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Abstract: In this work, we establish a full single-letter characterization of the rate-distortion region of
an instance of the Gray-Wyner model with side information at the decoders. Specifically, in this model
an encoder observes a pair of memoryless, arbitrarily correlated, sources (S, S§) and communicates
with two receivers over an error-free rate-limited link of capacity Ry, as well as error-free rate-limited
individual links of capacities R; to the first receiver and R, to the second receiver. Both receivers
reproduce the source component S losslessly; and Receiver 1 also reproduces the source component
S!! lossily, to within some prescribed fidelity level D;. Also, Receiver 1 and Receiver 2 are equipped
respectively with memoryless side information sequences Y and Y3'. Important in this setup, the
side information sequences are arbitrarily correlated among them, and with the source pair (S}, 5%);
and are not assumed to exhibit any particular ordering. Furthermore, by specializing the main result
to two Heegard-Berger models with successive refinement and scalable coding, we shed light on the
roles of the common and private descriptions that the encoder should produce and the role of each
of the common and private links. We develop intuitions by analysing the developed single-letter
rate-distortion regions of these models, and discuss some insightful binary examples.

Keywords: Rate-distortion, Gray-Wyner, side-information, Heegard-Berger, successive refinement,

1. Introduction

The Gray-Wyner source coding problem was originally formulated, and solved, by Gray and
Wyner in [1]. In their original setting, a pair of arbitrarily correlated memoryless sources (S, S%) is to
be encoded and transmitted to two receivers that are connected to the encoder each through a common
error-free rate-limited link as well as a private error-free rate-limited link. Because the channels are
rate-limited, the encoder produces a compressed bit string W of rate Ry that it transmits over the
common link, and two compressed bit strings, Wy of rate Ry and W, of rate Ry, that it transmits
respectively over the private link to first receiver and the private link to the second receiver. The first
receiver uses the bit strings Wy and W to reproduce an estimate S$? of the source component S? to
within some prescribed distortion level D1, for some distortion measure d (-, -). Similarly, the second
receiver uses the bit strings Wy and W, to reproduce an estimate $4 of the source component S} to
within some prescribed distortion level Dy, for some different distortion measure d (-, ). In [1], Gray
and Wyner characterized the optimal achievable rate triples (Ry, R1, Rp) and distortion pairs (D1, D;).
Figure 1 shows a generalization of Gray-Wyner'’s original model in which the receivers also observe
correlated memoryless side information sequences, Y{' at Receiver 1 and Y}’ at Receiver 2. Some special
cases of the Gray-Wyner’s model with side information of Figure 1 have been solved (see the “Related
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Wl : Rl Yln
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EdS (83, 53) < D,

n
Y;

Figure 1. Gray-Wyner network with side information at the receivers.

Work" section below). However, in its most general form, i.e., when the side information sequences are
arbitrarily correlated among them and with the sources, this problem has so-far eluded single-letter
characterization of the optimal rate-distortion region. Indeed, the Gray-Wyner problem with side
information subsumes the well known Heegard-Berger problem [2], obtained by setting Ry = Ry =0
in Figure 1, which remains, to date, an open problem.

In this paper, we study an instance of the Gray-Wyner’s model with side information of Figure 1 in
which the reconstruction sets are degraded, meaning, both receivers reproduce the source component
S losslessly and Receiver 1 wants also to reproduce the source component Sj lossily, to within some
prescribed distortion level D;. It is important to note that, while the reconstruction sets are nested, and
so degraded, no specific ordering is imposed on the side information sequences, which then can be
arbitrarily correlated among them and with the sources (S}, S ).

Wl Yl’ )

St Source Wo Ed{"(S7,57) < Dy
Sy Encoder

Decoder 2 Sy

Wa

n
Y2

Figure 2. Gray-Wyner model with side information at both receivers and degraded reconstruction sets

As in the Gray-Wyner original coding scheme, the encoder produces a common description of the
sources pair (S}, S5) that is intended to be recovered by both receivers, as well as individual or private
descriptions of ( ;1, Sg) that are destined to be recovered each by a distinct receiver. Because the side
information sequences do not exhibit any specific ordering, the choice of the information that each
description should carry, and, the links over which each is transmitted to its intended receiver, are
challenging questions that we answer in this work.

In order to build the understanding of the role of each of the links and of the descriptions in the
optimal coding scheme for the setting of Figure 2, we will investigate as well two important underlying
problems which are Heegard-Berger type models with refinement links as shown in Figure 3. In both
models, only one of the two refinement individual links has non-zero rate.

In the model of Figure 3a, the receiver that accesses the additional rate-limited link (i.e., Receiver
1) is also required to reproduce a lossy estimate of the source component S}, in addition to the source
component S§ which is to be reproduced losslessly by both receivers. We will refer to this model
as a “Heegard-Berger problem with successive refinement". Reminiscent of successive refinement
source coding, this model may be appropriate to model applications in which descriptions of only
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Yln Y'l’lf

Ed{" (87, 87) < Dy Ed™ (S7,87) < Dy

St Source |[Wo : Ro
Sy Encoder

Wz H Rz
an YZT’

(a) HB model with successive refinement (b) HB model with scalable coding

Figure 3. Two classes of Heegard-Berger models

some components (e.g., 5%) of the source suffices at the first use of the data; and descriptions of the
remaining components (e.g., S) are needed only at a later stage.

The model of Figure 3b has the individual rate-limited link connected to the receiver that is required to
reproduce only the source component S5. We will refer to this model as a “Heegard-Berger problem
with scalable coding”, reusing a term that was introduced in [3] for a similar scenario, and in reference
to that user 1 may have such a “good quality" side information that only a minimal amount of
information from the encoder suffices, and so, in order not to constrain the communication by user
2 with the lower quality side information, an additional rate limited link R, is added to balance the
decoding capabilities of both users.

1.1. Main Contributions

The main result of this paper is a single-letter characterization of the optimal rate-distortion region
of the Gray-Wyner model with side information and degraded reconstruction sets of Figure 2. To this
end, we derive a converse proof that is tailored specifically for the model with degraded reconstruction
sets that we study here. For the proof of the direct part, we develop a coding scheme that is very
similar to one developed in the context of coding for broadcast channels with feedback in [4], but with
an appropriate choice of the variables which we specify here. The specification of the main result to
the Heegard-Berger models with successive refinement and scalable coding of Figure 3 sheds light on
the roles of the common and private descriptions and what they should carry optimally. We develop
intuitions by analysing the established single-letter optimal rate-distortion regions of these two models,
and illustrate our discussion through some binary examples.

1.2. Related Works

In [4], Shayevitz and Wigger study a two-receiver discrete memoryless broadcast channel with
feedback. They develop an efficient coding scheme which treats the feedback signal as a source that
has to be conveyed lossily to the receivers in order to refine their messages” estimates, through a block
Markov coding scheme. In doing so, the users’ channel outputs are regarded as side information
sequences; and so the scheme clearly connects with the Gray-Wyner model with side information of
Figure 1 - as is also clearly explicit in [4]. The Gray-Wyner model with side information for which
Shayevitz and Wigger’s develop a (source) coding scheme, as part of their study of the broadcast
channel with feedback, assumes general, possibly distinct, distortion measures at the receivers (i.e., not
necessarily nested) and side information sequences that are arbitrarily correlated among them and with
the source. In this paper we show that when specialized to the model with degraded reconstruction
sets of Figure 2 that we study here, Shayevitz and Wigger’s coding scheme for the Gray-Wyner model
with side information of [4] yields a rate-distortion region that meets the converse result that we here
establish; and so is optimal.
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The Gray-Wyner model with side information generalizes another long standing open source
coding problem, the famous Heegard-Berger problem [5]. Full single-letter characterization of the
optimal rate-distortion function of the Heegard-Berger problem is known only in few specific cases,
the most important of which are the cases of i) stochastically degraded side information sequences
[5] (see also [6]), ii) Sgarro’s result [7] on the corresponding lossless problem, iii) Gaussian sources
with quadratic distortion measure [3,8], iv) some instances of conditionally less-noisy side information
sequences [9] and v) the recently solved HB model with general side information sequences and
degraded reconstruction sets [10], i.e., the model of Figure 2 with Ry = R, = 0 — in the lossless case, a
few other optimal results were shown, such as for the so-called complementary delivery [11]. A lower
bound for general instances of the rate distortion problem with side information at multiple decoders,
that is inspired by a linear-programming lower bound for index coding, has been developed recently
by Unal and Wagner in [12].

