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TORSION OF A FINITE BASE LOCUS

RÉMI BIGNALET-CAZALET

Abstract. We interpret geometrically the torsion of the symmetric algebra
of the ideal sheaf of a zero-dimensional scheme Z defined by n + 1 equations
in an n-dimensional variety. This leads us to generalise a formula of A.Dimca
and S.Papadima in positive characteristic for a rational transformation with
finite base locus. Among other applications, we construct an explicit example
of a homaloidal curve of degree 5 in characteristic 3, answering negatively a
question of A.V.Dória, S.H.Hassanzadeh and A.Simis.

Introduction

The main motivation of this article is the study of rational transformations and
homaloidal hypersurfaces over an algebraically closed field k of any characteristic.
Recall that, given a homogeneous square free polynomial f ∈ k[x0, · · · , xn], one
defines the polar map Φf : Pn

99K Pn by sending x ∈ Pn to
(

f0(x) : . . . : fn(x)
)

where fi = ∂f
∂xi

. The hypersurface F = {f = 0} ⊂ Pn is called homaloidal if

Φf is birational. It was established by I.V.Dolgachev [Dol00, Theorem 4] that the
only homaloidal complex curves are the smooth conics, the unions of three general
lines and the unions of a smooth conic with one of its tangent. Furthermore, it
was noticed by A.V.Dória, S.H.Hassanzadeh and A.Simis [DHS12] that a common
property of these complex curves is that the base locus of Φf , i.e. the scheme of
zeros of the jacobian ideal I = (f0, . . . , fn), is a local complete intersection at each
of its points.

Problem 1. [DHS12, Question 2.7] Let f ∈ k[x0, x1, x2] be a square free homo-
geneous polynomial whose polar map is birational. Is the jacobian ideal locally a
complete intersection at its minimal primes?

In the spirit of studying the difference between characteristic zero and positive
characteristic, we also consider the following reduction problem. If f = qα1

1 . . . qαm
m

is not square free, or equivalently if F is not reduced, the polar map Φf is defined
by the mobile part of the linear system generated by f0, . . . , fn. Over the field of
complex numbers, it was established by A.Dimca and S.Papadima [DP03] that Φf

birational if and only if so is the polar map Φfred associated to fred = q1 . . . qm. Over
a field of positive characteristic, this equivalence trivially fails: in characteristic 2
for f = x2yz, Φfred is birational whereas Φf is not even dominant. This leads to
the following problem.
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2 RÉMI BIGNALET-CAZALET

Problem 2. Over a field of positive characteristic, given Φf dominant, is it bira-
tional if and only if so is Φfred?

Both problems can be consider from a unified point of view by studying more
generally the relation between the topological degree dt(Φ) of a rational map Φ and
the geometric properties of its base locus. In the polar case, i.e. when Φ = Φf

for a homogeneous square free polynomial f ∈ k[x0, · · · , xn] of degree d, the base
locus Z = {f0 = . . . = fn = 0} ⊂ Pn of Φf coincides with the singular locus of the
hypersurface F = {f = 0}. Over C, assuming that this singular locus is finite, the
following relation is established by A.Dimca and S.Papadima [DP03],

(1) dt(Φf ) = (d− 1)n − µf (Z)

where µf (Z) is the global Milnor number of F (see [Mil68] or Definition 3.6). Our
main goal is to give an algebraic proof and to generalise this formula to the following
setting.

Let X be an n-dimensional smooth quasi-projective variety over k and let Φ :
X 99K Pn be a rational map with zero-dimensional base locus Z determined by a
n + 1-dimensional subspace V of global sections of a line bundle L over X . Our
aim is to read off the topological degree dt(Φ) of Φ from properties of the ideal
sheaf I of Z, more precisely from the sheaf of relation E defined as the kernel of
the canonical evaluation map ev : OX ⊗V → I ⊗ L.

In Section 1, we study the projectivization π1 : X = P(I) → X of the symmetric
algebra of I. We show in particular that it decomposes as the union of the blow-
up X̃ of X at I and a torsion part TZ supported over Z. By construction the
topological degree of Φ is equal to that of the restriction to X̃ of the lift π2 : X →
P(V) of Φ. In other word dt(Φ) = deg

(

c1(OX(1) X̃)n
)

.
In this context, we can also consider two other related notions of ”naive” topo-

logical degrees: the degree deg
(

c1(OX(1))
n
)

of π2 and the algebraic degree of Φ
minus the length of Z. In Proposition 3.2 (i) we show that the second one coincides
with the degree of the 0-cycle [V

(

cs(E)
)

] associated to the scheme of zeros of a gen-
eral cosection cs(E) : E → OX of E . Our main result, proven in Section 2, asserts
in particular that these two naive topological degrees coincide. It also elucidates
the relation between these degrees and the topological degree of Φ:

Theorem 1. With the notation above, X is equidimensional of dimension n and
[V
(c
s(E)

)

] = π1∗c1
(

OX(1)
)n
. As a consequence

dt(Φ) = deg
(

[V(cs(E))]
)

− deg
(

c1(OX(1) TZ
)n
)

.

Let us discuss briefly why this theorem is a generalization of (1). This summa-
rizes the content of Section 3. Recall that another classical invariant of singulari-
ties of a hypersurface F = {f = 0} is the global Tjurina number τf (Z) of F (see
[Mil68] or Definition 3.6). Actually, both Milnor and Tjurina numbers depend on
the scheme structure of the singular locus, and, in this sense, they can be defined
also for zero-dimensional subscheme Z unrelated to singular hypersurfaces. Having
this in mind, we can formulate the following result.

Corollary 2. Formula (1) holds for any 0-dimensional subscheme Z defined by
n+ 1 global sections of a line bundle L over a smooth quasi-projective n-variety X
and over any algebraically closed field.
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This corollary follows from the observation that Tjurina numbers compute the
degree of c1

(

OX(1)
)n

whereas Milnor numbers compute the degree of c1
(

OX̃(1)
)n
.

