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Abstract we evaluated the seasonality of CO; fluxes simulated by nine terrestrial ecosystem models of the
TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange
(NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated
GPP (MTE-GPP) and MTE-NEE obtained by interpolating many flux tower measurements with a machine-learning
algorithm, (3) atmospheric CO, mole fraction measurements at surface sites, and (4) CO, total columns (Xco5)
measurements from the Total Carbon Column Observing Network (TCCON). For comparison with
atmospheric CO, measurements, the LMDZ4 transport model was run with time-varying CO, fluxes of each
model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude
of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine
models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE.
Comparison with surface atmospheric CO, measurements confirms that most models underestimate the
seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with
TCCON data also shows that the seasonal amplitude of Xco; is underestimated by more than 10% for seven
out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the
TCCON data using LMDZ4. From CO, columns measured routinely at 10 TCCON sites, the constrained
amplitude of NEE over the Northern Hemisphere is of 1.6+ 0.4 gCm~2d ™", which translates into a net CO,

uptake during the carbon uptake period in the Northern Hemisphere of 7.9+ 2.0 PgC yr™".

1. Introduction

Terrestrial ecosystem models are used to assess the impacts of climate change on ecosystems [e.g., Ciais et al.,
2005; Friedlingstein et al., 2006; Sitch et al., 2008; Piao et al., 2013]. However, model results are still plagued by

large uncertainties, as evidenced by their spread in intercomparison exercises [Friedlingstein et al., 2006; Sitch

et al,, 2008; Le Quere et al,, 2009; Todd-Brown et al., 2013; Graven et al.,, 2013]. Comparison of terrestrial ecosystem
models against observation helps to document their systematic errors for current conditions [e.g., Cadule et al.,
2010; Randerson et al., 2009; Maignan et al.,, 2011; Zhao et al., 2012; Luo et al., 2012; Kelley et al., 2013] and can
also give heuristic constraints about their projections for the future [Cox et al.,, 2013; Stegehuis et al., 2013].

Terrestrial CO, fluxes vary temporally from diurnal, seasonal, interannual, and longer time scales and spatially
across climate and vegetation zones [Keeling et al., 1996; Heimann et al., 1998]. Eddy covariance measurements
of continuous ecosystem-atmosphere CO, exchange are available for a large number of sites globally.

These local data are a valuable tool for model development and validation. For example, Stoeckli et al. [2008]]
used 15 flux sites to identify terrestrial water storage and carbon-nitrogen and deficiencies in CLM3.0 and
showed improvement of those processes in CLM3.5. Randerson et al. [2009] used 74 flux sites across different
ecosystems (e.g., tundra, needleleaf/broadleaf evergreen/deciduous forests) from Ameriflux sites to evaluate
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the performance of two models (CASA and CLM-CN). Richardson et al. [2012] showed a systematic bias toward
too early photosynthesis for an ensemble of 14 terrestrial ecosystem models evaluated at 10 North American
flux tower sites. Systematic errors in modeling the onset of GPP were shown to propagate into errors in the
phase of NEE by Wang et al. [2012]. It is interesting to test whether a bias of the phase of GPP attenuates
(i.e., compensated by a bias of respiration of opposite sign) or amplifies bias in the phase of NEE, especially
for models that couple GPP with respiration on subannual time scales though short-lived carbon pools.

At large spatial scale, the measurements of atmospheric CO, mole fractions are valuable data to test NEE from
ecosystem models (which allow propagating these fluxes through atmospheric inversion). Nemry et al. [1999]
used an atmospheric transport model and 25 atmospheric CO, monitoring stations to evaluate NEE across
eight terrestrial biosphere models and showed that the simulated seasonality of atmospheric CO, was poor
in the Southern Hemisphere. Cadule et al. [2010] evaluated three coupled climate carbon cycle models based on
a series of metrics qualifying skills of model for the long-term trend, the seasonal cycle, the interannual
variability of atmospheric CO,, and the sensitivity of atmospheric CO, growth rate to climate variability. The
seasonal cycle of CO,, dominated by terrestrial exchange, provides an integrated constraint about the phase
and amplitude of NEE in the Northern Hemisphere. Cadule et al. [2010] found that the seasonal CO,
amplitude at Mauna Loa (MLO) was underestimated in two out of the three coupled models. Kelley et al.
[2013] found an earlier atmospheric CO, drawdown and timing of minimum for three terrestrial ecosystem
models at Northern Hemisphere stations.

Besides CO, measurements made at the ground-level, ground-based remote sensing of column-averaged dry
air mole fraction of CO, (Xco,) from the Total Carbon Column Observing Network (TCCON) [Wunch et al., 2011]
were also used to evaluate the large-scale seasonality of NEE from terrestrial ecosystem models by Yang et al.
[2007] and Messerschmidt et al. [2013]. TCCON data have also been used to optimize the NEE from the
ORCHIDEE model using an atmospheric inversion [Chevallier et al., 2011]. The seasonality of TCCON Xco; is
sensitive to the seasonality of NEE at continental to hemispheric scales, while the seasonal cycle of CO, in the
boundary layer CO, is sensitive to both regional NEE fluxes and continental to hemispheric fluxes [Kaminski
et al., 1996; Keppel-Aleks et al., 2012].

In this study, we used (1) local eddy covariance CO, fluxes from selected sites as in Randerson et al. [2009],
(2) large-scale gridded products MTE-GPP and MTE-NEE obtained from a set of eddy covariance measurements
(253 sites) by a machine-learning algorithm [Jung et al., 2011], (3) atmospheric CO, mole fraction in the
boundary layer; and (4) Xco, from TCCON [Wunch et al., 2011] to test the seasonal cycle of GPP and NEE from
nine terrestrial ecosystem models run in the TRENDY project (dgvm.ceh.ac.uk) [Sitch et al., 2013]. The testing of
TRENDY models NEE with (3) and (4) involves the use of a 3-D atmospheric tracer transport model to transform
NEE into 4-D CO, concentration fields. To this aim we used the LMDZ4 transport model from the Laboratoire
de Météorologie Dynamique [Hourdin et al., 2006]. We combined the various sets of model-data misfits by
correlating the seasonal biases of the terrestrial models for GPP and NEE from (1) and (2) with the biases of
atmospheric CO, simulated by each terrestrial model coupled to the LMDZ4 atmospheric model in (3) and (4).
We investigated the correlation of model biases across the various evaluation data sets and scales.

