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Dynamical aspects of generalized Schrödinger problem via Otto calculus -A heuristic point of view

The defining equation ( * ) : ωt = -F (ω t ), of a gradient flow is kinetic in essence. This article explores some dynamical (rather than kinetic) features of gradient flows (i) by embedding equation ( * ) into the family of slowed down gradient flow equations: ωε t = -εF (ω ε t ), where ε > 0, and (ii) by considering the accelerations ωε t . We shall focus on Wasserstein gradient flows. Our approach is mainly heuristic. It relies on Otto calculus.

A special formulation of the Schrödinger problem consists in minimizing some action on the Wasserstein space of probability measures on a Riemannian manifold subject to fixed initial and final data. We extend this action minimization problem by replacing the usual entropy, underlying Schrödinger problem, with a general function on the Wasserstein space. The corresponding minimal cost approaches the squared Wasserstein distance when the fluctuation parameter ε tends to zero.

We show heuristically that the solutions satisfy some Newton equation, extending a recent result of Conforti. The connection with Wasserstein gradient flows is established and various inequalities, including evolutional variational inequalities and contraction inequalities under a curvature-dimension condition, are derived with a heuristic point of view. As a rigorous result we prove a new and general contraction inequality for the Schrödinger problem under a Ricci lower bound on a smooth and compact Riemannian manifold.

Introduction

The defining equation ωt = -F (ω t ), [START_REF] Kuwada | On a class of first order Hamilton-Jacobi equations in metric spaces[END_REF] of a gradient flow is kinetic in essence. This article explores some dynamical (rather than kinetic) features of gradient flows (i) by embedding equation [START_REF] Kuwada | On a class of first order Hamilton-Jacobi equations in metric spaces[END_REF] into the family of slowed down gradient flow equations: ωε t = -εF (ω ε t ), where ε > 0, and (ii) by considering the accelerations ωε t . We shall focus on Wasserstein gradient flows, i.e. gradient flows with respect to the Wasserstein metric on a space of probability measures. Our approach in this article is mainly heuristic, using Otto calculus. Otto calculus is a powerful tool to understand the geometry of the Wasserstein space on a Riemannian manifold N . It offers a heuristic for considering the space P 2 (N ) of probability measures with finite second moments on the manifold, see [START_REF] Gigli | Second order differentiation formula on compact RCD * (K, N ) spaces To appear[END_REF], as an infinite dimensional Riemannian manifold, allowing one to address natural conjectures. Roughly speaking, Otto calculus is twofold. Firstly, it leads to the definition of the Wasserstein metric on P 2 (N ) whose corresponding squared Wasserstein distance between two probability measures µ and ν is given by the Benamou-Brenier formula

W 2 2 (µ, ν) = inf ((µs),(vs)) [0,1]×N |v s (x)| 2 x µ s (dx) ds
where the infimum is taken over all (µ s , v s ) 0≤s≤1 such that (µ s ) is a trajectory in P 2 (N ), starting from µ and arriving at ν and (v s ) is its velocity field, meaning that the transport equation ∂ s µ+div (µv) = 0 is satisfied. Denoting the squared length of the velocity μ = v by

| μs | 2 µs := inf N |v| 2 dµ s ; v : ∂ s µ + div (µ s v) = 0 , (2) 
we obtain the Riemannian distance like formula

W 2 2 (µ, ν) = inf (µs) 1 0 | μs | 2 µs ds. (3) 
This provides us with natural definitions on P 2 (N ) of geodesics, gradients, Hessians and so on. We call the squared distance W 2 2 the Wasserstein cost. Secondly, it appears that several PDEs whose solutions (µ t ) t≥0 are flows of probability measures, are gradient flows with respect to the Wasserstein metric, of some function F:

μt = -grad µt F, (4) 
where the velocity μt and the gradient of F are understood with respect to the Wasserstein metric. For instance it is well known since [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] that the heat equation is the gradient flow with respect to the Wasserstein metric of the usual entropy Ent(µ) := N µ log µ dvol .

We introduce a cost function which is a perturbed version of the Wasserstein cost W 2 2 . It is defined for any regular function F on the set of probability measures, any ε ≥ 0 and any probability measures µ, ν on the manifold, by

A ε F (µ, ν) := inf (µs) 1 0 1 2 | μs | 2 µs + ε 2 2 | grad µs F| 2 µs ds,
where as in (3) the infimum runs through all paths (µ s ) 0≤s≤1 in P 2 (N ) from µ to ν. Remark that this family of cost functions embeds the Wasserstein cost W 2 2 = A ε=0 F as a specific limiting case, see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. This paper investigates basic properties of A ε F and of its minimizers which are called εFinterpolations. It also provides heuristic results which extend to A ε F several known theorems about the optimal transport cost W 2 2 and the convexity properties of F. The main motivation for introducing A ε F is that the gradient flow solving μt = -ε grad µt F,

is naturally associated to the Lagrangian | μ| 2 µ /2 + ε 2 | grad µ F| 2 µ /2. Indeed, any solution of ( 6) and any εF-interpolation satisfy the same Newton equation μs = ε 2 2 grad µs | grad µs F| 2 µs where μ denotes the acceleration with respect to the Wasserstein metric and a Wasserstein version of the Levi-Civita connection. When ε = 1 this is the equation of motion of the gradient flow (4), while when ε = 0, this is the equation of the free motion in the Wasserstein space characterizing McCann's displacement interpolations.

Let us quote some of our results.

• We denote the solution of (4) with initial state µ 0 by the semigroup notation: µ t = S F t (µ 0 ). The cost A ε F satisfies the same contraction inequalities along the gradient flow (S F t ) as the one satisfied by the Wasserstein cost. The simplest contraction result states that, under a nonnegative Ricci curvature condition,

A ε F (S F t µ, S F t ν) ≤ A ε F (ν, µ
), for any t ≥ 0 and any probability measures µ, ν. This extends the well-known result by von Renesse and Sturm for the Wasserstein cost [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF].

• Newton's equation satisfied by the εF-interpolations allows us to prove convexity properties of F along εF-interpolations. For instance, when the Ricci curvature is nonnegative, F is convex along the εF-interpolations. This generalizes McCann's result about the Wasserstein cost [START_REF] Mccann | Existence and uniqueness of monotone measure-preserving maps Duke Math[END_REF].

It is remarkable that, similarly to the Wasserstein cost, A ε F behaves pretty well in presence of the Bakry-Émery curvature-dimension condition, see Section 4.

Schrödinger problem. A particular and fundamental case is when F is the standard entropy Ent, see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators Cham[END_REF]. The associated cost A ε

Ent is related to the Schrödinger problem by a Benamou-Brenier formula, see Section 5. It is identical up to an additive constant to an entropy minimization problem on the path space. The Newton equation satisfied by the εEnt-interpolations is a recent result by Conforti [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF]. It is a keystone of this field. Unlike the remainder of this article, our results about the Schrödinger problem are rigorous. In particular we prove that the entropic cost satisfies a general contraction inequality for the heat semigroup (S Ent t ) t≥0 under the assumption that the Ricci curvature is bounded from below by ρ in an n-dimensional Riemannian manifold: For any t ≥ 0 and any probability measures µ, ν,

A ε Ent (S Ent t µ, S Ent t ν) ≤ e -2ρt A ε Ent (µ, ν) - 1 n t 0 e -2ρ(t-u) (Ent(S Ent u µ) -Ent(S Ent u ν)) 2 du.
The paper is organized as follows. In next Section 2 we treat the finite dimensional case where the state space is R n equipped with the Euclidean metric. In this case, we are able to do explicitly all the computations using classical differential calculus. In Section 3 we treat the infinite dimensional case using the Otto calculus: we start recalling in a simple way the Otto calculus, then a heuristic derivation of the Newton equation is presented. Convexity properties are explored at Section 4. Finally in Section 5, the special case of the Schrödinger problem is investigated.

We have to mention again that, except for Section 5, all the results in this paper are heuristic, even if we believe that there is a way to prove them rigorously. Heuristic results are denoted with quotation marks. Some parts of the paper are related to other mathematical domains such as Euler equations and mean field games ; we tried to extract references to known results from the large related literature. In order to propose a comprehensive document, we do not provide the detailed proofs in the finite dimensional case at Section 2.

Warm up in R n

In this section, F : R n → R is a smooth function (C ∞ ) with its first derivative (gradient) and second derivative (Hessian) denoted by F and F . All the results about gradient flows which are stated below are well known, see for instance [START_REF] Daneri | Eulerian calculus for the displacement convexity in the Wasserstein distance[END_REF].

Gradient flows in R n

The equation of a gradient flow: [0,

∞) t → ω t ∈ R n is ωt = -F (ω t ), t ≥ 0, ( 7 
)
where ωt is the time derivative at time t of the path ω. This evolution equation makes sense in a Riemannian manifold if it is replaced by ωt =grad ωt F.

Remark 1 When F is ρ-convex for some ρ ∈ R, that is F ≥ ρId (8)
in the sense of quadratic forms, there exists a unique solution of (7) for any initial state.

Definition 2 (Semigroup) For any x ∈ R n , we denote

S t (x) := ω x t , t ≥ 0, x ∈ R n ,
where (ω x t ) t≥0 is the solution of (7) starting form x. From Remark 1, it follows that (S t ) t≥0 defines a semigroup, i.e.: S s+t (x) = S t S s (x) and S 0 (x) = x, for all s, t ≥ 0, and all x ∈ R n . This semigroup is called the gradient flow of F (with respect to the Euclidean metric).

For any t, x → S t (x) is continuously differentiable.

Equilibrium state

Any critical point x of F is an equilibrium of (7) since F (x) = 0 implies that ωt = 0 for all t as soon as ω 0 = x. If F (x) > 0 (in the sense of quadratic forms), then x is a stable equilibrium, while when F (x) < 0, it is unstable. See Figure 1 for an illustration in dimension one. In the multidimensional case F (x) may admit both stable and unstable directions.

Two metric formulations of gradient flows

The evolution equation [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] only makes sense in presence of a differential geometric structure. It is worth rephrasing [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] in terms allowing a natural extension to a metric setting. The main idea is to express everything with the scalar quantities | ωt | and |F (ω t )| which admit metric analogues.

Proposition 3

The gradient flow equation (7) is equivalent to

1 2 t s | ωr | 2 + |F (ω r )| 2 dr ≤ F (ω s ) -F (ω t ), ∀ 0 ≤ s ≤ t.
In such case, the curve ω is said to be of maximal slope with respect to F . 

x x * x x x * x F -F ′
d dt 1 2 |y -S t (x)| 2 + ρ 2 |y -S t (x)| 2 ≤ F (y) -F (S t (x)), ∀t ≥ 0, ∀x, y. ( 9 
) (b) If ω is a C 1 path satisfying d dt 1 2 |y -ω t | 2 + ρ 2 |y -ω t | 2 ≤ F (y) -F (ω t ), ∀t ≥ 0, ∀y, (10) 
then it solves [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF].