As an immediate application we recover the identity (1) from the equalities

deg
(

[V(cs(E))]
)

= (d− 1)n − τ(Z) and deg
(

c1(OX(1) TZ
)n
)

= µ(Z)− τ(Z)

where τ(Z) and µ(Z) are the generalised Tjurina and Milnor numbers.
Section 4 presents applications when X = P2 in which case E is locally free

of rank 2. The first application is motivated by the following situation. Tjurina
numbers appear in a natural way in the classification of complex free curves. These
are the plane curves F = {f = 0} of degree d whose jacobian ideal sheaves I have
a locally free resolution of the form.

0 OP2(3 − 2d)⊕OP2(−d) OP2(1− d)3 I 0.

It was established by A.A.du Plessis and C.T.C.Wall in [dPW99] that these curves
are characterized by the following identity:

(2) d− 2 = (d− 1)2 − τf (Z).

A first application is a generalisation of the numerical characterization (2) in
arbitrary characteristic to locally free sheaves of rank 2:

Theorem 3. Let E be the sheaf of relation of an ideal sheaf generated by three
homogeneous polynomials of degree d− 1 ≥ 0 in 3 variables. Then

d− 2 ≤ (d− 1)2 − τ(Z)

and equality occurs if and only if E ≃ OP2(−1)⊕OP2(2− d).

As a second application in Section 4, we answer negatively Problem 1:

Proposition 4. The curve F = V
(

(x2
1 + x0x2)x0(x

2
1 + x0x2 + x2

0)
)

is homaloidal
if and only if the base field k has characteristic 3.

We also answer negatively Problem 2 by producing an explicit homaloidal curve
in characteristic 101 whose polar has topological degree 3 whereas the polar of its
reduction has topological degree 5.

The explicit computations given in this paper were made using basic functions
of Macaulay2 and the Cremona package also running on Macaulay2 [Sta17]. The
corresponding codes are available on request.

1. Topological degrees via the symmetric algebra

We first recall some facts about the symmetric and the Rees algebras (or blow-
up algebra) of an ideal before giving the definition of topological degree and naive
topological degrees.

1.1. Rees and symmetric algebras. Given an ideal sheaf I on a smooth variety
X of dimension n, recall that the blow-up X̃ of X at I is the Proj of the Rees
algebra

R(I) = OX ⊕ It⊕ I2t2 ⊕ · · · =
∞

⊕
i=0

Iiti ⊂ OX [t]

of I. Denoting Z = V(I), we say also that X̃ is the blow-up of X along Z. We de-

note by S(I) = ⊕i≥0S
i(I) the symmetric algebra of I and by X the projectivization

P(I) = Proj(S(I)) of I with its bundle map π1 : X → X .



4 RÉMI BIGNALET-CAZALET

The natural surjection q : S(I) → R(I) defines a closed embbeding of X̃ in X.
When q is an isomorphism I is said of linear type [Vas05]. This is the case for
instance when I is locally generated by a regular sequence [Vas05, Example 1.2].

Otherwise the images by π1 of the irreducible components of X different from
X̃ are contained in the support of Z. Indeed, over the set U = X\Z, we have

IU = OU , so that X̃ U = X U = π−1
1 (U). This justifies the following definition:

Definition 1.1. An irreducible component of X different from X̃ is called a torsion
component of X . The union of the torsion components is called the torsion part of
X, denoted by TZ .

The following lemma provides a description of the torsion components supported
over the generic points of the irreducible components of Z. Namely, letting Zi be
an irreducible component of Zred we consider A = OX,Zi

and I the image of I in
A.

Lemma 1.2. Let X = Spec(A) be the spectrum of a regular local ring essentially of
finite type with maximal ideal m and residue field κ(m). Let I ⊂ m be an m-primary
ideal minimally generated by r + 1 elements which do not form a regular sequence.
Then X is the union of X̃ and a unique other irreducible component contained in
π−1
1 (m) whose reduction is isomorphic to Pr

κ(m).

Proof. Let:

Am Ar+1 I 0
M (φ0 . . . φr)

be a minimal presentation of I. Then X = P(I) is isomorphic to the closed sub-
scheme of Pr

A defined by the entries of the row matrix (y0 . . . yn) · M [Bou70,
A.III.69.4]. Since A is local and {φ0, . . . , φr} is a minimal set of generators of I, all
the entries of M are elements of m [Eis95, 19.4]. It follows that π−1

1 ({m}) = Pr
m
≃

Pr
κ(m). The exceptional divisor in X̃ above the point m is then the intersection of

X and X̃. �

From a practical point of view, it might be difficult to determine how the torsion
components vary from a given presentation, as illustrated by the following example:

Example 1.3. Consider the ideal I of A = k[x, y, z] given by the following resolu-
tion:

0 A3 A4 I 0









0 xz y2

0 x xy
x y y
y z x









(φ0 . . . φ3)

Above the line {x = y = 0} in X = Spec(A), the torsion component is {x =
y = 0} × P2

k but above the point {x = y = z = 0}, the torsion component is
{x = y = z = 0} × P3

k.

This motivates why, in the following, we will assume that V(I) is zero dimen-
sional.

In the case when I ⊗ L is generated by n + 1 sections for some line bundle L
over X , let
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F On+1
X I ⊗ L 0

s (φ0 . . . φn)

be a locally free presentation of I ⊗L. The map s can be interpreted dually as the
data of n+1 sections of F∨. Recall that Fittn I is the ideal sheaf generated by the
common vanishing of these n + 1 sections and V(Fittn I) ⊂ Z [Eis95, 20]. With
this definition, we have:

Corollary 1.4. Let X be a smooth variety of dimension n and let I be an ideal
sheaf over X. Denoting Z = V(I), assume that codim(Z) = n and that I ⊗ L is
generated by n+1 sections for some line bundle L over X. Then the images of the
torsion components of X in X are precisely the points of the subscheme V(Fittn I).
Moreover, each torsion component with its reduced structure is isomorphic to Pn.