In the TRENDY ensemble, three models calculate the seasonality of NEE (using hereafter the definition of
Hayes et al. [2012]) from the imbalance between GPP and ecosystem respiration, five models additionally
simulate explicitly fire emissions, and two models have a simple parameterization of biomass harvest and its
subsequent respiration flux. In the real world, the seasonal cycle of NEE (at large scale) is due to these
processes but also accounts for the seasonality of CO, outgassing by rivers, lakes and estuaries [e.g., Raymond
et al.,, 2000], and of CO, emitted by products decaying in landfills and waste, and other processes such as
carbonate formation and dissolution [e.g., Roland et al., 2013] and emission of reduced carbon species that
oxidize to CO, in the atmosphere through chemical reactions [Folberth et al., 2005]. The seasonal amplitude of
these NEE components is not known, some of these fluxes are small, and they were not accounted for in our
study. Further, when comparing with the seasonality of atmospheric CO,, uncertainty on the seasonality of
air-sea fluxes and fossil fuel CO, emissions also adds to uncertain atmospheric transport as a source of bias
in testing NEE [e.g., Peylin et al., 2011].

In section 2, the models, data sets, and evaluation metrics are described. The results of the comparison for
GPP and NEE between models and flux measurements are shown in section 3. In section 4, modeled GPP and

PENG ET AL.

©2014. American Geophysical Union. All Rights Reserved. 47



@AG U Global Biogeochemical Cycles 10.1002/2014GB004931

Table 1. Nine TRENDY Models (http://www-Iscedods.cea.fr/invsat/RECCAP/V2)

Model Name Abbreviation Spatial Resolution Period Reference

Community Land Model 4C CLM4C 2.5°x% 1.875° 1901-2009 Oleson et al. [2010] and Lawrence et al. [2011]
Community Land Model 4C CLM4CN 2.5°% 1.875° 1901-2009 Oleson et al. [2010] and Lawrence et al. [2011]
Lund-Postdam-Jena LPJ 0.5°x 0.5° 1901-2009 Sitch et al. [2003]

LPJ_GUESS LPJ_GUESS 0.5°x 0.5° 1901-2009 Smith et al. [2001]

ORCHIDEE ORCHIDEE 0.5°%x 0.5° 1901-2009 Krinner et al. [2005]
ORCHIDEE-CN OCN 3.75°%x 2.5° 1901-2009 Zaehle et al. [2010] and Zaehle et al. [2010]
Sheffield-DGVM SDGVM 3.75°x 2.5° 1901-2009 Woodward et al. [1995]

TRIFFID TRI 3.75°x 2.5° 1901-2009 Cox et al. [2000]

VEGAS VEGAS 0.5°x0.5° 1901-2009 Zeng et al. [2005]

NEE in the Northern Hemisphere are compared with gridded MTE-GPP and MTE-NEE data products
[Jung et al., 2011]. Comparison between modeled and observed atmospheric CO, concentration is shown
in section 5. Correlation of systematic errors attached to the seasonality of GPP and NEE across scales is
discussed in section 6. Section 7 concludes this study.

2. Methods

2.1. Terrestrial Ecosystem Models

We evaluated monthly GPP and NEE (negative value indicates carbon uptake) simulated by the nine TRENDY
models of Table 1 (TRENDY, http://dgvm.ceh.ac.uk/, accessed 11 July 2013). We used the configuration S2 of
TRENDY, in which models are driven by rising atmospheric CO, concentration and climate change from 1901 to
2010, without land use change CO, emissions.

2.2. Observations

We selected 16 sites from the FLUXNET database (www.fluxdata.org) that span diverse vegetation types in
temperate, boreal, and arctic regions over the Northern Hemisphere. The representativeness of a flux tower site
with respect to the model processes to be evaluated is difficult to define. Since the TRENDY models do not
account for local disturbance and site history, we have chosen FLUXNET data from ecosystems far from their last
disturbance. The selected sites also have long records, in order to calculate a robust mean seasonal cycle of NEE
and GPP. The location, vegetation type, climate type, and data available period of the 16 sites are listed in
Figure 1 and Table 2. For each flux site, continuous half-hourly GPP and NEE (negative value indicate carbon
uptake) during the measurement period have been quality controlled and gap filled using the method of
Papale et al. [2006] and Moffat et al. [2007]. GPP from each flux site was separated from NEE with the algorithm
developed by Lasslop et al. [2010], which combines temperature sensitivity of respiration and vapor pressure
deficit limitation and light response of photosynthesis. The uncertainty of monthly GPP and NEE at flux sites are
~03gCm2d~"and ~0.4 gCm2d™", respectively [e.g., Papale et al., 2006; Lasslop et al., 2010].

We also use an observation-driven global monthly gridded GPP, NEE statistical model (hereafter referred to as
MTE-GPP and MTE-NEE) derived from FLUXNET measurements (not restricted to the 16 sites of the previous
paragraph but global 253 flux sites) by statistical upscaling [Jung et al., 2011]. The statistical MTE model
integrates remote-sensing indices, climate and meteorological data, and information on land cover. The
resulting product has a spatial resolution of 0.5°x 0.5° and covers the period from 1982 to 2011. The typical
uncertainty of MTE-GPP and MTE-NEE are ~46 gC m™2yr~' (5%) and ~37 gC m~2yr~' (28%), respectively,
which are defined as the standard deviation of the 25 model tree ensembles (from the MTE algorithm)
[Jung et al., 2011].

It should be noted that the uncertainty of MTE-NEE is larger than that of MTE-GPP and that disturbance related
CO, emissions in MTE-NEE calculation are not included. Further, MTE-NEE shows a large positive bias over the
Northern Hemisphere or globe (NEE is 4.9+ 0.4 PgC yr~' north of 25°N) compared to the terrestrial CO, sink
[Peylin et al., 2013], and we do not know if this bias is constant or seasonally variable. We also used atmospheric
CO, observations to evaluate NEE at large scale. We selected atmospheric CO, records from 15 Northern
Hemisphere boundary layer sites from the NOAA global cooperative air sampling network (http://www.esrl.
noaa.gov/gmd/ccgg/globalview/). The amplitude and phase of the seasonal cycle of atmospheric CO, relates to
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Figure 1. The location of 16 FLUXNET sites (filled circles with different colors indicate vegetation type), 15 flask and continuous
atmospheric CO, measurement sites (green triangle), and 10 TCCON sites (green square).