(c) The function F is ρ-convex if and only if there exists a semigroup (T t ) such that for any x, T t (x) is t-differentiable and

d dt|t=0 + 1 2 |y -T t (x)| 2 + ρ 2 |y -x| 2 ≤ F (y) -F (x), ∀x, y. (11) 
In this case, T = S.

The evolution variational inequality [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF] (EVI in short) is a key inequality for extending the notion of gradient flow to general spaces. For instance, it leads to the definition of a gradient flow in a geodesic space, see [START_REF] Villani | Optimal transport. Old and new Springer[END_REF]Definition 23.7]. This is a reason why many research papers focus on EVI.

2.2

The cost A ε F and the εF -interpolations in R n

In this section we see that gradient flows are special solutions of some Hamilton evolution equations and the related action minimizing problem is considered.

x x * x Figure 2: Graphical representation of U = -|F | 2 /2

Free energy and Fisher information

To draw an analogy with the infinite dimensional setting to be explored later on, where R n will be replaced by the state space P 2 (N ) consisting of all probability measures with a finite second moment on some configuration space described by a Riemannian manifold N , R n should be interpreted as the state space (not to be confused with the configuration space) and the function F as the "free energy" of the system. With this analogy in mind, we define the "Fisher information" I by

I := |F | 2 ,
which appears as minus the free energy production along the gradient flow [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] since for any t ≥ 0,

d dt F (ω t ) = F (ω t ) • ωt = -|F (ω t )| 2 = -I(ω t ). (12) 
As I ≥ 0, this implies that t → F (ω t ) decreases as time passes. In mathematical terms: F is a Lyapunov function of the system, while with a statistical point of view, this property is an avatar of the second principle of thermodynamics.

Gradient flows as solutions of a Newton equation

Let us introduce a parameter ε ≥ 0. For any x ∈ R n , the path

ω ε t := S εt (x)
satisfies the evolution equation ωε t = -εF (ω ε t ), t ≥ 0. When ε is small, this corresponds to a slowing down of [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF]. The acceleration of its solution is given by ωε

t = -ε F (ω ε t ) • ωε t = ε 2 F F (ω ε t ). Hence ω ε satisfies the Newton equation ωε = -U ε (ω ε ) ( 13 
)
with the scalar potential

U ε := - ε 2 2 I = - ε 2 2 |F | 2 .
A graphical representation of U ε=1 = -|F | 2 /2 corresponding to the free energy of Figure 1 is given at Figure 2.

εF -interpolations

It is tempting to investigate the dynamical properties of the trajectories solving the corresponding Hamilton minimization problem. It is associated with the Lagrangian

L ε (q, v) = |v| 2 2 -U ε (q) = |v| 2 2 + ε 2 2 |F (q)| 2 . ( 14 
)
The associated Hamilton minimization principle is expressed below at [START_REF] Chen | On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint[END_REF].

Definition 5 (εF -cost, εF -interpolations) For any x, y ∈ R n and ε ≥ 0, we define

A ε F (x, y) = inf ω∈Ω xy 1 0 1 2 | ωs | 2 + ε 2 2 |F (ω s )| 2 ds, (15) 
where the infimum runs through all the subset Ω xy of all paths starting from x and arriving at y. We call A ε F (x, y) the εF -cost between x and y, and any minimizer ω ε,xy of (15) is called an εFinterpolation between x and y.

• Remark that A ε F = A 1 εF . Therefore, the above definitions of the εF -cost and εF -interpolation could also be called (ε, F )-cost and (ε, F )-interpolation.

• For any x, y ∈ R n , A ε F (x, y) ≥ 0 but unless ε = 0, it is not a squared distance on R n . For instance whenever F (x) = 0, we see that A ε F (x, x) > 0.

A key remark about this article is the following Remark 6 (Gradient flows are εF -interpolations) Suppose that for any ε > 0 and all x, y there exists a unique εF -interpolation ω ε,xy . Then, for any x, the εF -interpolation between x and y = S ε x is ω ε,xSεx s = S εs x, 0 ≤ s ≤ 1.

In other words, the εF -interpolation matches with the gradient flow when the endpoint is well appropriate. The reason is clear from the uniqueness of the minimizer and the fact that the map s → S εs x satisfies Newton's equation [START_REF] Bowles | A Theory of Transfers: Duality and convolution ArXiv e-prints[END_REF].

The Hamiltonian corresponding to the Lagrangian ( 14) is

H ε (q, p) = |p| 2 2 + U ε (q) = |p| 2 2 - ε 2 2 |F (q)| 2 ,
and the equation of motion of any minimizer of (15), i.e. any εF -interpolation ω, is given by the Hamilton system of equations:

ωs = p s , ṗs = -U ε (ω s ), 0 ≤ s ≤ 1.
Proposition 7 (Properties of the εF -interpolations) (a) For any x, y ∈ R n and any ε ≥ 0, the minimization problem (15) admits at least a solution ω ε,xy .

(b) Furthermore, lim ε→0 ω ε,xy = ω xy pointwise, where ω xy is the constant speed geodesic from x to y.

(c) Any εF -interpolation is C 2 and satisfies the Newton equation

ωε,xy s = ε 2 2 I (ω ε,xy s ) = ε 2 F F (ω ε,xy s ), (16) 
which is also [START_REF] Bowles | A Theory of Transfers: Duality and convolution ArXiv e-prints[END_REF].

(d) Along any εF -interpolation ω, the Hamiltonian is conserved as a function of time:

H(ω s , ωs ) = | ωs | 2 2 - ε 2 2 |F (ω s )| 2 = H(ω 0 , ω0 ), ∀0 ≤ s ≤ 1.
• As already noticed at Remark 6, the path (S εs (x)) 0≤s≤1 is an εF -interpolation between x and S ε (x) satisfying Newton's equation ( 16) and one immediately sees with the very definition [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] of its evolution that the conserved value of the Hamiltonian along it is zero.

• When ε = 0, the εF -interpolation is the standard constant speed geodesic between x and y.

For any small ε > 0, one can think of the εF -interpolation ω ε,xy as a small perturbation of the geodesic.

Dual formulation of the cost A ε F . Let h : R n → R be a Lipschitz function and let ε > 0. We define the Hamilton-Jacobi semigroup for any t ≥ 0 and y ∈ R n by,

Q εF t h(y) = inf ω:ωt=y h(ω 0 ) + t 0 | ωs | 2 2 + ε 2 2 |F (ω s )| 2 ds , (17) 
where the infimum is running over all C 1 path ω such that ω t = y. The function U : (t, y) → Q εF t h(y), satisfies, in the sense of viscosity solutions, the Hamilton-Jacobi equation

   ∂ t U (t, y) + 1 2 |U (t, y)| 2 = ε 2 2 |F (y)| 2 ; U (0, •) = h(•). (18) 
Minimizers of ( 17) are solutions of the system,

   ωs = ε 2 2 [|F | 2 ] (ω s ), 0 ≤ s ≤ t, ω0 = h (ω 0 ), ω t = y. ( 19 
) Proposition 8 (Dual formulation of A ε F ) For any x, y ∈ R n , A ε F (x, y) = sup h {Q F 1 h(y) -h(x)} = sup h {Q F 1 h(x) -h(y)},
where the supremum runs through all regular enough functions h.

Heuristic proof

¡ For any smooth path (ω t ) 0≤t≤1 between ω 0 = x and ω 1 = y, from the definition of Q εF 1 ,

Q εF 1 h(y) -h(x) ≤ 1 0 | ωt | 2 2 + ε 2 2 |F (ω t )| 2 dt, then sup h {Q ε 1 h(y) -h(x)} ≤ A ε F (x, y).
Now, let γ be a minimizer of [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF] with t = 1 and choose h such that h(z) = γ0 • z in a large enough family of test functions. By [START_REF] Daneri | Eulerian calculus for the displacement convexity in the Wasserstein distance[END_REF], we know that γ satisfies Newton equation. Hence it is an Finterpolation, that is a minimizer of the action between γ 0 = x at time t = 0 and γ 1 = y at time t = 1. In other words

Q εF 1 h(y) -h(x) = 1 0 | γt | 2 2 + ε 2 2 |F (γ t )| 2 dt = A ε F (x, y).
This proves the first equality:

A ε F (x, y) = sup{Q ε 1 h(y) -h(x)}.
As the action appearing at formula ( 15) is invariant with respect to time reversal, we see that

A ε F (x, y) = A ε F (y, x). It follows immediately that A ε F (x, y) = sup{Q ε 1 h(x) -h(y)}. £
Alternate formulations of the cost A ε F . Since for any x, y ∈ R n and any path ω from x to y, we have

1 0 | ωs | 2 + ε 2 |F (ω s )| 2 ds = 1 0 | ωs + εF (ω s )| 2 -2εF (ω s ) • ωs ds = 1 0 | ωs + εF (ω s )| 2 ds -2ε(F (y) -F (x)),
we obtain the forward expression of the cost

A ε F (x, y) = 1 2 inf ω∈Ω xy 1 0 | ωs + εF (ω s )| 2 ds -ε(F (y) -F (x)).
With the same way of reasoning, its backward formulation is

A ε F (x, y) = 1 2 inf ω∈Ω xy 1 0 | ωs -εF (ω s )| 2 ds + ε(F (y) -F (x)). ( 20 
)
It follows that its symmetric expression is

A ε F (x, y) = 1 4 inf ω∈Ω xy 1 0 | ωs + εF (ω s )| 2 ds + 1 4 inf ω∈Ω xy 1 0 | ωs -εF (ω s )| 2 ds .
Example. Let us treat the simple case corresponding to F (x) = |x| 2 /2, x ∈ R n , where computations are simple and explicit.

• For any t ≥ 0 and x ∈ R n , S t (x) = e -t x.

• For any x, y ∈ R n , the εF -interpolation between x and y is given by

ω ε s = S εs (α) + S ε(1-s) (β), 0 ≤ s ≤ 1, where α = x -ye -ε 1 -e -2ε , β = y -xe -ε 1 -e -2ε . • For any x ∈ R n , A ε F (x, x) = ε 1 -e -ε 1 + e -ε |x| 2 .
• Moreover, the corresponding Hamilton-Jacobi equation ( 18) takes the form

∂ t U (t, y) + 1 2 |U (t, y)| 2 = ε 2 |y| 2 /2, t > 0 U (0, x) = h(x),
and has an explicit solution,

Q εF t h(y) = Q 0 1-e -2εt f (e -εt y)/(2ε) + ε|y| 2 /2 with f (x) = h(x) -ε|x| 2 /2.

Convexity properties of the cost

A ε F Definition 9 ((ρ, n)-convexity) Let ρ ∈ R and n ∈ (0, ∞]. We say that the twice differentiable function F on R n is (ρ, n)-convex if F ≥ ρ Id + F ⊗ F /n. (21) 
Example. Let us give some examples where n = 1, n > 0 and ( 21) is an equality.

