ciais et al.,
2005; Friedlingstein et al., 2006; Sitch et al., 2008; Piao et al., 2013]. However, model results are still plagued by
large uncertainties, as evidenced by their spread in intercomparison exercises [Friedlingstein et al., 2006; Sitch
et al., 2008; Le Quere et al., 2009; Todd-Brown et al., 2013; Graven et al., 2013]. Comparison of terrestrial ecosystem
models against observation helps to document their systematic errors for current conditions [e.g., Cadule et al.,
2010; Randerson et al., 2009; Maignan et al., 2011; Zhao et al., 2012; Luo et al., 2012; Kelley et al., 2013] and can
also give heuristic constraints about their projections for the future [Cox et al., 2013; Stegehuis et al., 2013].

Terrestrial CO2 fluxes vary temporally from diurnal, seasonal, interannual, and longer time scales and spatially
across climate and vegetation zones [Keeling et al., 1996; Heimann et al., 1998]. Eddy covariance measurements
of continuous ecosystem-atmosphere CO2 exchange are available for a large number of sites globally.
These local data are a valuable tool for model development and validation. For example, Stoeckli et al. [2008]]
used 15 flux sites to identify terrestrial water storage and carbon-nitrogen and deficiencies in CLM3.0 and
showed improvement of those processes in CLM3.5. Randerson et al. [2009] used 74 flux sites across different
ecosystems (e.g., tundra, needleleaf/broadleaf evergreen/deciduous forests) from Ameriflux sites to evaluate
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the performance of two models (CASA and CLM-CN). Richardson et al. [2012] showed a systematic bias toward
too early photosynthesis for an ensemble of 14 terrestrial ecosystem models evaluated at 10 North American
flux tower sites. Systematic errors in modeling the onset of GPP were shown to propagate into errors in the
phase of NEE by Wang et al. [2012]. It is interesting to test whether a bias of the phase of GPP attenuates
(i.e., compensated by a bias of respiration of opposite sign) or amplifies bias in the phase of NEE, especially
for models that couple GPP with respiration on subannual time scales though short-lived carbon pools.

At large spatial scale, themeasurements of atmospheric CO2mole fractions are valuable data to test NEE from
ecosystemmodels (which allow propagating these fluxes through atmospheric inversion). Nemry et al. [1999]
used an atmospheric transport model and 25 atmospheric CO2 monitoring stations to evaluate NEE across
eight terrestrial biosphere models and showed that the simulated seasonality of atmospheric CO2 was poor
in the Southern Hemisphere. Cadule et al. [2010] evaluated three coupled climate carbon cyclemodels based on
a series of metrics qualifying skills of model for the long-term trend, the seasonal cycle, the interannual
variability of atmospheric CO2, and the sensitivity of atmospheric CO2 growth rate to climate variability. The
seasonal cycle of CO2, dominated by terrestrial exchange, provides an integrated constraint about the phase
and amplitude of NEE in the Northern Hemisphere. Cadule et al. [2010] found that the seasonal CO2

amplitude at Mauna Loa (MLO) was underestimated in two out of the three coupled models. Kelley et al.
[2013] found an earlier atmospheric CO2 drawdown and timing of minimum for three terrestrial ecosystem
models at Northern Hemisphere stations.

Besides CO2 measurements made at the ground-level, ground-based remote sensing of column-averaged dry
air mole fraction of CO2 (XCO2) from the Total Carbon Column Observing Network (TCCON) [Wunch et al., 2011]
were also used to evaluate the large-scale seasonality of NEE from terrestrial ecosystem models by Yang et al.
[2007] and Messerschmidt et al. [2013]. TCCON data have also been used to optimize the NEE from the
ORCHIDEE model using an atmospheric inversion [Chevallier et al., 2011]. The seasonality of TCCON XCO2 is
sensitive to the seasonality of NEE at continental to hemispheric scales, while the seasonal cycle of CO2 in the
boundary layer CO2 is sensitive to both regional NEE fluxes and continental to hemispheric fluxes [Kaminski
et al., 1996; Keppel-Aleks et al., 2012].

In this study, we used (1) local eddy covariance CO2 fluxes from selected sites as in Randerson et al. [2009],
(2) large-scale gridded products MTE-GPP and MTE-NEE obtained from a set of eddy covariance measurements
(253 sites) by a machine-learning algorithm [Jung et al., 2011], (3) atmospheric CO2 mole fraction in the
boundary layer; and (4) XCO2 from TCCON [Wunch et al., 2011] to test the seasonal cycle of GPP and NEE from
nine terrestrial ecosystem models run in the TRENDY project (dgvm.ceh.ac.uk) [Sitch et al., 2013]. The testing of
TRENDY models NEE with (3) and (4) involves the use of a 3-D atmospheric tracer transport model to transform
NEE into 4-D CO2 concentration fields. To this aim we used the LMDZ4 transport model from the Laboratoire
de Météorologie Dynamique [Hourdin et al., 2006]. We combined the various sets of model-data misfits by
correlating the seasonal biases of the terrestrial models for GPP and NEE from (1) and (2) with the biases of
atmospheric CO2 simulated by each terrestrial model coupled to the LMDZ4 atmospheric model in (3) and (4).
We investigated the correlation of model biases across the various evaluation data sets and scales.

In the TRENDY ensemble, three models calculate the seasonality of NEE (using hereafter the definition of
Hayes et al. [2012]) from the imbalance between GPP and ecosystem respiration, five models additionally
simulate explicitly fire emissions, and two models have a simple parameterization of biomass harvest and its
subsequent respiration flux. In the real world, the seasonal cycle of NEE (at large scale) is due to these
processes but also accounts for the seasonality of CO2 outgassing by rivers, lakes and estuaries [e.g., Raymond
et al., 2000], and of CO2 emitted by products decaying in landfills and waste, and other processes such as
carbonate formation and dissolution [e.g., Roland et al., 2013] and emission of reduced carbon species that
oxidize to CO2 in the atmosphere through chemical reactions [Folberth et al., 2005]. The seasonal amplitude of
these NEE components is not known, some of these fluxes are small, and they were not accounted for in our
study. Further, when comparing with the seasonality of atmospheric CO2, uncertainty on the seasonality of
air-sea fluxes and fossil fuel CO2 emissions also adds to uncertain atmospheric transport as a source of bias
in testing NEE [e.g., Peylin et al., 2011].

In section 2, the models, data sets, and evaluation metrics are described. The results of the comparison for
GPP and NEE between models and flux measurements are shown in section 3. In section 4, modeled GPP and
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NEE in the Northern Hemisphere are compared with gridded MTE-GPP and MTE-NEE data products
[Jung et al., 2011]. Comparison between modeled and observed atmospheric CO2 concentration is shown
in section 5. Correlation of systematic errors attached to the seasonality of GPP and NEE across scales is
discussed in section 6. Section 7 concludes this study.