NEE influencing each station through atmospheric transport, and the “footprint” range of each atmospheric
station depends on the location of the measurement station and transport fields [Cadule et al., 2010]. The
locations and measurement periods of the atmospheric CO, mole fraction measurement sites are listed in
Figure 1 and Table 3. The model fluxes are compared to CO, mole fraction measurements through the
simulation of atmospheric transport by the LMDZ4 model. Total column CO, concentration (Xco,) observations
are obtained from 10 TCCON stations (Figure 1 and Table 4) [Wunch et al.,, 2011]. Xco, measurements are taken
during clear-sky daytime, from the direct solar spectra [Wunch et al., 2011]. The uncertainty of observed Xco,
from TCCON sites is less than 0.25% (defined as 1 standard deviation, less than 1 ppm) and 0.1% under clear-sky
conditions [Wunch et al., 2011].

2.3. Analysis

We aggregated half-hourly GPP and NEE measurements at each site into monthly mean values and
computed the local mean seasonal cycle of GPP and NEE over the measurements (Table 2). GPP and NEE
from all the plant functional types (PFT) present in a grid cell have been summed together in the TRENDY
model output (i.e., PFT specific fluxes were not archived separately by modelers). To compare this
PFT-weighted climatological-simulated GPP and NEE with each flux site, we first searched for the closest
model grid cell dominated by the observed PFT of each site and then sampled the monthly modeled GPP
and NEE during the same period of flux site measurements for this “closest grid cell” in each ecosystem
model. The comparison between grid scale and observation from flux site suggests a systematic error other
than vegetation cover difference or resolution [Raczka et al., 2013]. For the Northern Hemisphere scale
(>25°N), a comparison between TRENDY models and the MTE products was analyzed, using area-weighted
GPP and NEE.

We used the 3-D atmospheric transport model LMDZ4 of Hourdin et al. [2006], nudged to horizontal winds
analyzed by the European Centre for Medium-Range Weather Forecasts, to transport modeled NEE (if fire and
harvest were included in models, then carbon flux from fire and harvest were also accounted for in NEE).
Ocean flux and fossil fuel emission were included in the transport simulations to produce monthly CO, mole
fractions at each station. Because NEE is monthly, covariance between NEE and transport at diurnal [Denning
et al,, 1996] and synoptic time scales causing monthly CO, gradients, is not accounted for. The air-sea CO, flux
prescribed to LMDZ4 is from the climatology Takahashi et al. [2009], and fossil fuel emission are from
EDGARV4 (http://edgar.jrc.ec.europa.eu/index.php#) adjusted by Carbon Dioxide Information Analysis Center
annual country totals [Boden et al., 2012]. These emissions are assumed to have no seasonality and are all
injected in the first model layer (thickness 70 m). The version of LMDZ4 that was used has a horizontal
resolution of 3.75° longitude x 2.5° latitude and 19 vertical levels. After simulating 30 min time series of CO,
with LMDZ4 applied to monthly NEE, we used equation (1) to generate a detrended monthly smoothed
seasonal cycle of CO, composed of eight harmonics at each site (to capture the nonsymmetrical seasonal
shape of CO, which has a long winter maximum and a shorter summer minimum).

2
Yy =

6
pixt’+Zp, xsin ((i—2)x2xmxt)
i—0 i

10
+Zpi><cos((i—6)x2><7r><t) )
i=7

where Y'is a smoothed CO, mole fraction including a trend, t is the time unit, and pg — p1¢ are the regressed
parameters. The seasonal cycle is defined by ps — pqo.
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Table 2. Vegetation Type (Veg), Location (Latitude (Lat), Longitude (Lon)), Climatic Type, and Studied Periods of Flux
Sites in This Study?

Site Name Veg Lat (°N) Lon (°E) Climate MAT (°C) MAP (mm) Studied Period
CA-Obs ENF 53.99 —105.12 Boreal 0.8 406 1999-2005
US-Ho1 ENF 45.20 —68.74 Temperate 53 1070 1996-2004
US-Ha1 DBF 42.54 —72.17 Temperate 6.6 1071 1991-2006
US-Bo1 CRO 40.01 —88.29 Temperate 11.0 991 1996-2007
US-Brw WET 71.32 —156.63 Arctic —12.8 86 1998-2002
FI-Hyy ENF 61.85 24.29 Boreal 22 620 1996-2006
FR-Hes DBF 48.67 7.06 Temperate 9.2 793 1997-2006
FR-Lg1 GRA 45.64 2.74 Temperate 83 730 2004-2006
DE-Geb CRO 51.10 10.91 Temperate 8.7 444 2004-2006
RU-Fyo ENF 56.46 3292 Temperate 44 671 1998-2006
RU-Zot ENF 60.80 89.35 Boreal —-33 943 2002-2004
RU-Ha1 GRA 54.73 90.00 Boreal —0.1 592 2002-2004
RU-Che MF 68.61 161.34 Boreal —12.1 609 2002-2005
JP-Tak DBF 36.15 137.42 Temperate 6.5 1024 1999-2004
JP-Tef MF 45.06 142.11 Temperate 57 1000 2001-2005
CN-HaM GRA 37.37 101.18 Arctic —-1.7 567 2002-2004

2ENF, DBF, MF, GRA, CRO, and WET stand for evergreen needleleaf forest, deciduous broadleaf forest, mix forest, grassland,
cropland, and wetland, respectively.

2.4. Metrics

We compared the amplitude and phase of the seasonal cycle between observations and simulations. The
climatological amplitude of the seasonal cycle in GPP, NEE, and atmospheric CO, (see equation (1) above) is
defined as the difference between the maximum and minimum monthly values between January and
December. The phase of the seasonality of the fluxes and of CO, concentration is computed by a fit to the
cosine function.

3 )

2'xwxD — phjx2x

Y:bo-i-ij( " 36;3’ 71') (2)
=

where Y'is GPP, NEE, or CO, mole fraction, D is Julian date of the year, ph,, ph, and phs are the phases of the
seasonality, and by - bs are regressed parameters.