• The map x → -n log x is (0, n)-convex on (0, ∞). • When ρ > 0, the map x → -n log cos(x ρ/n) is (ρ, n)-convex on the interval (-π/2 n/ρ, π/2 n/ρ). • When ρ < 0, the map x → -n log sinh(x -ρ/n) is (ρ, n)-convex on the interval (0, ∞).

Contraction inequality under a convexity assumption

Proposition 10 (Contraction of the gradient flow) Let us assume that F is (ρ, n)-convex. Then, for all t ≥ 0, ε ≥ 0 and x, y ∈ R n ,

A ε F (S t (x), S t (y)) ≤ e -ρt A ε F (x, y) - 1 n t 0 e -2ρ(t-u) [F (S u (x)) -F (S u (y))] 2 du. (22) 
Proof ¡ Let (ω s ) 0≤s≤1 be any smooth path between x and y. For all t ≥ 0, the composed path [S t (ω s )] 0≤s≤1 is a path between S t (x) and S t (y) and it follows from the definition of A ε F that the first inequality in the subsequent chain, where L ε is defined at [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF], is satisfied:

A ε F (S t (x), S t (y)) ≤ 1 0 L ε (S t (ω s ), ∂ s S t (ω s )) ds ≤ e -2ρt 1 0 L ε (ω s , ωs ) ds - 1 n t 0 1 0 e -2ρ(t-u) [F (S u (ω s )) • S u (ω s ) ωs ] 2 dsdu ≤ e -2ρt 1 0 L ε (ω s , ωs ) ds - 1 n t 0 e -2ρ(t-u) [F (S u (y)) -F (S u (x))] 2 du.
The second inequality is a consequence of Lemma 11 below, and the last inequality is implied by Jensen's inequality. This concludes the proof of the proposition. £ Lemma 11 Let ρ ∈ R and n ∈ (0, ∞), the following assertions are equivalent.

(i) The function F is (ρ, n)-convex.
(ii) For any differentiable path (ω s ) 0≤s≤1 , any ε ≥ 0 and any t ≥ 0, 0 ≤ s ≤ 1, we have

L ε (S t (ω s ), ∂ s S t (ω s )) ≤ e -2ρt L ε (ω s , ωs ) - 1 n t 0 e -2ρ(t-u) [F (S u (ω s )) • S u (ω s ) ωs ] 2 du. (23) 
Proof ¡ Let us prove that (i) implies (ii). We have ∂ s S t (ω s ) = S t (ω s ) ωs , and for simplicity, we denote x = ω s and v = ωs . We shall use:

∂ t S t (x) = -F (S t (x)), ∂ t S t (x) = -F (S t (x))S t (x) and ∂ t F (S t (x)) = -F (S t (x))F (S t (x)). Let us set Λ(t) := L ε (S t (ω s ), ∂ s S t (ω s )) = 1 2 |S t (x)v| 2 + ε 2 2 |F (S t (x))| 2 .
Its derivative is

∂ t Λ(t) = -S t (x)v • F (S t (x))S t (x)v -ε 2 F (S t (x)) • F (S t (x))F (S t (x)) (i) ≤ -2ρΛ(t) - 1 n [F (S t (x))S t (x)v] 2 - ε 2 n |F (S t (x))| 4 ≤ -2ρΛ(t) - 1 n [F (S t (x))S t (x)v] 2 ,
which implies [START_REF] Föllmer | Random fields and diffusion processes Calcul des probabilités[END_REF].

Let us now assume (ii) and show that it implies (i). Since [START_REF] Föllmer | Random fields and diffusion processes Calcul des probabilités[END_REF] is an equality at time t = 0, fixing s = 0, ω 0 = x and ω0 = v, the first order Taylor expansion of (23) in t around t = 0 implies that for any

v, x ∈ R n , v • (F (x) -ρ Id)v - 1 n (F (x) • v) 2 + ε 2 F (x) • (F (x) -ρ Id)F (x) ≥ 0. ( 24 
)
Suppose ad absurdum that (i) is false. Then (21) fails and there exist [START_REF] Gangbo | Hamilton-Jacobi equations in the Wasserstein space Methods[END_REF] and sending λ to infinity leads to a contradiction. £

x o , v o ∈ R n such that v o • (F (x o ) -ρ Id)v o - 1 n (F (x) • v o ) 2 < 0. But taking x = x o , v = λv o in
Actually we believe that the contraction inequality ( 22) is equivalent to the (ρ, n)-convexity of the function F as in the case when ε = 0.

Convexity properties along εF -interpolations

Let us introduce the notation

θ a (s) := 1 -e -2as
1e -2a . Note that lim a→0 θ a (s) = s.

Proposition 12 (Convexity under the (ρ, ∞)-condition) Let F be a (ρ, ∞)-convex function with ρ ∈ R. Then any εF -interpolation ω satisfies F (ω s ) ≤ θ ρε (1 -s)F (ω 0 ) + θ ρε (s)F (ω 1 ) - 1 -e -2ρε 2ε θ ρε (s)θ ρε (1 -s)[A ε F (ω 0 , ω 1 ) + εF (ω 0 ) + εF (ω 1 )], ∀ 0 ≤ s ≤ 1. (25) 
Proof ¡ We start following the smart proof of Conforti [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF]Thm 1.4]. Let (ω s ) 0≤s≤1 be an εF -interpolation, and let ←h and -→ h be two functions on [0, 1] such that for any s ∈ [0, 1],

F (ω s ) = - → h (s) - ← - h (s) and - → h (s) = 1 4ε | ωs + εF (ω s )| 2 , ← - h (s) = 1 4ε | ωs -εF (ω s )| 2 .
This is possible since

d ds F (ω s ) = F (ω s ) • ωs = - → h (s) - ← - h (s).
Then, for any s ∈ [0, 1], using the Newton equation ( 16) satisfied by ω and the (ρ, ∞)-convexity [START_REF] Evans | Partial differential equations Providence[END_REF] of F , we obtain

- → h (s) = 1 2 F (εF + ωs , εF + ωs ) ≥ 2ρε - → h (s).

Similarly we have

← - h (s) ≤ -2ρε ← - h ( 
s). We know by [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF]Lem. 4.1] that these inequalities imply

- → h (s) ≤ - → h (1) -θ ρε (1 -s)[ - → h (1) - - → h (0)], ← - h (s) ≥ ← - h (0) + θ ρε (s)[ ← - h (1) - ← - h (0)].
Arranging the terms in

F (ω s ) = - → h (s) - ← - h (s), we see that F (ω s ) ≤ θ ρε (1 -s)F (ω 0 ) + θ ρε (s)F (ω 1 ) -(1 -e -2ρε )θ ρε (s)θ ρε (1 -s)[ - → h (1) - ← - h (0)].
Now the proof differs from Conforti's one. By the definitions of -→ h and ←h , and using the backward formulation [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces Invent[END_REF] 

of the cost A ε F , we obtain 2ε[ - → h (1) - ← - h (0)] = 1 0 1 2 | ωs -εF (ω s )| 2 ds + 2εF (ω 1 ) = A ε F (x, y) + εF (ω 0 ) + εF (ω 1 ),
which gives us the desired inequality [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF]. £ Proposition 12 implies a Talagrand-type inequality, i.e. a comparison between a cost function and an entropy, see [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF].

Corollary 13 (Talagrand-type inequality for the cost A ε F ) Assume that F is (ρ, ∞)-convex with ρ > 0 and that it is normalized by inf F = 0. Then for any ε > 0 and x, y ∈ R n ,

A ε F (x, y) ≤ ε 1 + e -ρε 1 -e -ρε (F (x) + F (y)). ( 26 
)
In particular, if inf F = F (x * ) = 0 at x * , then for any

y ∈ R n , A ε F (x * , y) ≤ ε 1 + e -2ρε 1 -e -2ρε F (y). ( 27 
)
Proof ¡ Both ( 26) and ( 27) are direct consequence of [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF], the first at time s = 1/2 with F (ω 1/2 ) ≥ 0, and the latter at time s = 0 with inf

F = F (x * ) = 0. £ Letting ε tend to zero in (27), we see that F (x) ≥ ρ|x -x * | 2 /2
, which is the optimal inequality.

Costa's lemma states the concavity of the exponential entropy along the heat semigroup. Here is an analogous result.

Proposition 14 (Convexity under the (0, n)-condition) Let us assume that F is (0, n)-convex.

Then, for any ε ≥ 0 and any εF -interpolation ω, the function

[0, 1] s → e -F (ωs)/n
is concave.

Proof ¡ Differentiating twice Λ(s) := exp{-F (ω s )/n}, we obtain: Λ (s) = -Λ(s)F (ω) • ωs /n, and

Λ (s) = - 1 n Λ (s)F (ω s ) • ωs - 1 n Λ(s)F (ω s )( ωs , ωs ) - 1 n Λ(s)F (ω s ) • ωs = - 1 n Λ(s) - 1 n |F (ω s ) ωs | 2 + F (ω s )( ωs , ωs ) ≥ 1 n (F (ωs)• ωs) 2 + ε 2 F (ω s )(F (ω s ), F (ω s )) ≥ ε 2 n |F (ωs)| 4 ≤ 0,
which is the desired result. We used [START_REF] Chung | Introduction to Random Time and Quantum Randomness World Scientific[END_REF] at second equality and the (0, n)-convexity of F at last inequality. £

As a direct consequence of Propositions 12 and 14, we obtain the following Corollary 15 Let ω be an εF -interpolation with ε > 0.

(a) If F is (ρ, ∞)-convex with ρ ∈ R then - d + ds F (ω s ) s=1 + ρA ε F (ω 0 , ω 1 ) ≤ ρε(1 + e -2ρε ) 1 -e -2ρε [F (ω 0 ) -F (ω 1 )]. (b) If F is (0, n)-convex with n > 0 then - d + ds F (ω s ) s=1 ≤ n[1 -e -(F (ω 0 )-F (ω 1 ))/n ]. (28) 
In order to prepare the proof of the analogue of EVI at Proposition 17, we need the next result.

Proposition 16 (Derivative formula) For any x, y ∈ R n ,

d dt + t=0 A ε F (S t (x), y) ≤ - d ds s=1 F (ω yx s ),
where ω yx is any εF -interpolation from y to x.