Successive refinement of information was investigated by Equitz et al. in [13] wherein the
description of the source is successively refined to a collection of receivers which are required to
reconstruct the source with increasing quality levels. Extensions of successive refinement to cases in
which the receivers observe some side information sequences was first investigated by Steinberg et
al. in [14] who establish the optimal rate-distortion region under the assumption that the receiver
that observes the refinement link, say receiver 1, observes also a better side information sequence than
the opposite user, i.e. the Markov chain S -e- Y; - Y, holds. Tian et al. give in [8] an equivalent
formulation of the result of [14] and extend it to the N-stage successive refinement setting. In [3], Tian
et al. investigate another setting, coined as “side information scalabale coding", in which it is rather the
receiver that accesses the refinement link, say receiver 2, which observes the less good side information
sequence, i.e. S -~ Y] —e- Y5. Balancing refinement quality and side information asymmetry for such
a side-information scalable source coding problem allows authors in [3] to derive the rate-distortion
region in the degraded side information case. The previous results on successive refinement in the
presence of side information, which were generalized by Timo et al. in [15], all assume, however, a
specific structure in the side information sequences.

1.3. Outline

An outline of the remainder of this paper is as follows. Section II describes formally the
Gray-Wyner model with side information and degraded reconstruction sets of Figure 2 that we
study in this paper. Section III contains the main result of this paper, a full single-letter characterization
of the rate-distortion region of the model of Figure 2, together with some useful discussions and
connections. A formal proof of the direct and converse parts of this result appear in Section VI. In
Section IV and Section V, we specialize the result respectively to the Heegard-Berger model with
successive refinement of Figure 3a and the Heegard-Berger model with scalable coding of Figure 3b.
These sections also contain insightful discussions illustrated by some binary examples.

Notation

Throughout the paper we use the following notations. The term pmf stands for probability mass
function. Upper case letters are used to denote random variables, e.g., X; lower case letters are used
to denote realizations of random variables, e.g., x; and calligraphic letters designate alphabets, i.e.,
X. Vectors of length n are denoted by X" = (Xj,...,X,), and X{ is used to denote the sequence
(Xi, ..., Xj), whereas X_;-. £ (Xq,...,Xi_1,Xis1,---, Xn). The probability distribution of a random
variable X is denoted by Px(x) £ P(X = x). Sometimes, for convenience, we write it as Px. We use
the notation Ex|-] to denote the expectation of random variable X. A probability distribution of a
random variable Y given X is denoted by Py x. The set of probability distributions defined on an
alphabet X is denoted by P(X'). The cardinality of a set X" is denoted by || X'||. For random variables X,
Y and Z, the notation X -s- Y e~ Z indicates that X, Y and Z, in this order, form a Markov Chain, i.e.,

n)

Pxyz(x,y,2) = Py(y)Pxjy (x|y)Pz)y(zly). The set T[gq denotes the set of sequences strongly typical
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(n)
X[y
typical with y" with respect to the joint p.m.f. Pxy. Throug‘{lout this paper, we use hy(«) to denote
the entropy of a Bernoulli («) source, i.e., hp(a) = —alog(a) — (1 — a)log(1 — a). Also, the indicator
function is denoted by 1(-). For real-valued scalars a and b, with a < b, the notation [a, b] means the
set of real numbers that are larger or equal than 4 and smaller or equal b. For integers i < j, [i : j]
denotes the set of integers comprised between i and j, ie., [i : j] = {i,i +1,...,j}. Finally, throughout
the paper, logarithms are taken to base 2.

with respect to the probability distribution Px and the set X [y"] denotes the set of sequences x" jointly

2. Problem Setup and Formal Definitions

Consider the Gray-Wyner source coding model with side information and degraded
reconstruction sets shown in Figure 2. Let (S; x S x Vi X W2, Ps, s, v, v, ) be a discrete memoryless
vector source with generic variables Sq, Sy, Y7 and Y,. Also, let 81 be a reconstruction alphabet and, d4
a distortion measure defined as:

dl : Sl><$‘1 — ]R+
(s1,81) — di(s1,%1) -

)

Definition 1. An (n, My, M1, Ma,,, D1) code for the Gray-Wyner source coding model with side
information and degraded reconstruction sets of Figure 2 consists of:

- Three sets of messages Wo = [1: Mg, W1 = [1: My ], and Wy 2 [1: Mp,].

- Three encoding functions, fo, f1 and f, defined, for j € {0,1,2} as

fi SExSE = W,

@)
(51,53) = W;=f(S1.53).
- Two decoding functions g, and g,, one at each user:
g1 Wox Wi x VI = S x 8P 3)
(Wo, Wl/ Y{l) = (53,178711) :gl(WOI Wl/Y{l) ’
and )
gz:WoXszyg — ‘?;_1 (4)
(Wo, Wa,Y3) = S5, =g2(Wo, Wp,Y7) .
The expected distortion of this code is given by
A 1 & A
E (4" (s1,81)) 2 B~ Y i (S1, 81 - )
nis
The probability of error is defined as
P L P(Syy # S or S5, £ 55). ©)

O

Definition 2. A rate triple (Rg, Ry, Ry) is said to be Di-achievable for the Gray-Wyner source coding
model with side information and degraded reconstruction sets of Figure 2 if there exists a sequence of
(n, Mo,n, M1,,, M2, D1) codes such that:

lim sup Pe(n) = 0, ?)
n—oo
limsup E (d@( T,ﬁ?)) < Dy, (8)

n—oo
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lim sup%log2(Mjrn) < Rjfor j€{0,1,2} )
n—o0

The rate-distortion region RD of this problem is defined as the union of all rate-distortion quadruples
(Rg, R1, R, D1) such that (Rg, Ry, Ry) is D1-achievable, i.e,

RD = U{(Ro,R1, Ry, D1) : (Ro, Ry, Ry) is Dy-achievable} . (10)

As we already mentioned, we shall also study the special case Heegard-Berger type models shown
in Figure 3. The formal definitions for these models are similar to the above, and we omit them here
for brevity.

3. Gray-Wyner Model with Side Information and Degraded Reconstruction Sets

In the following, we establish the main result of this work, i.e., the single-letter characterization of
the optimal rate-distortion region RD of the Gray-Wyner model with side information and degraded
reconstructions sets shown in Figure 2. We then describe how the result subsumes and generalizes
existing rate-distortion regions for this setting under different assumptions.

Theorem 1. The rate-distortion region R'D of the Gray-Wyner problem with side information and degraded
reconstruction set of Figure 2 is given by the sets of all rate-distortion quadruples (Rg, R1, Ry, D1) satisfying:

Ro+ Ry > H(S2|Y1) + I(Uoly; $1|S2Y1) (11a)
Ro+ Ry > H(S3|Y2) 4 I(Up; S1/S2Y2) (11b)
RO + R1 + R2 Z H(52|Y2) + I(U(),' SﬂSzYz) + I(Ul;Sl\UOSZYl) (11C)

for some product pmf Py i1, s,5,Y,Y,, Such that:
1) the following Markov chain is valid:

(Yl,Yz) —— (51,52) —— (UO,ul) (12)
2) and there exists a function ¢ : Y1 x Uy X Uy X Sy — 8 such that:
Ed;(S1,51) < Dy . (13)

Proof: The detailed proof of the direct part and the converse part of this theorem appear in Section VL.

