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Alternative interpretation of a state vector

Introduction

Conventionally, the startling features of quantum mechanics such as "measurement" and the "particle-wave duality" are illustrated by the double-slit experiment. When particles such as electrons are sent one at a time through a double-slit plate (hereafter called slit A and slit B), single random impacts are observed on a screen behind the plate as expected out of individual particles. However, when the electrons are allowed to build up one by one, the cumulative effect of a great number of impacts on the screen reveals an interference pattern of light and dark bands characteristic of waves arriving at the screen from the two slits. Meanwhile, the interference pattern is made up of individual and sequential impacts and although these sequential impacts are separate and independent, yet it seems as if the electrons work together to produce the interference pattern on the screen. This phenomenon seems to entail that the electrons embody a wave-like feature in addition to their particle nature hence illustrating a particle-wave duality structure.

When the electrons are made to build up one by one while detectors D A and D B are placed at slits A and B respectively to find out through which slit each electron went, the interference pattern disappears, and the electrons behave solely as particles. It seems thus impossible to observe interference and to simultaneously know through which slit the particle has passed. The best explanation that can be made from these strange features is that the same electron seems to pass simultaneously through both slits when no detectors are present and through only one slit when detectors are present [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF][START_REF] Rickles | The Philosophy of Physics[END_REF]. This seemingly paradoxical statement is in conformity with the experimental data.

The state vector of an electron passing through slit A may be denoted , similarly, the state vector of an electron passing through slit B may be denoted . An electron passing through both slits A and B at the same time is said to be in a superposition state and its state-vector is denoted , where "a" and "b" are called the probability amplitudes. The mod-square of " " represents the probability of the particle to be measured by the D A detector at the slit A and likewise the mod-square of " " represents the probability of the particle to be measured by the D B detector at the slit B.

Conventionally, when no detectors are present, the state-vector of the electron is said to evolve per a deterministic continuous unitary evolution U whereas, when detectors D A and D B measure from which slit the electron passes, the deterministic evolution of the state-vector is transformed into a probabilistic discontinuous and non-linear state reduction R as explained by Penrose [START_REF] Rickles | The Philosophy of Physics[END_REF]. The two processes U and R create a conflict in the formalism of quantum mechanics. Different ontologies have been proposed to interpret the strange combination of the deterministic continuous U process with the probabilistic discontinuous R process.

In general, a quantum system (e.g. spin or position of a particle) can be defined by a statevector in a Hilbert space. For any observable Q, the state-vector is defined by a superposition of vector projections in an orthonormal eigenbasis . In other words, the state-vector is defined as a linear combination of the different possible states . The normalized conventional state-vector of the quantum system is expressed as follows:

(1) where

(2)

The coefficients are complex numbers ( ) that define the "probability amplitudes" in the specific orthonormal eigenvector basis and are orthonormal states of the quantum system verifying (Kronecker delta).

According to the Copenhagen interpretation [START_REF]Penrose The Road to Reality[END_REF][START_REF] Wimmel | Quantum physics & observed reality[END_REF], the state-vector and the U and R processes should be regarded as a description of the experimenter's knowledge. There exist several other interpretations amongst which the Everett interpretation or what is more commonly known as the many-world interpretation [START_REF] Everett | The Theory of the Universal Wave function[END_REF][START_REF] Everett | [END_REF], according to which there is no wave function collapse and all measurement results exist but in different worlds. In line with this interpretation, it is claimed [START_REF] Wallace | Emergent Multiverse[END_REF] that when a measurement is conducted on an electron in the superposition state , a deterministic branching takes place where on one branch detector A detects the electron while detector B doesn't and at the same time but on the other branch (i.e. another world), detector A doesn't detect the electron while detector B does detect it. However, this interpretation pauses some probabilistic as well as ontological problems. In particular, the axioms of quantum mechanics say nothing about the existence of multiple physical worlds [START_REF] Kent | [END_REF].

Another interpretation is the De Broglie-Bohm deterministic theory according to which particles interact via a quantum potential and are assumed to have existing trajectories at all times. This model seems to make more sense of quantum mechanics than the other interpretations as discussed in detail by Jean Bricmont in his book "Making Sense of Quantum Mechanics [START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF].

In this paper, it is intended to introduce an alternative explanatory hypothesis that makes sense of some remarkable features of quantum mechanics, and in which the process of measurement does not come in conflict with the deterministic evolution of the states of a particle.