The amplitude bias of modeled GPP, NEE, or CO, mole fraction is defined as the difference between the
amplitude of modeled and observed GPP, NEE, or CO, mole fraction. For the phase bias, we consider only the
phase of the first harmonics (ph, in equation (2)) to show the date of seasonal peak in GPP or NEE. The phase
bias of modeled GPP, NEE, or CO, mole fraction is defined as the difference between modeled and observed
ph;. We also used the mean bias (MB), root mean square error (RMSE), systematic RMSE (RMSE;), and
unbiased RMSE (RMSEpias) to quantify differences between observations and model simulations.
N
> (mi—o)

MB="—1 3)

RMSE = @

RMSE,ys (5)

RMSEunbias (6)
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Table 3. The 15 Atmospheric CO, Mole Fraction Record Stations in This Study

Station name Abbreviation Lat (°N) Lon (°E) Altitude (m) Studied period
Alert ALT 8245 —62.52 210 1985-2010
Barrow BRW 71.32 —156.61 11 1971-2010
Cold Bay CBA 55.21 —162.72 57 1978-2010
Mt. Cimone CMN 44,18 10.70 2165 1979-2006
Cape Kumukahi KUM 19.52 —154.82 8 1976-2010
Mould Bay MBC 76.25 —119.35 58 1980-1997
Mace Head MHD 5333 —9.90 25 1992-2010
Sand Island, Midway MID 28.21 —177.38 8 1985-2010
Mauna Loa MLO 19.54 —155.58 3402 1969-2010
Niwot Ridge NWR 40.05 —105.58 3526 1968-2010
Schauinsland SCH 48.00 8.00 1205 1972-2004
Shemya Island SHM 52.72 174.10 40 1985-2010
Tae-ahn Peninsula TAP 36.73 126.13 20 1990-2010
Ulaan Uul UUM 44.45 111.10 914 1992-2010
Mt. Waliguan WLG 36.29 100.90 3810 1990-2010

where m; and o; are respectively the modeled and observed GPP, NEE, and atmospheric CO, in the ith month;
m; is the predicted value in the ith month by linear regression between modeled and observed GPP, NEE, and

atmospheric CO, (m;=a*o;+ b+¢, where a and b are the regressed parameters, and ¢ is the regression error);
N is set to 12 months.

3. Local Scale Results

3.1. Monthly GPP

3.1.1. Mean Bias of GPP

Figure 2 shows the model-observation comparison for GPP. MTE-GPP is also reported in the figure to show
how this product compares with local measurements and models. CLM4C, CLM4CN, LPJ, LPJ_GUESS, and
ORCHIDEE overestimate GPP for each month of the growing season at most sites, while SDGVM and VEGAS
underestimate GPP. GPP of the five evergreen needleleaf forest sites are better simulated than the grass and
cropland sites [Vuichard et al., 2007].

Figure 3 summarizes the mean bias between modeled and observed site level GPP. The mean bias of
modeled GPP in CLMA4C, LPJ, and ORCHIDEE is positive at more than 12 flux sites out of 16. A positive mean
bias of GPP is also found at 9-10 flux sites in CLM4CN, LPJ_GUESS, OCN, and TRI (Figure 3). In contrast, a
negative mean bias of GPP for SDGVM and VEGAS is found at 13 and 12 out of the 16 flux sites, with the
largest negative bias being found at forest sites (Figure 3).

Although the range of mean bias of GPP across models is large (—2.1-5.0 gC m~2d ™", larger than uncertainty
of measurement), the mean bias of the model ensemble is smaller than 1 gC m~2d ™" except at a deciduous
broadleaf forest site (JP-Tak) and at two grassland sites (FR-Lq1 and RU-Ha1), showing a large diversity of model
results without any systematic pattern among the models for GPP. By contrast, the mean bias of MTE-GPP at
the 16 flux sites ranges from —0.8 gCm~2d™" to 0.9 gC m~2d~", which is closer to measured GPP than the
models (—2.6-5.0 gC m~>d™"). MTE-GPP still has a small average negative bias compared with the 16 flux sites
(except at RU-Zot, JP-Tak, and US-Ha1 sites where the bias is positive). The median of the mean bias of GPP
across the 16 flux sites is positive in seven out of the nine models in Table 1 (except SDGVM and VEGAS), with a
value of —0.6+0.9 gC m~2d ™" (+ standard deviation across the 16 flux sites) in VEGAS to 1.2+ 1.3gCm2d ™"
in LPJ (Figure 3). GPP of the model average is closer to observed GPP than that of any of the nine models
(median of the model average bias of 0.1+0.8 gC m~2d™" across sites). In comparison, the median of the
mean bias of MTE-GPP at the 16 flux sites is —0.2+0.6 gCm~2d ™.

3.1.2. RMSE of Monthly GPP

The RMSE between modeled and measured GPP is generally smaller at evergreen needleleaf forests (ENF)
(the first to fifth rows in Figure 3) than at other flux sites (Figure 3). The median RMSE of monthly GPP across
the 16 flux sites is ~1.5+ 1.0 gC m~2d ™" in eight out of the nine models (except 2.9+ 1.0 gC m~2d ™" in LPJ).
The RMSE,s of GPP has similar magnitude than RMSE of GPP. RMSE npias Of GPP is smaller than RMSE,y of
GPP at most sites, except at the cropland site US-Bo1 (Figure S1 in the supporting information). This suggests
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Table 4. The 10 TCCON Stations in This Study

Name Country Start Time Lat Lon Altitude (km)
Bialystok Poland 3/2009 53.23 23.03 0.18
Bremen Germany 7/2004 53.10 8.85 0.027
Garmisch Germany 7/2007 47.48 11.06 0.74
IzaRa Tenerife 5/2007 28.30 —16.50 237
JPL USA 7/2007 34.202 —118.175 0.21
Lamont USA 7/2008 36.60 —97.49 0.32
Orleans France 9/2009 47.97 2.11 0.13
Park USA 5/2004 45.95 —90.27 0.44
Sodankyla Finland 1/2009 67.37 26.63 0.18
Tsukuba Japan 12/2008 36.05 140.12 0.03

that the nine models capture the shape of the GPP seasonal variation well but with either a high or low bias.
For the cropland sites or managed grassland sites, modeled GPP generally has a larger RMSE,\pias (Figure S1),
likely because the effects of management and other missing processes, such as grazing, specific crop and
pasture phenology, irrigation, and fertilization are not represented in some TRENDY models [e.g., Chang et al.,
2013; Valade et al., 2014; Guanter et al., 2014].

3.1.3. Amplitude Bias of GPP

The amplitude bias of modeled GPP is positively correlated with the mean bias of GPP across the nine models at
all sites (Figure $2). The median of the amplitude bias of GPP across sites ranges from —3.9+2.8 gCm2d ™"
in SDGVM to 1.2+4.2 gCm~2d ™" in LPJ (Figure 52). The median of the amplitude bias of GPP across models
is of —1.6+2.5 gC m~2d~". MTE-GPP also underestimates the amplitude of GPP at 12 out of the 16 flux
sites, with a median amplitude bias of —0.8+1.7gCm~2d™".