The proof of converse, which is the most challenging part, uses appropriate combinations of
bounding techniques for the transmitted rates based on the system model assumptions and Fano’s
inequality, a series of analytic bounds based on the underlying Markov chains, and most importantly,
a proper use of Csiszar-Korner sum identity in order to derive single letter bounds.

As for the proof of achievability, it combines the optimal coding scheme of the Heegard-Berger
problem with degraded reconstruction sets [10] and the double-binning based scheme of Shayevitz
and Wigger [4, Theorem 2] for the Gray-Wyner problem with side information, and is outlined in the
following.

The encoder produces a common description of (S}, S%) that is intended to be recovered by both
receivers, and an individual description that is intended to be recovered only by Receiver 1. The
common description is chosen as V' = (U{)’, Sg) and is thus designed so as to describe all of S}, which
both receivers are required to reproduce lossessly, but also all or part of S}, depending on the desired
distortion level D;. Since we make no assumptions on the side information sequences, this is meant to
account for possibly unbalanced side information pairs (Y7, Y}'), in a manner that is similar to [10].
The message that carries the common description is obtained at the encoder through the technique of
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double-binning of Tian and Diggavi in [3], used also by Shayevitz and Wigger [4, Theorem 2] for a
Gray-Wyner model with side information. In particular, similar to the coding scheme of [4, Theorem
2], the double-binning is performed in two ways, one that is tailored for Receiver 1 and one that is
tailored for Receiver 2.

More specifically, the codebook of the common description is composed of codewords vy that are drawn
randomly and independently according to the product law of Py,; and is partitioned uniformly into
2Ry superbins, indexed with @g € [1: 2Ry, 0]. The codewords of each superbin of this codebook are
partitioned in two distinct ways. In the first partition, they are assigned randomly and independently
to 2"Ro1 subbins indexed with @, € [1 : 2"Ro1], according to a uniform pmf over [1 : 2Ro1], Similarly,
in the second partition, they are assigned randomly and independently to 27Ro2 subbins indexed with
Wop € [1: Z”RO/Z], according to a uniform pmf over [1 : Z”RO/Z]. The codebook of the private description
is composed of codewords u[ that are drawn randomly and independently according to the product
law of Py, y,- This codebook is partitioned similarly uniformly into 21R10 superbins indexed with

Wi € [1: 21R10], each containing 27R11 subbins indexed with wig € [1: 27R11] codewords ull.

Upon observing a typical pair (S},S%) = (s,s}), the encoder finds a pair of codewords (vfj, u}) that
is jointly typical with (sf, s} ). Let @, @, and @, denote respectively the indices of the superbin,
subbin of the first partition and subbin of the second partition of the codebook of the common
description, in which lies the found vfj. Similarly, let @; g and @;; denote respectively the indices
of the superbin and subbin of the codebook of the individual description in which lies the found
u!. The encoder sets the common message Wy as Wy = (0, @1,0) and sends it over the error-free
rate-limited common link of capacity Ry. Also, it sets the individual message Wy as Wy = (@1, @1,1)
and sends it the error-free rate-limited link to Receiver 1 of capacity R;; and the individual message
W, as Wy = W7 and sends it the error-free rate-limited link to Receiver 2 of capacity R,. For the
decoding, Receiver 2 utilizes the second partition of the codebook of the common description; and
looks in the subbin of index @ > of the superbin of index @ o for a unique vy that is jointly typical with
its side information 3. Receiver 1 decodes vj; similarly, utilizing the first partition of the codebook of
the common description and its side information yY. It also utilizes the codebook of the individual
description; and looks in the subbin of index @ 1 of the superbin of index @y ; for a unique u[ that
is jointly typical with the pair (y},vj). In the formal proof in Section IV, we argue that with an
appropropriate choice of the communication rates Ro, Ro1, Ro2, R0 and Ry 1, as well as the sizes of
the subbins, this scheme achieves the rate-distortion region of Theorem 1. [J

A few remarks that connect Theorem 1 to known results on related models are in order.

Remark 1. The setting of figure 1 generalizes two important settings which are the Gray-Wyner problem,
through the presence of side-information sequences Y{' and Y}, and the Heegard-Berger problem, through the
presence of private links of rates Ry and Ry. As such, the coding scheme for the setting of Figure 2 differs from
that of the Gray-Wyner problem and that of the Heegard-Berger problem in many aspects as shown in Figure 4.

First, the presence of side information sequences imposes the use of binning for each of the produced
descriptions V', Vi" and V3! in the Gray-Wyner code construction. However, unlike the binning performed in
the Heegard-Berger coding scheme, the binning of the common codeword Vi needs to be performed with two
different indices, each tailored to a side information sequence at the respective receivers, i.e., double binning.
Another different aspect is the role of the private and common links. When in Gray-Wyner’s original work, these
links carried each a description, i.e., Vij' on the common link and V[" resp. V' on the private links of rates Ry
resp. Rp, and when in the Heegard-Berger the three descriptions Vi, V' and V3 are all carried through the
common link only, in the optimal coding scheme of the setting of figure 2, the private and common links play
different roles. Indeed, the common description Vi and the private description V" are transmitted on both the
common link and the private link of rates Ro and R;, for j € {1,2}, through rate-splitting. As such, these key
differences imply an intricate interplay between the side information sequences and the role of the common and
private links, which we will emphasize later on in sections IV and V.
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(a) Coding scheme for the Gray-Wyner Heegard-Berger problem

network

Rate
Splitting

Vv )
81 = (VY

Decoder 1
St Source |binning
Sy Encoder

—>| Decoder 2|—> S5 = go(V7", V5", Y3")

3 V;'><
TY;

Rate Vi
Splitting

Double

(c) Coding scheme for the Gray-Wyner
network with side information

Figure 4. Comparison of coding schemes for the Gray-Wyner network with side information, the
Gray-Wyner network and the Heegard-Berger problem.

Remark 2. In the special case in which Ry = Ry = 0, the Gray-Wyner model with side information and
degraded reconstruction sets of Figure 2 reduces to a Heegard-Berger problem with arbitrary side information
sequences and degraded reconstruction sets, a model that was studied, and solved, recently in the authors” own
recent work [10]. Theorem 1 can then be seen as a generalization of [10, Theorem1] to the case in which the
encoder is connected to the receivers also through error-free rate-limited private links of capacity Ry and R;
respectively. The most important insight in the Heegard-Berger problem with degraded reconstruction sets is
the role that the common description Vyy should play in such a setting. Authors show in [10, Theorem1] that the
optimal choice of this description is to contain, intuitively, the common source Sy intended to both users, and,
maybe less intuitive, an additional description Uy, i.e. Vo = (Uy, Sz), which is used to piggyback part of the
source Sy in the common codeword though not required by both receivers, in order to balance the asymmetry of
the side information sequences. In sections IV and V we show that the utility of this description will depend on
both the side information sequences and the rates of the private links. O

Remark 3. In [16], Timo et al. study the Gray-Wyner source coding model with side information of Figure 1.
They establish the rate-region of this model in the specific case in which the side information sequence Y} is
a degraded version of Y{', i.e., (S1,52) == Y1 —o— Y, is a Markov chain, and both receivers reproduce the
component S§ and Receiver 1 also reproduces the component SY, all in a lossless manner. The result of Theorem 1
generalizes that of [16, Theorem 5] to the case of side information sequences that are arbitrarily correlated among
them and with the source pair (Sq1,Sy) and lossy reconstruction of Sy. In [16], Timo et al. also investigate,
and solve, a few other special cases of the model, such as those of single source S1 = Sy [16, Theorem 4] and
complementary delivery (Y1,Y2) = (Sa,S1) [16, Theorem 6]. The results of [16, Theorem 4] and [16, Theorem
6] can be recovered from Theorem 1 as special cases of it. Theorem 1 also generalizes [16, Theorem 6] to the case
of lossy reproduction of the component St. [
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4. The Heegard-Berger Problem with Successive Refinement

An important special case of the Gray-Wyner source coding model with side information and
degraded reconstruction sets of Figure 2 is the case in which R, = 0. The resulting model, a
Heegard-Berger problem with successive refinement, is shown in Figure 3a.