2. Methods
2.1. Terrestrial Ecosystem Models

We evaluated monthly GPP and NEE (negative value indicates carbon uptake) simulated by the nine TRENDY
models of Table 1 (TRENDY, http://dgvm.ceh.ac.uk/, accessed 11 July 2013). We used the configuration S2 of
TRENDY, in whichmodels are driven by rising atmospheric CO2 concentration and climate change from 1901 to
2010, without land use change CO2 emissions.

2.2. Observations

We selected 16 sites from the FLUXNET database (www.fluxdata.org) that span diverse vegetation types in
temperate, boreal, and arctic regions over the Northern Hemisphere. The representativeness of a flux tower site
with respect to the model processes to be evaluated is difficult to define. Since the TRENDY models do not
account for local disturbance and site history, we have chosen FLUXNET data from ecosystems far from their last
disturbance. The selected sites also have long records, in order to calculate a robust mean seasonal cycle of NEE
and GPP. The location, vegetation type, climate type, and data available period of the 16 sites are listed in
Figure 1 and Table 2. For each flux site, continuous half-hourly GPP and NEE (negative value indicate carbon
uptake) during the measurement period have been quality controlled and gap filled using the method of
Papale et al. [2006] andMoffat et al. [2007]. GPP from each flux site was separated from NEE with the algorithm
developed by Lasslop et al. [2010], which combines temperature sensitivity of respiration and vapor pressure
deficit limitation and light response of photosynthesis. The uncertainty of monthly GPP and NEE at flux sites are
~0.3 gC m�2 d�1 and ~0.4 gC m�2 d�1, respectively [e.g., Papale et al., 2006; Lasslop et al., 2010].

We also use an observation-driven global monthly gridded GPP, NEE statistical model (hereafter referred to as
MTE-GPP and MTE-NEE) derived from FLUXNET measurements (not restricted to the 16 sites of the previous
paragraph but global 253 flux sites) by statistical upscaling [Jung et al., 2011]. The statistical MTE model
integrates remote-sensing indices, climate and meteorological data, and information on land cover. The
resulting product has a spatial resolution of 0.5° × 0.5° and covers the period from 1982 to 2011. The typical
uncertainty of MTE-GPP and MTE-NEE are ~46 gC m�2 yr�1 (5%) and ~37 gC m�2 yr�1 (28%), respectively,
which are defined as the standard deviation of the 25 model tree ensembles (from the MTE algorithm)
[Jung et al., 2011].

It should be noted that the uncertainty of MTE-NEE is larger than that of MTE-GPP and that disturbance related
CO2 emissions in MTE-NEE calculation are not included. Further, MTE-NEE shows a large positive bias over the
Northern Hemisphere or globe (NEE is 4.9 ± 0.4 PgC yr�1 north of 25°N) compared to the terrestrial CO2 sink
[Peylin et al., 2013], and we do not know if this bias is constant or seasonally variable. We also used atmospheric
CO2 observations to evaluate NEE at large scale. We selected atmospheric CO2 records from 15 Northern
Hemisphere boundary layer sites from the NOAA global cooperative air sampling network (http://www.esrl.
noaa.gov/gmd/ccgg/globalview/). The amplitude and phase of the seasonal cycle of atmospheric CO2 relates to

Table 1. Nine TRENDY Models (http://www-lscedods.cea.fr/invsat/RECCAP/V2)

Model Name Abbreviation Spatial Resolution Period Reference

Community Land Model 4C CLM4C 2.5° × 1.875° 1901–2009 Oleson et al. [2010] and Lawrence et al. [2011]
Community Land Model 4C CLM4CN 2.5° × 1.875° 1901–2009 Oleson et al. [2010] and Lawrence et al. [2011]
Lund-Postdam-Jena LPJ 0.5° × 0.5° 1901–2009 Sitch et al. [2003]
LPJ_GUESS LPJ_GUESS 0.5° × 0.5° 1901–2009 Smith et al. [2001]
ORCHIDEE ORCHIDEE 0.5° × 0.5° 1901–2009 Krinner et al. [2005]
ORCHIDEE-CN OCN 3.75° × 2.5° 1901–2009 Zaehle et al. [2010] and Zaehle et al. [2010]
Sheffield-DGVM SDGVM 3.75° × 2.5° 1901–2009 Woodward et al. [1995]
TRIFFID TRI 3.75° × 2.5° 1901–2009 Cox et al. [2000]
VEGAS VEGAS 0.5° × 0.5° 1901–2009 Zeng et al. [2005]

Global Biogeochemical Cycles 10.1002/2014GB004931

PENG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 48

http://dgvm.ceh.ac.uk/
www.fluxdata.org
http://www.esrl.noaa.gov/gmd/ccgg/globalview/
http://www.esrl.noaa.gov/gmd/ccgg/globalview/
http://www-lscedods.cea.fr/invsat/RECCAP/V2


NEE influencing each station through atmospheric transport, and the “footprint” range of each atmospheric
station depends on the location of the measurement station and transport fields [Cadule et al., 2010]. The
locations and measurement periods of the atmospheric CO2 mole fraction measurement sites are listed in
Figure 1 and Table 3. The model fluxes are compared to CO2 mole fraction measurements through the
simulation of atmospheric transport by the LMDZ4model. Total column CO2 concentration (XCO2) observations
are obtained from 10 TCCON stations (Figure 1 and Table 4) [Wunch et al., 2011]. XCO2 measurements are taken
during clear-sky daytime, from the direct solar spectra [Wunch et al., 2011]. The uncertainty of observed XCO2
from TCCON sites is less than 0.25% (defined as 1 standard deviation, less than 1ppm) and 0.1% under clear-sky
conditions [Wunch et al., 2011].

2.3. Analysis

We aggregated half-hourly GPP and NEE measurements at each site into monthly mean values and
computed the local mean seasonal cycle of GPP and NEE over the measurements (Table 2). GPP and NEE
from all the plant functional types (PFT) present in a grid cell have been summed together in the TRENDY
model output (i.e., PFT specific fluxes were not archived separately by modelers). To compare this
PFT-weighted climatological-simulated GPP and NEE with each flux site, we first searched for the closest
model grid cell dominated by the observed PFT of each site and then sampled the monthly modeled GPP
and NEE during the same period of flux site measurements for this “closest grid cell” in each ecosystem
model. The comparison between grid scale and observation from flux site suggests a systematic error other
than vegetation cover difference or resolution [Raczka et al., 2013]. For the Northern Hemisphere scale
(>25°N), a comparison between TRENDY models and the MTE products was analyzed, using area-weighted
GPP and NEE.