Proof. Since Z is zero-dimensional, any z ∈ Z is in an affine open set U = Spec(A)
of X over which L is trivial. So over U , let

Om
U On+1

U I U 0
M

be a presentation of I.
By [Eis95, Proposition 20.6], the scheme V(Fittn I) is the subscheme of Z con-

sisting of points z ∈ Pn at which Iz can not be generated by n elements. By
Lemma 1.2, only two situations can occur. Either Z is a local complete intersection
at z i.e. Iz is generated by a local regular sequence. Hence the Rees algebra and
the symmetric algebra coincide locally as explained before Definition 1.1.

Or Z is not a local complete intersection at z and then, since codim
(

V(I)
)

= n,
V(Fittn I) is exactly the support where (φ0, . . . , φn) can not be a local regular
sequence. But the ideal of X in Pn

U is (y0 . . . yn) · M where (y0, . . . , yn) are the
coordinates of the second factor so the scheme V(Fittn I) is exactly the scheme of
point of z ∈ Z such that set-theoretically π−1

1 ({z}) = Pn
z .

�

Notation 1.5. For every z ∈ Z, we let Tz be the scheme-theoretic fibre of the
restriction of π1 to TZ . By Corollary 1.4, Tz is set-theoretically equal to Pn

z so

Tz = [Tz ] · c1
(

OX(1)
)n

is a 0-cycle on X. We denote by TZ the 0-cycle
∑

z∈Z

Tz.

1.2. Geometric interpretation of the torsion. From now on, our setting is as
follows: X is a smooth n-variety over k, L is a line bundle over X and V is an
(n + 1)-dimensional subspace of H0(X,L). We denote Φ : X 99K P(V) ≃ P

n the
associated rational map. Recall that the base ideal sheaf I of Φ is the image of
the evaluation map ev : V⊗L∨ → OX . By the universal property of blow-up, X̃ is
isomorphic to the graph Γ of Φ, that is, the closure in X × Pn of the graph of the
restriction of Φ to its domain of definition.

Let p1 : Pn
X = P(V⊗OX) → X be the structure map and let

F On+1
X I ⊗ L 0

s ev

be a locally free presentation of I ⊗L. The map ev determines a closed embedding
P(I⊗L) →֒ Pn

X as the zero scheme of the global section σ ∈ H0(Pn,OPn
X
(1)⊗p∗1F

∨)
deduced from the composition of p∗1s with the canonical surjection V⊗OPn

X
→
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OPn
X
(1). Since P(I ⊗ L) ≃ P(I) [Har77, II.7.9], this provides a closed embedding

X →֒ Pn
X .

Summing up, we have the following commutative diagram (D1):

(D1)

P
n
X

X

X̃

X Pn

p1 p2

ι

π1 π2

σ1 σ2

Φ

Recall that the topological degree of a dominant rational map Φ : X 99K Y
between irreducible varietiesX and Y of the same dimension is defined as the degree
dt(Φ) = [Frac(Y ) : Frac(X)] of the induced extension between their respective
fields of rational functions. In our setting, Y = Pn and dt(Φ) can be interpreted

alternatively as the degree of the 0-cycle c1
(

OPn
X
(1)

X̃

)n
on X̃ . Since σ1 is birational

we have thus:

dt(Φ) = deg
(

c1(OPn
X
(1)

X̃
)n
)

= deg
(

σ1∗(c1(OPn
X
(1)

X̃
)n)

)

.

By Corollary 1.4, c1(OPn
X
(1)

X
)n is also a 0-cycle on X so we can set the following

definition.

Definition 1.6. With the notation in (D1) the degree of c1(OPn
X
(1)

X
)n is called

the first naive topological degree of Φ.

Intuitively, the difference between the first naive topological degree and the ac-
tual topological degree reflects a difference between the symmetric algebra and the
Rees algebra, see Proposition 3.2 below for a precise statement.

Now, let E be the kernel of the evaluation map ev : On+1
X → I ⊗ L and let

α : On+1
X → OX be a generic map. Since E has rank n, the zero locus V(csα) of the

composition csα = α ◦ γ is a 0-dimensional subscheme of X .

0 E On+1
X I ⊗ L 0

OX

γ ev

αcsα

In the proof of Theorem 1, we will establish in particular that the cycle class
[V(csα)] of V(

csα) is independent on the choice of a generic map α so, anticipating,
we set the following definition.

Definition 1.7. The second naive topological degree of Φ is the degree of the 0-cycle
[V
(

cs(E)
)

] of a generic cosection cs(E) of E .

Remark 1.8. If E is locally free, [V
(

cs(E)
)

] simply coincides with the top Chern
class cn(E

∨) of E∨. This is no longer true when E is not locally free. For instance
the sheaf E of relations of the ideal sheaf I = (x2

1 − x1x3, x
2
2 − x2x3, x1x2, x0x3)

of P3 satisfies c3(E
∨) = 4 whereas deg

(

[V(cs(E))]
)

= 2 as we can check from the
resolution of E :
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0 OP3(−3)2 OP3(−1)2 ⊕OP3(−2)3 E 0.

2. Proof of Theorem 1

Recall the settings of Theorem 1, we assume that n ≥ 2, codim(Z) = n and that
the map Φ is dominant.

By definition, the first naive topological degree is the length of the 0-scheme W
of a general section of OX(1)

n. Our strategy to show Theorem 1 is now to push
forward the following exact sequence:

(E1) 0 K On
X

OX(1) OW (1) 0

where K is by definition the kernel of the map On
X
→ OX(1). So, applying π1∗ to

(E1) and assuming that R1π1∗

(

K
)

= R1π1∗

(

IW (1)
)

= 0, we have

On
X π1∗OX(1) π1∗OW (1) 0.

We emphasize that I is not locally free so π1∗(OX(1)) might a priori be different
from I (see Stack project, 26.21. Projective bundles, example 26.21.2). However
our strategy is to prove that these coincide in this case.