In this section, we derive the optimal rate distortion region for this setting, and show how it
compares to existing results in literature. Besides, we discuss the utility of the common description Uy
depending, not only on the side information sequences structures, but also on the refinement link rate
R;. We illustrate through a binary example that the utility of Uy, namely the optimality of the choice
of a non-degenerate Uy # @, is governed by the quality of the refinement link rate R and the side
information structure.

4.1. Rate-Distortion Region
The following theorem states the optimal rate-distortion region of the Heegard-Berger problem

with successive refinement of Figure 3a.

Corollary 1. The rate-distortion region of the Heegard-Berger problem with successive refinement of Figure 3a
is given by the set of rate-distortion triples (Ro, Ry, D) satisfying:

Ro > H(S2|Y2) + I(Uo; S1/S2Y2) (14a)
Ro+ Ry > H(52|Y1) + I(Uoul,‘ 51 |52Y1) (14b)
Ro+ Ry > H(52|Y2) + I(Uo; SﬂSzYz) + I(Ul; S1|U052Y1) (14¢)

261 for some product pmf Py,u, s, s,v,Y,, such that:

262

263

1) the following Markov chain is valid:
(Uo, Uz) - (51,52) = (Y1, Y2) (15)
2) and there exists a function ¢ : Y1 x Uy X Uy X Sy — 8 such that:
Ed;(S1,51) < D; . (16)
Proof: The proof of Corollary 1 follows from that of Theorem 1 by setting R, = 0 therein.

Remark 4. Recall the coding scheme of Theorem 1. If Ry = 0, the second partition of the codebook of the
common description, which is relevant for Receiver 2, becomes degenerate since, in this case, all the codewords v
of a superbin Boo(o,0) are assigned to a single subbin. Correspondingly, the common message that the encoder
sends over the common link carries only the index @ o of the superbin Boy (o) of the codebook of the common
description in which lies the typical pair vj = (sj, ug), in addition to the index - of the subbin B1o(@1,0) of
the codebook of the individual description in which lies the recovered typical uf. The constraint (14a) on the
common rate Ry is in accordance with that Receiver 2 utilizes only the index @ g in the decoding. Furthermore,
note that the constraints (14b) and (14c) on the sum-rate (Ry + Rq) can be combined as

R() + Rl > max {I(UOSQ,' S]SZ|Y1), I(UOSZ,' S]SZ|Y2)} + I(Lll; 51|U052Y1> (17)
which resembles the Heegard-Berger result of [2, Theorem 2, p. 733].

Remark 5. As we already mentioned, the result of Corollary 1 holds for side information sequences that are
arbitrarily correlated among them and with the sources. In the specific case in which the user who gets the
refinement rate-limited link also has the “better-quality” side information, in the sense that (S1,S2) - Y1 o= Y»
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forms a Markov chain, the rate-distortion region of Corollary 1 reduces to the set of all rate-distortion triples
(Ro, Ry, D1) that satisfy

Ro > H(S2|Y2) + I(Up; $1152Y2) (18a)
Ro+ Ry > H(Sz‘Yg) + I(UO; 51|52Y2) + I(Ul; 51|U052Y1) . (18b)

for some joint pmf Py 11,5, 5,Y, Y, for which (15) and (16) hold. This result can also be obtained from previous
works on successive refinement for the Wyner-Ziv source coding problem by Steinberg and Merhav [14, Theorem
1] and Tian and Diggavi [8, Theorem 1]. The results of [14, Theorem 1] and [8, Theorem 1] hold for possibly
distinct, i.e., not necessarily nested, distortion measures at the receivers; but they require the aforementioned
Markov chain condition which is pivotal for their proofs. Thus, for the considered degraded reconstruction sets
setting, Corollary 1 can be seen as generalizing [14, Theorem 1] and [8, Theorem 1] to the case in which the side
information sequences are arbitrarily correlated among them and with the sources (S1,Sz), i.e., do not exhibit
any ordering. O

Remark 6. In the case in which it is the user who gets only the common rate-limited link that has the
“better-quality” side information, in the sense that (S1,S2) —e— Y, —o— Y1 forms a Markov chain, the rate
distortion region of Corollary 1 reduces to the set of all rate-distortion triples (Ro, Ry, D) that satisfy

Ro = H(S2|Y2) + I(Uo; 51/S2Y2) (19a)
Ro+ Ry > H(52|Y1) + I(Uoul,‘ 51 |52Y1) (19b)

for some joint pmf Py,u,s,s,v,y, for which (15) and (16) hold. This result can also be conveyed from [3].
Specifically, in [3] Tian and Diggavi study a therein referred to as “side-information scalable” source coding
setup where the side informations are degraded, and the encoder produces two descriptions such that the receiver
with the better-quality side information (Receiver 2 if (S1,S2) - Yo —e- Y7 is a Markov chain) uses only the
first description to reconstruct its source while the receiver with the low-quality side information (Receiver 1
if (51,S2) —o- Yo —o- Y is a Markov chain) uses the two descriptions in order to reconstruct its source. They
establish inner and outer bounds on the rate-distortion region of the model, which coincide when either one of
the decoders requires a lossless reconstruction or when the distortion measures are degraded and deterministic.
Similar to the previous remark, Corollary 1 can be seen as generalizing the aforementioned results of [3] to
the case in which the side information sequences are arbitrarily correlated among them and with the sources
(51,S2). O

Remark 7. A crucial remark that is in order for the Heegard-Berger problem with successive refinement of
Figure 3a, is that, depending on the rate of the refinement link Ry, resorting to a common auxiliary variable U
might be unnecessary. Indeed, in the case in which Sy needs to be recovered losslessly at the first receiver, for
instance, parts of the rate-region can be achieved without resorting to the common auxiliary variable Uy, setting
Uy = @, while other parts of the rate region can only be achieved through a non-trivial choice of U,.

As such, if Ry > H(S1|52Y1), then letting Uy = @ yields the optimal rate region. To see this, note that
the rate constraints under lossless construction of S1 write as:

Ro > H(S5152|Y2) — H(S1]S2Y2Uo) (20a)
Ro+ Ry > H(S515|Y1) (20b)
Ro + Ry = H(515:|Y2) — H(S1]S2Y2Up) + H(S1|UpS2Y1) (200)

which, can be rewritten as follows

Ro > H(515|Y2) + min [(H(S1]|S2Y1Up) — R1)" — H(S51]S:Y2Up)] (21a)

Pyysys,
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Ro+ Ry > H(5152|Y1) (21b)

where (x)* £ max{0, x}.
Under the constraint that Ry > H(S1|S2Y1), the constraints in (21) reduce to the following

Ro > H(5152(Y2) — max H(S1|S2Y2Up) (22a)

Pug)sys,

Ro+ Ry > H(515|Y1). (22b)
Next, by noting that maxp, ¢ o, H($1|S2Y,Uy) = H(S1|S2Y2) is achieved by Uy = @, the claim follows.

However, when Ry < H(S1|S2Y1), the choice of Uy = @ might be strictly sub-optimal (as shown in the
following binary example). [

4.2. Binary Example

Let Xj, X5, X3 and X4 be four independent Ber(1/2) random variables. Let the sources be
S, & (X1, X3, X3) and S, £ X,. Now, consider the Heegard-Berger model with successive refinement
shown in Figure 5. The first user, which gets both the common and individual links, observes the side
information Y7 = (X3, X4) and wants to reproduce the pair (51, S») losslessly. The second user gets
only the common link, has side information Y, = (X, X3) and wants to reproduce only the component
Sy, losslessly.

Rl Y] = (X17X4)

S1 = (X1, X2, X3) Ry
So = Xy @
N ey WY

Y = (X, X3)

Figure 5. Binary Heegard-Berger example with successive refinement

The side information at the decoders do not exhibit any degradedness ordering, in the sense that none
of the Markov chain conditions of Remark 5 and Remark 6 hold. The following claim provides the
rate-region of this binary example.