We used the 3-D atmospheric transport model LMDZ4 of Hourdin et al. [2006], nudged to horizontal winds
analyzed by the European Centre for Medium-RangeWeather Forecasts, to transport modeled NEE (if fire and
harvest were included in models, then carbon flux from fire and harvest were also accounted for in NEE).
Ocean flux and fossil fuel emission were included in the transport simulations to produce monthly CO2 mole
fractions at each station. Because NEE is monthly, covariance between NEE and transport at diurnal [Denning
et al., 1996] and synoptic time scales causingmonthly CO2 gradients, is not accounted for. The air-sea CO2 flux
prescribed to LMDZ4 is from the climatology Takahashi et al. [2009], and fossil fuel emission are from
EDGARv4 (http://edgar.jrc.ec.europa.eu/index.php#) adjusted by Carbon Dioxide Information Analysis Center
annual country totals [Boden et al., 2012]. These emissions are assumed to have no seasonality and are all
injected in the first model layer (thickness 70m). The version of LMDZ4 that was used has a horizontal
resolution of 3.75° longitude × 2.5° latitude and 19 vertical levels. After simulating 30min time series of CO2

with LMDZ4 applied to monthly NEE, we used equation (1) to generate a detrended monthly smoothed
seasonal cycle of CO2 composed of eight harmonics at each site (to capture the nonsymmetrical seasonal
shape of CO2 which has a long winter maximum and a shorter summer minimum).

Y ¼
X2
i¼0

pi�ti þ
X6
i¼3

pi � sin i � 2ð Þ � 2 � π � tð Þ

þ
X10
i¼7

pi � cos i � 6ð Þ � 2 � π � tð Þ (1)

where Y is a smoothed CO2 mole fraction including a trend, t is the time unit, and p0 – p10 are the regressed
parameters. The seasonal cycle is defined by p3 – p10.

Figure 1. The location of 16 FLUXNET sites (filled circles with different colors indicate vegetation type), 15 flask and continuous
atmospheric CO2 measurement sites (green triangle), and 10 TCCON sites (green square).
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2.4. Metrics

We compared the amplitude and phase of the seasonal cycle between observations and simulations. The
climatological amplitude of the seasonal cycle in GPP, NEE, and atmospheric CO2 (see equation (1) above) is
defined as the difference between the maximum and minimum monthly values between January and
December. The phase of the seasonality of the fluxes and of CO2 concentration is computed by a fit to the
cosine function.

Y ¼ b0 þ
X3
i¼1

bi
2i�π�D� phi�2�π

365

� �
(2)

where Y is GPP, NEE, or CO2 mole fraction, D is Julian date of the year, ph1, ph2 and ph3 are the phases of the
seasonality, and b0 – b3 are regressed parameters.

The amplitude bias of modeled GPP, NEE, or CO2 mole fraction is defined as the difference between the
amplitude of modeled and observed GPP, NEE, or CO2 mole fraction. For the phase bias, we consider only the
phase of the first harmonics (ph1 in equation (2)) to show the date of seasonal peak in GPP or NEE. The phase
bias of modeled GPP, NEE, or CO2 mole fraction is defined as the difference between modeled and observed
ph1. We also used the mean bias (MB), root mean square error (RMSE), systematic RMSE (RMSEsys), and
unbiased RMSE (RMSEunbias) to quantify differences between observations and model simulations.

MB ¼

XN
i¼1

mi � oið Þ

N
(3)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

mi � oið Þ2

N

vuuuut
(4)

RMSEsys ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

m̂i � oið Þ2

N

vuuuut
(5)

RMSEunbias ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

m̂i �mið Þ2

N

vuuuut
(6)

Table 2. Vegetation Type (Veg), Location (Latitude (Lat), Longitude (Lon)), Climatic Type, and Studied Periods of Flux
Sites in This Studya

Site Name Veg Lat (°N) Lon (°E) Climate MAT (°C) MAP (mm) Studied Period

CA-Obs ENF 53.99 �105.12 Boreal 0.8 406 1999–2005
US-Ho1 ENF 45.20 �68.74 Temperate 5.3 1070 1996–2004
US-Ha1 DBF 42.54 �72.17 Temperate 6.6 1071 1991–2006
US-Bo1 CRO 40.01 �88.29 Temperate 11.0 991 1996–2007
US-Brw WET 71.32 �156.63 Arctic �12.8 86 1998–2002
FI-Hyy ENF 61.85 24.29 Boreal 2.2 620 1996–2006
FR-Hes DBF 48.67 7.06 Temperate 9.2 793 1997–2006
FR-Lq1 GRA 45.64 2.74 Temperate 8.3 730 2004–2006
DE-Geb CRO 51.10 10.91 Temperate 8.7 444 2004–2006
RU-Fyo ENF 56.46 32.92 Temperate 4.4 671 1998–2006
RU-Zot ENF 60.80 89.35 Boreal �3.3 943 2002–2004
RU-Ha1 GRA 54.73 90.00 Boreal �0.1 592 2002–2004
RU-Che MF 68.61 161.34 Boreal �12.1 609 2002–2005
JP-Tak DBF 36.15 137.42 Temperate 6.5 1024 1999–2004
JP-Tef MF 45.06 142.11 Temperate 5.7 1000 2001–2005
CN-HaM GRA 37.37 101.18 Arctic �1.7 567 2002–2004

aENF, DBF, MF, GRA, CRO, andWETstand for evergreen needleleaf forest, deciduous broadleaf forest, mix forest, grassland,
cropland, and wetland, respectively.
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wheremi and oi are respectively the modeled and observed GPP, NEE, and atmospheric CO2 in the ith month;
m̂i is the predicted value in the ith month by linear regression between modeled and observed GPP, NEE, and
atmospheric CO2 (mi= a*oi+ b+ ε, where a and b are the regressed parameters, and ε is the regression error);
N is set to 12months.

3. Local Scale Results
3.1. Monthly GPP
3.1.1. Mean Bias of GPP
Figure 2 shows the model-observation comparison for GPP. MTE-GPP is also reported in the figure to show
how this product compares with local measurements and models. CLM4C, CLM4CN, LPJ, LPJ_GUESS, and
ORCHIDEE overestimate GPP for each month of the growing season at most sites, while SDGVM and VEGAS
underestimate GPP. GPP of the five evergreen needleleaf forest sites are better simulated than the grass and
cropland sites [Vuichard et al., 2007].