We use the same notation for the sheaves and their push forward by X
ι
→֒

Pn
X . Thus, the strategy is to provide that R1p1∗

(

K
)

= R1p1∗
(

IW (1)
)

= 0 and

p1∗
(

OX(1)
)

= I ⊗ L in order to get the sequence:

(E2) On
X I ⊗ L p1∗OW (1) 0.

As we will explain below, [p1∗OW (1)] will turn out to be precisely the cycle [V(csα)]
which by definition verifies the following exact sequence:

E OX OV(csα) 0.
csα

This will show eventually Theorem 1.

2.1. Cohomological preliminaries.

Lemma 2.1. The following vanishings hold:

(i) R1p1∗IX(1) = 0,
(ii) Ri+1p1∗OX(−i) = 0 for every i ∈ {0, . . . , n− 1},
(iii) Rip1∗OX(−i) = 0 for every i ∈ {1, . . . , n− 1}.

Proof. Under the assumption that dim(Z) = 0, by [BC18, Corollary 2.9], the ideal
IX has a locally free resolution of the following form:

(G•) 0 Gn+1 Gn . . . G2 G1 IX 0

where Gi =
i
⊕
j=1

p∗Gij⊗OPn
X
(−j) when i ∈ {1, . . . , n} and Gn+1 = p∗G′

n+1⊗OPn
X
(−1)

for some locally free sheaves Gij and G′
n+1 over X .

Now, a diagram chasing in (G•) shows that R1p1∗IX(1) = 0 provided that
Rkp1∗

(

Gk(1)
)

= 0 for all k ∈ {1, . . . , n+1}. By Kunneth formula, those vanishings
are verified if:

• Hk
(

P
n,OPn(−j + 1)

)

= 0 for all k ∈ {1, . . . , n} and all j ∈ {1, . . . , k},

https://stacks.math.columbia.edu/tag/01OA
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• Hn+1
(

Pn,OPn(−2)
)

= 0

The only non trivial case to check is when k = n. But:

Hn
(

Pn,OPn(−j + 1)
)

≃ H0
(

Pn,OPn(j − n− 2)
)∨

= 0

because j ≤ n.
For (ii) and (iii), since OX = OPn

X
/IX, the assertions follow from the same

argument after twisting the complex (G•) by OPn
X
(−i) for every i ∈ {0, . . . , n −

1}. �

Lemma 2.2. We have p1∗
(

OX(1)
)

= I ⊗ L.

Proof. First, OPn
X
(1) being the relative ample line bundle of the projective bundle

Pn
X = P

(

On+1
X

)

, we have p1∗OPn
X
(1) = On+1

X .
Moreover, since IX(1) is the image of the canonical map p∗1E → OPn

X
(1), we let

H be the kernel of this surjection and we write the exact sequence:

0 H p∗1E IX(1) 0.

Since p1∗p
∗
1E ≃ E and R1p1∗p

∗
1E = 0, applying p1∗ to this exact sequence, we

get:

(a) 0 p1∗H E p1∗IX(1) R1p1∗H 0.

Also, since we proved that R1p1∗IX(1) = 0, applying p1∗ to the canonical exact
sequence

0 IX(1) OPn
X
(1) OX(1) 0

we get

(b) 0 p1∗IX(1) On+1
X p1∗OX(1) 0.

The exact sequences (a) and (b) fit into the following commutative diagram:

0

p1∗H 0

E E

0 p∗IX(1) On+1
X p1∗OX(1) 0

0 R1p1∗H IZ ⊗ L p1∗OX(1) 0

0 0

≃

=

where (a) is the left column, (b) is the central row and the map IZ → p1∗OX(1)
in the bottom row is the canonical morphism associated to the projectivization of
IZ . This morphism is an isomorphism at X\Z and therefore IZ ⊗ L → p1∗OX(1)
is injective because IZ is torsion free. Hence p1∗H ≃ 0 ≃ R1p1∗H and p1∗OX(1) ≃
IZ ⊗ L.

�
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2.2. Degree of cycles. As above, let W ⊂ X be the intersection of X with n
general relative hyperplanes of Pn

X so that [W ] = c1
(

OX(1)
)n
.

Proof of Theorem 1. Consider the following exact sequence:

(Kz)

0 K On
X

OX(1) OW (1) 0

IW (1)

0 0

β′

We claim that

R1p1∗
(

IW (1)
)

= R1p1∗
(

K
)

= 0.

Indeed by Corollary 1.4, X decomposes as the union of X̃, the blow-up of X at
I, and the torsion part TZ , possibly empty, whose reduced structure is Pn

Z′ for a
set Z ′ ⊂ Z.

So the Koszul complex provides a resolution

0 OX(−n+ 1) . . . OX(−1)(
n
2) On

X
IW (1) 0

of IW (1) and the desired vanishings follow from Lemma 2.1 (ii).
Since p1∗O

n
X
≃ On

X , p1∗OX(1) ≃ I ⊗ L, R1p1∗
(

IW (1)
)

= 0 and R1p1∗(K) = 0,
pushing forward by p1 the exact sequence (Kz), we obtain the following commuta-
tive diagram:

(D2)

0 p1∗K

On
X On

X

0 E On+1
X I ⊗ L 0

E OX p1∗OW (1) 0

0 0

β

=

p1∗β
′

=

(φ0 ... φn)

α
csα

where α is the cokernel map of the vertical map β : On
X → On+1

X . Hence p1∗K =
ker(csα) and (D2) implies that

p1∗(OW ) ≃ OV(csα)

as in Definition 1.7. So in the end, we have that [V(csα)] = [p1∗W ]. Since all
the generic map α as in (E2) can be obtained as cokernel of a generic map β :
On

X → On+1
X , [V(csα)] does not depend on the generic map α so that we can write

[V
(

cs(E)
)

] for a generic cosection cs(E).
The fact that deg(W ) = deg(p1∗W ) comes from the decomposition ofW . Indeed,

X decomposes into the graph X̃ and the torsion part TZ supported on Pn
Fittn(Z).