Proof ¡ Let ω be an εF -interpolation from y to x, (we drop the superscript yx for simplicity). Then for any t ≥ 0, (η s,t ) 0≤s≤1 = (S st (ω s )) 0≤s≤1 is a path from y to S t (x) and by definition of A ε F , we have

A ε F (S t (x), y) ≤ 1 0 1 2 |∂ s η s,t | 2 + ε 2 2 |F (η s,t )| 2 ds.
Since at t = 0 this is an equality, we see that

d dt + t=0 A ε F (S t (x), y) ≤ 1 0 -F (ω s ) • ωs -sF (ω s )( ωs , ωs ) -sε 2 F (ω s )(F (ω s ), F (ω s )) ds.
Differentiating H(s) := F (ω s ), we obtain H (s) = F (ω s ) • ωs and

H (s) = F (ω s )( ωs , ωs ) + F (ω s ) • ωs .
With the Newton equation ( 16): ωs = ε 2 F F (ω s ), we arrive at

d dt + t=0 A ε F (S t (x), y) ≤ 1 0 [-H (s) -sH (s)]ds = -H (1),
which is the announced result. £

This specific method of applying the gradient flow S st (ω s ) to a path ω has been successfully used in [START_REF] Daneri | Eulerian calculus for the displacement convexity in the Wasserstein distance[END_REF]. One derives immediately from Corollary 15 and Proposition 16 the following

Proposition 17 (EVI under (ρ, ∞) or (0, n)-convexity) (a) Assume that F is (ρ, ∞)-convex. Then, for any x, y ∈ R n , d dt + t=0 A ε F (S t (x), y) + ρA ε F (x, y) ≤ ρε(1 + e -2ρε ) 1 -e -2ρε [F (y) -F (x)]. ( 29 
) (b) Assume that F is (0, n)-convex. Then, for any x, y ∈ R n , d dt + t=0 A ε F (S t (x), y) ≤ n[1 -e -(F (y)-F (x))/n ].
These inequalities should be compared with the EVI formulation [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF] which holds in the case where ε = 0 and n = ∞. Note that one recovers [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF] by letting ε tend to zero in [START_REF] Gigli | Second order analysis on (P 2 (M ), W 2 ) Memoirs of the[END_REF], or by sending n to infinity in the last inequality.

Newton equation in the Wasserstein space

This section is dedicated to the infinite dimension case where the states live in the Wasserstein space on a Riemannian manifold. This is done by relying on the results of previous section in R n as an analogical guideline, and by using Otto's heuristic. Only non-rigorous statements and "proofs" are presented in this section. For the sake of completeness, we start recalling Otto calculus which was introduced in the seminal paper [START_REF] Otto | The geometry of dissipative evolution equations: The porous medium equation Commun[END_REF]. This heuristic theory is known for long and well explained at many places [START_REF] Villani | Optimal transport. Old and new Springer[END_REF][START_REF] Gigli | Second order analysis on (P 2 (M ), W 2 ) Memoirs of the[END_REF][START_REF] Gigli | A user's guide to optimal transport Springer[END_REF]. Our contribution is the introduction of the Newton equation, a key point of our computations.

The setting

The configuration space is a Riemannian manifold (N, g) equipped with a Riemannian measure vol and the state space to be considered later on is the Wasserstein space

M := P 2 (N ) (30) 
of all probability measures µ on N such that N d 2 (x o , •) dµ < ∞, where d stands for the Riemannian distance.

Carré du champ

The gradient in (N, g) is denoted by ∇ and the divergence by ∇• . Functions and vector fields are assumed to be smooth enough for allowing all the computations. In particular, for any vector field A and function f with a compact support, the following integration by parts formula holds

f ∇• A dvol = -∇f • A dvol,
using the inner product on (N, g). The carré du champ Γ in N is defined for any functions f, g on N by Γ(f, g) :

x → ∇f (x) • ∇g(x), x ∈ N.
As usual we write Γ(f, g) = ∇f • ∇g, and state Γ

(f ) = ∇f • ∇f = |∇f | 2 . Denoting ∆ g = ∆ = ∇ • ∇
(we drop the subscript g for simplicity), the Laplace-Beltrami operator on N , we have Γ(f, g) dvol =f ∆g dvol .

Iteration of Γ, hidden connection

The iterated carré du champ operator in (N, g) introduced by Bakry and Émery in [START_REF] Bakry | Diffusions hypercontractives Sémin. de probabilités XIX[END_REF] (see also [START_REF] Bakry | Analysis and geometry of Markov diffusion operators Cham[END_REF]) is defined for any f by

Γ 2 (f ) = 1 2 ∆Γ(f ) -Γ(f, ∆f ). ( 31 
)
It happens to be the left-hand side of the Bochner-Lichnerowicz identity

Γ 2 (f ) = ||∇ 2 f || 2 HS + Ric g (∇f, ∇f ), ( 32 
)
where ||∇ 2 f || 2 HS is the Hilbert-Schmidt norm of the Hessian ∇ 2 f of f and Ric g is the Ricci tensor of (N, g). For any functions f, g, h : N → R, the evaluation of the Hessian of f applied to two gradients ∇g, ∇h only depends on the carré du champ Γ :

∇ 2 f (∇g, ∇h) = 1 2 Γ(Γ(f, g), h) + Γ(Γ(f, h), g) -Γ(Γ(g, h), f ) (33) 
and of course 2∇ 2 f (∇f, ∇f ) = Γ(Γ(f ), f ). The Levi-Civita connection is implicitly invoked in the Bochner-Lichnerowicz identity, in particular for computing the Hessian of f , and it is hidden in [START_REF] Jamison | The Markov processes of Schrödinger Z[END_REF]. This is commented on at [5, p.158].

Some PDEs are Wasserstein gradient flows

We present basic notions which are useful to visualize heuristically the Wasserstein space M = P 2 (N ) as an infinite Riemannian manifold. The same notation is used for the probability measure µ and its density dµ/dvol.

Velocity, tangent space and Wasserstein metric

If (µ t ) is a path in M , then ∂ t µ t satisfies N ∂ t µ t dvol = 0. In other words the tangent space at some µ ∈ M is a subset of functions f satisfying N f dvol = 0. Let us explore another representation of the tangent space. Again, let (µ t ) be a path in M . Then for each t, there exists a unique (up to some identification) map Φ t : N → R such that the continuity equation

∂ t µ t = -∇ • (µ t ∇Φ t ) (34) 
holds. As a hint for the proof of this statement, denoting a µ (∇f ) := -∇ • (µ∇f ), we see that

a µ (∇f ) = v is an elliptic equation in f and ∇Φ t = a -1 µt (∂ t µ t ) exists because v = ∂ t µ t satisfies ∂ t µ t dvol = 0.
This allows one to identify the velocity ∂ t µ t with the gradient vector field ∇Φ t , via the mapping

μt := ∇Φ t = a -1 µt (∂ t µ t ). ( 35 
)
Within Otto's heuristics, the tangent space of M at µ is represented by the set of gradients

T µ M = {∇Φ, Φ : N → R}.
To be rigorous it is necessary to define T µ M as the closure in L 2 (N, µ) of {∇Φ, Φ ∈ C ∞ c (N )}. We call μt ∈ T µ M the Wasserstein velocity to distinguish it from the standard velocity ∂ t µ t . The continuity equation ( 34) is a keystone of the theory. It is valid for instance when N is a smooth compact Riemannian manifold and the density µ(t, x) is smooth and positive. This extends to more general settings, as explained in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Ch. 8].

Definition 18 (Wasserstein metric) The inner product on T µ M is defined for any ∇Φ, ∇Ψ by

∇Φ, ∇Ψ µ = ∇Φ • ∇Ψ dµ = Γ(Φ, Ψ) dµ.
Hence the speed of a path

(µ t ) in M is: | μt | µt = |a -1 µt (∂ t µ t )| 2 dµ t 1/2 .
Comparing with (2), we see that minimizing velocity fields satisfying the continuity equation ( 34) are gradient fields. As a definition, the Wasserstein cost for transporting µ onto ν is

W 2 2 (µ, ν) := inf π N ×N d 2 (x, y) dπ,
where d is the Riemannian distance on N and π runs through the set of all couplings between µ and ν. The Benamou-Brenier theorem [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] states that inf

(ξ,v) [0,1]×N |v t | 2 dξ t dt = W 2 2 (µ, ν), (36) 
where the infimum runs through the set of all (ξ, v) such that for all t, ξ t ∈ P 2 (N ) and v t is a time dependent vector field satisfying the continuity equation ∂ t ξ +∇•(ξv) = 0 and the endpoint constraint ξ 0 = µ, ξ 1 = ν. This means that the Riemannian distance associated to the Wasserstein metric is W 2 , recall (3). The proof of the analogous result in a metric space can be found in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].

Other metrics

The standard velocity ∂ t µ t lives in the space

T µ := {∂ν : ∂ν dvol = 0}
equipped with the inner product of L 2 (vol), while the Wasserstein velocity μt lives in T µ M equipped with the above Wasserstein inner product. Both of them represents the same object, they are linked by [START_REF] Krener | Reciprocal diffusions in flat space Probab[END_REF], but they give rise to distinct gradient flows.

Although the present article focuses on the Wasserstein metric, let us give some examples of alternate metrics based on the tangent space T µ .

1) The first example is described in [21, Sec. 9.6]. For any µ ∈ M and two perturbations ∂ν, ∂ν around µ, the inner product is the standard scalar product in L 2 (vol):

∂ν, ∂ν µ,1 = ∂ν ∂ν dvol .

2) The second example is rather similar. For any µ ∈ M and ∂ν, ∂ν

∈ T µ , ∂ν, ∂ν µ,2 = ∇∆ -1 (∂ν) • ∇∆ -1 (∂ν ) dvol = -∆ -1 (∂ν)∂ν dvol . ( 38 
)
This metric is explained in [START_REF] Otto | The geometry of dissipative evolution equations: The porous medium equation Commun[END_REF]Sec. 1.2].

Both inner products •, • µ,1 and •, • µ,2 do not depend on µ and one can show that the geodesic (µ s ) 0≤s≤1 between µ and ν satisfies: ∂ 2 ss µ s = 0. It follows that (µ s ) is an affine interpolation, meaning that the mass is not transported but teleported. The geometric content of these metrics is poorer than the Wasserstein metric one.

3) For any µ ∈ M and two perturbations ∂ν, ∂ν ∈ T µ around µ,

∂ν, ∂ν µ,3 = ∇∆ -1 (∂ν) • ∇∆ -1 (∂ν ) µ dvol . (39) 
This is the Markov transportation metric which is defined and used in [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF].

The heat equation

∂ t u = ∆u ( 40 
)
is the gradient flow of F 1 (µ) = |∇µ| 2 dvol with respect to the metric •, • µ,1 defined at (37) and also of F 2 (µ) = µ 2 /2 dvol with respect to the metric •, • µ,2 defined at (38), cf. [START_REF] Evans | Partial differential equations Providence[END_REF]. The heat equation is also the gradient flow of the standard entropy defined below at [START_REF] Otto | The geometry of dissipative evolution equations: The porous medium equation Commun[END_REF], with respect to the Markov transportation metric defined in [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF]. We shall see in a moment at [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF] that this equation is also the gradient flow of the same entropy with respect to the Wasserstein metric.

Wasserstein gradient flow

Let us go back to the Wasserstein metric and define the gradient with respect to this metric of a function F : M → R. If F is differentiable at µ, there exists a gradient field ∇Φ such that for any path (µ t ) satisfying μt = ∇Ψ t and µ to = µ, we have

d dt F(µ t ) t=to = ∇Φ, ∇Ψ to µ .
As a definition, the gradient of F at µ is

grad µ F := ∇Φ ∈ T µ M.
Similarly to the finite dimensional setting, one can define a gradient flow in M with respect to the Wasserstein metric.