Figure 3 summarizes the mean bias between modeled and observed site level GPP. The mean bias of
modeled GPP in CLM4C, LPJ, and ORCHIDEE is positive at more than 12 flux sites out of 16. A positive mean
bias of GPP is also found at 9–10 flux sites in CLM4CN, LPJ_GUESS, OCN, and TRI (Figure 3). In contrast, a
negative mean bias of GPP for SDGVM and VEGAS is found at 13 and 12 out of the 16 flux sites, with the
largest negative bias being found at forest sites (Figure 3).

Although the range of mean bias of GPP across models is large (�2.1–5.0 gC m�2 d�1, larger than uncertainty
of measurement), the mean bias of the model ensemble is smaller than 1 gC m�2 d�1 except at a deciduous
broadleaf forest site (JP-Tak) and at two grassland sites (FR-Lq1 and RU-Ha1), showing a large diversity of model
results without any systematic pattern among the models for GPP. By contrast, the mean bias of MTE-GPP at
the 16 flux sites ranges from �0.8 gC m�2 d�1 to 0.9 gC m�2 d�1, which is closer to measured GPP than the
models (�2.6–5.0 gC m�2 d�1). MTE-GPP still has a small average negative bias compared with the 16 flux sites
(except at RU-Zot, JP-Tak, and US-Ha1 sites where the bias is positive). The median of the mean bias of GPP
across the 16 flux sites is positive in seven out of the nine models in Table 1 (except SDGVM and VEGAS), with a
value of�0.6± 0.9 gC m�2 d�1 (± standard deviation across the 16 flux sites) in VEGAS to 1.2 ± 1.3 gCm�2 d�1

in LPJ (Figure 3). GPP of the model average is closer to observed GPP than that of any of the nine models
(median of the model average bias of 0.1 ± 0.8 gC m�2 d�1 across sites). In comparison, the median of the
mean bias of MTE-GPP at the 16 flux sites is �0.2± 0.6 gC m�2 d�1.
3.1.2. RMSE of Monthly GPP
The RMSE between modeled and measured GPP is generally smaller at evergreen needleleaf forests (ENF)
(the first to fifth rows in Figure 3) than at other flux sites (Figure 3). The median RMSE of monthly GPP across
the 16 flux sites is ~1.5 ± 1.0 gC m�2 d�1 in eight out of the nine models (except 2.9 ± 1.0 gC m�2 d�1 in LPJ).
The RMSEsys of GPP has similar magnitude than RMSE of GPP. RMSEunbias of GPP is smaller than RMSEsys of
GPP at most sites, except at the cropland site US-Bo1 (Figure S1 in the supporting information). This suggests

Table 3. The 15 Atmospheric CO2 Mole Fraction Record Stations in This Study

Station name Abbreviation Lat (°N) Lon (°E) Altitude (m) Studied period

Alert ALT 82.45 �62.52 210 1985–2010
Barrow BRW 71.32 �156.61 11 1971–2010
Cold Bay CBA 55.21 �162.72 57 1978–2010
Mt. Cimone CMN 44.18 10.70 2165 1979–2006
Cape Kumukahi KUM 19.52 �154.82 8 1976–2010
Mould Bay MBC 76.25 �119.35 58 1980–1997
Mace Head MHD 53.33 �9.90 25 1992–2010
Sand Island, Midway MID 28.21 �177.38 8 1985–2010
Mauna Loa MLO 19.54 �155.58 3402 1969–2010
Niwot Ridge NWR 40.05 �105.58 3526 1968–2010
Schauinsland SCH 48.00 8.00 1205 1972–2004
Shemya Island SHM 52.72 174.10 40 1985–2010
Tae-ahn Peninsula TAP 36.73 126.13 20 1990–2010
Ulaan Uul UUM 44.45 111.10 914 1992–2010
Mt. Waliguan WLG 36.29 100.90 3810 1990–2010
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that the nine models capture the shape of the GPP seasonal variation well but with either a high or low bias.
For the cropland sites or managed grassland sites, modeled GPP generally has a larger RMSEunbias (Figure S1),
likely because the effects of management and other missing processes, such as grazing, specific crop and
pasture phenology, irrigation, and fertilization are not represented in some TRENDYmodels [e.g., Chang et al.,
2013; Valade et al., 2014; Guanter et al., 2014].
3.1.3. Amplitude Bias of GPP
The amplitude bias ofmodeled GPP is positively correlated with themean bias of GPP across the ninemodels at
all sites (Figure S2). The median of the amplitude bias of GPP across sites ranges from �3.9± 2.8 gC m�2 d�1

in SDGVM to 1.2 ± 4.2 gCm�2 d�1 in LPJ (Figure S2). The median of the amplitude bias of GPP across models
is of �1.6 ± 2.5 gC m�2 d�1. MTE-GPP also underestimates the amplitude of GPP at 12 out of the 16 flux
sites, with a median amplitude bias of �0.8 ± 1.7 gCm�2 d�1.
3.1.4. Phase Bias of GPP
The median phase bias of GPP across the flux sites for the nine models is small, from �10 ± 15 days to
2 ± 15 days. Small phase biases (less than 10 days) are found at evergreen needleleaf forest sites for all nine
models, except TRI (Figure S2). CLM4C, CLM4CN, LPJ_GUESS, ORCHIDEE, and SDGVM have a negative phase bias
of GPP at most sites, related to their earlier start of photosynthesis and earlier-than-observed timing of peak
GPP (Figure 2). The positive GPP phase bias of LPJ and VEGAS is related to a later-than-observed peak GPP,
i.e., a GPP bias during the recession of the growing season, despite an earlier start of photosynthesis in
these two models (Figure 2). The phase bias of MTE-GPP is less than 10 days at 14 out of 16 flux sites (except
US-Brw and RU-Ha1), thus comparable to that of the process models. Models that overestimate GPP
(CLM4C, CLM4CN, LPJ_GUESS, LPJ, and ORCHIDEE) generally have an earlier start and a later end of growing
season at flux sites, consistent with the results of Richardson et al. [2012] using 14 models in North America,
among which two models (LPJ and ORCHIDEE) are participating to TRENDY.