Claim 1. The rate region of the binary Heegard-Berger example with successive refinement of Figure 5 is given
by the set of rate pairs (Ro, Rq) that satisfy

Ro>1 (23a)
Ro+R; >2. (23b)

Proof. The proof of Claim 1 follows easily by computing the rate region

Ro > H(S5152|Y2) — H(S1]S2Y2Uo) (24a)
Ro+ Ry > H(5152(Y1) (24b)
Ro+ Ry = H(S152|Y2) — H(S1[S2Y2Uo) + H(S1{UoS2Y1) (240)
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in the binary setting under study:.
First, we note that

H(5152|Y2) = H(X1X4|X5X3) = 2 (25)
H(5152|Y1) = H(X2X3]X1Xy) = 2. (26)
which allows then to rewrite the rate region as
Ro >2— H(X1|XgUp) > 2~ H(X1[Xq) =1 (27a)
RO + Rl > 2+ max{O, H(X2X3‘X1X4UO) - H(Xl ‘X2X3X4UO)} > 2 (27b)

The proof of the claim follows by noticing that the following inequalities hold with equality for the
choices Uy = (X3, X3) or Uy = X, or Uy = X3.
O

The rate region of Claim 1 is depicted in Figure 6. It is insightful to notice that although the
second user is only interested in reproducing the component S, = X4, the optimal coding scheme that
achieves this region sets the common description that is destined to be recovered by both users as one
that is composed of not only S, but also some part Uy = (X3, X3), or Uy = X, or Uy = X3, of the source
component S (though the latter is not required by the second user). A possible intuition is that this
choice of Uy is useful for user 1, who wants to reproduce S; = (X1, X», X3), and its transmission to also
the second user does not cost any rate loss since this user has available side information Y, = (X3, X3).

Uy = () optimal Ry > H(S1]Y152)

Uy = 0 optimal
14 R, < H(Sl|YlS2)

| \\ L. RO

T T T Ll

Uy = 0 strictly
sub-optimal

Figure 6. Rate region of the binary example of Figure 5. The choices Uy = (X2, X3) or Uy = X, or
Uy = X3 are optimal irrespective of the value of Ry, while the degenerate choice Uy = @ is optimal
only in some slices of the region.

5. The Heegard-Berger Problem with Scalable Coding

In the following, we consider the model of Figure 3b. As we already mentioned, the reader may
find it appropriate for the motivation to think about the side information Y}’ as being of lower quality
than Y7, in which case, the refinement link that is given to the second user is intended to improve its
decoding capability. In this section, we describe the optimal coding scheme for this setting, and show
that it can be recovered, independently, from the work of Timo et al. [15] through a careful choice of
the coding sets. Next, we illustrate through a binary example the interplay between the utility of the
common description Uy and the side information sequences, and the refinement rate R5.
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5.1. Rate-Distortion Region

The following theorem states the rate-distortion region of the Heegard-Berger model with scalable
coding of Figure 3b.

Corollary 2. The rate-distortion region of the Heegard-Berger model with scalable coding of Figure 3b is given
by the set of all rate-distortion triples (Ro, Ry, D1) that satisfy

Ry > H(52|Y1) + I(U0U1;51|52Y1) (28a)
Ro+ Ry > H(52|Y2) + I(Uo; SﬂSzYz) + I(Ul; 81|U052Y1) (28b)

for some product pmf Py i1, s,5,Y,Y,, Such that:
1) the following Markov chain is valid:

(Uo, Uz) &= (51,52) = (Y1, Y2) (29)
2) and there exists a function ¢ : Y1 x Uy X Uy X Sy — 8 such that:
Ed;(S1,51) < D; . (30)
Proof. The proof of Corollary 2 follows from that of Theorem 1 by seeting Ry = 0 therein. [

Remark 8. In the specific case in which Receiver 2 has a better-quality side information in the sense that
(S1,52) o= Y, o= Yj forms a Markov chain, the rate distortion region of Corollary 2 reduces to one that is
described by a single rate-constraint, namely

Rg > H(52|Y1) + I(U;51|52Y1) (31)

for some conditional Pys, s, that satisfies E[d1(S1,51)] < Dy. This is in accordance with the observation
that, in this case, the transmission to Receiver 1 becomes the bottleneck, as Receiver 2 can recover the source
component Sy losslessly as long as so does Receiver 1.

Remark 9. Consider the case in which S1 needs to be recovered losslessly as well at receiver 1. Then, the rate
region is given by (2?), which can be expressed similarly as follows

Ro = H(5152|11) (32a)
Ro+ Ry > H(5152|Y2) + min [H(Sl‘uO52Y1) — H(Sl‘uO52Y2H . (32b)

UplS152

An important comment here is that the optimization problem in Py s, s, does not depend on the refinement
link Ry, and the optimal solution to it, i.e., the optimal choice of Uy, meets the solution to the Heegard-Berger
problem without refinement link, Ry = 0, rendering it optimal for all choices of Ry, which is a main difference
with the Heegard-Berger problem with refinement link of Figure3a in which the solution to the Heegard-Berger
problem (with Ry = 0) might not be optimal for all values of R.

Remark 10. In [15, Theorem 1], Timo etal. present an achievable rate-region for the multistage
successive-refinement problem with side information. Timo et al. consider distortion measures of the form
o @ XX /\A,’l — Ry, where X is the source alphabet and X’l is the reconstruction at decoder 1,1 € {1,...,t};
and for this reason this result is not applicable as is to the setting of Figure 3b, in the case of two decoders.
However, the result of [15, Theorem 1] can be extended to accomodate a distortion measure at the first decoder
that is vector-valued; and the direct part of Corollary 2 can then be obtained by applying this extension.
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Table 1. Auxiliary random variables associated with the subsets that appear in (36).

To T | T2
Az %) 2 1 0
7 %) U | U
i
A% {u,n} | o |
T
.A77 @ @ @
I
AL %) 2 | o
I
Al o o | ©

Specifically, in the case of two decoders, i.e., t = 2, and with X = (S1,S), and two distortion measures
01 :81 XS X 31,1 X 31’2 — {0,1} X Ry and dp : S1 x Sy x 31,2 X 5‘2,2 — {0,1} chosen such that

01 ((51,52), (§1,1,§2,1)) = (dH(SZ/ §2,1),d1(51,§1,1)) (33)

and
1)) ((51152), (§1,2,§2,2)) = dn(s2,822) (34)

ss where dy (-, -) is the Hamming distance, letting d1 = (0, D1) and dy = 0, a straightforward extension of [15,
sse  Theorem 1] to this setting yields a rate-region that is described by the following rate constraints (using the
sz notation of [15, Theorem 1])

Ro+ Ry > ©(70,2) + P(T1,2) + P(T2,2) (35b)

where Ty = {1,2}, Ty = {1}, T = {2}, and for j = 0,1,2 and | € 1,2 such that ;N {1,...,1} # @, the
function @(7}, 1),j=0,1,2,is defined as

1) — t . o\ _ ; L A2

O(T;, 1) = 1 (5152.,47}, U77|A77) o I (uT]., ALY |A77) (36)

where A = {Uyp, Uy, Uy} and the sets A%, A=, .AJF],, .A’L],, A%—_ 1 .A% ,» evaluated in this case, are given in
; i A

Table 1. It is easy to see that the region described by (35) can be written more explicitly in this case as

Ro > I(Uy2; 5152|Y1) (37a)
Ro + Rz Z max{l(lllz; 5152|Y1),I(U12; 8152|Y2)} + I(Ul; Slsz‘YlLIu) + I(Uz; 5152|Y2U12) . (37b)

ss Also, setting Uy, = (Up, Sp) and Uy = Sy in (37) one recovers the rate-region of Corollary 2. ( Such a

330 connection can also be stated for the result of Corollary 1 ).

w

sa0 5.2, Binary Example

341 Consider the setting of 2. Let X3, Xp, X3 and X4 be four independent Ber(1/2) random variables.
.2 Let the sources be S; £ (X, X5, X3) and S, £ X4. Now, consider the Heegard-Berger model with
.3 scalable coding shown in Figure 7. The first user, which gets both only the common link, observes the
saa  side information Y7 = (X3, X4) and wants to reproduce the pair (51, Sz) losslessly. The second user
a5 gets both the common and private links, has side information Y, = (X3, X3) and wants to reproduce
ss6  only the component S, losslessly.
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Y1 = (X1, Xy)

s
S1 = (X1, X2, X3) Ro

o) x,

Ry Yz = (X2, X3)

Figure 7. Binary Heegard-Berger example with scalable coding

Claim 2. The rate region of the binary Heegard-Berger example with scalable coding of Figure ?? is given by the
set of all rate pairs (Ro, Ry ) that satisfy Ry > 0 and Ry > 2.