Definition 19 (Wasserstein gradient flow) A path (µ t ) t≥0 in M is a Wasserstein gradient flow of a function F if for any t ≥ 0, μt =grad µt F.

We denote by µ t = S F t µ, the solution of the above gradient flow equation starting from µ ∈ M .

Examples of Wasserstein gradient flows

Consider the following interesting type of functions

F(µ) = f (µ) dvol, (41) 
where f : R → R and the Wasserstein gradient flow equation μt =grad µt F.

With a path (µ t ) satisfying μt = ∇Ψ t , we obtain

d dt F(µ t ) = f (µ t )∂ t µ t dvol = -f (µ t )∇•(µ t ∇Ψ t ) dvol = ∇[f (µ t )] • ∇Ψ t dµ t = ∇[f (µ t )], ∇Ψ t µt . Therefore grad µ F = ∇[f (µ)] ∈ T µ M. (43) 
We mention three standard examples of PDEs whose solutions are Wasserstein gradient flows.

(1) The standard entropy, that is the relative entropy with respect to the volume measure, is defined for any µ ∈ M by Ent(µ) := µ log µ dvol .

Let us show that the Wasserstein gradient flow of the entropy is the heat equation.

The function F = Ent corresponds to f (a) = a log a and its Wasserstein gradient [START_REF] Mikami | Duality theorem for the stochastic optimal control problem Stochastic Process[END_REF] is

grad µ Ent = ∇ log µ. (45) 
With [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], we see that the gradient flow equation ( 42) writes as

∂ t µ t = ∇•(µ t ∇ log µ t ) = ∆µ t , (46) 
which is the heat equation ( 40). This was discovered in the seminal paper [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF].

This example can be generalized by considering the Fokker-Planck equation with a potential V

∂ t µ t = ∆µ t + ∇ • (µ t ∇V ) = ∇ • (µ t ∇(log µ t + V )) ( 47 
)
whose solution is the Wasserstein gradient flow of

F(µ) = Ent(µ) + V dµ.
(2) The Rényi entropy of order p > 0 with p = 1, is

R p (µ) := 1 p -1 µ p dvol . (48) 
Let us show that the Wasserstein gradient flow equation (42) of the Rényi entropy is the porous media equation (or fast diffusion equation)

∂ t µ t = ∆µ p t .
The function F = R p corresponds to f (a) = a p /(p -1) and its Wasserstein gradient ( 43) is

grad µ R p = p p -1 ∇µ p-1 . (49) 
With [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], we see that the gradient flow equation writes as

∂ t µ t = ∇ • µ t p p-1 ∇µ p-1 t
= ∆µ p t . This was proved rigorously in [START_REF] Otto | The geometry of dissipative evolution equations: The porous medium equation Commun[END_REF].

(3) The granular media equation in R n is

∂ t µ t = ∇ • (µ t ∇(log µ t + V + W * µ t )), (50) 
where V : R n → R is a confinement potential and W : R n → R is an interaction potential. We assume that W (-x) = W (x) and W * µ t (x) = W (xy)µ t (x) dvol is the usual convolution in R n . We directly derive from this equation μt = -∇(log µ t + V + W * µ t ).

Let us introduce

F(µ) = log µ + V + 1 2 W * µ dµ.
By the same computation, we obtain

grad µ F = ∇(log µ + V + W * µ).
So the granular media equation ( 50) is the Wasserstein gradient flow equation of the above functional F. This result is derived and used in [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF].

Many other functionals are also studied. For instance the gradient flow of the modified Fisher information,

F(µ) = 1 2 |∇ log µ| 2 µ + V µ,
is used in [START_REF] Gianazza | G The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation[END_REF] to prove existence of fourth order evolutional equation.

Second order derivative in M

Covariant derivative of a gradient field Let us show that the covariant derivative D t ∇Φ t of the vector field ∇Φ t in the tangent space T µt M , along a path (µ t ) t≥0 with velocity μt = ∇Θ t , is

D t ∇Φ t = Proj µt ∇∂ t Φ t + ∇ 2 Φ t ∇Θ t , (51) 
where Proj µt is the orthogonal projection on the tangent space T µt M . To see this, we compute the time-derivative of ∇Φ t , ∇Ψ t µt = Γ(Φ t , Ψ t ) dµ t , where ∇Φ t and ∇Ψ t belong to T µt M :

d dt ∇Φ t , ∇Ψ t µt = [Γ(∂ t Φ t , Ψ t ) + Γ(Φ t , ∂ t Ψ t ) + Γ(Γ(Φ t , Ψ t ), Θ t )] dµ t .
But from [START_REF] Jamison | The Markov processes of Schrödinger Z[END_REF],

Γ(Γ(Φ t , Ψ t ), Θ t ) = ∇ 2 Ψ t (∇Φ t , ∇Θ t ) + ∇ 2 Φ t (∇Ψ t , ∇Θ t ).
Hence

d dt ∇Φ t , ∇Ψ t µt = ∇∂ t Φ t + ∇ 2 Φ t ∇Θ t • ∇Ψ t dµ t + ∇∂ t Ψ t + ∇ 2 Ψ t ∇Θ t • ∇Φ t dµ t .
As the covariant derivative must obey the chain rule:

d dt ∇Φ t , ∇Ψ t µt = D t ∇Φ t , ∇Ψ t µt + ∇Φ t , D t ∇Ψ t µt , (52) 
we have shown [START_REF] Sturm | On the geometry of metric measure spaces[END_REF]. Introducing the convective derivative

D μt := ∂ t + μt •∇
used in fluid mechanics, (51) writes as

D t ∇Φ t = Proj µt D μt ∇Φ t . (53) 

Acceleration

The acceleration μt = D t μt of the path (µ) is the covariant derivative of μt = ∇Φ t . It is given by ( 51) and ( 53) with ∇Φ = ∇Θ :

μt = ∇ ∂ t Φ t + 1 2 Γ(Φ t ) = D μt μt ∈ T µt M. (54) 
It follows from ( 54) that any geodesic (µ t ) in the Wasserstein space satisfies

∂ t µ t = -∇ • (µ t ∇Φ t ) ∂ t Φ t + 1 2 Γ(Φ t ) = 0, (55) 
see for instance [START_REF] Villani | Optimal transport. Old and new Springer[END_REF]. On the other hand, by the standard Schwarz theorem:

∂ s ∂ t µ s,t = ∂ t ∂ s µ s,t =: ∂ 2 st µ s,t , ∂ 2 st µ s,t = -∇ • (-∇ • (µ s,t ∇Ψ s,t )∇Φ s,t + µ s,t ∇∂ t Φ s,t ) = -∇ • (-∇ • (µ s,t ∇Φ s,t )∇Ψ s,t + µ s,t ∇∂ s Ψ s,t ). ( 60 
)
It is enough to prove that for any ∇ χ ∈ T µs,t M ,

d s d t µ s,t -d t d s µ s,t , ∇ χ µs,t = 0. ( 61 
)
Dropping the subscript s, t and using (60),

(d s d t µ -d t d s µ, ∇ χ µ = µ ∇∂ s Ψ + ∇ 2 Ψ∇Φ -∇∂ t Φ -∇ 2 Φ∇Ψ • ∇ χ dvol = ∇ 2 Ψ(∇Φ, ∇ χ ) -∇ 2 Φ(∇Ψ, ∇ χ ) -∆ΨΓ(Φ, χ ) -Γ(log µ, Ψ)Γ(Φ, χ ) + ∆ΦΓ(Ψ, χ ) + Γ(log µ, Φ)Γ(Ψ, χ ) dµ.
From [START_REF] Jamison | The Markov processes of Schrödinger Z[END_REF] we see that

∇ 2 Ψ(∇Φ, ∇ χ ) -∇ 2 Φ(∇Ψ, ∇ χ ) dµ = Γ(Φ, Γ(Ψ, χ )) -Γ(Ψ, Γ(Φ, χ )) dµ.
Integrating by parts,

∆ΦΓ(Ψ, χ ) dµ = -Γ(Φ, µΓ(Ψ, χ )) dvol = - Γ(Φ, Γ(Ψ, χ )) + Γ(Ψ, χ )Γ(Φ, log µ) dµ
and something similar for ∆ΨΓ(Φ, χ ) dµ. Adding all these quantities, we obtain (61). £

εF-interpolations solve Newton equation

In this section we investigate the analogue in the Wasserstein space of Proposition 7.

The carré du champ operator on M is defined for any functions F, G : M → R, by

Γ(F, G)(µ) := grad µ F, grad µ G µ , µ ∈ M, (62) 
with

Γ(F, F)(µ) = Γ(F)(µ) = | grad µ F| 2 µ ≥ 0. For instance, if F(µ) = f (µ)
dx and G(µ) = g(µ)dx for some real functions f and g, then

Γ(F, G)(µ) = ∇f (µ) • ∇g (µ)dµ = Γ(f (µ), g (µ))dµ = f (µ)g (µ)Γ(µ)dµ,
where we have used the chain rule in (N, g). In analogy with the Definition 5 of the εF -cost and εF -interpolations, we introduce the following "Definition" (εF-cost, εF-interpolations) Let F be a (regular enough) function on M . For any ε > 0 and µ, ν ∈ M , we define the εF-cost between µ and ν by

A ε F (µ, ν) = inf (µ) 1 0 1 2 | μs | 2 µs + ε 2 2 Γ(F)(µ s ) ds, ( 63 
)
where | μs | 2 µs = μs , μs µs , and the infimum runs over all paths (µ s ) 0≤s≤1 in M such that µ 0 = µ and µ 1 = ν. Minimizers are called εF-interpolations and are denoted by (µ ε,µν s ) 0≤s≤1 (for simplicity we sometimes omit ε, µ and ν).

• When ε = 0, we recover the formula (3).

• Since A ε F ≥ 1 2 W 2 2 ,
A ε F appears as an approximation from above of the squared Wasserstein distance.

The εF-cost is the action associated with the Lagrangian

L ε (µ, μ) = | μ| 2 µ /2 + ε 2 Γ(F)(µ)/2
corresponding to the scalar potential

U ε := - ε 2 2 Γ(F).
"Proposition" 22 (Interpolations solve Newton equation) Any εF-interpolation µ satisfies the Newton equation

μ = ε 2 2 grad µ Γ(F). ( 64 
)
Heuristic proof ¡ Let µ be an εF-interpolation and take any perturbation (µ s,t ) s∈[0,1],t∈R of µ verifying: µ s,0 = µ s for any s ∈ [0, 1], µ 0,t = µ 0 , µ 1,t = µ 1 for any t, and µ 0,0 = µ 1,0 = 0, where the Wasserstein t-velocity of µ s,t is denoted by µ s,t , while its s-velocity is denoted as usual by μs,t . Let us differentiate the action Λ(t) := Taking into account the boundary conditions µ 0,0 = µ 1,0 = 0, we obtain at t = 0

Λ (0) = - 1 0
μs + ε 2 grad µs U , µ s,0 µs ds.