3.2. Monthly NEE
3.2.1. Mean Bias of NEE
Figure 4 shows the comparison between modeled and observed NEE at the 16 flux sites. Across all models and
flux sites, the mean bias of NEE ranges from �1.0 gC m�2 d�1 to 1.3 gCm�2 d�1 (Figure 5). The mean bias of
NEE is smaller than that of GPP. All models simulate larger (less carbon uptake) than observed NEE, i.e., a
positive mean bias at 13 out of the 16 sites (except at RU-Fyo, ~�0.5 gCm�2 d�1; RU-Che, ~�0.1 gCm�2 d�1,
and JP-Tef, ~�0.9 gCm�2 d�1 where the NEE bias is negative) (Figure 5). The median of mean bias of NEE
across the flux sites ranges from 0.3± 0.5 to 0.6± 0.5 gCm�2 d�1. The median of mean bias of NEE across all
models is of 0.5 ± 0.5 gCm�2 d�1. In comparison, the mean bias of NEE for MTE-NEE is less than 0.3 gCm�2 d�1

at 10 out of the 16 flux sites, and themedian ofmean bias of NEE is 0.0± 0.5 gCm�2 d�1. The positivemean bias
of both GPP and NEE of seven models (except OCN and VEGAS) suggests a systematic overestimation of
respiration, at least in the way the models were run and sampled to match local FLUXNET measurements. Note
that equilibrium ecosystem carbon balance in TRENDY models (long-term mean NEE plus harvest and fire
emissions for thosemodels simulating these fluxes, in each grid point being zero) prevails in the year 1901 from
the spin-up of each model. In contrast, forests where NEE is measured at the FLUXNET sites usually are in a
growing phase and are net annual carbon sinks (unlikemodeledmature forests subject only to CO2 and climate
forcing). For this reason, the TRENDY models likely underestimate carbon uptake (i.e., have a too small NEE) at

Table 4. The 10 TCCON Stations in This Study

Name Country Start Time Lat Lon Altitude (km)

Bialystok Poland 3/2009 53.23 23.03 0.18
Bremen Germany 7/2004 53.10 8.85 0.027
Garmisch Germany 7/2007 47.48 11.06 0.74
Izaña Tenerife 5/2007 28.30 �16.50 2.37
JPL USA 7/2007 34.202 �118.175 0.21
Lamont USA 7/2008 36.60 �97.49 0.32
Orleans France 9/2009 47.97 2.11 0.13
Park USA 5/2004 45.95 �90.27 0.44
Sodankylä Finland 1/2009 67.37 26.63 0.18
Tsukuba Japan 12/2008 36.05 140.12 0.03
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forest sites. There may also be a bias from the mix of different PFT present in a model grid cell when compared
to mono-PFT site data, an error that could be reduced in future studies by archiving fluxes of each PFT in future
comparison projects.
3.2.2. RMSE of Monthly NEE
The median RMSE of monthly NEE across sites is 0.9 ±0.6–1.1±0.6 gCm�2 d�1 for all the models and is close to
the median RMSE of the average of the models (0.9 ±0.7 gCm�2 d�1). It is more than twice as good as the RMSE
of daily NEE (see Chevallier et al. [2012], in the case of ORCHIDEE). The RMSE of monthly MTE-NEE is of similar
magnitude, i.e., larger than 1.0gCm�2 d�1 at seven out of the 16 flux sites. The median RMSE of MTE-NEE across
sites is 0.9±0.5 gCm�2 d�1 and is also close to the models’ performance. Across models and flux sites, the
RMSEsys of NEE ranges from 0.2 to 3.9 gCm�2 d�1 and the RMSEunbias of NEE ranges from 0.2 to 3.4 gCm�2 d�1.
The RMSEsys of NEE is thus almost equal to the RMSEunbias of NEE for most models (Figure S3, except OCN, TRI,
and VEGAS). Overall, all models have similar magnitudes of NEE RMSE and do not performwell at simulating NEE
at most flux sites.

Generally, RMSE of monthly NEE has a similar magnitude than RMSE of monthly GPP for all models. There is
a significant positive correlation between median RMSE of GPP andmedian RMSE of NEE (Figures 6 and S5).
Comparing the RMSE of GPP and of NEE for different PFTs, the models (from their median RMSE) have a
lower RMSE of GPP and NEE for evergreen needleleaf forest than for deciduous broadleaf forest and
cropland sites (Figure 6). There is also a positive correlation of biases between GPP and NEE, even though
an overestimated GPP can be partially compensated by an overestimated respiration in some models like
CLM4C, LPJ, LPJ_GUESS, and ORCHIDEE.

Figure 2. Observed (black), modeled and MTE-GPP at the 16 flux sites listed in Table 2. (from left to right) The first to fourth
columns gather flux sites from North America, Europe, Russia, and East Asia, respectively. (from top to bottom) The first to
third rows show forest flux sites, the fourth row shows grassland flux sites, and the fifth row shows cropland flux sites.
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3.2.3. Amplitude Bias of NEE
The amplitude bias of NEE shows different patterns across sites and models (Figure S4). Across sites, the
amplitude bias of NEE varies from �7.0 to 5.3 gCm�2 d�1. The median amplitude bias of NEE across sites
ranges from �1.9 ± 2.0 gCm�2 d�1 in TRI to 1.4 ± 2.6 gCm�2 d�1 in CLM4C. CLM4C, LPJ, ORCHIDEE, and
SDGVM have a positive amplitude bias at more than eight sites (Figure S3), i.e., these models overestimate
NEE in summer (toomuch uptake) and underestimate it in winter (too much respiration). The high bias of GPP
in CLM4C, LPJ, and ORCHIDEE (Figure S2) may propagate to a bias in simulated NEE, causing an overestimated
summer NEE (too little uptake). In contrast, SDGVM underestimates summer GPP and overestimates NEE
(too much uptake), which indicates underestimated summer respiration together and overestimated
winter respiration resulting in overestimated amplitude of NEE at most flux sites in SDGVM (Figure 4).
3.2.4. Phase Bias of NEE
The magnitude of phase bias in NEE at most sites is larger than 10 days. The median phase bias of NEE across
sites is less than 10 days in five out of the nine models (Figure S4). LPJ_GUESS and SGDVM have a negative
phase bias at most sites. The phase bias of NEE averaged across models is negative at most sites, and it is
smaller at forest sites than that at cropland and grassland sites (Figure S4). The median phase bias of average
modeled NEE across models is of �6 ± 40 days. By comparison, the median phase bias of MTE-NEE is of
5 ± 40 days.

4. Hemisphere-Scale Results
4.1. Average GPP

Figure 7 shows the mean seasonal cycle of GPP north of 25°N compared with MTE-GPP as a reference. Seven
out of the nine models simulate GPP larger than MTE-GPP during spring and autumn (except TRI and VEGAS),
which is consistent with the comparisonwith FLUXNET data at the site level. Nine out of ninemodels (except TRI
and VEGAS) simulate a larger mean monthly GPP than MTE-GPP (Figure 7). The mean bias of modeled GPP
compared with MTE-GPP varies from �0.4 gCm�2 d�1 in VEGAS to 0.6 gCm�2 d�1 in LPJ. Most models
underestimate the amplitude of GPP compared with MTE-GPP except LPJ (Figure 7).