3.1.4. Phase Bias of GPP

The median phase bias of GPP across the flux sites for the nine models is small, from —10+ 15 days to

2+ 15 days. Small phase biases (less than 10 days) are found at evergreen needleleaf forest sites for all nine
models, except TRI (Figure S2). CLM4C, CLMA4CN, LPJ_GUESS, ORCHIDEE, and SDGVM have a negative phase bias
of GPP at most sites, related to their earlier start of photosynthesis and earlier-than-observed timing of peak
GPP (Figure 2). The positive GPP phase bias of LPJ and VEGAS is related to a later-than-observed peak GPP,
i.e., a GPP bias during the recession of the growing season, despite an earlier start of photosynthesis in
these two models (Figure 2). The phase bias of MTE-GPP is less than 10 days at 14 out of 16 flux sites (except
US-Brw and RU-Ha1), thus comparable to that of the process models. Models that overestimate GPP
(CLMA4C, CLMA4CN, LPJ_GUESS, LPJ, and ORCHIDEE) generally have an earlier start and a later end of growing
season at flux sites, consistent with the results of Richardson et al. [2012] using 14 models in North America,
among which two models (LPJ and ORCHIDEE) are participating to TRENDY.

3.2. Monthly NEE

3.2.1. Mean Bias of NEE

Figure 4 shows the comparison between modeled and observed NEE at the 16 flux sites. Across all models and
flux sites, the mean bias of NEE ranges from —1.0 gC m~2d~"' to 1.3gCm~2d~" (Figure 5). The mean bias of
NEE is smaller than that of GPP. All models simulate larger (less carbon uptake) than observed NEE, i.e., a
positive mean bias at 13 out of the 16 sites (except at RU-Fyo, ~—0.5gCm~2d™"; RU-Che, ~—0.1gCm~2d ™",
and JP-Tef, ~—0.9gCm~2d ™" where the NEE bias is negative) (Figure 5). The median of mean bias of NEE
across the flux sites ranges from 0.3 +0.5 t0 0.6+ 0.5gCm>d™". The median of mean bias of NEE across all
models is of 0.5+0.5gCm~2d ™. In comparison, the mean bias of NEE for MTE-NEE is less than 0.3 gCm~2d ™"
at 10 out of the 16 flux sites, and the median of mean bias of NEE is 0.0 +0.5gCm~2d™". The positive mean bias
of both GPP and NEE of seven models (except OCN and VEGAS) suggests a systematic overestimation of
respiration, at least in the way the models were run and sampled to match local FLUXNET measurements. Note
that equilibrium ecosystem carbon balance in TRENDY models (long-term mean NEE plus harvest and fire
emissions for those models simulating these fluxes, in each grid point being zero) prevails in the year 1901 from
the spin-up of each model. In contrast, forests where NEE is measured at the FLUXNET sites usually are in a
growing phase and are net annual carbon sinks (unlike modeled mature forests subject only to CO, and climate
forcing). For this reason, the TRENDY models likely underestimate carbon uptake (i.e., have a too small NEE) at
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Figure 2. Observed (black), modeled and MTE-GPP at the 16 flux sites listed in Table 2. (from left to right) The first to fourth
columns gather flux sites from North America, Europe, Russia, and East Asia, respectively. (from top to bottom) The first to
third rows show forest flux sites, the fourth row shows grassland flux sites, and the fifth row shows cropland flux sites.

forest sites. There may also be a bias from the mix of different PFT present in a model grid cell when compared
to mono-PFT site data, an error that could be reduced in future studies by archiving fluxes of each PFT in future
comparison projects.

3.2.2. RMSE of Monthly NEE

The median RMSE of monthly NEE across sites is 0.9 +0.6-1.1+0.6gCm~2d ™" for all the models and is close to
the median RMSE of the average of the models (0.9 +0.7 gCm~2d™"). It is more than twice as good as the RMSE
of daily NEE (see Chevallier et al. [2012], in the case of ORCHIDEE). The RMSE of monthly MTE-NEE is of similar
magnitude, i.e, larger than 1.0gCm™2d ™" at seven out of the 16 flux sites. The median RMSE of MTE-NEE across
sites is 0.9+0.5gCm~2d ™" and is also close to the models’ performance. Across models and flux sites, the
RMSE,ys of NEE ranges from 0.2 t0 3.9gCm ™ >d ™" and the RMSE;pias Of NEE ranges from 0.2 to 3.4gCm >d ™.
The RMSE,y, of NEE is thus almost equal to the RMSE npias of NEE for most models (Figure S3, except OCN, TR,
and VEGAS). Overall, all models have similar magnitudes of NEE RMSE and do not perform well at simulating NEE
at most flux sites.

Generally, RMSE of monthly NEE has a similar magnitude than RMSE of monthly GPP for all models. There is
a significant positive correlation between median RMSE of GPP and median RMSE of NEE (Figures 6 and S5).
Comparing the RMSE of GPP and of NEE for different PFTs, the models (from their median RMSE) have a
lower RMSE of GPP and NEE for evergreen needleleaf forest than for deciduous broadleaf forest and
cropland sites (Figure 6). There is also a positive correlation of biases between GPP and NEE, even though
an overestimated GPP can be partially compensated by an overestimated respiration in some models like
CLMA4C, LPJ, LPJ_GUESS, and ORCHIDEE.
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Figure 3. The mean bias and RMSE of monthly GPP at the 16 flux sites listed in Table 2. (left) The mean GPP bias and (right)
the RMSE of monthly GPP. The last two rows in the two panels indicate the median and standard deviation (SD) of mean
bias or RMSE of GPP across the 16 flux sites.

3.2.3. Amplitude Bias of NEE

The amplitude bias of NEE shows different patterns across sites and models (Figure S4). Across sites, the
amplitude bias of NEE varies from —7.0 to 5.3gCm~2d™". The median amplitude bias of NEE across sites
ranges from —1.9+2.0gCm2d™" in TRIto 1.4+2.6gCm 2d ™" in CLM4C. CLM4C, LPJ, ORCHIDEE, and
SDGVM have a positive amplitude bias at more than eight sites (Figure S3), i.e., these models overestimate
NEE in summer (too much uptake) and underestimate it in winter (too much respiration). The high bias of GPP
in CLMA4C, LPJ, and ORCHIDEE (Figure S2) may propagate to a bias in simulated NEE, causing an overestimated
summer NEE (too little uptake). In contrast, SDGVM underestimates summer GPP and overestimates NEE
(too much uptake), which indicates underestimated summer respiration together and overestimated
winter respiration resulting in overestimated amplitude of NEE at most flux sites in SDGVM (Figure 4).
3.2.4. Phase Bias of NEE

The magnitude of phase bias in NEE at most sites is larger than 10 days. The median phase bias of NEE across
sites is less than 10 days in five out of the nine models (Figure S4). LPJ_GUESS and SGDVM have a negative
phase bias at most sites. The phase bias of NEE averaged across models is negative at most sites, and it is
smaller at forest sites than that at cropland and grassland sites (Figure S4). The median phase bias of average
modeled NEE across models is of —6 +40 days. By comparison, the median phase bias of MTE-NEE is of
5+40days.