Introducing a time-thickness into the state-vector

It is learned from the above that a particle can be at different positions at the same instant of time and that the state of the particle can be described by a state-vector as a linear combination of possible states with complex coefficients according to the above equations [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF][START_REF] Rickles | The Philosophy of Physics[END_REF].

It does not seem absurd to suppose that a straightforward implication of the above observations would be the fact that an instant of time is not a geometrical point but rather a plurality of elementary instants.

In particular, we suppose that a local referential (u, v) of complex numbers is associated to each point (i.e. to each time index t) of the ordinary time-axis . Each local referential (u, v) has its origin at the corresponding time index t and is perpendicular to the ordinary time-axis. Moreover, each local referential is limited by a circle of an infinitely small radius δ.

In other terms, instead of being a simple point on a real axis, an instant of time becomes according to the present model a sort of a "time-slice" or section in a cylindrical manifold, hereinafter referred to as an "elementary-time-thread" having an infinitely small but non-zero radius δ. The original real axis can be considered as the central longitudinal direction of the "elementary-time-thread" and thus, each ordinary instant of time determines the position of a corresponding time-slice . On the other hand, each point belonging to the time-slice is defined by a complex number with respect to the local referential (u, v) in the plane of the time-slice. Points belonging to the time-slice are complex numbers hereinafter called "state-time-indices" that account for the complex probability amplitudes as will be shown underneath.

Thus, each point belonging to the time-slice is refenced by a complex number s (statetime-index) in addition to the common ordinary time index t referencing the ordinary temporal position t of the time-slice itself. Thus, a time-slice can be generally defined as a set of points hereinafter called "elementary-time-instants"

, as follows:

(

It should be emphasised that for each ordinary time index t, there exists one and only one corresponding slice and vice-versa. The fact that a time-slice , associated to a unique index , is made up of an infinite number of elementary-time-instants enables a particle to be at different positions at the same ordinary-time-index .

According to the present model, a quantum system can be represented by a fundamental-statevector -noted hereafter where the states of the system are well defined. For example, the position as well as the momentum of a particle are well defined at each elementary-timeinstant . The fundamental-state-vector is then written as follows:

(4)

The above formulation expresses the fact that at each elementary-time-instant , the particle has a definite position and a definite momentum that can be defined in a phase space constructed out of and . Both position and momentum are "simultaneously" defined with respect to an elementary-time-instant . The set of elementary-time-instants forms a curve that belongs to the time-slice and with respect to which the positions and momenta of the particle are well defined.

However, if it is made abstraction of the complex time , then position and momentum cannot be "simultaneously" defined with respect to the ordinary time . Indeed, if the curve is subdivided into a set of subsets where each subset corresponds to the elementary-timeindices that are associated to the same position , then at least one of these subsets may be associated to different momenta and inversely the same momentum may be associated to different subsets.

In other terms, it is not possible to construct out of the fundamental-state-vector , a state vector that determines the definite position and definite momentum of a quantum particle only with respect to the ordinary time-index (i.e. without considering the state-time-indices ). Indeed, by omitting the state-time-indices , it would be possible to find that the position at one elementary-time-instant is equal to the position at another elementary-time-instant , i.e. while the momenta and at these same elementary-time-instants and are different. Thus, if we know that the position of the particle is , we don't know whether its momentum is or . The contrary is of course true, creating thus an uncertainty relation between the position and momentum of the particle.

For simplicity reasons, we will first illustrate the fundamental-state-vector defining the position and momentum of a quantum system in a discrete manner before expressing it in a continuous one.

In order to describe the different positions of the particle at a given ordinary time-index , we subdivide into a set of elementary instants chosen in such a manner that each interval or arc joining to represents a "stateperiod" during which the particle is at a given position . Thus, the curve is made up of all the arcs : .

On the other hand, let (j=1, 2, ..) be all the different arcs belonging to that are associated to the same position state , then the "domain of state-time-indices" (or subcurve) during which the particle is found in the state is given by : (

Moreover, "the total state-time-period" or "state-life-time" during which the particle is in the state is:

(7)
On the other hand, in order to describe the different momenta of the particle at the same given ordinary time index , we subdivide into a set of elementary instants chosen in such a manner that each arc joining to represents a "state-period" during which the particle presents a given momentum . Thus, the curve is made up of all the arcs :

. ( 8 
)
It is evident that the subdivision into intervals referencing equal momenta should not be necessarily the same as the subdivision into intervals referencing equal positions.