Hence, we have the equality

[W ] = [X] · c1
(

OPn
X
(1)

)n
= [X̃ ] · c1

(

OPn
X
(1)

)n
+ [TZ ] · c1

(

OPn
X
(1)

)n
.
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Since X̃ is irreducible and σ1 : X̃ → X birational, we have

deg
(

[X̃] · c1
(

OPn
X
(1)

)n)
= deg

(

σ1∗([X̃] · c1
(

OPn
X
(1)

)n
)
)

.

Moreover, as a consequence of Theorem 1 we have:

dt(Φ) = deg
(

[V(cs(E)]
)

− deg
(

p1∗([TZ ] · c1
(

OPn
X
(1)

)n
)
)

.

�

3. Measure of the difference between Rees and symmetric algebras

We relate now the topological degree and the naive topological degree with the
notions of Milnor and Tjurina numbers. For the rest of this section, I is the ideal
of a rational map Φ = (φ0 : . . . : φn) associated to an n+1-subspace V of H0(X,L)
where L is a line bundle over X . We denote by Z the base scheme V(I) in X and
we assume that dim(Z) = 0.

3.1. Generalized Milnor and Tjurina numbers.

Notation. We set temporarily as a notation that δn = deg
(

c1(L)
n
)

which as to

be understood as δ = deg
(

c1(L)
)

when X is the projective space Pn.

Definition 3.1. With notation as in Notation 1.5, for every z ∈ Z, put:

• τ(Z, z) = length(OZ,z)

• µ(Z, z) =

{

τ(Z, z) if Z is a local complete intersection at z,

τ(Z, z) + deg(Tz) otherwise.

We let τ(Z) =
∑

z∈Z

τ(Z, z) and µ(Z) =
∑

z∈Z

µ(Z, z).

As a direct application of Theorem 1, we obtain:

Proposition 3.2. The following equalities hold:

(i) deg
(

[V(cs(E))]
)

= δn − τ(Z)
(ii) dt(Φ) = δn − µ(Z)
(iii) dt(Φ)− deg(cs(E)) = µ(Z)− τ(Z) = deg(T ) = deg(p1∗T ).

Proof. Looking back at the diagram (D2), we see that V(sα) has the following
presentation:

On
X I ⊗ L OV(sα) 0

sα = (
n∑

i=0

ai1φi . . .
n∑

i=0

ainφi)

where (aij)0≤i≤n,1≤j≤n is an (n + 1) × n generic matrix with entries in the field

k. Since by definition, [V(cs(E))] = [V(sα)] we have that deg
(

[V(cs(E))]
)

=
length(OV(sα)) = δn − τ(Z) by definition of τ(Z).

The equalities (ii) and (iii) follow in the same way from the definition of µ(Z)

and τ(Z) and from the decomposition of X as the union of X̃ and TZ . �

We now explain how to practically compute the number µ(Z).
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Proposition 3.3. Let (aij)0≤i≤n,1≤j≤n be an (n+1)×n generic matrix with entries

in the field k. Then, denoting by (
n
∑

i=0

ai1φi, . . . ,
n
∑

i=0

ainφi)z the localisation at z, we

have:

µ(Z, z) = length(OX,z/(

n
∑

i=0

ai1φi, . . . ,

n
∑

i=0

ainφi)z).

Proof. Recall that dt(Φ) can be computed in the following way. A generic point

y ∈ P
n is the intersection of n general hyperplanes Lj :

n
∑

i=0

aijxi = 0, that is, the

data of an (n + 1) × n generic matric N with entry in the field k. The preimage

of y by Φ is contained in the scheme F′ = V(
n
∑

j=0

a1jφj , . . . ,
n
∑

j=0

anjφj). Hence, to

compute the topological degree of Φ, it remains to remove the points of F′ in the
base locus. But since the formation of the symmetric algebra commutes with base
change, we can suppose that Z consists of a single point z.

So

dt(Φ) = length(F) = δn − length(OX,z/(

n
∑

i=0

ai1φi, . . . ,

n
∑

i=0

ainφi)z),

which implies that length(OX,z/(
n
∑

i=0

ai1φi, . . . ,
n
∑

i=0

ainφi)z) = τ(Z, z) + deg(Tz) =

µ(Z, z). �

Remark 3.4. From a more computational point of view, letting

F
′ = V(

n
∑

j=0

a1jφj , . . . ,

n
∑

j=0

anjφj)

as in the proof of 3.3, the preimage of y is equal to the scheme

F = V( ∩
z∈Z

[(

n
∑

i=0

ai1φi, . . . ,

n
∑

i=0

ainφi) : (

n
∑

i=0

ai1φi, . . . ,

n
∑

i=0

ainφi)z ])

where, given two ideals J and J ′ of a ring R, we let [J : J ′] be the ideal quotient
(see [Eis95, page 15]).

3.2. The polar case. In the polar case, X is the projective space Pn over k.

Definition 3.5. Let F = {f = 0} be a hypersurface in Pn where f is a homoge-

neous polynomial of degree d in k[x0, · · · , xn]. Let fi =
∂f
∂xi

and I = (f0, . . . , fn) be
the ideal sheaf in OPn generated by the partial derivatives of f , called the jacobian
ideal of f . Recall that we call the map Φf associated to I the polar map.

The topological degree of Φf is called the polar degree of F .

In order to use the Euler identity, we suppose in the sequel that the character-
istic of the base field does not divide the degree of the polynomial f defining the
hypersurface F . We also always assume that the jacobian ideal I of F is zero-
dimensional.

We recall the classical definition of Milnor and Tjurina numbers.
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Definition 3.6. Let z ∈ Z = V(I) and via a change of coordinates, suppose that
z = (1 : 0 : . . . : 0). Set g♭ ∈ k[x1, . . . , xn], the usual deshomogeneisation of a
homogeneous polynomial g ∈ k[x0, · · · , xn] in the chart {x0 6= 0}.