4.2. Average NEE

All models simulate a higher-average NEE compared with MTE-NEE by about 0.2/0.1 gCm�2 d�1 (models have
less uptake than MTE, consistent with the finding that themean value of NEE is of 0.09± 0.02 gCm�2 d�1 north

Figure 3. The mean bias and RMSE of monthly GPP at the 16 flux sites listed in Table 2. (left) The mean GPP bias and (right)
the RMSE of monthly GPP. The last two rows in the two panels indicate the median and standard deviation (SD) of mean
bias or RMSE of GPP across the 16 flux sites.
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of 25°N [Peylin et al., 2013]). Mostmodels simulate a higher NEE thanMTE-NEE both in summer (too little uptake)
and winter (overestimated winter respiration). The difference in minimum monthly NEE between the models
and MTE-NEE is positive in seven out of nine models (except CLM4C and SDGVM), with a range from
�0.4 gCm�2 d�1 in SDGVM to 0.7 gCm�2 d�1 in LPJ and TRI. CLM4C and SDGCM simulate larger amplitude of
NEE than MTE-NEE, by 0.7 gCm�2 d�1 and 1.1 gCm�2 d�1 respectively (Figure 7). In contrast, the other seven
models simulate smaller amplitude than MTE-NEE over the entire northern domain (�0.9 to�0.1 gCm�2 d�1).

4.3. Spatial Patterns of GPP

The spatial patterns of GPP in LPJ, LPJ_GUESS, and ORCHIDEE show higher GPP thanMTE-GPP inmost areas of
the Northern Hemisphere (Figure S6). The other six models (CLM4C, CLM4CN, OCN, SDGVM, TRI, and VEGAS)
have mixed positive and negative regional GPP biases compared with MTE-GPP (Figure S6). For GPP
amplitude, CLM4C, CLM4CN, OCN, SDGVM, and VEGAS simulate a lower GPP amplitude than MTE-GPP over
Siberia. LPJ, LPJ_GUESS, and ORCHIDEE simulate a higher GPP amplitude than MTE-GPP over North
America and southwest of Asia. In addition, most models have a negative phase bias of GPP over south of
Asia and a positive phase bias of GPP over Siberia (Figure S7).

4.4. Spatial Patterns of NEE

All models have very similar spatial distributions of the NEE difference with MTE-NEE. Models produce
larger NEE than MTE-NEE over Europe, east of Siberia, south of China, and southeast of North America and
smaller values over north of Canada and southwest of Asia than JU11 (Figure S8). For the amplitude of NEE,

Figure 4. Observed (black), modeled, and MTE-NEE at the 16 flux sites listed in Table 2. Negative NEE indicates carbon
uptake. (from left to right) The first to fourth columns gather flux sites from North America, Europe, Russia, and East
Asia, respectively. (from top to bottom) The first to third rows show forest flux sites, the fourth row shows grassland flux
sites, and the fifth row shows cropland flux sites.
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CLM4, CLM4CN, LPJ, LPJ_GUESS, ORCHIDEE, and SDGVM simulate larger amplitude than MTE-NEE, while
OCN and TRI simulate smaller amplitude in most areas of the Northern Hemisphere (Figure S9). In addition,
LPJ_GUESS and SDGVM simulate an earlier NEE phase (<�20 days) than MTE-NEE, and other models have
patchy patterns of earlier and a later phase than MTE-NEE (Figure S9) but with a consistent earlier phase
than MTE-NEE over western Russia and boreal North America.

5. Comparison With Atmospheric CO2 Seasonal Cycle
5.1. Surface Stations CO2

Figure 8 shows the comparison between the observed seasonal cycle of atmospheric CO2 and NEE of each
model including MTE-NEE after transport by LMDZ4 at 15 stations. Most simulations capture the shape
of the seasonality of atmospheric CO2 mole fractions, except for TRI that shows an opposite seasonality
than observed. Most simulations show a too early CO2 uptake in spring at high-latitude sites ALT, BRW, and
MBC. Across stations, the median amplitude bias of CO2 for all models ranges from �8.8 ± 2.3 ppm to
2.7± 2.8 ppm, with most models underestimating the amplitude of CO2 (except CLM4 and SDGVM) (Figure 10).
Interestingly, the LMDZ4 simulation with MTE-NEE also underestimates the amplitude of CO2 at most stations
(�1.8± 2.0 ppm). CLM4C overestimates the amplitude of CO2 at all stations, and SDGVM overestimates it at
11 out of the 15 sites (except MID, MLO, NWR, and SHM).

The amplitude bias of CO2 for ORCHIDEE significantly and positively correlates with the latitude of the
measurement sites (Figure S10; ORCHIDEE overestimates the seasonal amplitude of atmospheric CO2 by
2–5 ppm at high-latitude sites ALT, BRW, CBA, and MBC but underestimates the amplitude at the
low-latitude site MLO), which suggests that ORCHIDEE overestimates the amplitude of NEE in high-latitude
regions and underestimates it in midlatitude regions. Among the nine models, a positive correlation
between simulated CO2 amplitude bias and latitude is found in four models (Figure S11; CLM4C, LPJ,
ORCHIDEE, and SDGVM), and this correlation is significant for ORCHIDEE and SDGVM, which is consistent
with the spatial distribution of the difference between NEE of models and MTE-NEE (Figure S8), even
though the amplitude of MTE-NEE is more underestimated at high-latitude stations than at midlatitude
ones. Note that the negative amplitude bias of CO2 for MTE-NEE at all stations suggests that this product
underestimates the NEE amplitude (Figure 10), which raises a caution flag when using it for evaluation
of models.

Figure 5. The mean bias and RMSE of monthly NEE at the 16 flux sites listed in Table 2. (left) The mean NEE bias and (right)
the RMSE of monthly NEE. The last two rows in the two panels indicate the median and standard deviation (SD) of mean
bias or RMSE of NEE across the 16 flux sites.
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5.2. XCO2

The comparison of the LMDZ4 simulations
with TCCON column measurements also
shows earlier CO2 uptake in spring for most
models (Figure 9), like at surface stations.
Across the 10 TCCON sites, the XCO2
amplitude is overestimated by CLM4C and
SDGVM and underestimated by the other
models (Figure 10). CLM4C simulates higher
carbon release from the biosphere by winter
respiration and higher CO2 uptake in
summer. SDGVM simulates higher CO2

uptake in summer (Figure 9). Across the
10 TCCON sites, the XCO2 amplitude is
overestimated by 3.0 ± 3.7 ppm in CLM4C
and 2.1 ± 2.3 ppm in SDGVM. The XCO2

amplitude is moderately underestimated by �1.2 ± 2.0 ppm in CLM4CN, �1.8 ± 1.9 ppm in ORCHIDEE,
and �1.2 ± 1.4 ppm in VEGAS. In LPJ, LPJ_GUESS, OCN, and TRI, the XCO2 amplitude is underestimated by
�4.2 ± 1.8 ppm, �2.4 ± 1.9 ppm, �4.0 ± 1.3 ppm, and �6.0 ± 1.6 ppm, respectively. MTE-NEE produces a
larger than observed XCO2 amplitude at four out of the 10 TCCON sites, and the median XCO2 amplitude bias
for this product is �0.3 ± 1.3 ppm.