Since (µ s ) 0≤s≤1 is a minimizer, Λ (0) ≥ 0. As ( µ s,0 ) can be chosen arbitrarily on any interval s ∈ [δ, 1δ] with δ > 0, this shows that Λ (0) = 0, showing that the Newton equation ( 64) holds. £ From Newton's equation ( 64) and the expression (54) of the acceleration μ, one deduces the subsequent result.

"Corollary" 23 (Equations of motion of the interpolations)

The εF-interpolation between µ and ν satisfies the system of equations

     ∂ s µ s = -∇ • (µ s ∇Φ s ), ∇∂ s Φ s + ∇Γ(Φ s )/2 = ε 2 2 grad µs Γ(F), µ 0 = µ, µ 1 = ν. (65) 
When ε = 0, one recovers the system (55) satisfied by the McCann geodesics. We also believe that (65) implies regularity properties of the εF-interpolation, for instance when F is the Rényi entropy. In R n , the system (65) appears as the Euler equation where the initial and the final configuration are prescribed,

     ∂ s µ s = -∇ • (µ s ∇Φ s ), ∂ s (µ s ∇Φ s ) + ∇ • (µ s ∇Φ s ⊗ ∇Φ s ) = ε 2 2 µ s grad µs Γ(F), µ 0 = µ, µ 1 = ν,
where ∇• is the divergence applied to each column. This system is a particular case of [24, Eq. ( 17)] where the solution also minimizes some action.

Examples. Let us treat two examples.

(1) In the case where F = Ent is the usual entropy, the system (65) becomes

   ∂ s µ s = -∇ • (µ s ∇Φ s ) ∂ s Φ s + Γ(Φ s )/2 = ε 2 [Γ(log µ s )/2 -∆µ s /µ s ] µ 0 = µ, µ 1 = ν, (66) 
This fundamental example is related to the Schrödinger problem. It will be developped carefully at Section 5.

(2) In the case where F = R p is the Rényi entropy (48), the system (65) becomes

     ∂ s µ s = -∇ • (µ s ∇Φ s ); ∂ s Φ s + 1 2 Γ(Φ s ) = ε 2 p 2 2 (3 -2p)µ 2p-4 s Γ(µ s ) -2µ 2p-3 s ∆µ s ; µ 0 = µ, µ 1 = ν.
With p = 1, we are are back to the entropy Ent. When p = 1, we don't know how to solve this system.

In the case where F(µ) = f (µ) dvol, we have

grad µ F = ∇[f (µ)] = f (µ)∇µ, and 
Γ(F)(µ) = f (µ) 2 Γ(µ) dµ.
Moreover, after some computations, we obtain

grad µ Γ(F) = -∇ 2f (µ) 2 µ∆µ + (2f (µ)f (µ)µ + f (µ) 2 )Γ(µ) .
Dual formulation of the cost A ε F . Let H be a functional on M and let ε > 0. We define the Hamilton-Jacobi semigroup for any t ≥ 0 and ν ∈ M by, ,

Q εF t H(ν) = inf H(µ 0 ) + t 0 | μs | 2 2 + ε 2 2 Γ(F)(µ s )ds , (67) 
where the infimum runs over all path (µ s ) 0≤s≤t such that µ t = ν. The function

U : (t, ν) → Q εF t H(ν), satisfies the Hamilton-Jacobi equation    ∂ t U(t, ν) + 1 2 Γ(U)(t, ν) = ε 2 2 Γ(F)(ν); U(0, •) = H(•). (68) 
Even if the definition of the function Q εF t H is formal, following the work initiated by Gangbo-Nguyen-Tudorascu [START_REF] Gangbo | Hamilton-Jacobi equations in the Wasserstein space Methods[END_REF] (see also [START_REF] Kuwada | On a class of first order Hamilton-Jacobi equations in metric spaces[END_REF][START_REF] Hynd | Value functions in the Wasserstein spaces: finite time horizons[END_REF] and also [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF] for their applications to the mean field games), the functional U satisfies the Hamilton-Jacobi equation in the Wasserstein space in the sense of viscosity solutions. Minimizers of (67) are solutions of the system,

   μs = ε 2 2 grad µt Γ(F), 0 ≤ s ≤ t; μ0 = grad µ 0 H, µ t = ν. (69) 
"Proposition" 24 (Dual formulation of

A ε F ) For any µ, ν ∈ M , A ε F (µ, ν) = sup H {Q εF 1 H(µ) -H(ν)},
where the supremum runs through all functionals H on M .

Heuristic proof ¡ It is the analogue of Proposition 8's proof. £ "Proposition" 25 (Conserved quantity) Let (µ s ) 0≤s≤1 be an εF-interpolation, then the map

s → | μs | 2 µs -ε 2 ΓF(µ s ) is constant on [0, 1].
The result is obvious from the Newton equation (64) satisfied by the εF-interpolations (µ s ) 0≤s≤1 .

4 Inequalities based upon A ε F We go on using Section 2 as a guideline. To this aim we need to introduce the curvature-dimension property in the Wasserstein space. (1) Suppose that Ric g ≥ ρ Id for some real ρ. Applying this inequality and the Cauchy-Schwarz inequality: ||∇ 2 Φ|| 2 HS ≥ (∆Φ) 2 /n, to the expression (32) of Γ 2 , we see that the Bakry-Émery curvature-dimension condition holds with n = n, i.e.: for any function f ,

4.1 (ρ, n)-convexity in the Wasserstein space Definition 26 ((ρ, n)-convexity) A function F on M is (ρ, n)-convex, where ρ ∈ R and n ∈ (0, ∞], if Hess µ F( μ, μ) ≥ ρ| μ| 2 µ + 1 n grad µ F, μ 2 µ , (70) 
Γ 2 (f ) ≥ ρΓ(f ) + 1 n (∆f ) 2 .
By (56), for any μ = ∇Φ ∈ T µ M ,

Hess µ Ent( μ, μ) = Γ 2 (Φ) dµ ≥ ρ Γ(Φ) dµ + 1 n (∆Φ) 2 dµ ≥ ρ| μ| 2 µ + 1 n ∆Φ dµ 2 = ρ| μ| 2 µ + 1 n grad µ Ent, μ 2 µ ,
where we used grad µ Ent = ∇ log µ, see [START_REF] Otto | Eulerian calculus for the contraction in the Wasserstein distance[END_REF].

In other words, Ent is (ρ, n)-convex.

(2) The Rényi entropy R p , defined at [START_REF] Ripani | Convexity and regularity properties for entropic interpolations[END_REF], is convex whenever Ric g ≥ 0 and p ≥ 1 -1/n, p = 1. Indeed, it follows from (58) that

Hess µ R p ( μ, μ) ≥ (p -1 + 1/n) (∆Φ) 2 µ p-1 dµ ≥ 0,
where μ = ∇Φ.

Contraction inequality

Next proposition is the infinite dimensional analogue of Proposition 10.

"Proposition" 28 (Contraction under (ρ, n)-convexity) Suppose that F is (ρ, n)-convex. Then for any µ, ν ∈ M and t ≥ 0,

A ε F (S F t µ, S F t ν) ≤ e -2ρt A ε F (µ, ν) - 1 n t 0 e -2ρ(t-u) (F(S F u µ) -F(S F u ν)) 2 du. (71) 
Heuristic proof ¡ The proof follows the line of Proposition 10. The Wasserstein setting analogue of the implication (i) ⇒ (ii) of Lemma 11 which is used in Proposition 10's proof, still holds true. Its relies on the commutation of the dot derivatives stated at "Lemma" 20. £

This result is proved and stated rigorously at Theorem 37 in the context of a compact and smooth Riemannian manifold. It gives a better contraction inequality than [27, Thm. 6.1].

In the case of ε = 0, we recover the dimensional contraction proved in [START_REF] Bolley | Dimensional contraction via Markov transportation distance[END_REF][START_REF] Gentil | Dimensional contraction in Wasserstein distance for diffusion semigroups on a Riemannian manifold Potential Anal[END_REF][START_REF] Bolley | Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition[END_REF]. See also [START_REF] Bolley | Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities[END_REF]. When ε > 0 and ρ = 0, an improved contraction inequality is also given in [START_REF] Ripani | Convexity and regularity properties for entropic interpolations[END_REF] for the usual entropy. The equivalence between contraction inequality for the Wasserstein distance (ε = 0) with n = ∞ and a lower bound on the Ricci curvature was first proved in [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF]. See also [START_REF] Kuwada | Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates[END_REF][START_REF] Bakry | On Harnack inequalities and optimal transportation[END_REF] for a dimensional contraction with two different times.

Convexity properties along εF-interpolations

Two kinds of convexity properties can be explored for the cost A ε F . When F = Ent is the usual entropy, the first convexity property has been introduced by Conforti under a (ρ, ∞)-convexity assumption and the second one by the third author under a (0, n)-convexity assumption. Next result extends in our context Conforti's convexity inequality [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF]Thm 1.4]. Let us recall our notation θ a (s) :=

1e -2as

1e -2a . Note that lim a→0 θ a (s) = s.

"Proposition" 29 (Convexity under the (ρ, ∞)-condition) Let F be a (ρ, ∞)-convex function with ρ ∈ R. Then any εF-interpolation (µ s ) 0≤s≤1 satisfies

F(µ s ) ≤ θ ρε (1 -s)F(µ 0 ) + θ ρε (s)F(µ 1 ) - 1 -e -2ρε 2ε θ ρε (s)θ ρε (1 -s)[A ε F (µ 0 , µ 1 ) + εF(µ 0 ) + εF(µ 1 )]. ( 72 
) (b) Assume that F is (0, n)-convex. Then, for any µ, ν ∈ M , d dt + t=0 A ε F (S F t µ, ν) ≤ n[1 -e -(F (ν)-F (µ))/n ].
Heuristic proof ¡ It follows exactly the line of proof of Proposition 17. The analogues of the preliminary results Corollary 15 and Proposition 16 are derived by means of the commutation of the dot derivatives obtained at "Lemma" 20. £

When ε = 0, we recover from (74), the EVI inequality under the (ρ, ∞)-convexity of F,

d dt + t=0 1 2 W 2 2 (S F t µ, ν) + ρ 2 W 2 2 (µ, ν) ≤ F(ν) -F(µ).
This inequality is commented on for instance in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. Under the (0, n)-convexity of F, the inequality has the same form

d dt + t=0 1 2 W 2 2 (S F t µ, ν) ≤ n 1 -e -1 n (F (ν)-F (µ)) .
It was proved in [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces Invent[END_REF].

5 Link with the Schrödinger problem

Entropic cost

This section is dedicated to the specific setting where

F(µ) = Ent(µ) = µ log µ dvol .
We depart from the heuristic style of previous sections and provide rigorous results. This requires some regularity hypotheses: (N, g) is assumed to a compact, connected and smooth Riemannian manifold.