Proof. The proof of Claim 2 follows easily by specializing, and computing, the result of Remark 9 for
the example at hand. First note that

Ro+ Ry > H(5251 |Y2) + Pmin [H(51|UO52Y1) — H(51|U052Y2)] (38a)
UplS152
=2+ Pmin [H(X2X3|X1X4UO) — H(X1|X2X3X4U0)] (38b)
UplS152
> 2+ min [—H(X;|X;Up)] (38¢)
Pugls s,
>1 (38d)

where equality in all previous inequalities is satisfied with Uy = (X, X3) or with Uy = X or Uy = X3.
Note as well that the single rate constraint on Ry writes as:

Rop > H(515:/1) (39a)
—2 (39b)

which renders the sum-rate constraint redundant and ends the proof of the claim. O

The optimal rate region of Claim 2 is depicted in Figure 8, as the region delimited by the lines
Ro = 1and R, = 0. Note that for this example, the source component X,, which is the only source
component that is required by Receiver 2, needs to be transmitted entirely on the common link so as to
be recovered losslessly also by Receiver 1. For this reason, the refinement link is not-constrained and
appears to be useless for this example.

There is a sharp difference with the binary Heegard-Berger example with successive refinement
of Figure 5 for which the refinement link may sometimes be instrumental to reducing the required rate
on the common link. With scalable coding, the refinement link with rate Ry does not improve the rate
transmitted on the common link.

Also, it is insightful to notice that for this example, because of the side information configuration,
the choice Uy = @ in Corollary 2 is strictly suboptimal and results in the smaller region that is described

by
Ry >2 (40a)
Ro+ Ry > 3. (40D)
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Uy = 0 optimal

‘ N\

Ry

Y

I

Uy = 0 strictly
sub-optimal

Figure 8. The optimal rate region for the setting of Figure 7 given by (Rp > 2, R, > 0). The choice of
Uy = @ is optimal only in a slice of the region.

6. Proof of Theorem 1

In the following, we give the proof of the converse part and the direct part of Theorem 1.

The converse part is strongly dependent on the system model we investigate and consists in a
series of careful bounding steps resorting to Fano’s inequality, Markov chains and Csiszar-Korner
sum-identity.

The proof of achievability is two-fold, and consits in proving a general result that holds for a
Gray-Wyner setting with side information, and then deriving the optimal choice of the auxiliary
codewords involved for the specific setting with degraded reconstruction sets.

6.1. Proof of Converse Part

Assume that a rate triple (Ro, Ry, R2) is Di-achievable. Let then W; = f;(S{,S5), where j €
{0, 1, 2}, be the encoded indices and let §" = g1 (Wo, Wy, Y?) be the reconstruction sequence at the first
decoder such that Edgn) (S, 51 < Dy.

Using Fano’s inequality, the lossless reconstruction of the source S% at both decoders implies that
there exists a sequence €, T 0 such that:

H(S§|W()W1Y1n) < ney (41)
H(SngOWZYZH) < ney (42)

We start by showing the following sum-rate constraint,
Ro+ Ry + Ry > H(S3|Y2) + I(Up; $1|S2Y2) + I(Uy; S1|UpS2 Y1) - (43)
We have that

n(Ro + Ry + Ry)

> H(Wy) + H(W,) + H(Wq) (44a)
> H(Wo) + H(W2[Wo) + H(W1) (44b)
= H(WoW2) + H(W1) (440)
> H(WoW,|Y3') + H(W1|[WpS5Y7") (44d)
> 1(WoWa; SISEIY]) + I(Wa; ST WoSEY™) (44e)

H(STS3|YY) — H(STS5|[WoW,Y3') + H (ST |WoS3YT') — H(ST [WoW; S5 YY) (44f)
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a

—
=

> H(S1S3|Y3) — H(ST|WoW,S5Y3) + H(ST|WoS5Y]') — H(ST[WoW1S5YT') —ne, (44g)
> H(5753[Y2) — H(S7[WoS3Y3) + H(S7[WoS3YT') — H(S1[WoW153Y7') — nen (44h)
where (a) stems from Fano’s inequality (42), which results from the lossless reconstruction of S} at
receiver 2.

Let us define then:

A £ H(ST|WoS5YT) — H(ST[WoS5Y3), (45)
B £ H(S}|[WoW;S5YT) . (46)

In the following, we aim for single-letter bounds on the two quantities A and B.

Since the side information sequences Y] and Y}’ are not degraded and do not exhibit any structure,
together with the sources (S, S}), single-letterizing the quantity A can be obtained through some
judicious bounding steps that are reported below, in which some important Markov chain are shown to
hold and quantities are manipulated appropriately, together with several invocations of Csiszar-Korner
sum identity .

Let us start by writing that

A £ H(ST[WoS5YT) — H(S}|WoS3Y5) (47a)

= I(S1; Y5 [WoS3) — I(S1; YT'|[WoS3) (47b)
n

= Y [I(S{; Yo, WoY5 S5) — I(SY; Y1, WoY{;1155)] (47¢)
i=1
n .

@ [I(STYT 15 Yo 5 —I(S1Yy Ly s3] (47d)
i=1

(b)) & i i

= Z[ (S??YZ,HWOYQ 1Yﬂi+153) —I( ?PYl,i|WOY§ 1Yf,i+153)] (47€)
i=1

(© & :

= Y [(Svi Yol WoYy YT 1S5) — I(S1, Yo il WoYs Y7 11S5)] (47)
i=1
n . -

= Y [H(S1,i|Y1,WoYs 1Y{;,1S5) —H(sl,i|Y2,iwoyg—1yfi+lsg)] (47¢2)
i=1
n

=) [H(S1,i|Y1,S2,iUo,;) — H( 52iUo,;)] (47h)
i=1

where qu = (Wo, YI ! Yl J+17

instrumental to the def1n1t10n of Uy which plays the role of the common auxiliary variable in the proof

S <i~) (note that the lossless reconstruction of 5% at both receivers is

of converse), and where (a) follows using the following Csiszar-Kérner sum-identity

n X n .
Y IOy STWoYT 1 S5) = Y I(Y] 405 Yol ST WO Y5 1SE), (48)
i=1 i=1
(b) follows using the Csiszar-Korner sum-identity given by
n i1 n i1
Y I hn, §5) =Y I(Y7i1; Yo, WoY5 'S5), (49)
i=1 i=1

while (c) is the consequence of the following sequence of Markov chains

(SI ! ,S1 l+1/Si71/5§,i+1/Yfi+1/ Yéil) - (51,1, 52,1‘) - Yj,i (50a)

(a) - i
:’1> (Sl ! 51 17 Sl 1/ SS,Z-H, Yﬁprl/ Yé 1/ WO) - (Sl,i/ 52,i) -5 Yj,i (SOb)
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= (Siflfsil,iﬂ) - (Séflfsg/iﬂrYﬂH,Yé*l,WO, S1,i,S2,i) = Yj, (50¢)