The seasonal CO2 amplitude during the period 2009–2011 was underestimated in five CMIP5 models and
overestimated in three Coupled Model Intercomparison Project Phase 5 (CMIP5) models [Graven et al.,
2013]. Two models (CLM4CN and ORCHIDEE) in this study were used as land surface models in CMIP5
(part of the CCSM4 and IPSL-CM5A-MR Earth System Models, respectively) [Graven et al., 2013]. In our
study, CLM4CN underestimates the seasonal CO2 amplitude at the boreal surface CO2 sites, but ORCHIDEE
overestimates the seasonal CO2 amplitude at these sites. These results are consistent with underestimation
and overestimation in seasonal CO2 amplitude over 45°N–90°N in CCSM4 and IPSL-CM5A-MR, respectively,
as found by Graven et al. [2013], despite the fact that in our study models are forced by observed climate,

whereas in Graven et al. [2013] they were
forced by (biased) general circulation
model climate. This bias of seasonal
CO2 amplitude and its changes in the
models show the limited ability of
predicting future land carbon sinks [e.g.,
McGuire et al., 2001; Graven et al., 2013],
suggesting that improved seasonal
cycle of NEE and its changes are needed
in the future.

The phase bias of XCO2 is negative for
CLM4C, CLM4CN, LPJ_GUESS, ORCHIDEE,
SDGVM, TRI, and VEGAS but positive for
LPJ and OCN at most sites (Figure 10).
Across surface sites and TCCON sites, the
median phase bias of CO2 seasonality is
negative in seven out of nine models
(except LPJ and OCN; Figure 10), which
results from an earlier-than-observed
drawdown of atmospheric CO2 in spring
(Figures 8 and 9). Themedian phase bias of
XCO2 across all the sites is less than 11days
in most models (except LPJ_GUESS,

Figure 6. The relationship betweenmedian RMSE of monthly GPP and
NEE for the nine terrestrial ecosystem models across the 16 flux sites.

Figure 7. The seasonal cycle of (a) GPP and (b) NEE over land north of 25°N.
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SDGVM, and TRI). The phase bias of CO2 for JU11 is negative at most sites and less than 10days, themedian phase
bias of CO2 for JU11 is �7±9days.

6. Synthesis of Systematic GPP and NEE Errors Across Scales

Generally, themedian of amplitude bias of GPP (NEE) at the 16 flux sites significantly and positively correlated
with the amplitude bias of the MTE-GPP (NEE) across the models (Figure S12). The median of amplitude bias
of NEE at the 16 flux sites also significantly correlated with the median of the amplitude bias of the CO2

seasonal cycle at the 25 surface stations and TCCON CO2 sites. This suggests that evaluation of modeled GPP
andNEE at the 16 flux sites in this study is broadly representative ofmodel performance at large scale. However,
there are still some discrepancies between the comparison at flux sites versus the MTE products for some
models. This suggests that both flux data and data products representing large scale (MTE products and CO2

concentration) are needed to evaluate the performance of models because they cover different scales.

Over the Northern Hemisphere, the amplitude of modeled GPP spans a large range (1.6–5.1 gCm�2 d�1),
while the amplitude of MTE-GPP is of 4.4 ± 0.3 gCm�2 d�1. The amplitude of modeled NEE over land north of
25°N spans a range from 0.7 gC m�2 d�1 to 2.5 gC m�2 d�1. At large scale, the amplitude of NEE significantly
correlates with the amplitude of simulated XCO2 across models for each TCCON site. Figure 11 shows the
correlations between the amplitude of NEE north of 25°N and XCO2 across models at two TCCON sites
(Bremen and Park Falls; see Table 4) to illustrate this. The amplitude of modeled NEE explains 92% and 88% of
the cross-model variation in the amplitude of simulated XCO2 at Bremen and Park Falls, respectively. If we use

Figure 8. Observed and modeled averaged CO2 seasonal cycle at the 15 atmospheric CO2 concentration measurement
sites listed in Table 3.
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Figure 9. Observed and modeled averaged CO2 seasonal cycle at the 10 TCCON sites listed in Table 4.

Figure 10. The amplitude and phase bias of modeled averaged CO2 seasonal cycle in comparison to observed averaged
CO2 seasonal cycle at the 15 atmospheric CO2 concentration measurement sites and 10 TCCON sites listed in Tables 3
and 4, respectively. (left) The amplitude bias and (right) the phase bias. The last two rows in the two panels indicate the
median and standard deviation (SD) of amplitude bias or phase bias among the 25 sites.
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the observed amplitude of XCO2 at
Bremen (8.6 ± 0.8 ppm) or Park Falls
(8.9 ± 0.8 ppm) to estimate the
amplitude of NEE (the intersection
point by solid black line and dot line in
Figure 11), we get a constrained
amplitude of NEE of 1.8 ± 0.2 gC
m�2 d�1 and 1.9 ± 0.2 gC m�2 d�1 for
Bremen and Park Falls, respectively.
Because the footprint of each TCCON
site relative to continental-scale NEE
may be different from each other and
smaller than the whole Northern
Hemisphere, the average of the
TCCON-constrained amplitude of NEE
is of 1.6 ± 0.4 gC m�2 d�1 across the
10 TCCON sites, which is a little larger
than the amplitude of MTE-NEE
(1.5 ± 0.2 gC m�2 d�1). The uncertainty
of amplitude of NEE across the nine
models (±0.7 gC m�2 d�1) is reduced by
~40% by TCCON-constrained method.

The mean carbon uptake during the
growing season over the Northern
Hemisphere (April to September)
estimated from MTE-NEE is 7.6 ± 2.0 Pg
C yr�1. Considering that MTE-NEE
underestimates the average amplitude
of XCO2 across the 10 TCCON sites by
~4± 26% with LMDZ4, the total carbon
uptake during the growing season over
Northern Hemisphere adjusted by
scaling MTE-NEE by a factor 1.04 ± 0.26
is of 7.9 ± 2.0 Pg C yr�1. By comparison,
the carbon uptake during the growing
season was estimated to be 7.9 Pg C
yr�1 using the CASA modeled NEE

transported with 12 TransCom 3 experiment models [Gurney et al., 2003] and Park Falls XCO2 by Yang et al.
[2007], which is exactly the same number than our estimation from the LMDZ4 model but our estimation
covers five more latitude degrees.