The local Tjurina number at z, denoted by τf (Z, z) is defined as

τf (Z, z) = length
(

Okn,z/(f♭, (f♭)1, . . . , (f♭)n)
)

where (f♭)i =
∂f♭
∂xi

.

The local Milnor number at z, denoted by µf (Z, z), is defined as

µf (Z, z) = length
(

Okn,z/((f♭)1, . . . , (f♭)n)
)

where (f♭)i =
∂f♭
∂xi

.

The global Tjurina number of F , denoted by τf (Z) (resp. global Milnor number
of F , denoted by µf (Z)) is the sum

∑

τf (Z, z) (resp.
∑

µf (Z, z)) over all z ∈ Z.

We explain now how the numbers µ(Z) and τ(Z) defined in Definition 3.1 coin-
cide with the usual definitions of Milnor and Tjurina number given in Definition 3.6.

Proposition 3.7. Let F = {f = 0} be a reduced hypersurface in Pn where f is a
homogeneous polynomial in k[x0, · · · , xn] of degree d. Let z ∈ Z = V(I) then:

τ(Z, z) = τf (Z, z) and µ(Z, z) = µf (Z, z).

Proof. Via a change of coordinates, we can suppose z = (1 : 0 : . . . : 0). The
deshomogenisation of the Euler identity in the chart {x0 6= 0} is:

df♭ = (f0)♭ +

n
∑

i=1

xi(fi)♭

and (fi)♭ = (f♭)i for 1 ≤ i ≤ n. The equality

((f0)♭, . . . , (fn)♭) = (f♭, (f♭)1, . . . , (f♭)n)

implies that τ(Z, z) = τf (Z, z).
For the Milnor number, we let A = (aij)0≤i≤n,1≤j≤n a generic (n+1)×n matrix

with entries in the field k. By Proposition 3.3,

µ(Z, z) = length
(

OPn,z/(
n
∑

i=0

ai1fi, . . . ,
n
∑

i=0

ainfi)z
)

.

By localisation at z, we have that µ(Z, z) = length(OMA
) where MA is defined as

the cokernel of the following composition map:

On
z On+1

z Oz OMA 0
A (f0 . . . fn)z

whereas µf (Z, z) = length(OM ) where M is defined as the cokernel of the following
composition map:

On
z On+1

z Oz OM 0.
(f0 . . . fn)z

0 0

1

0

0

0 0 1




































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But, since rank(A) = n, we have length(OMA
) = length(OM ).

�

In the case when τ(Z, z) = µ(Z, z) for a point z ∈ Z, Z is also called quasi-
homogeneous at z in [Sai80]. As an application of the previous proposition, we
recover a result originally proved over the field C in [DP03].

Proposition 3.8. Let F = {f = 0} ⊂ Pn be a reduced hypersurface of degree d
over an algebraically closed field k. Let Φf = (f0 : . . . : fn) be the polar map of f
and assume that V(f0, . . . , fn) is finite.

Then
dt(Φf ) = (d− 1)n − µf (Z).

Proof. Since f has degree d and V(f0, . . . , fn) is finite, Proposition 3.8 follows
from Proposition 3.7 and Proposition 3.2 (ii) since the polynomials fi have degree
d− 1. �

4. Examples and applications in the plane

In this section, X is the projective plane P2. Letting L be a line bundle OP2(δ)
for some δ ≥ 1, we consider the sections φ0, φ1, φ2 associated to the map Φ as ho-
mogeneous polynomials of degree δ. We assume that the base ideal I = (φ0, φ1, φ2)
has codimension 2.

As above, E is defined as the kernel of the evaluation map as in the following
exact sequence:

(E3) 0 E O3
P2 I(δ) 0.

(φ0 φ1 φ2)

Since E is reflexive of rank 2, it is locally free [Har80].
For i ∈ {1, 2}, we denote by ci(E) the first and second Chern classes of E . The

class cs(E) of a generic cosection of E is equal to the second Chern class c2(E
∨) of

E∨ and c2(E
∨) = c2(E).

From now on, we identify Chern classes with their degree in Z.

4.1. Free and nearly free sheaves of relations. For this subsection, O stands
for OP2 .

Definition 4.1. A vector bundle F of rank 2 over P2 is said to be free of exponents
(d1, d2) if there exists (d1, d2) ∈ N∗2 such that F ≃ O(−d1)⊕O(−d2).

It is said to be nearly free of exponents (d1, d2) if it has a graded free resolution
of the form:

0 O(−d2 − 1) O(−d1)⊕O(−d2)
2 F 0.

(φ0 φ1 φ2)

Definition 4.2 ([DS15]). In the case where φ0 = f0, φ1 = f1, φ2 = f2 are the
partial derivatives of a given squarefree polynomial f ∈ k[x0, x1, x2], the curve
F = {f = 0} is called free (resp. nearly-free) if E in (E3) is free (resp. nearly-free).

If φ0, φ1, φ2 are the partial derivatives of a squarefree homogeneous polynomial
f , a result of A.A. du Plessis and C.T.C.Wall in [dPW99] identifies in particular
curves F = {f = 0} of a given degree d with maximal possible global Tjurina
number. These are the free curves of exponents (1, d− 2). By Proposition 3.2, the
maximality of this Tjurina number is equivalent to the minimality of the second
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Chern class c2(E) of the vector bundle E associated to F . The following theorem
is thus a generalisation of the result of du Plessis-Wall. We emphasize that in this
case c1(E) is negative and c2(E) is positive.

Theorem 4.3. Let E as in (E3), then:

(1) −c1(E) ≤ c2(E) + 1 and equality holds if and only if E is free of exponents
(

1, c2(E)
)

,

(2) in the case c1(E) ≤ −5, E is nearly free of exponents
(

1, c2(E)
)

if and only
if −c1(E) = c2(E).

Proof. We denote by c1 and c2 respectively the first Chern class c1(E) and the
second Chern class c2(E) of E . We let c = −1− c1 ≥ 0 and

m = min{t ∈ Z , H0
(

P
2, (E(t)

)

6= 0}.

(1) Assume that c2 ≤ c. We are going to show that the only possibility is that
c2 = c and m = 1. First, m > 0 since otherwise, if 0 6= s ∈ H0(P2, E) we
would have had E ≃ O⊕O(−1− c) which contradicts the fact that c2 > 0.

Now, let s ∈ H0
(

P
2, E(m)

)

be a non zero section. Since m is minimal,
we have the following exact sequence:

(E4) 0 O(−m) E IL(m− 1− c) 0

where L ⊂ P2 is a 0-dimensional subscheme of length l ≥ 0. It is a com-
putation to show that l = c2 − m(c + 1 − m) ≥ 0, and since c2 ≤ c, we
have

(4.1) c(1−m) ≥ m(1−m).

So
(i) if m = 1, then l = 0, i.e. IL(m−1−c) = O(m−1−c) and the sequence

(E4) splits showing that E ≃ O(−1)⊕O(−c),
(ii) if m ≥ 2 then m ≥ c.
Now, assume by contradiction that m ≥ 2. First, it follows from the

Riemann-Roch formula that:

χ
(

E(1)
)

=
8− 2c2 − 3c+ c2

2
≥

8− 5c+ c2

2
.

Hence χ
(

E(1)
)

> 0 for all c. On the other hand, since m ≥ 2, by (ii), m ≥ c

and we have H0
(

P2, E(1)
)

= H2
(

P2, E(1)
)

= 0 where the second vanishing

follows the first, using from Serre-duality H2
(

P2, E(1)
)

≃ H0
(

P2, E(c−3)
)∨

.

These two vanishings contradict the fact that χ
(

E(1)
)

> 0. Summing up,
if c2 ≤ c, the only possibility is c2 = c and then E ≃ O(−1)⊕O(−c) which
completes the proof of (1).

(2) It is a computation to show that if E is nearly free of exponents (1, c2), then
c2 = c+ 1 = −c1. Now, we assume that c2 = c+ 1 and that c ≥ 4 and we
show that E is nearly-free of exponents (1, c2). From the inequality (4.1),
we obtain:
(i) m ≥ 3 implies m ≥ c and thus H0

(

P2, E(c − 1)
)

= H0
(

P2, E(1)
)

= 0.
Then, the Riemann-Roch formula implies that

χ
(

E(1)
)

= (c−2)(c−3)
2 ,
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hence χ
(

E(1)
)

> 0 for c ≥ 4. As above this leads to a contradiction
and so this case does not occur.

(ii) m = 2 implies c ≤ 3, a case excluded by the assumption c ≥ 4.
(iii) m = 1 implies that l = 1 where l is the length of the scheme L as in

the exact sequence (E4). Now, using the resolution of a point p in P2,
we get the following diagram:

0

0 O(−1) E Ip(−c) 0

O(−1− c)2

O(−2− c)

0

α

β

where the existence of β is provided by the vanishing of Ext1(O(−1−
c)2,O(−1)) (see also [MV17] for more details in this direction). Since
E is locally free of rank 2, the complex (E5) provides a locally free
resolution of E showing that E is nearly-free of exponent (1,−1 − c)
that is E has the resolution:

(E5) 0 O(−c− 2) O(−1)⊕O(−c− 1)2 E 0.

�

As an application we recover [DHS12, Corollary 2.6] but with a different proof.

Recall that I is said to be of linear type if X = X̃, see the beginning of Subsec-
tion 1.1.

Corollary 4.4. If I = (φ0, φ1, φ2) is of linear type then the associated map Φ is
birational only if δ ≤ 2.

Proof. Indeed, letting E be as in (E3), we have that c2(E) = dt(Φ). But c1 = −δ
so the only possibility to have dt(Φ) = 1 is that δ ≤ 2. �

4.2. Homaloidal curves. Now, let Φf be the polar map from P
2 to P

2 associated
to a reduced plane curve F = {f = 0} ⊂ P2 as in Subsection 3.2. In this case,
Corollary 4.4 says that, if the singular locus of the curve F is a local complete
intersection, the curve is homaloidal only if d ≤ 3. This extends partially to any
algebraically closed field the result in [Dol00].

Now, recall that for any singular point z of the curve F , the conductor invariant
δz is defined as the length of the quotient module ÕF,z/OF,z where ÕF,z is the
normalisation of the local ring OF,z. The number of local branches of F at z is
denoted by rz.

The combination of the Jung-Milnor formula over C:

τ(Z, z) ≤ µ(Z, z) = 2δz − rz + 1
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and the formula for the arithmetic genus of a plane curve [Dol00, Part 3, Lemma 3
and Lemma 4] gives the following relation:

∑

(rz − 1) ≤ 2

h
∑

i=1

(1 − gi) + c2(E)− (d+ 1).

Now, if F verifies c2(E) = d− 2, this inequality becomes:

∑

(rz − 1) ≤ 2

h
∑

i=1

(1− gi)− 3

where h is the number of irreducible components Fi of X and gi is the genus of the
normalization of Fi. But rz ≥ 1, so h > 1. A direct consequence is the following
proposition which elucidates a part of the structure of the curves with the smallest
possible c2(E) identified in Theorem 4.3.

Proposition 4.5. Suppose that the field k is C. Let F = {f = 0} ⊂ P2
C

be a
reduced plane curve of degree d and let I be the ideal sheaf generated by the partial
derivatives of f and E be as in (E3).

If d = c2(E) + 2 then F is reducible.

This gives in particular another proof to the result in [DS17, Th. 2.5 (iv)].

4.2.1. In characteristic 3, a homaloidal curve of degree 5. In [Dol00], the classifica-
tion of complex homaloidal plane curves relies on the analysis of the Jung-Milnor’s
formula. In [BGM12], the authors showed that the Jung-Milnor formula applies
over a field of characteristic p > 0 provided that F has no wild vanishing cycle (see
[BGM12] for a definition) and in [Ngu16], a sufficient condition for an irreducible
cuvre F to have no wild vanishing cycle is to have degree d such that d(d− 1) < p.
A rough idea is that for every d such that the characteristic p is way greater, the
classification of homaloidal curves of degree d remains the same. The following
proposition shows that the classification differs when the degree is big enough com-
pared to the characteristic and answers Problem 1.

Proposition 4.6. The curve F = V
(

(x2
1 + x0x2)x0(x

2
1 + x0x2 + x2

0)
)

is homaloidal
if and only if the base field k has characteristic 3, in which case the inverse of the
polar map is

Ψ = (−x2
1x

2
2 − x0x

3
2 − x4

2 : x3
1x2 + x0x1x

2
2 + x1x

3
2 : x4

1 + x0x
2
1x2 + x0x

3
2)

Proof. The curve F is defined over Z hence over Fp for every p. The resolution of
the jacobian ideal I over Z is as follows:

(R6) 0 O(−1)⊕O(−3) O3 I(4) 0









0 2x3

0
+4x0x

2

1
+4x2

0
x2

x0 −x3

1

−2x1 −6x0x
2

1
−8x2

0
x2−8x2

1
x2−6x0x

2

2









where we denote O for the sheaf OP2 .
We observe that for every prime p 6= 2 the reduction modulo p of (R6) provides

a resolution of Ip = I ⊗Z Fp. In every characteristic p ≥ 3, Fitt2 Ip = (x0, x1) so Ip
is not a complete intersection and P(Ip) has a torsion component above the point
z = (0 : 0 : 1) ∈ P

2.
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Moreover, in characteristic other than 2, the resolution of Xp = P(Ip) embedded
in Pn × Pn is as follow:

0 O(−4,−2) O(−1,−1)⊕O(−3,−1) IXp
0

where O stands for OPn×Pn and we wrote to the right the shift in the variables of
the second factor of the product Pn × Pn. From this resolution, we can compute
that τ(Z, z) = 13 in every characteristic other that 2.

In characteristic 3, I3 has the following resolution:

0 O(−1)⊕O(−3) O3 I3(4) 0.





0 x3

0
− x0x

2

1
− x2

0
x2

x0 x3

1

x1 −x2

0
x2 − x2

1
x2





The difference in characteristic 3 comes from the multiplicity of the torsion com-
ponent in X3. Indeed, the torsion component TZ has the following resolution over
Z:

0 O(−2, 0) O(−1, 0)2 ITZ 0

whereas in characteristic 3, it has resolution:

0 O(−3,−1)
O(−3, 0)2

⊕
O(−2,−1)2

O(−2, 0)3

⊕
O(−1,−1)

ITZ3
0.

To sum up µ(Z, z) = 15 and dt(Φ) = 1 in characteristic 3 or else µ(Z, z) = 14
and dt(Φ) = 2 in other characteristic different from 2 and 3. In characteristic 3,
the polar map can be written

Φf = (x4
1 + x3

0x2 + x0x
2
1x2 : −x3

0x1 + x0x
3
1 + x2

0x1x2, x
4
0 − x2

0x
2
1 − x3

0x2).

and it is a computation to check that Ψ is the inverse of Φf .
�

Remark 4.7. What we did is to deepen the multiplicity of the torsion component
by specializing the resolution of I over Z modulo a prime p for which some mono-
mials of the presentation matrix disappear (here p = 3 works). We emphasize that
in characteristic 3, the torsion part TZ is not equal scheme-theoretically to Pn

Fittn I

whereas it is in greater characteristic. It is not clear if such an example is sporadic
or not.

4.2.2. The reduction problem in positive characteristic. The analysis of the presen-
tation of the jacobian ideal gives also an easy way to construct examples of non
reduced plane curves in positive characteristic where the topological degree is not
preserved by reduction. It suffices to compute the presentation matrix of the ja-
cobian ideal and adjust the characteristic of the field in order to modify the first
syzygy matrix.

The next proposition answers Problem 2. We emphasize that, in the examples
we consider, none of the exponents divide the characteristic of the field and that
the characteristic 101 does not play a particular role in comparison to other primes.



18 RÉMI BIGNALET-CAZALET

Proposition 4.8. Let k be an algebraically closed field of characteristic 101.

(i) The curve V
(

z(y3 + x2z)
)

has polar degree 2 whereas V
(

z50(y3 + x2z)51
)

has polar degree 1.
(ii) The curve V

(

(y3 + x2z)(y2 + xz)
)

has polar degree 5 whereas the curve

V
(

(y3 + x2z)31(y2 + xz)4
)

has polar degree 3.

Proof. Both curves are defined over Z and as in the proof of Proposition 4.6, the
idea is to take reduction modulo the prime p = 101 of the resolution of their jacobian
ideal over Z to get a resolution over Fp. We give the complete argument for Item (i).
Item (ii) is similar and left to the reader. As in the proof of Proposition 4.6, Ip
stands for I ⊗Z Fp.

The jacobian ideal of V
(

z(y3 + x2z)
)

= 0 has resolution

0 O(−1)⊕O(−2) O3 I101(3) 0,
Φred

IX101
has the following resolution:

0 O(−3,−2)
O(−1,−1)

⊕

O(−2,−1)
IX101 0.

There is no torsion component above the point z = (1 : 0 : 0) and so the corre-
sponding polar map has topological degree 2.

But the jacobian ideal of the curve V
(

z50(y3 + x2z)51
)

has resolution

0 O(−1)⊕O(−2) O3 I101(3) 0
Φ

and IX101
has the following resolution:

0 O(−3,−2)
O(−1,−1)

⊕
O(−2,−1)

IX101 0.

There is a torsion component above the point z = (1 : 0 : 0), what we can see from

the resolution of X̃:

0 O(−2,−2)2

O(−1,−1)
⊕

O(−2,−1)
⊕

O(−1,−2)

IX̃ 0.

The polar map of the latter curve is given by

(x : y : z) 7→ (xz2 : −49y2z : 50y3)

and its inverse is (x : y : z) 7→ (−37xz2 : −3y2z : y3). �
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