20 Where (50a) results from that the source sequences (S},S5, Y7, Y}') are memoryless, while (a) is a
ss1 consequence of that Wy is a function of the pair of sequences (S}, S7).
To upper-bound the term B, note the following

B £ H(ST|WoW:S5Y7') (51a)

= Xn: H(S1,[WoWiS5Y{'Si ) (51b)
i=1

= fiH (81,11S2,Y1,iW0S2,<i> Y111 ST Wi Y1) (51c)
P

@ i H(S1,1|S2,Y1,iWoSa,<i> Y11 S3 YA ' Wi Y1) (51d)
i=1

< 3 H(S1,180,¥1,WoSa,cio Y1 Vi W YE ) 51e)

I
—

where (a) is a consequence of the following sequence of Markov chains:

Y5 e (ST S5 L YY) e (Sui ST, S Sh it Yilien) (522)
(ﬂ) . - - -
=Yy e (878 YY) o (S0 ST i1, S0 S5 i, Yitin, Wo, Wh) (52b)
=Y (S0, Y Y, 80,85 Y]y, Wo, Wh) o= S (52¢)

32 where (52a) results from that the source sequences (S?, z, Y{’,Yf) are memoryless, while (a) is a
s consequence of that Wy and W; are each function of the pair of sequences (S}, 5%).
Finally, letting U;; = (Wl,Yi_l) so that the choice of (Uj;, Uy ;) satisfy the condition: $;; =
8i(Y1, Uy, Ur i, Sa,i), we write the resulting sum-rate constraint as

n
Tl(RO + R+ RZ) > nH(Slsz‘Yz) + 2 [H(Sl,i
i=1

S2,iY1,ilo,i) — H(S1,i]S2,iY2,iUo,i)]

- 2 H(S51,]S2,Y1,iUp,Uy ;) — ney (53)

n
=1

Let us now prove that the following bound holds

Ro+ Ry > H(5251|Y1) — H(51|UOU1Y152) . (54)
We have

n(Ro+ R1) = H(Wy) + H(W1|Wp) (55a)
= H(Wy, W1) (55b)
> H(WoW1|YT) (55¢)
> I(WoWs; SYS5| YT (55d)
— H(S}S}IYY) — H(S)S}IWoWyY?) (55¢)

(a)
> H(S7S;]Y7') — H(S7[WoW153YT') — ney (55f)
= nH($152|Y1) — B — ney (55g)

A
Vs

n
nH(Slsz‘Yl) — Z H(Slli|SzliYL,U0,iU1,i) —Nney . (551’1)
i=1
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where (a) is a consequence of Fano’s inequality in (41), which results from the lossless reconstruction
of Sj at receiver 1, and (b) results from the upper bound on B in (51e).
As for the third rate constraint

Ro+ Ry > H(S515;|Y2) — H(S1|UpY2S2) , (56)
we write
Tl(RQ + Rz) > H(W()Wz) (573)
> H(WoW,[Y7) (57b)
> I(WoWy; STS51Y5) (57¢)
= H(S815;]Y3) — H(S1S; [WoW2Y7) (57d)
(a)
> H(S7S;|Y3) — H(ST[WoW2S53Y5') — ney (57e)
> H(S1531Y7) — H(S7[WoS;Y5') — nen (57f)
n
= nH(5152|Y2) — Y H(51,i192,Y2iW0S2,<isY2,<i St ;1) — nén (57g)
i=1
b n
W p H(S152]Y2) — Y H(S1,i]S2,iY2,iWoSa,<isYa,<i= ST 11 Y1ip1) — n€n (57h)
i=1
n .
> nH(8152|Ya2) — Y H(S1,112,Y2iWoS2,<i> Y5 1Y{i 1) — ney (57i)
i=1
n
= nH(5152|Y2) — Z H(S1,i]S2,Y2,iUp;) — ney - (57))

I
—_

where (a) is a consequence of Fano’s inequality in (42) and (b) stems for the following sequence of
Markov Chains

Vi1 o (Spi41, 511 Yiien) = (Sii St1,8,, 857, viTh (58a)
(a) g T
= Yﬁiﬂ - (S;’,iH,S’fJH,YﬂH) - (Sl,i/ 511 1/52,1’/ 512 1in 1'W0' Wi) (58b)
= V{1 o (S50, St i1 Y11, S2i Sy L YT, Wo, W) o= Sy (58¢)

where (58a) results from that the source sequences (S?, z, Yf,YZ") are memoryless, while (a) is a
consequence of that Wy and W; are each function of the pair of sequences (S}, 5%).

Let Q be an integer-valued random variable, ranging from 1 to n, uniformly distributed over [1 : 1]
and independent of all other variables (S1, Sz, Up, U1, Y1, Y2). We have

n

) [H(S1,

i=1

S|

Ro+Ri+ Ry > H(5152|Y2 +

iY1,ilo) — H(S1,i]S2,:Y2,iUp,) ]

1 n
- Y H(S1,i1S2,Y1,iUp ilh ;) — ney (59a)
i-1
n
H(8152|Y2) + ) P(Q = i)[H(S1,0/52,0Y1,0Uo0, Q = i) — H(S1,0/52,0Y2,0Uo,0,Q = 1)]
i=1
n
=Y P(Q =1)H(S1,0l52,0Y1,0Uo,oU1,0,Q = i) — ney (59b)
i=1
= H(5152|Y2) + H( ) — H( )
_H(SI,Q|52,QY1,QUO,QUI,QQ) — ney . (59C)

= H(S5152|Y2) + H(51|S2Y1Up,0Q) — H(51]S2Y2Up,0Q)

—H(S51]S2Y1Uy,oUy,0Q) — nen - (59d)
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where (a) is a consequence of that all sources (S’f, S, Y7, Y}') are memoryless.
Let us now define U; = (Q, Uy,0) and Uy 2 (Q, Up,o), we obtain

Roy+Ri1+ Ry > H(5152|Y2) + H(51|52Y1UO) — H(S]|52YZUO) — H(S] \SzYllloUl) . (60)
The two other rate constraints can be written in a similar fashion,

R() + R1 2 H(5251|Y1) — H(51|UOU1Y152) (61a)
Ro+ Ry > H(5152|Y2) — H(51|UOY252) ; (61b)

and this completes the proof of converse. [

6.2. Proof of Direct Part

We first show that the rate-distortion region of the proposition that will follow is achievable. The
achievability of the rate-distortion region of Theorem 1 follows by choosing then the random variable
Vo of the proposition as Vp = (U, S2).

Proposition 1. An inner bound on the rate-distortion region of the Gray-Wyner model with side information
and degraded reconstruction sets of Figure 2 is given by the set of all rate-distortion quadruples (Ro, Ry, Ry, D1)
that satisfy

Ro+ Ry > I(V0u1} Slsz‘Yl) (62a)
Ro + Ry > I(Vp; 5152(Y2) (62b)
R() + R1 + Rz Z max {I(Vo;5152|Y1),I(VO; 5182|Y2)} + I(u1;5152|V0Y1) (62C)

for some choice of the random variables (Vy, Uy) such that (Vy, Uy) —e- (S1, S2) —o— (Y1, Ya) and there exist
functions g1, g1, and g o such that:

= g1(Vo, U1, Y1) (63a)
S2 = g21(Vo, Uy, Y1) (63b)
Sy =822V, Y2), (63¢)
and
Ed;(S1;$1) < D;. (64)

Proof of Proposition 1: We now describe a coding scheme that achieves the rate-distortion region
of Proposition 1. The scheme is very similar to one that is developed by Shayevitz and Wigger [4,
Theorem 2] for a Gray-Wyner model with side information. In particular, similar to [4, Theorem 2] it
uses a double-binning technique for the common codebook, one that is relevant for Receiver 1 and
one that is relevant for Receiver 2. Note, however, that, formally, the result of Proposition 1 cannot be
obtained by readily applying [4, Theorem 2] as is; and one needs to extend the result of [4, Theorem
2] in a manner that accounts for that the source component S7 is to be recovered losslessly by both
decoders. This can be obtained by extending the distortion measure of [4, Theorem 2] to one that is
vector-valued, i.e., d ((s1,52), (81,82)) = (d1(s1,%1),dn(s2,82)), where dy (-, -) denotes the Hamming
distance. For reasons of completeness, we provide here a proof of Proposition 1.