For the phase of XCO2 at the TCCON sites, most models simulate an earlier drawdown of XCO2 than observed
(except for LPJ and OCN) (Figure 10). The phase of modeled NEE over the Northern Hemisphere significantly
correlates with the phase of XCO2 simulated by LMDZ4 across models at all the TCCON sites (R= 0.77–0.96,
P< 0.01). Figure 12 shows an example of the significantly positive correlation between the phase of NEE
and phase of XCO2 at Bremen (R2 = 0.92, P< 0.001) and Park Falls (R2 = 0.96, P< 0.001) sites. Constraining
the phase of NEE using the phase of XCO2 observed at the 10 TCCON sites, the constrained phase of NEE is
356 ± 12 days, i.e., the peak of NEE over Northern Hemisphere occurs at 174 ± 12 days.

7. Discussion and Conclusions

Using GPP and NEEmeasured at 16 FLUXNET sites distributed in the Northern Hemisphere across different PFTs,
gridded GPP, and NEE products upscaled from flux sites by MTE, and atmospheric CO2 measurements at surface
sites and averaged over the atmospheric column at TCCON sites, we evaluated the seasonality of GPPandNEE of

Figure 11. Amplitude of modeled NEE over the land north of 25°N versus
amplitude of XCO2 measured at (a) Bremen and (b) Park Falls (TCCON
sites). The dot line shows the linear regressed line across the nine models.
The black point indicates MTE-NEE. The black solid line is the amplitude of
observed XCO2, with 1 standard deviation as the gray shade.
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the nine terrestrial ecosystem models
from the TRENDY intercomparison
project. Seven models out of the nine
have a bias to overestimate GPP and
have an earlier start of GPP in spring at
most flux sites. However, all models
estimate higher NEE in most flux sites.
Generally, the models perform better at
evergreen needleleaf forest flux sites
than at deciduous broadleaf forest,
grassland, and cropland sites. The errors
in simulated GPP propagate to errors
in simulated NEE. Over the Northern
Hemisphere, five models out of the nine
models simulate higher-average
monthly GPP than MTE, especially in
spring and autumn. This overestimated
GPP in some models may reflect the
lack of nutrient limitations on GPP in
some models [Bonan et al., 2012; Guenet
et al., 2013]. Although some models
overestimate GPP, seven out of the nine
models underestimate the seasonal
amplitude of NEE, which points out to an
overcompensation of the GPP positive
bias by a larger positive bias in ecosystem
respiration and disturbance-induced
CO2 emissions. All models simulate less
update than MTE over the Northern
Hemisphere by 0.2/0.1 gC m�2 d�1.

The comparison with atmospheric CO2,
with the help of a transport model, also
shows the underestimated amplitude
of CO2 at most sites for seven out of
the nine models (except CLM4C and
SDGVM), which confirms that most

models underestimate the Northern Hemisphere carbon uptake, and even more so during the carbon uptake
period. The too small NEE seasonal amplitude in models can result from missing processes. On the one hand,
models may underestimate NEE due tomissing disturbance inmodels such as insects, windthrow, or small fires.
If these disturbances emit CO2 in the growing season, including them in models should further decrease the
amplitude of simulated NEE. On the other hand, harvest of crop and wood biomass and the oxidation of
harvested products causing CO2 emissions with a nonseasonal profile are not systematically incorporated in
models [e.g., Zeng et al., 2014]. Including these processes [Ciais et al., 2007] would tend to increase the seasonal
amplitude of NEE.

The overestimated ecosystem respiration during the growing season could also be one important reason for the
lower amplitude of NEE. A high bias of heterotrophic respiration can be related to the parameterization of the
temperature sensitivity and asymmetric response to daytime and nighttime temperature [Peng et al., 2013], as
well as the turnover rate and storage of labile carbon pools that determine the seasonal cycle of heterotrophic
respiration. For instance, in CLM4, Bonan et al. [2012] compared the decomposition rate of litter with observations
at many sites and concluded too high decomposition of litter pools, which is consistent with too high
respiration. If this bias of CLM4 is also common to other models, then it could explain why the NEE amplitude
tends to be underestimated while the GPP amplitude is overestimated. Evaluation of models against soil C
incubation data [Moyano et al., 2012] and field studies of litter decomposition should bring clues to this problem.

Figure 12. Phase of modeled NEE over the land north of 25°N versus
phase of XCO2 measured at (a) Bremen and (b) Park Falls (TCCON sites).
The dot line shows the linear regressed line across the nine models. The
black point indicates MTE-NEE. The black solid line is the phase of
observed XCO2, with 1 standard deviation as the gray shade.
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The bias in biomass of models could also introduce a positive bias in autotrophic respiration, because
models that do not describe forest harvest and disturbance tend to overestimate biomass and thus
autotrophic respiration. Thus, comparison with storage and turnover rate of soil organic carbon and
biomass [e.g., Todd-Brown et al., 2013] should be included in future systematic benchmarks alongside with
evaluation of heterotrophic respiration against in situ and field data. These improvements can be valuable
to get better seasonal NEE amplitude and could enhance the prediction in coupled models [Graven
et al., 2013].

We also note that a common bias of most models is that they underestimate harvest by humans and do not
include the lateral export of carbon from soils by erosion and the fraction of soil C transferred to rivers.
Regnier et al. [2013] estimated that an amount of 1.9 PgC yr�1 was transferred from soil to rivers. Quinton
et al. [2010] estimated an additional 0.5 PgC yr�1 erosion of agricultural soil carbon, which could be not
available for seasonal soil heterotrophic respiration. In addition, crop harvest [Ciais et al., 2007] and wood
harvest also decrease available litter for heterotrophic respiration. Models ignore all or part of these
processes, and it is thus logical that despite their GPP being high biased, their respiration has an even larger
positive bias.

Northern Hemisphere TCCON sites further suggest that the amplitude of XCO2 is underestimated by 4% for
MTE and by more than 10% for seven out of the nine models. Using observed amplitude of XCO2 at the 10
TCCON sites, the amplitude of NEE over the Northern Hemisphere was estimated at 1.6 ± 0.4 gC m�2 d�1,
which corresponds to an uptake during the growing season of 7.9 ± 2.0 Pg C yr�1.
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