On the other hand, let (h=1, 2, ..) be all the different arcs belonging to that are associated to the same momentum state , then the "domain of state-time-indices" (or sub-curve) during which the particle is found in the state is given by : (

It is even less likely that the union of all the intervals associated to the same position (i.e. ) be equal to the union of all the intervals associated to the same momentum (i.e.

).

Moreover, "the total state-time-period" or "state-life-time" during which the particle is in the state is:

(10

)
where again is different from .

In view of the above, it becomes clear that by omitting the complex time , the fundamentalstate-vector can only be described by two separate and independent statevectors and with respect to position and momentum respectively as follows:

(11) (12)
where is a normalizing parameter called hereafter the "total-state-life-time" at a given , such that:

(13) And thus, (

By comparing for example, the position state-vector of equations ( 11) and ( 14) to equations ( 1) and ( 2), one can easily deduce that: It should be noted that the phase term in equation ( 16) may naturally be dependent on the ordinary-time-index and its associated state-time-indices .

The state-vector can thus be considered as a "normalised weighted sum" or almost as a sort of a "centroid" or "weighted arithmetic mean" where each "weight" (i.e. probability amplitude) represents the "state-time-ratio" visited by the state at the physical-time-index .

In that case, the probability associated to the state is:

(17

)
It seems logical that for a given physical-time-index , the greater is the value of the "statelife-time" the higher is the probability to find the quantum system in the state .

It should be noted that equation (15) takes account of the state-time-indices in an implicit or "hidden" manner via the coefficients . Thus, when a measuring apparatus is used to measure the state of a quantum system, it cannot be explicitly known at which elementarytime-instant the measure has been undertaken and thus, the measured outcome would seem as if it has resulted out of a wave-function collapse.

Similarly, to describe the position and momentum of a quantum system in a continuous manner with respect to the ordinary time-index without explicitly taking into account the state-time-indices , we construct two different state-vectors: a position state-vector out of the fundamental-state-vector and a momentum state-vector out of fundamental-state-vector as above.

The position state-vector can be expressed as the integral of the fundamental-statevector with respect to the state-time-indices over the curve as follows:

(18

)
where is the "total-state-life-time" (i.e. a normalizing parameter representing the total length of the curve ).

By decomposing the curve at a given time-index , into a set of intervals such that each interval represents the "state-period" spent by the fundamental-state-vector at the same position , the above integral (18) can be expressed as follows:

(19) represents the ratio of the state-time-life spent by the states at the same position . This integral can be considered as the "centroid" of the states with complex coefficients: . However, and thus, . Therefore, represents the probability associated to the states having the same position .

In a similar manner, the momentum state-vector can be expressed as the "centroid" of the states of the fundamental-state-vector as follows:

(20)

where the interval represents the "state-period" spent by the fundamental-state-vector at the same momentum , and where represents the ratio of the state-timelife spent by the states at the same momentum .

Similarly, and thus, . Therefore, represents the probability associated to the states having the same momentum .

Free particle and uncertainty

The "centroid" as defined in equation ( 19) can be considered as a "bloc of superpositions" that evolves according to the usual Schrodinger equation with respect to ordinary time . Thus, a free particle occupies a volume in space at each ordinary-time index and can thus be viewed as a spatial cloud formed by the different positions visited by the particle at the different state-time-indices of its state-time curve

. Indeed, at each , the particle may be considered as having an oscillatory-like movement in space with respect to the state-time-indices and thus, at each , the particle has multiple positions as if there is not only one particle but plenty of particles.

In view of the above model, the uncertainty principle arises from the fact that a particle may have different states with respect to the state-time-indices at any given physical-time-index .

Indeed, consider a particle whose position is defined by a one-dimensional representation along the x-axis according to equations ( 18) and (19). Equation (18) implies that when the state-time-index spans the state-time curve , the position of the particle at a given can be considered as a continuous random variable that takes its values in R. Equation ( 19) implies that the probability distribution density of the position is given by: (21)

It should be noted that the probability distribution reflects a statistical distribution of the different positions of the particle along the state-time curve at a given ordinary-timeindex .