4. Hemisphere-Scale Results
4.1. Average GPP

Figure 7 shows the mean seasonal cycle of GPP north of 25°N compared with MTE-GPP as a reference. Seven
out of the nine models simulate GPP larger than MTE-GPP during spring and autumn (except TRl and VEGAS),
which is consistent with the comparison with FLUXNET data at the site level. Nine out of nine models (except TRI
and VEGAS) simulate a larger mean monthly GPP than MTE-GPP (Figure 7). The mean bias of modeled GPP
compared with MTE-GPP varies from —0.4gCm~2d ™" in VEGAS to 0.6 gCm~2d ™" in LPJ. Most models
underestimate the amplitude of GPP compared with MTE-GPP except LPJ (Figure 7).

4.2. Average NEE

All models simulate a higher-average NEE compared with MTE-NEE by about 0.2/0.1gCm 2d ' (models have
less uptake than MTE, consistent with the finding that the mean value of NEE is of 0.09 +0.02gCm~>d™" north
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Figure 4. Observed (black), modeled, and MTE-NEE at the 16 flux sites listed in Table 2. Negative NEE indicates carbon
uptake. (from left to right) The first to fourth columns gather flux sites from North America, Europe, Russia, and East
Asia, respectively. (from top to bottom) The first to third rows show forest flux sites, the fourth row shows grassland flux
sites, and the fifth row shows cropland flux sites.

of 25°N [Peylin et al., 2013]). Most models simulate a higher NEE than MTE-NEE both in summer (too little uptake)
and winter (overestimated winter respiration). The difference in minimum monthly NEE between the models
and MTE-NEE is positive in seven out of nine models (except CLM4C and SDGVM), with a range from
—0.49Cm~2d™"in SDGVM t0 0.7 gCm~2d ™" in LPJ and TRI. CLM4C and SDGCM simulate larger amplitude of
NEE than MTE-NEE, by 0.7gCm~2d~" and 1.1gCm~2d ™" respectively (Figure 7). In contrast, the other seven
models simulate smaller amplitude than MTE-NEE over the entire northern domain (—0.9 to —0.1gCm~2d™").

4.3. Spatial Patterns of GPP

The spatial patterns of GPP in LPJ, LPJ_GUESS, and ORCHIDEE show higher GPP than MTE-GPP in most areas of
the Northern Hemisphere (Figure S6). The other six models (CLM4C, CLM4CN, OCN, SDGVM, TRI, and VEGAS)
have mixed positive and negative regional GPP biases compared with MTE-GPP (Figure S6). For GPP
amplitude, CLM4C, CLM4CN, OCN, SDGVM, and VEGAS simulate a lower GPP amplitude than MTE-GPP over
Siberia. LPJ, LPJ_GUESS, and ORCHIDEE simulate a higher GPP amplitude than MTE-GPP over North
America and southwest of Asia. In addition, most models have a negative phase bias of GPP over south of
Asia and a positive phase bias of GPP over Siberia (Figure S7).

4.4, Spatial Patterns of NEE

All models have very similar spatial distributions of the NEE difference with MTE-NEE. Models produce
larger NEE than MTE-NEE over Europe, east of Siberia, south of China, and southeast of North America and
smaller values over north of Canada and southwest of Asia than JU11 (Figure S8). For the amplitude of NEE,
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Figure 5. The mean bias and RMSE of monthly NEE at the 16 flux sites listed in Table 2. (left) The mean NEE bias and (right)
the RMSE of monthly NEE. The last two rows in the two panels indicate the median and standard deviation (SD) of mean
bias or RMSE of NEE across the 16 flux sites.

CLM4, CLMA4CN, LPJ, LPJ_GUESS, ORCHIDEE, and SDGVM simulate larger amplitude than MTE-NEE, while
OCN and TRI simulate smaller amplitude in most areas of the Northern Hemisphere (Figure S9). In addition,
LPJ_GUESS and SDGVM simulate an earlier NEE phase (< —20 days) than MTE-NEE, and other models have
patchy patterns of earlier and a later phase than MTE-NEE (Figure S9) but with a consistent earlier phase
than MTE-NEE over western Russia and boreal North America.

5. Comparison With Atmospheric CO, Seasonal Cycle
5.1. Surface Stations CO,

Figure 8 shows the comparison between the observed seasonal cycle of atmospheric CO, and NEE of each
model including MTE-NEE after transport by LMDZ4 at 15 stations. Most simulations capture the shape
of the seasonality of atmospheric CO, mole fractions, except for TRI that shows an opposite seasonality
than observed. Most simulations show a too early CO, uptake in spring at high-latitude sites ALT, BRW, and
MBC. Across stations, the median amplitude bias of CO, for all models ranges from —8.8 + 2.3 ppm to

2.7 £ 2.8 ppm, with most models underestimating the amplitude of CO, (except CLM4 and SDGVM) (Figure 10).
Interestingly, the LMDZ4 simulation with MTE-NEE also underestimates the amplitude of CO, at most stations
(—1.8£2.0 ppm). CLM4C overestimates the amplitude of CO, at all stations, and SDGVM overestimates it at
11 out of the 15 sites (except MID, MLO, NWR, and SHM).

The amplitude bias of CO, for ORCHIDEE significantly and positively correlates with the latitude of the
measurement sites (Figure S10; ORCHIDEE overestimates the seasonal amplitude of atmospheric CO, by
2-5ppm at high-latitude sites ALT, BRW, CBA, and MBC but underestimates the amplitude at the
low-latitude site MLO), which suggests that ORCHIDEE overestimates the amplitude of NEE in high-latitude
regions and underestimates it in midlatitude regions. Among the nine models, a positive correlation
between simulated CO, amplitude bias and latitude is found in four models (Figure S11; CLM4C, LPJ,
ORCHIDEE, and SDGVM), and this correlation is significant for ORCHIDEE and SDGVM, which is consistent
with the spatial distribution of the difference between NEE of models and MTE-NEE (Figure S8), even
though the amplitude of MTE-NEE is more underestimated at high-latitude stations than at midlatitude
ones. Note that the negative amplitude bias of CO, for MTE-NEE at all stations suggests that this product
underestimates the NEE amplitude (Figure 10), which raises a caution flag when using it for evaluation
of models.
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The seasonal CO, amplitude during the period 2009-2011 was underestimated in five CMIP5 models and
overestimated in three Coupled Model Intercomparison Project Phase 5 (CMIP5) models [Graven et al.,
2013]. Two models (CLM4CN and ORCHIDEE) in this study were used as land surface models in CMIP5
(part of the CCSM4 and IPSL-CM5A-MR Earth System Models, respectively) [Graven et al., 2013]. In our
study, CLM4CN underestimates the seasonal CO, amplitude at the boreal surface CO, sites, but ORCHIDEE
overestimates the seasonal CO, amplitude at these sites. These results are consistent with underestimation
and overestimation in seasonal CO, amplitude over 45°N-90°N in CCSM4 and IPSL-CM5A-MR, respectively,

as found by Graven et al. [2013], despite the fact that in our study models are forced by observed climate,
whereas in Graven et al. [2013] they were
forced by (biased) general circulation

@ '\CAI,\EA;%PP model climate. This bias of seasonal
_ ° | ——CLwiCN CO, amplitude and its changes in the
F'g 47 3 tij_GUESS models show the limited ability of
e 3] I ——ORCHDEE  predicting future land carbon sinks [e.g.,
) ) :ggvm McGuire et al., 2001; Graven et al., 2013],
% ] | — TR suggesting that improved seasonal
4 F VEeAS cycle of NEE and its changes are needed
04 b in the future.
dan  MeroMay o Sep v The phase bias of Xco, is negative for
PR L CLMA4C, CLMACN, LPJ_GUESS, ORCHIDEE,
{0 Bt SDGVM, TRI, and VEGAS but positive for
_ 059 = = [ ——cLwen LPJ and OCN at most sites (Figure 10).
Tg 0 — ¢ II:Ej_GUESS Across surface sites and TCCON sites, the
% o5 | ——ORCHDEE  median phase bias of CO, seasonality is
) gggvm negative in seven out of nine models
3 F—T (except LPJ and OCN; Figure 10), which
154 b VEGAS results from an earlier-than-observed
5 ] drawdown of atmospheric CO, in spring
san M M‘ay S sép " Nov | (Figures 8 and 9). The median phase bias of

Month Xcoz across all the sites is less than 11 days

Figure 7. The seasonal cycle of (a) GPP and (b) NEE over land north of 25°N.  in most models (except LPJ_GUESS,

PENG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 57



@AG U Global Biogeochemical Cycles 10.1002/2014GB004931

=——Observed CLM4C ———CLMACN ——LPJ LPJ_GUESS
——ORCHIDEE OCN SDGVM ——TRI ——VEGAS
——— MTE-NEE
(a) ALT (b) BRW (c) CBA (d) CMN
5
0
-5
-10
30 120 210 300 30 120 210 300 30 120 210 300 30 120 210 300
(e) KUM (fy MBC (g) MHD (h) MID

10

0

|
(4] o o

-10

30 120 210 300 30 120 210 300 30 120 210 300 30 120 210 300

(i) MLO (i) NWR (k) SCH (1) SHM

CO2 seasonal cycle (ppm)
(!n o [6,] (IJ'I o [6)]
N -
o 6] o o o
o o
I -
o o o
\

_5 -10
30 120 210 300 30 120 210 300 30 120 210 300 30 120 210 300
(m) TAP (n) UUM (0) WLG
0 0 0
-10 -10 -
-10
30 120 210 300 30 120 210 300 30 120 210 300
Julian day

Figure 8. Observed and modeled averaged CO, seasonal cycle at the 15 atmospheric CO, concentration measurement
sites listed in Table 3.

SDGVM, and TRI). The phase bias of CO, for JU11 is negative at most sites and less than 10 days, the median phase
bias of CO, for JU11 is —7 +£9days.

6. Synthesis of Systematic GPP and NEE Errors Across Scales

Generally, the median of amplitude bias of GPP (NEE) at the 16 flux sites significantly and positively correlated
with the amplitude bias of the MTE-GPP (NEE) across the models (Figure S12). The median of amplitude bias
of NEE at the 16 flux sites also significantly correlated with the median of the amplitude bias of the CO,
seasonal cycle at the 25 surface stations and TCCON CO; sites. This suggests that evaluation of modeled GPP
and NEE at the 16 flux sites in this study is broadly representative of model performance at large scale. However,
there are still some discrepancies between the comparison at flux sites versus the MTE products for some
models. This suggests that both flux data and data products representing large scale (MTE products and CO,
concentration) are needed to evaluate the performance of models because they cover different scales.

Over the Northern Hemisphere, the amplitude of modeled GPP spans a large range (1.6-5.1 gCm~2d™"),
while the amplitude of MTE-GPP is of 4.4+ 0.3gCm™2d™ . The amplitude of modeled NEE over land north of
25°N spans a range from 0.7 gCm~2d ™" to 2.5 gCm~2d~". At large scale, the amplitude of NEE significantly
correlates with the amplitude of simulated Xco, across models for each TCCON site. Figure 11 shows the
correlations between the amplitude of NEE north of 25°N and X, across models at two TCCON sites
(Bremen and Park Falls; see Table 4) to illustrate this. The amplitude of modeled NEE explains 92% and 88% of
the cross-model variation in the amplitude of simulated Xco, at Bremen and Park Falls, respectively. If we use
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Figure 9. Observed and modeled averaged CO, seasonal cycle at the 10 TCCON sites listed in Table 4.
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Figure 10. The amplitude and phase bias of modeled averaged CO, seasonal cycle in comparison to observed averaged
CO, seasonal cycle at the 15 atmospheric CO, concentration measurement sites and 10 TCCON sites listed in Tables 3
and 4, respectively. (left) The amplitude bias and (right) the phase bias. The last two rows in the two panels indicate the
median and standard deviation (SD) of amplitude bias or phase bias among the 25 sites.
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the observed amplitude of Xco, at
127 (a) Bremen [ Bremen (8.6 + 0.8 ppm) or Park Falls
—~ 10 . | (8.9+0.8 ppm) to estimate the
g_ """ amplitude of NEE (the intersection
% g | T = i point by solid black line and dot line in
>§ 0;6'\2}:5?55 Figure 11), we get a constrained
“qo: 6 cuvmc“&a" [ aniglltgjje of NEE of 1.8 10.%24ng1
3 m “d” " and 1.9+02gCm “d" ' for
S 4 [ Bremen and Park Falls, respectively.
E .LP\J R?=0.93, P<0.001 Because the footprint of each TCCON
2 - “‘,.";TRI - site relative to continental-scale NEE
may be different from each other and
0 ‘ ‘ ‘ : ‘ ‘ smaller than the whole Northern
0 0.5 1 1.5 2 25 3 Hemisphere, the average of the
Amplitude of NEE (gC m day'1) TCCON-constrained amplitude of NEE
is of 1.6+£0.4 gC m~2d~" across the
10 TCCON sites, which is a little larger
12 - (b) Park Falls "= than the amplitude of MTE-NEE
. (1.5+0.2 gC m~2d™"). The uncertainty
g 10- " of amplitude of NEE across the nine
g ST = models (+0.7 gC m~2d™") is reduced by
g 8- VEGAS | ~40% by TCCON-constrained method.
af cLmcag T .
5 64 . The mean carbon uptake during the
§ growing season over the Northern
2 4 [ Hemisphere (April to September)
E ’I‘_‘;J R?=0.90, P<0.001 estimated from MTE-NEE is 7.6 + 2.0 Pg
2 TR | Cyr . Considering that MTE-NEE
R 4 underestimates the average amplitude
0 ‘ ‘ ‘ ‘ ‘ | of Xco» across the 10 TCCON sites by
0 0.5 1 1.5 2 25 3 ~4+26% with LMDZ4, the total carbon
Amplitude of NEE (gC m™ day ") uptake during the growing season over

Fi 11. Amplitude of modeled NEE he land b of 25°N Northern Hemisphere adjusted by
igure . Amplitude of modele over the land north o °N versus . _
amplitude of Xco, measured at (a) Bremen and (b) Park Falls (TCCON 'scallng MTE-NEE by ifactor 104+ 9'26
sites). The dot line shows the linear regressed line across the nine models. 15 of 7.942.0 Pg Cyr~". By comparison,
The black point indicates MTE-NEE. The black solid line is the amplitude of ~ the carbon uptake during the growing
observed Xco,, with 1 standard deviation as the gray shade. season was estimated to be 7.9 Pg C
yr~" using the CASA modeled NEE
transported with 12 TransCom 3 experiment models [Gurney et al., 2003] and Park Falls Xco, by Yang et al.
[2007], which is exactly the same number than our estimation from the LMDZ4 model but our estimation
covers five more latitude degrees.

For the phase of Xco; at the TCCON sites, most models simulate an earlier drawdown of Xco, than observed
(except for LPJ and OCN) (Figure 10). The phase of modeled NEE over the Northern Hemisphere significantly
correlates with the phase of Xco, simulated by LMDZ4 across models at all the TCCON sites (R=0.77-0.96,
P < 0.07). Figure 12 shows an example of the significantly positive correlation between the phase of NEE
and phase of Xco, at Bremen (R*=0.92, P < 0.001) and Park Falls (R* = 0.96, P < 0.001) sites. Constraining
the phase of NEE using the phase of Xco, observed at the 10 TCCON sites, the constrained phase of NEE is
356+ 12 days, i.e., the peak of NEE over Northern Hemisphere occurs at 174+ 12 days.

7. Discussion and Conclusions

Using GPP and NEE measured at 16 FLUXNET sites distributed in the Northern Hemisphere across different PFTs,
gridded GPP, and NEE products upscaled from flux sites by MTE, and atmospheric CO, measurements at surface
sites and averaged over the atmospheric column at TCCON sites, we evaluated the seasonality of GPP and NEE of
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Figure 12. Phase of modeled NEE over the land north of 25°N versus ~ 1he comparison with atmospheric CO,,
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the nine models (except CLM4C and
SDGVM), which confirms that most
models underestimate the Northern Hemisphere carbon uptake, and even more so during the carbon uptake
period. The too small NEE seasonal amplitude in models can result from missing processes. On the one hand,
models may underestimate NEE due to missing disturbance in models such as insects, windthrow, or small fires.
If these disturbances emit CO, in the growing season, including them in models should further decrease the
amplitude of simulated NEE. On the other hand, harvest of crop and wood biomass and the oxidation of
harvested products causing CO, emissions with a nonseasonal profile are not systematically incorporated in
models [e.g., Zeng et al., 2014]. Including these processes [Ciais et al., 2007] would tend to increase the seasonal
amplitude of NEE.

The overestimated ecosystem respiration during the growing season could also be one important reason for the
lower amplitude of NEE. A high bias of heterotrophic respiration can be related to the parameterization of the
temperature sensitivity and asymmetric response to daytime and nighttime temperature [Peng et al., 2013], as
well as the turnover rate and storage of labile carbon pools that determine the seasonal cycle of heterotrophic
respiration. For instance, in CLM4, Bonan et al. [2012] compared the decomposition rate of litter with observations
at many sites and concluded too high decomposition of litter pools, which is consistent with too high
respiration. If this bias of CLM4 is also common to other models, then it could explain why the NEE amplitude
tends to be underestimated while the GPP amplitude is overestimated. Evaluation of models against soil C
incubation data [Moyano et al., 2012] and field studies of litter decomposition should bring clues to this problem.
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The bias in biomass of models could also introduce a positive bias in autotrophic respiration, because
models that do not describe forest harvest and disturbance tend to overestimate biomass and thus
autotrophic respiration. Thus, comparison with storage and turnover rate of soil organic carbon and
biomass [e.g., Todd-Brown et al., 2013] should be included in future systematic benchmarks alongside with
evaluation of heterotrophic respiration against in situ and field data. These improvements can be valuable
to get better seasonal NEE amplitude and could enhance the prediction in coupled models [Graven

et al.,, 2013].

We also note that a common bias of most models is that they underestimate harvest by humans and do not
include the lateral export of carbon from soils by erosion and the fraction of soil C transferred to rivers.
Regnier et al. [2013] estimated that an amount of 1.9 PgC yr~' was transferred from soil to rivers. Quinton
et al. [2010] estimated an additional 0.5 PgC yr’1 erosion of agricultural soil carbon, which could be not
available for seasonal soil heterotrophic respiration. In addition, crop harvest [Ciais et al., 2007] and wood
harvest also decrease available litter for heterotrophic respiration. Models ignore all or part of these
processes, and it is thus logical that despite their GPP being high biased, their respiration has an even larger
positive bias.

Northern Hemisphere TCCON sites further suggest that the amplitude of X, is underestimated by 4% for
MTE and by more than 10% for seven out of the nine models. Using observed amplitude of Xco; at the 10

TCCON sites, the amplitude of NEE over the Northern Hemisphere was estimated at 1.6+ 0.4 gC m—2d ™",

which corresponds to an uptake during the growing season of 7.9+2.0 Pg Cyr".
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