The Riemannian measure vol is normalized to be a probability measure. Since all the measures considered in this section are smooth and absolutely continuous with respect to vol, we identify measures and densities. The heat semigroup is denoted by (P t ) t≥0 and defined for any smooth function f by P t f (x) = u(t, x) where u solves

∂ t u = ∆u, u(0, •) = f, t ≥ 0.
We already saw that the heat equation is the Wasserstein gradient flow of Ent, see [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF]. We also know that

grad µ Ent = ∇log µ, Γ(Ent)(µ) = ∇ log µ 2 dµ,
and we expect that any εEnt-interpolation (µ) solves the Newton equation ( 64):

μ = ε 2 2 grad µ Γ(Ent). (75) 
The gradient flow of the usual entropy is denoted by S Ent t and for any µ ∈ P(M ),

S Ent t (µ) = P t dµ dvol vol,
where P t = exp(t∆) is the usual heat semigroup.

The rigorous definition of the cost A ε Ent on the space (N, g) is the following.

Definition 33 (Entropic cost) For any positive and smooth densities µ, ν ∈ M ,

A ε Ent (µ, ν) = inf (µt,∇Φt) 0≤t≤1 1 0 1 2 |∇Φ t | 2 µt + ε 2 2 ∇ log µ t 2 dµ t dt ,
where the infimum runs through all smooth and positive paths (µ t ) 0≤t≤1 and smooth gradient vector fields (∇Φ t ) 0≤t≤1 such that

∂ t µ t = -∇ • (µ t ∇Φ t ), µ 0 = µ, µ 1 = ν. ( 76 
)
Another equivalent formulation is

A ε Ent (µ, ν) = inf (µt) 1 0 1 2 | μt | 2 µt + ε 2 2 ∇ log µ t 2 dµ t dt , (77) 
where the infimum is taken over all smooth (µ t ) 0≤t≤1 such that µ 0 = µ and µ 1 = ν.

Schrödinger problem

Let us recall the Schrödinger problem as explained for instance in the survey [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport Discrete Contin[END_REF]. For any two probability measures q, r on some measure space, the relative entropy of q with respect to r is

H(q|r) =    log dq dr dq, if q r;
+∞, otherwise.

The usual entropy is Ent(µ) = H(µ| vol), µ ∈ P(N ). The set of all probability measures on the path space Ω = C([0, 1], N ) is denoted by P(Ω). For any ε > 0,

R ε ∈ P(Ω)
is the law of the reversible Brownian motion with generator ε∆ and initial measure vol. Note that this motion has the same law as √ 2ε times a standard reversible Brownian motion. The joint law of the initial and final positions of this process is the Gaussian measure R ε 01 (dxdy) = (4πε) -n/2 exp(-d 2 (x, y)/4ε) vol(dx) vol(dy) ∈ P(N × N )

where d is the Riemannian distance. For any couple of measures µ, ν ∈ M = P(N ) such that H(µ| vol) = Ent(µ) < +∞ and H(ν| vol) = Ent(ν) < +∞, the Schrödinger problem is minimize εH(Q|R ε ) subject to Q ∈ P(Ω) :

Q 0 = µ, Q 1 = ν, (78) 
where for any 0 ≤ s ≤ 1, Q s = (X s ) # Q ∈ P(N ) denotes the s-marginal of Q, i.e. the law of the position X s at time s of the canonical process with law Q. Its value Sch ε (µ, ν) := inf (78) is called the Schrödinger cost, its solution Q the Schrödinger bridge and the time-marginal flow (Q s ) 0≤s≤1 the entropic interpolation, between µ and ν. The Schrödinger problem admits an equivalent static formulation:

Sch ε (µ, ν) = inf{εH(π|R ε 01 ); π ∈ P(N × N ) : π 0 = µ, π 1 = ν},
where π 0 , π 1 ∈ P(N ) are the marginals of π. It was proved by Beurling [9] and Föllmer [START_REF] Föllmer | Random fields and diffusion processes Calcul des probabilités[END_REF], see also [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport Discrete Contin[END_REF], that for any probability measures µ, ν ∈ P(N ) with finite entropy and finite second order moments, the minimum of ( 78) is achieved by a unique probability measure, whose shape is characterized by the product form

P = f (X 0 )g(X 1 )R ε ∈ P(Ω), (79) 
where f and g are nonnegative functions (the ε-dependence is omitted on the functions f and g).

The logarithm of these functions play the same role as the Kantorovich potentials in the optimal transportation theory.

The time-marginals of the minimizer P define a flow of probability measures (µ s ) 0≤s≤1 called the entropic ε-interpolation between µ and ν. It follows from the Markov property of the Brownian motion and (79) that (µ s ) 0≤s≤1 takes the particular form

µ s = P εs f P ε(1-s) g vol, (80) 
where in the present context P t = exp(t∆) is the heat semigroup. It is proved in [START_REF] Mikami | Monge's problem with a quadratic cost by the zero-noise limit of h-path processes Probab[END_REF], see also [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF] for a more general result, that

lim ε→0 Sch ε (µ, ν) = W 2 2 (µ, ν)/4.
Next lemma establishes a connection between the Schrödinger problem and previous sections.

Lemma 34 (Entropic interpolation solves (66)) Let (µ s ) 0≤s≤1 be a path of probability measures on N such that µ s = P εs f P ε(1-s) g vol .

where f and g are smooth and positive functions on N . Then (µ s ) 0≤s≤1 solves (66), i.e.:

∂ s µ s = -∇ • (µ s ∇Φ s ) ∂ s Φ s + Γ(Φ s )/2 = ε 2 (Γ(log µ s )/2 -∆µ s /µ s ), (81) 
with Φ s = ε log P ε(1-s) gε log P εs f .

This system has an explicit solution given by µ s = exp (ϕ s + ψ s )/ε where ϕ s := ε log P εs f and ψ s := ε log P ε(1-s) g. This gives Φ s = ψ s -ϕ s and ϕ s , ψ s satisfy the Hamilton-Jacobi-Bellman equations

∂ s ϕ s = ε∆ϕ s + Γ(ϕ s ), ∂ s ψ s = -ε∆ψ s -Γ(ψ s ). (82) 
A heuristic presentation of this computation was proposed at page 27.

In R n , the system (81) appears as the pressureless Euler equation:

       ∂ s µ s = -∇ • (µ s ∇Φ s ), ∂ s (µ s ∇Φ s ) + ∇ • (µ s ∇Φ s ⊗ ∇Φ s ) = - ε 2 2 µ s ∇ ∆ √ µ s √ µ s , µ 0 = µ, µ 1 = ν.
This system is a particular case of [START_REF] Feng | Hamilton-Jacobi equations in space of measures associated with a system of conservation laws[END_REF]Eq. (1.1)]. Let us emphasize that this specific system admits the entropic interpolation as an explicit smooth solution; this was unnoticed in [START_REF] Feng | Hamilton-Jacobi equations in space of measures associated with a system of conservation laws[END_REF].

Newton equation

Recall that the acceleration is given at (54) by μt = ∇ ∂ t Φ t + 1 2 Γ(Φ t ) ∈ T µt M. Together with (81), this leads us to the Newton equation ( 75

): μ = ε 2 ∇(Γ(log µ)/2 -∆µ/µ), (83) 
which was recently derived by Conforti in [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF].

After the seminal works of Schrödinger in 1931 [START_REF] Schrödinger | Über die Umkehrung der Naturgesetze Sitzungsberichte Preuss[END_REF][START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF], different aspects of entropic interpolations were investigated by Bernstein [START_REF] Bernstein | Sur les liaisons entre les grandeurs aléatoires[END_REF] and almost thirty years later by Beurling [START_REF] Beurling | An automorphism of product measures Ann[END_REF]. During the 70's, Jamison rediscovered this theory [START_REF] Jamison | The Markov processes of Schrödinger Z[END_REF] and this also happened independently during the 80's to Zambrini [START_REF] Zambrini | Variational processes and stochastic versions of mechanics[END_REF] who initiated the theory of Euclidean quantum theory [18,[START_REF] Chung | Introduction to Random Time and Quantum Randomness World Scientific[END_REF]. The works by Jamison and Zambrini opened the way to the study of second order stochastic differential equations in order to derive Newton equations for the Schrödinger bridges in terms of random paths, see for instance the papers by Krener, Thieullen and Zambrini [START_REF] Thieullen | Second order stochastic differential equations and non-Gaussian reciprocal diffusions Probab[END_REF][START_REF] Krener | Reciprocal diffusions in flat space Probab[END_REF][START_REF] Thieullen | Symmetries in the stochastic calculus of variations Probab[END_REF].

The equation (83) in the Wasserstein space has a different nature than the above mentioned Newton equations in the path space. It sheds a new light on the dynamics of the entropic interpolations.

Benamou-Brenier and Kantorovich formulas

We show that the Schrödinger cost Sch ε is equal, up to an additive constant, to the entropic cost A ε Ent , using the Benamou-Brenier-Schrödinger formula. This was proved in [START_REF] Chen | On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint[END_REF] and in [27, Cor. 5.3] in R n with a Kolmogorov generator and in a more general case, like a RCD * (K, N ) space, in [52, Th.5.4.3], for instance in the compact Riemannian manifold (N, g).

Theorem 35 (Benamou-Brenier-Schrödinger formula) For any couple of positive and smooth probability measures µ, ν on N ,

Sch ε (µ, ν) = A ε Ent (µ, ν) + ε[Ent(µ) + Ent(ν)]/2. ( 84 
)
See [START_REF] Chen | On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint[END_REF][START_REF] Gentil | [END_REF][START_REF] Tamanini | Analysis and geometry of RCD spaces via the Schrödinger problem[END_REF][START_REF] Gigli | Benamou-Brenier and Kantorovich duality formulas for the entropic cost on RCD * (K, N )spaces To appear[END_REF].

Proof ¡ Let us recall, in our context, the proof proposed in [START_REF] Tamanini | Analysis and geometry of RCD spaces via the Schrödinger problem[END_REF]Thm. 5.4.3]. Let (µ s ) 0≤s≤1 be a path from µ to ν with velocity ∇Ψ s , and let (ν s ) 0≤s≤1 be the entropic interpolation between µ and ν that is the path given by (80) for some functions f and g. If (∇Φ s ) 0≤s≤1 denotes its velocity, then from Lemma 34, the couple (ν s , ∇Φ s ) 0≤s≤1 satisfies (81). We have

d ds Φ s dµ s = ∂ s Φ s dµ s + Φ s ∂ s µ s dvol = ∂ s Φ s dµ s + Γ(Φ s , Ψ s ) dµ s ,
and from (81) and an integration by parts,

d ds Φ s dµ s = - 1 2 Γ(Φ s ) + ε 2 2 Γ(log ν s ) -2 ∆ν s ν s + Γ(Φ s , Ψ s ) dµ s = - 1 2 Γ(Φ s ) + Γ(Φ s , Ψ s ) + ε 2 2 2Γ(log µ s , log ν s ) -Γ(log ν s ) dµ s .
By [52, Prop. 4.1.5], the functions f and g are positive and smooth. Applying Cauchy-Schwarz inequality to Γ, we obtain

d ds Φ s dµ s ≤ 1 2 Γ(Ψ s ) + ε 2 2 Γ(log µ s ) dµ s , with equality if Ψ s = Φ s (which implies that µ s = ν s ). Hence, Φ 1 dν -Φ 0 dµ ≤ 1 0 1 2 Γ(Ψ s ) + ε 2 2 Γ(log µ s ) dµ s ds, (85) 
and taking the minimum over all paths (µ s ) 0≤s≤1 , we have obtained

Φ 1 dν -Φ 0 dµ ≤ A ε Ent (µ, ν),
But when µ s = ν s , (85) is an equality. This implies that

Φ 1 dν -Φ 0 dµ = A ε Ent (µ, ν).
Since (ν s ) is optimal, we know by (80) that ν s = P εs f P ε(1-s) g and Φ s = ε log P ε(1-s) gε log P εs f . Hence,

Φ 1 dν -Φ 0 dµ = 2ε f P ε g log f dvol + gP ε f log g dvol -ε(Ent(µ) + Ent(ν)) = 2εH(P |R ε 01 ) -ε(Ent(µ) + Ent(ν)),
where P is given in (79). Then

Φ 1 dν -Φ 0 dµ = 2Sch ε (µ, ν) -ε(Ent(µ) + Ent(ν)),
and the Benamou-Brenier-Schrödinger formula (84) is proved. £

This result tells us that the action minimization problem (77) and the Schrödinger problem (78) are equivalent. In particular, the minimizers coincide and satisfy Newton's equation (75). This was proved rigorously in [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF]Th. 1.3] in the same setting. A similar formal computation is done in [START_REF] Von Renesse | An optimal transport view of Schrödinger's equation Canad[END_REF] for the Schrödinger equation (not the problem).

We propose now a new proof of the dual formulation of the Schrödinger problem. The proof is given in [START_REF] Mikami | Duality theorem for the stochastic optimal control problem Stochastic Process[END_REF] by using stochastic control and in [START_REF] Gentil | [END_REF]Thm 4.1] in a more genera context. The one proposed here is simpler. Let us note that independently and at the same moment, the result was also proved in a RCD * (ρ, n) space in [START_REF] Gigli | Benamou-Brenier and Kantorovich duality formulas for the entropic cost on RCD * (K, N )spaces To appear[END_REF].

Theorem 36 (Kantorovich-Schrödinger dual formulation) For any couple of positive and smooth probability measures µ, ν on N ,

ε sup h∈C(N ) log h dν -log P ε h dµ = 1 2 A ε Ent (µ, ν) + ε 2 (Ent(ν) -Ent(µ)). (86) 
See [START_REF] Mikami | Duality theorem for the stochastic optimal control problem Stochastic Process[END_REF][START_REF] Gentil | [END_REF][START_REF] Gigli | Benamou-Brenier and Kantorovich duality formulas for the entropic cost on RCD * (K, N )spaces To appear[END_REF].

Proof ¡ For any εEnt-interpolation (ν s ) 0≤s≤1 between µ and ν with velocity (∇Φ s ) 0≤s≤1 and any smooth and positive function h on N , log h dνlog P ε h dµ

= 1 0 d ds log P ε(1-s) h dν s ds = 1 0 -ε ∆P ε(1-s) h P ε(1-s) h + Γ(log P ε(1-s) h, Φ s ) dν s ds = 1 0 εΓ ν s P ε(1-s) h , P ε(1-s) h dvol + Γ(log P ε(1-s) h, Φ s )dν s ds = 1 0 Γ(ε log ν s + Φ s , log P ε(1-s) h) -εΓ(log P ε(1-s) h) dν s ds.
Now, because the εEnt-interpolation writes as ν s = P εs f P ε(1-s) g vol for some positive smooth and bounded functions f and g (see [START_REF] Tamanini | Analysis and geometry of RCD spaces via the Schrödinger problem[END_REF] again), and Φ s = ε log P ε(1-s) g-ε log P εs f , we have: ε log ν s +Φ s = 2ε log P ε(1-s) g. This leads to the following inequality log hdνlog

P ε h dµ = ε 1 0 2Γ(log P ε(1-s) g, log P ε(1-s) h) -Γ(log P ε(1-s) h) dν s ds ≤ ε 1 0
Γ(log P ε(1-s) g)dν s ds = log gdνlog P ε g dµ, with equality when h = g. In other words, sup h∈C(N ) log hdνlog P ε h dµ = log gdνlog P ε g dµ.

Moreover, log gdνlog P ε g dµ = (log g)gP ε f dvol -(log P ε g)f P ε g dvol = (log g)gP ε f dvol + (log f )f P ε g dvol -(log f P ε g)f P ε g dvol = H(P |R ε ) -Ent(µ),

where P is the optimal probability measure given in (79). Taking equation (84) into account, this concludes the proof. £

Let us see how the dual formulation proposed at Proposition 24 is in fact the same as the one in (86).

Let us define for any t ≥ 0 and µ ∈ M ,

U(t, µ) := Q ε t f dµ + εEnt(µ), (87) 
where Q ε t f = -2ε log P εt exp(-f /2ε) is the solution of the Hamilton-Jacobi-Bellman equation in N ,

∂ t u + 1 2 Γ(u) = ε∆u.
Then, from a direct computation, the map U solves the Hamilton-Jacobi equation in the Wasserstein space:

∂ t U(t, µ) + 1 2 Γ(U)(t, ν) = ε 2 2 Γ(Ent)(µ), (88) 
à starting from the initial condition µ → f dµ + εEnt(µ). By Proposition 24, we have sup f Q ε t f dµ + εEnt(µ)f dν -εEnt(ν) = A ε Ent (µ, ν).

On the other hand from the definition of

Q ε t f , sup f Q ε t f dµ + εEnt(µ) -f dν -εEnt(ν) = ε sup h log h dν -log P ε h dµ + ε 2 (Ent(µ) -Ent(ν)),
hence we recover formally the identity (86). It is interesting to notice that the Hamilton-Jacobi equation (88) has a "smooth" solution given by (87). Let us note that the dual formulation of the Schrödinger problem has also been computed recently as a particular case in [START_REF] Bowles | A Theory of Transfers: Duality and convolution ArXiv e-prints[END_REF].

Contraction inequality

We are now able to give a new and rigorous result.

Theorem 37 (Contraction under (ρ, n)-convexity) Suppose that (N, g) is a smooth, connected n-dimensional Riemannian manifold with Ric g ≥ ρ for some ρ ∈ R. Then for any smooth and positive probability measures µ, ν, where ω is some given 1-form and g is some given smooth and positive function on N . First, from the usual computations on Markov semigroups by using [START_REF] Bakry | Analysis and geometry of Markov diffusion operators Cham[END_REF]Th 5.5.3] and the Ricci bound on (N, g), ∂ ∂ r P r (Γ(log P t-r g)P t-r g) = 2P r (Γ 2 (log P t-r g)P t-r g) ≥ 2ρP r (Γ(log P t-r g)P t-r g).

A
As in the proof of [START_REF] Gentil | Dimensional contraction in Wasserstein distance for diffusion semigroups on a Riemannian manifold Potential Anal[END_REF]Th 3.8] Taking the infimum over all smooth and positive paths (µ s ) leads to the announced inequality. £ Remark 38 This new result is interesting since the first one, proved in [START_REF] Gentil | [END_REF], was not satisfactory at the light of this one. Indeed, we don't need to use a distortion of the time to obtain a contraction inequality. The Benamou-Brenier-Schrödinger formulation, namely the definition of the cost A ε F , appears as an efficient method to deal with the Schrödinger problem and many other inequalities. Of course, this contraction inequality can be generalized to a more general operator ∆ g + V where V is a vector field in (N, g).

Conclusion

• The general cost A ε F shares the same curvature properties than the Wasserstein distance, which is quite surprising for the Schrödinger problem as a minimisation problem of the relative entropy.

• We believe that the F-interpolations are smooth as in the case of the Schrödinger problem. This gives a way used in [START_REF] Gigli | Second order differentiation formula on compact RCD * (K, N ) spaces To appear[END_REF] to reach the second order differentiation formula on the Wasserstein space.
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Hessian

Let (µ t ) t≥0 be a Wasserstein geodesic and F a function on M . With [START_REF] Thieullen | Second order stochastic differential equations and non-Gaussian reciprocal diffusions Probab[END_REF] and μt = 0, we see that the Wasserstein Hessian of F at µ t ∈ M , applied to μt is Hess µt F( μt , μt ) = d 2 dt 2 F(µ t ) = d dt grad µt F, μt µt = D t grad µt F, μt µt = D μt grad µt F, μt µt .

Actually, we need some additional information about F and its gradient to give a more explicit expression of the Hessian of F. Let us have a look at the important case where

In the subsequent lines, (µ t ) is a generic path with velocity μ = ∇Φ. Since,

where we used

Integrating by parts, we obtain

These computations appear in [45, p. 9], see also [55, p. 425]. The Hessian of the entropy is

In the case of a gradient flow where ∇Φ =grad µ Ent = -∇ log µ, we obtain

The Hessian of the Rényi entropy [START_REF] Ripani | Convexity and regularity properties for entropic interpolations[END_REF], corresponding to f (a) = a p /(p -1), is

Schwarz theorem

Next result is a Schwarz theorem for a path in the Wasserstein space depending both on the time parameters s and t. For the special purpose of next statement, we introduce the notation

for the expression [START_REF] Krener | Reciprocal diffusions in flat space Probab[END_REF] of the dot derivative.

Heuristic proof ¡ Exact analogue of Proposition 12's proof. £ When ρ = 0 the inequality (72) simply implies that the map s → F(µ s ) is convex: a result obtained by the second author for the usual entropy in [START_REF] Léonard | On the convexity of the entropy along entropic interpolations Measure Theory in Non-Smooth Spaces[END_REF]. When ε = 0, we recover the usual convexity of F along McCann interpolations: the starting point of the Lott-Sturm-Villani theory [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF],

From the above inequality, when ρ > 0, we can deduce a Talagrand inequality relating the Wasserstein distance with the entropy. Indeed, taking s = 1/2, one obtains

The same property holds for the cost A ε F as proposed in [START_REF] Conforti | Second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost To appear[END_REF]Cor. 1.2].

"Corollary" 30 (Talagrand inequality for the cost A ε F ) Assume that F is (ρ, ∞)-convex with ρ > 0 and that it is normalized by inf F = 0. Then for any ε > 0 and µ, ν ∈ M ,

In particular, if m ∈ M minimizes F : inf F = F(m) = 0, then for any µ,

1e -2ρε F(µ). This is the exact analogue of Proposition 13.

Next result is a generalization of a result proved for the usual entropy by the third author [START_REF] Ripani | Convexity and regularity properties for entropic interpolations[END_REF].

"Proposition" 31 (Convexity under the (0, n)-condition) Suppose that F is (0, n)-convex with n > 0. Then, for any F-interpolation (µ s ) 0≤s≤1 , the map

is concave.