On the other hand, Fourier analysis shows that the variance for the distribution of position and the variance for the distribution of momentum satisfy the following well-known classical mathematical relation [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF], [START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF]:

(22)
However, it should be emphasised that according to the present model the above uncertainty relation ( 22) comes from the statistical distribution at one given ordinary-time-index of the different positions and momenta of a single particle visited by the different state-time-indices belonging to the time thickness. It does not come from a statistical distribution of the different positions and momenta of different particles neither from a statistical distribution of the different positions and momenta of a particle at different ordinary-time-instants . It should be clear that here we are considering only one particle at only one ordinary-time instant and the statistical distribution is generated by the time thickness.

For simplicity and illustrative reasons only, we suppose that the movement of the particle along the x-axis with respect to the state-time-indices obeys the following equation of a harmonic oscillator:

(23)

The solution of the above equation may be expressed as follows:

(24)

The above solution shows that the particle may undergo a combination of diverging and converging oscillatory movements around depending on the values of and . It can thus be implied that the spatial points of the cloud furthest away from are visited less "frequently" by the particle than those nearest to . Here, the term "frequently" is to be understood with respect to the state-time and not with respect to the ordinary-time . Thus, it is sensible to suppose that at a given ordinary-time , the ratio of the state-time-life spent by the particle at the same position follows the following square-root of a Gaussian:

(25)

It should be noted that the down bound of the uncertainty relation ( 22) is attained when the probability distribution is Gaussian.

On the other hand, it is known [11] that the normalised wave-function of a particle of momentum in the one-dimensional space representation is given by: (26)

The probability amplitude of momentum of the particle at a given can thus be expressed as follows: 

Equation ( 29) expresses the uncertainty principle between position and momentum.

Spin

Spin can be considered as the rotation of a point particle around a sphere with respect to the complex time . More precisely, an electron may be considered as a point-particle turning around a sphere of radius while covering almost all the surface of the sphere at any given ordinary time (i.e. rotating around circles of radius with respect to and according to different directions of ).

Thus, the spin of the electron can be defined as an angular momentum as follows:

(30)

At any given , the point particle rotates a plurality of times around the sphere along different directions with respect to the state-time . In other words, what may be called as the radius of the particle is in fact the radius of a sphere around which the point-particle revolves with respect to the complex state-time .

Thus, at any given , the electron would seem as if it is a sphere of radius presenting a superposition of different spins generated by the different directions around which the pointparticle revolves with respect to the state-time . These different directions may be organised along , or where for example, divides the sphere into an upper hemisphere and a lower hemisphere where all directions lying in the upper hemisphere are defined as and all others as .

The value of the spin may be expressed as:

(31) where is the instantaneous complex velocity with respect to the state-time . The value of the spin in spherical coordinates may be expressed as follows:

(32) However, by considering the velocity to be analytic, the distance covered by the electron around the sphere at a given between the extremities and of the state-time curve is:

(33) Thus, the average velocity may be defined as the covered distance divided by the module of the difference between the extremities and of the state-time curve :

where is the number of revolutions around the sphere at a given . It should be noted that the average velocity is an "apparent velocity" and may be much greater than the speed of light.

Indeed, another velocity, named hereafter "average effective-velocity" may be defined as the covered distance divided by the total state-time-span spent by the particle around the sphere at a given (i.e., the length of the state-time curve

) knowing that the length may be much longer than the difference between the extremities and :

In other words, the average effective-velocity is smaller than the average apparent-velocity and thus, it is possible for the latter to be greater than the speed of light but not for the former.

On the other hand, it is to be noted that the state-time curve with respect to which the spin of a particle is defined may be different and completely independent from the one that defines the general movement of the particle in space (or more precisely, the movement of the sphere's centre around which the dot particle revolves).

Uncertainty and Measurement

When the complex time is taken into account the position as well as momentum of a particle are definite (i.e. at each there exists a well-defined position and a well-defined momentum. However, when we make abstraction of the complex time , position and momentum cannot be defined simultaneously. Indeed, as explained above (in section 3), if we classify all the same 's in a separate x-class and all the same 's in a separate p-class, the complex time indices may overlap (i.e. the set of indices of a given p-class may intersect several sets of different x-classes. In other words, constructing a state-vector by factorising with respect to the 's (see equation (18) rewritten underneath as equation ( 36)) gives a different state-vector from a one constructed out of factorisation with respect to the 's:

(36) (37) According to the above expressions, if we know the value of , we cannot know the value of simply because the set of complex indices that correspond to may correspond to a plurality of different 's. Thus, the "uncertainty principle" is only an uncertainty of our knowledge due to our incomplete representation (i.e. by omitting complex time ).