Our scheme has the following parameters: a conditional joint pmf PVO Uy 1515, that satisfies (63) and
(64), and non-negative communication rates Ty, T1, To0, To D7 Tio, T1,1, RO 0, RO 1, RO 2, R1 o and R1 1
such that

To=Too+Top , 0<Roo<Top , 0<Rop<Ty, , 0<Rpp<Tpy (65a)
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Th=Tio+Ti1 , 0<Rig<Tipy , 0<Ryp <Tipy. (65b)

Codebook Generation

1) Randomly and independently generate 270 length-n codewords v} (k) indexed with the pair

of indices ko = (ko, ko), where koo € [1 : 2"T00] and ko, € [1 : 2""07]. Each codeword v (ko)
n
has i.i.d entries drawn according to [ | Py, (vg,i(ko)). The codewords {v (ko)} are partitioned
i=1
into superbins whose indices will be relevant for both receivers; and each superbin is partioned

int two different ways, each into subbins whose indices will be relevant for a distinct receiver
(i.e., double-binning). This is obtained by partitioning the indices { (ko,0,ko)} as follows. We
partition the 2700 indices {kq o} into 21Ro0 bins by randomly and independently assigning each
index ko to an index @g (ko) according to a uniform pmf over [1 : Z”RUfO}. We refer to each
subset of indices {kq} with the same index @ as a bin By (@g), @0 € [1 : Z”RO/O]. Also, we
make two distinct partitions of the 270 indices {ko,p}, each relevant for a distinct receiver. In
the first partition, which is relevant for Receiver 1, the indices {ko,, } are assigned randomly and
independently each to an index @ (ko) according to a uniform pmf over [1 : 2"Ro1], We refer
to each subset of indices {kq ,} with the same index @ as a bin By (@1), @1 € [1 : 21Ro; ],
Similarly, in the second partition, which is relevant for Receiver 2, the indices {kp,, } are assigned
randomly and independently each to an index @2 (ko) according to a uniform pmf over
[1: 27Ro2]; and refer to each subset of indices {ko,p} with the same index @y as a bin Bz (@g2),
Wop € [1 : 2”1%2}.

2) Foreachkg € [1 : 2"T0], randomly and independently generate 271 length-n codewords ! (ky, ko)
indexed with the pair of indices k1 = (k1 ,k11), where k19 € [1: 2"T10] and ky1 € [1 : 2"T11].

n
Each codeword u (k1, ko) is with i.i.d elements drawn according to | | Py, v, (1, (k1, ko) [00,i (ko) )-
i=1

We partition the 2"710 indices {k; o} into 2"R10 bins by randomly and independently assigning
each index ky ¢ to an index @1 (k1 o) according to a uniform pmf over [1 : 2"R10]. We refer to each
subset of indices {kj o} with the same index @ ¢ as a bin B1o(@1), @10 € [1: 2nR10], Similarly,
we partition the 2"T11 indices {ky 1} into 2"R11 bins by randomly and independently assigning
each index kq ; to an index @ 1 (k;,1) according to a uniform pmf over [1 : Z”RM} ; and refer to
each subset of indices {k; 1 } with the same index @; 1 as a bin By1(@11), W11 € [1: 2”1?1,1].

3) Reveal all codebooks and its partitions to the encoder, the codebook of {vfj(ko)} and its partitions
to both receivers, and the codebook of {u} (ki,ko)} and its partitions to only Receiver 1.

Encoding
Upon observing the source pair (S, S5) = (s{,s5), the encoder finds an index kg = (ko,, ko,p)

such that the codeword v (ko) is jointly typical with (s,s%), i.e.,

(s},s5,08(ko)) € T[gll?szvo] : 0

By the covering lemma [17, Chapter 3], the encoding in this step is successful as long as # is large and
To > I(Vo; $152). (67)

Next, it finds an index ky = (ky,0,k1,1) such that the codeword u} (kq, ko) is jointly typical with the
triple (s, s%,v3(ko)), i.e.,
(1,54, 0 (ko), uf (1, ko)) € TE% - (68)
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Again, by the covering lemma [17, Chapter 3], the encoding in this step is successful as long as n is
large and
Ty > I(Uy; 5152 Vo). (69)

Let @, Wp,1 and @Wp be the bin indices such that koo € Boo(@o,0), kop € Boi(@os) and kop €
By (wO,Q). Also, let @1 g and @ 1 be the bin indices such that k; ¢ € BlO(wl,O) and ki1 € B (@1,1). The
encoder then sends the product message Wy = (@0, @1,0) over the error-free rate-limited common link
of capacity Ry. Also, it sends the product message Wy = (@1, @1,1) over the error-free rate-limited
individual link to Receiver 1 of capacity Ry, and the message W, = @, over the error-free rate-limited
individual link to Receiver 2 of capacity R,.

Decoding

Receiver 1 gets the messages (Wy, W1) = (@00, @1,0, @01, @1,1)- 1t seeks a codeword v (ko) and a
codeword uf (ky, ko), with the indices ko = (ko,0, ko) and k1 = (k1,0, k1,1) satisfying ko € Boo(@o,0),
k(),p € 801 (Zbo,l), kl,O € 610(7:(}1,0) and k1,1 S 811 (ZT)L]), and such that

(0§ (ko) (k1, ko), 1) € Tty v - (70)

By the multivariate packing lemma [17, Chapter 12], the error in this decoding step at Receiver 1
vanishes exponentially as long as 7 is large and

Too — Roo + Top — Ro1 < I(Vo; Y1) (71a)
Ti0 — R+ Tip — Ry < I(Uy; Ya| Vo) - (71b)

Receiver 1 then sets its reproduced codewords 7 ; and 87 respectively as

821 = 82,1 (v (ko), uy (k1 ko), y7) (72a)
81 = g1 (vg (ko), uf (k1, ko), y1) - (72b)

Similary, Receiver 2 gets the message (Wy, W>) = (@,0, @1,0, @o2)- It seeks a codeword v (ko), with
ko = (ko[o, kO,p) satisfying k(),o S Boo(i[)o’o) and kO,p € BOZ(LDO,Z)/ and such that

(08 (ko) y}) € Ty, - (73)

Again, using the multivariate packing lemma [17, Chapter 12], the error in this decoding step at
Receiver 2 vanishes exponentially as long as 7 is large and

Too — Roo + Top — Ropz < I(Vo; Ya). (74)
Receiver 2 then sets its reconstructed codeword §g,1 as
85, = 822 (vg(ko), y2) - (75)

Summarizing, combining (67), (69), (71) and (74), the communication rates To, T1, To,0, To,p, T1,0, T1,1,
Rop, Ro1, Rop, Rip and Ry 1 satisfy the following inequalities

To > I(Vp; 5152) (76a)
Ty > I(Uy; S152| Vo) (76b)
Too — Roo + Top — Rop < I(Vi; Y1) (76c)
Too — Roo + Top — Ro2 < I1(Vo; Ya) (76d)
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Ti0 — Rip+ Ty — Rig < I(Uy; 1| Vp). (76e)

Choosing Ry, Ry 1, Ro2, R1 and Ry ; to also satisfy the rate relations

Ro = Ropo + Rip (77a)
Ry =Ro1 + Ry (77b)
R2 = Ro/z. (77C)

and, finally, using Fourier-Motzkin elimination (FME) to successively project out the nuisance variables
To,o, TO,p/ Tl,O/ Tl,l/ T(), Tlr and then RO,O/ RO,l/ Ro,z, Rl,O and Rl,l from the set of relations formed by (65),
(76) and (77), we get the region of Proposition 1.

This completes the proof of the proposition; and so that of the direct part of Theorem 1.
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