The same is true for spin which is considered as the rotation of the particle around a sphere of fixed radius in all different orientations covering all the sphere's surface (section 4). This rotation takes place with respect to the complex time and not with respect to the ordinary time . Thus, for a given , the spin is a superposition of different angular momenta directions due to the fact that the revolution keeps changing with respect to complex time while its value remains constant (same mass of the particle and same sphere's radius). However, by arbitrarily classifying the spin into three directions , , implies that knowing one direction leads to an uncertainty in the other directions. Indeed, if we know that the spin is in the direction (i.e. upper hemisphere), then we cannot know whether it is tilted towards the right or left hemisphere neither whether it is tilted towards the forward or backword hemisphere.

The above uncertainty can be called an "uncertainty of knowledge" so as to be differentiated from an "uncertainty of measurement". A measurement is a restriction of the state of the particle to a certain domain in addition to the "uncertainty of knowledge". For example, the measurement of the position of a particle means the restriction of the position of the particle with respect to to a certain domain which leads to an increase in the domain of momentum .

Similarly with spin, measuring the spin of the particle to be means the restriction of the particle to the northern hemisphere and thus, we cannot know simultaneously whether it is or , or whether it is or .

Measurement can thus be considered as a combination of two phenomena:

-restriction of the state of the particle to a certain domain (e.g. ), that leads to an expansion of the conjugate state. For example, restricting the motion to a certain volume, certainly increases the momentum; and -knowing one state of the particle leads to an "uncertainty in knowledge" of the conjugate state of the particle.

Discussion

According to the above model, the complex-time is considered to be hidden in the complex amplitudes of the superposition states determined by the Schrodinger's equation. This implies that there should be a more basic equation that explicitly accounts for the complex time and out of which Schrodinger's equation can be derived.

This may be illustrated with a simple example where the Lagrangian of a particle is supposed to have the following expression: (38) where is a field supposed to be a function of space , ordinary time and complex time . The Lagrangian depends on and some partial derivatives of with respect to the coordinates of space and time. In the above example, the Lagrngian is expressed only with respect to kinetic energy which is considered to have space as well as time derivatives. The first kinetic term mixes the coordinates of ordinary time and complex time . However, as complex time is a complex variable, a complex multiplicative constant is introduced into the spatial kinetic energy terms for dimensional consistency.

By applying the following Euler-Lagrange equations on the above Lagrangian (39) where stands for space and time coordinates , , , one gets the following equation of motion:

(40)

In order to derive Schrodinger's equation, complex time should not be explicit and thus, we integrate the above equation of motion on the state-time curve with respect to the complex time :

(41) By supposing that there are no mixed terms of space and time, the second differential derivatives ( with respect to space are thus independent of complex time and thus, the Laplacian can be put outside the integral:

(42)

Moreover, by supposing that the interval between the complex limits of the integral is invariant at each ordinary time , we get:

(43)

where is the module of the interval between the limits of the integral at each ordinary time and where is the phase (i.e. is the difference between the extremities of the state-time curve

). Thus, equation (42) becomes:

(44)

According to the present model, quantum phenomena are supposed to be derived from the thickness of time, it is thus reasonable to suppose that the energy of the particle is related to the "thickness of time" as follows:

(45) Equation ( 45) leads to:

(46)

And thus, by replacing and by taking , equation (44) becomes:

(47)

Finally, we consider that the wave function is the integral of the field with respect to the complex time :

(48)

By replacing equation (48) into equation (47), we obtain Schrodinger's equation:

Equation ( 46) shows that the module of the difference between the extremities of the statetime curve decreases when the energy increases and thus, the quantum phenomena would be unnoticeable at high energies.

Using equation (46) an estimate of the value of related to an electron may be calculated as follows:

(50) It is to be reminded that represents the module of the difference between the extremities of the state-time curve whose "length" could have a much bigger value.

  (27) By calculating the Gauss integral, the above equation (27) becomes: