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Abstract: In this work, we establish a full single-letter characterization of the rate-distortion region of1

an instance of the Gray-Wyner model with side information at the decoders. Specifically, in this model2

an encoder observes a pair of memoryless, arbitrarily correlated, sources (Sn
1 , Sn

2 ) and communicates3

with two receivers over an error-free rate-limited link of capacity R0, as well as error-free rate-limited4

individual links of capacities R1 to the first receiver and R2 to the second receiver. Both receivers5

reproduce the source component Sn
2 losslessly; and Receiver 1 also reproduces the source component6

Sn
1 lossily, to within some prescribed fidelity level D1. Also, Receiver 1 and Receiver 2 are equipped7

respectively with memoryless side information sequences Yn
1 and Yn

2 . Important in this setup, the8

side information sequences are arbitrarily correlated among them, and with the source pair (Sn
1 , Sn

2 );9

and are not assumed to exhibit any particular ordering. Furthermore, by specializing the main result10

to two Heegard-Berger models with successive refinement and scalable coding, we shed light on the11

roles of the common and private descriptions that the encoder should produce and the role of each12

of the common and private links. We develop intuitions by analysing the developed single-letter13

rate-distortion regions of these models, and discuss some insightful binary examples.14

Keywords: Rate-distortion, Gray-Wyner, side-information, Heegard-Berger, successive refinement,15

1. Introduction16

The Gray-Wyner source coding problem was originally formulated, and solved, by Gray and17

Wyner in [1]. In their original setting, a pair of arbitrarily correlated memoryless sources (Sn
1 , Sn

2 ) is to18

be encoded and transmitted to two receivers that are connected to the encoder each through a common19

error-free rate-limited link as well as a private error-free rate-limited link. Because the channels are20

rate-limited, the encoder produces a compressed bit string W0 of rate R0 that it transmits over the21

common link, and two compressed bit strings, W1 of rate R1 and W2 of rate R2, that it transmits22

respectively over the private link to first receiver and the private link to the second receiver. The first23

receiver uses the bit strings W0 and W1 to reproduce an estimate Ŝn
1 of the source component Sn

1 to24

within some prescribed distortion level D1, for some distortion measure d1(·, ·). Similarly, the second25

receiver uses the bit strings W0 and W2 to reproduce an estimate Ŝn
2 of the source component Sn

2 to26

within some prescribed distortion level D2, for some different distortion measure d2(·, ·). In [1], Gray27

and Wyner characterized the optimal achievable rate triples (R0, R1, R2) and distortion pairs (D1, D2).28

Figure 1 shows a generalization of Gray-Wyner’s original model in which the receivers also observe29

correlated memoryless side information sequences, Yn
1 at Receiver 1 and Yn

2 at Receiver 2. Some special30

cases of the Gray-Wyner’s model with side information of Figure 1 have been solved (see the “Related31
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Figure 1. Gray-Wyner network with side information at the receivers.

Work" section below). However, in its most general form, i.e., when the side information sequences are32

arbitrarily correlated among them and with the sources, this problem has so-far eluded single-letter33

characterization of the optimal rate-distortion region. Indeed, the Gray-Wyner problem with side34

information subsumes the well known Heegard-Berger problem [2], obtained by setting R1 = R2 = 035

in Figure 1, which remains, to date, an open problem.36

In this paper, we study an instance of the Gray-Wyner’s model with side information of Figure 1 in37

which the reconstruction sets are degraded, meaning, both receivers reproduce the source component38

Sn
2 losslessly and Receiver 1 wants also to reproduce the source component Sn

1 lossily, to within some39

prescribed distortion level D1. It is important to note that, while the reconstruction sets are nested, and40

so degraded, no specific ordering is imposed on the side information sequences, which then can be41

arbitrarily correlated among them and with the sources (Sn
1 , Sn

2 ).42

Figure 2. Gray-Wyner model with side information at both receivers and degraded reconstruction sets

As in the Gray-Wyner original coding scheme, the encoder produces a common description of the43

sources pair (Sn
1 , Sn

2 ) that is intended to be recovered by both receivers, as well as individual or private44

descriptions of (Sn
1 , Sn

2 ) that are destined to be recovered each by a distinct receiver. Because the side45

information sequences do not exhibit any specific ordering, the choice of the information that each46

description should carry, and, the links over which each is transmitted to its intended receiver, are47

challenging questions that we answer in this work.48

In order to build the understanding of the role of each of the links and of the descriptions in the49

optimal coding scheme for the setting of Figure 2, we will investigate as well two important underlying50

problems which are Heegard-Berger type models with refinement links as shown in Figure 3. In both51

models, only one of the two refinement individual links has non-zero rate.52

In the model of Figure 3a, the receiver that accesses the additional rate-limited link (i.e., Receiver53

1) is also required to reproduce a lossy estimate of the source component Sn
1 , in addition to the source54

component Sn
2 which is to be reproduced losslessly by both receivers. We will refer to this model55

as a “Heegard-Berger problem with successive refinement". Reminiscent of successive refinement56

source coding, this model may be appropriate to model applications in which descriptions of only57
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(a) HB model with successive refinement (b) HB model with scalable coding

Figure 3. Two classes of Heegard-Berger models

some components (e.g., Sn
2 ) of the source suffices at the first use of the data; and descriptions of the58

remaining components (e.g., Sn
1 ) are needed only at a later stage.59

The model of Figure 3b has the individual rate-limited link connected to the receiver that is required to60

reproduce only the source component Sn
2 . We will refer to this model as a “Heegard-Berger problem61

with scalable coding", reusing a term that was introduced in [3] for a similar scenario, and in reference62

to that user 1 may have such a “good quality" side information that only a minimal amount of63

information from the encoder suffices, and so, in order not to constrain the communication by user64

2 with the lower quality side information, an additional rate limited link R2 is added to balance the65

decoding capabilities of both users.66

1.1. Main Contributions67

The main result of this paper is a single-letter characterization of the optimal rate-distortion region68

of the Gray-Wyner model with side information and degraded reconstruction sets of Figure 2. To this69

end, we derive a converse proof that is tailored specifically for the model with degraded reconstruction70

sets that we study here. For the proof of the direct part, we develop a coding scheme that is very71

similar to one developed in the context of coding for broadcast channels with feedback in [4], but with72

an appropriate choice of the variables which we specify here. The specification of the main result to73

the Heegard-Berger models with successive refinement and scalable coding of Figure 3 sheds light on74

the roles of the common and private descriptions and what they should carry optimally. We develop75

intuitions by analysing the established single-letter optimal rate-distortion regions of these two models,76

and illustrate our discussion through some binary examples.77

1.2. Related Works78

In [4], Shayevitz and Wigger study a two-receiver discrete memoryless broadcast channel with79

feedback. They develop an efficient coding scheme which treats the feedback signal as a source that80

has to be conveyed lossily to the receivers in order to refine their messages’ estimates, through a block81

Markov coding scheme. In doing so, the users’ channel outputs are regarded as side information82

sequences; and so the scheme clearly connects with the Gray-Wyner model with side information of83

Figure 1 - as is also clearly explicit in [4]. The Gray-Wyner model with side information for which84

Shayevitz and Wigger’s develop a (source) coding scheme, as part of their study of the broadcast85

channel with feedback, assumes general, possibly distinct, distortion measures at the receivers (i.e., not86

necessarily nested) and side information sequences that are arbitrarily correlated among them and with87

the source. In this paper we show that when specialized to the model with degraded reconstruction88

sets of Figure 2 that we study here, Shayevitz and Wigger’s coding scheme for the Gray-Wyner model89

with side information of [4] yields a rate-distortion region that meets the converse result that we here90

establish; and so is optimal.91
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The Gray-Wyner model with side information generalizes another long standing open source92

coding problem, the famous Heegard-Berger problem [5]. Full single-letter characterization of the93

optimal rate-distortion function of the Heegard-Berger problem is known only in few specific cases,94

the most important of which are the cases of i) stochastically degraded side information sequences95

[5] (see also [6]), ii) Sgarro’s result [7] on the corresponding lossless problem, iii) Gaussian sources96

with quadratic distortion measure [3,8], iv) some instances of conditionally less-noisy side information97

sequences [9] and v) the recently solved HB model with general side information sequences and98

degraded reconstruction sets [10], i.e., the model of Figure 2 with R1 = R2 = 0 — in the lossless case, a99

few other optimal results were shown, such as for the so-called complementary delivery [11]. A lower100

bound for general instances of the rate distortion problem with side information at multiple decoders,101

that is inspired by a linear-programming lower bound for index coding, has been developed recently102

by Unal and Wagner in [12].103

Successive refinement of information was investigated by Equitz et al. in [13] wherein the104

description of the source is successively refined to a collection of receivers which are required to105

reconstruct the source with increasing quality levels. Extensions of successive refinement to cases in106

which the receivers observe some side information sequences was first investigated by Steinberg et107

al. in [14] who establish the optimal rate-distortion region under the assumption that the receiver108

that observes the refinement link, say receiver 1, observes also a better side information sequence than109

the opposite user, i.e. the Markov chain S−
− Y1 −
− Y2 holds. Tian et al. give in [8] an equivalent110

formulation of the result of [14] and extend it to the N-stage successive refinement setting. In [3], Tian111

et al. investigate another setting, coined as “side information scalabale coding", in which it is rather the112

receiver that accesses the refinement link, say receiver 2, which observes the less good side information113

sequence, i.e. S−
−Y1 −
−Y2. Balancing refinement quality and side information asymmetry for such114

a side-information scalable source coding problem allows authors in [3] to derive the rate-distortion115

region in the degraded side information case. The previous results on successive refinement in the116

presence of side information, which were generalized by Timo et al. in [15], all assume, however, a117

specific structure in the side information sequences.118

1.3. Outline119

An outline of the remainder of this paper is as follows. Section II describes formally the120

Gray-Wyner model with side information and degraded reconstruction sets of Figure 2 that we121

study in this paper. Section III contains the main result of this paper, a full single-letter characterization122

of the rate-distortion region of the model of Figure 2, together with some useful discussions and123

connections. A formal proof of the direct and converse parts of this result appear in Section VI. In124

Section IV and Section V, we specialize the result respectively to the Heegard-Berger model with125

successive refinement of Figure 3a and the Heegard-Berger model with scalable coding of Figure 3b.126

These sections also contain insightful discussions illustrated by some binary examples.127

Notation128

Throughout the paper we use the following notations. The term pmf stands for probability mass129

function. Upper case letters are used to denote random variables, e.g., X; lower case letters are used130

to denote realizations of random variables, e.g., x; and calligraphic letters designate alphabets, i.e.,131

X . Vectors of length n are denoted by Xn = (X1, . . . , Xn), and X j
i is used to denote the sequence132

(Xi, . . . , Xj), whereas X<i> , (X1, . . . , Xi−1, Xi+1, . . . , Xn). The probability distribution of a random133

variable X is denoted by PX(x) , P(X = x). Sometimes, for convenience, we write it as PX. We use134

the notation EX [·] to denote the expectation of random variable X. A probability distribution of a135

random variable Y given X is denoted by PY|X. The set of probability distributions defined on an136

alphabet X is denoted by P(X ). The cardinality of a set X is denoted by ‖X ‖. For random variables X,137

Y and Z, the notation X−
−Y−
− Z indicates that X, Y and Z, in this order, form a Markov Chain, i.e.,138

PXYZ(x, y, z) = PY(y)PX|Y(x|y)PZ|Y(z|y). The set T (n)
[X]

denotes the set of sequences strongly typical139
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with respect to the probability distribution PX and the set T (n)
[X|yn ]

denotes the set of sequences xn jointly140

typical with yn with respect to the joint p.m.f. PXY. Throughout this paper, we use h2(α) to denote141

the entropy of a Bernoulli (α) source, i.e., h2(α) = −α log(α)− (1− α) log(1− α). Also, the indicator142

function is denoted by 1(·). For real-valued scalars a and b, with a ≤ b, the notation [a, b] means the143

set of real numbers that are larger or equal than a and smaller or equal b. For integers i ≤ j, [i : j]144

denotes the set of integers comprised between i and j, i.e., [i : j] = {i, i + 1, . . . , j}. Finally, throughout145

the paper, logarithms are taken to base 2.146

2. Problem Setup and Formal Definitions147

Consider the Gray-Wyner source coding model with side information and degraded
reconstruction sets shown in Figure 2. Let (S1 × S2 ×Y1 ×Y2, PS1,S2,Y1,Y2) be a discrete memoryless
vector source with generic variables S1, S2, Y1 and Y2. Also, let Ŝ1 be a reconstruction alphabet and, d1

a distortion measure defined as:

d1 : S1 × Ŝ1 → R+

(s1, ŝ1) → d1(s1, ŝ1) .
(1)

Definition 1. An (n, M0,n, M1,n, M2,n, D1) code for the Gray-Wyner source coding model with side
information and degraded reconstruction sets of Figure 2 consists of:
- Three sets of messagesW0 , [1 : M0,n],W1 , [1 : M1,n], andW2 , [1 : M2,n].
- Three encoding functions, f0, f1 and f2 defined, for j ∈ {0, 1, 2} as

f j : Sn
1 × Sn

2 7→ Wj
(Sn

1 , Sn
2 ) 7→ Wj = f j(Sn

1 , Sn
2 ) .

(2)

- Two decoding functions g1 and g2, one at each user:

g1 : W0 ×W1 ×Yn
1 7→ Ŝn

2 × Ŝn
1

(W0, W1, Yn
1 ) 7→ (Ŝn

2,1, Ŝn
1 ) = g1(W0, W1, Yn

1 ) ,
(3)

and
g2 : W0 ×W2 ×Yn

2 7→ Ŝn
2

(W0, W2, Yn
2 ) 7→ Ŝn

2,2 = g2(W0, W2, Yn
2 ) .

(4)

The expected distortion of this code is given by

E
(

d(n)1 (Sn
1 , Ŝn

1 )
)
, E 1

n

n

∑
i=1

d1(S1,i, Ŝ1,i) . (5)

The probability of error is defined as

P(n)
e , P

(
Ŝn

2,1 6= Sn
2 or Ŝn

2,2 6= Sn
2
)

. (6)

148

Definition 2. A rate triple (R0, R1, R2) is said to be D1-achievable for the Gray-Wyner source coding149

model with side information and degraded reconstruction sets of Figure 2 if there exists a sequence of150

(n, M0,n, M1,n, M2,n, D1) codes such that:151

lim sup
n→∞

P(n)
e = 0 , (7)

lim sup
n→∞

E
(

d(n)1 (Sn
1 , Ŝn

1 )
)
≤ D1 , (8)
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lim sup
n→∞

1
n

log2(Mj,n) ≤ Rj for j ∈ {0, 1, 2} (9)

The rate-distortion region RD of this problem is defined as the union of all rate-distortion quadruples
(R0, R1, R2, D1) such that (R0, R1, R2) is D1-achievable, i.e,

RD , ∪
{
(R0, R1, R2, D1) : (R0, R1, R2) is D1-achievable

}
. (10)

152

As we already mentioned, we shall also study the special case Heegard-Berger type models shown153

in Figure 3. The formal definitions for these models are similar to the above, and we omit them here154

for brevity.155

3. Gray-Wyner Model with Side Information and Degraded Reconstruction Sets156

In the following, we establish the main result of this work, i.e., the single-letter characterization of157

the optimal rate-distortion regionRD of the Gray-Wyner model with side information and degraded158

reconstructions sets shown in Figure 2. We then describe how the result subsumes and generalizes159

existing rate-distortion regions for this setting under different assumptions.160

Theorem 1. The rate-distortion regionRD of the Gray-Wyner problem with side information and degraded
reconstruction set of Figure 2 is given by the sets of all rate-distortion quadruples (R0, R1, R2, D1) satisfying:

R0 + R1 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (11a)

R0 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (11b)

R0 + R1 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) (11c)

for some product pmf PU0U1S1S2Y1Y2 , such that:161

1) the following Markov chain is valid:

(Y1, Y2)−
− (S1, S2)−
− (U0, U1) (12)

2) and there exists a function φ : Y1 ×U0 ×U1 × S2 → Ŝ1 such that:

Ed1(S1, Ŝ1) ≤ D1 . (13)

Proof: The detailed proof of the direct part and the converse part of this theorem appear in Section VI.162

The proof of converse, which is the most challenging part, uses appropriate combinations of163

bounding techniques for the transmitted rates based on the system model assumptions and Fano’s164

inequality, a series of analytic bounds based on the underlying Markov chains, and most importantly,165

a proper use of Csiszár-Körner sum identity in order to derive single letter bounds.166

As for the proof of achievability, it combines the optimal coding scheme of the Heegard-Berger167

problem with degraded reconstruction sets [10] and the double-binning based scheme of Shayevitz168

and Wigger [4, Theorem 2] for the Gray-Wyner problem with side information, and is outlined in the169

following.170

The encoder produces a common description of (Sn
1 , Sn

2 ) that is intended to be recovered by both171

receivers, and an individual description that is intended to be recovered only by Receiver 1. The172

common description is chosen as Vn
0 = (Un

0 , Sn
2 ) and is thus designed so as to describe all of Sn

2 , which173

both receivers are required to reproduce lossessly, but also all or part of Sn
1 , depending on the desired174

distortion level D1. Since we make no assumptions on the side information sequences, this is meant to175

account for possibly unbalanced side information pairs (Yn
1 , Yn

2 ), in a manner that is similar to [10].176

The message that carries the common description is obtained at the encoder through the technique of177
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double-binning of Tian and Diggavi in [3], used also by Shayevitz and Wigger [4, Theorem 2] for a178

Gray-Wyner model with side information. In particular, similar to the coding scheme of [4, Theorem179

2], the double-binning is performed in two ways, one that is tailored for Receiver 1 and one that is180

tailored for Receiver 2.181

More specifically, the codebook of the common description is composed of codewords vn
0 that are drawn182

randomly and independently according to the product law of PV0 ; and is partitioned uniformly into183

2nR̃0,0 superbins, indexed with w̃0,0 ∈ [1 : 2nR̃0,0 ]. The codewords of each superbin of this codebook are184

partitioned in two distinct ways. In the first partition, they are assigned randomly and independently185

to 2nR̃0,1 subbins indexed with w̃0,1 ∈ [1 : 2nR̃0,1 ], according to a uniform pmf over [1 : 2nR̃0,1 ]. Similarly,186

in the second partition, they are assigned randomly and independently to 2nR̃0,2 subbins indexed with187

w̃0,2 ∈ [1 : 2nR̃0,2 ], according to a uniform pmf over [1 : 2nR̃0,2 ]. The codebook of the private description188

is composed of codewords un
1 that are drawn randomly and independently according to the product189

law of PU1|V0
. This codebook is partitioned similarly uniformly into 2nR̃1,0 superbins indexed with190

w̃1,0 ∈ [1 : 2nR̃1,0 ], each containing 2nR̃1,1 subbins indexed with w̃1,1 ∈ [1 : 2nR̃1,1 ] codewords un
1 .191

Upon observing a typical pair (Sn
1 , Sn

2 ) = (sn
1 , sn

2 ), the encoder finds a pair of codewords (vn
0 , un

1 ) that192

is jointly typical with (sn
1 , sn

2 ). Let w̃0,0, w̃0,1 and w̃0,2 denote respectively the indices of the superbin,193

subbin of the first partition and subbin of the second partition of the codebook of the common194

description, in which lies the found vn
0 . Similarly, let w̃1,0 and w̃1,1 denote respectively the indices195

of the superbin and subbin of the codebook of the individual description in which lies the found196

un
1 . The encoder sets the common message W0 as W0 = (w̃0,0, w̃1,0) and sends it over the error-free197

rate-limited common link of capacity R0. Also, it sets the individual message W1 as W1 = (w̃0,1, w̃1,1)198

and sends it the error-free rate-limited link to Receiver 1 of capacity R1; and the individual message199

W2 as W2 = w̃0,2 and sends it the error-free rate-limited link to Receiver 2 of capacity R2. For the200

decoding, Receiver 2 utilizes the second partition of the codebook of the common description; and201

looks in the subbin of index w̃0,2 of the superbin of index w̃0,0 for a unique vn
0 that is jointly typical with202

its side information yn
2 . Receiver 1 decodes vn

0 similarly, utilizing the first partition of the codebook of203

the common description and its side information yn
1 . It also utilizes the codebook of the individual204

description; and looks in the subbin of index w̃1,1 of the superbin of index w̃1,1 for a unique un
1 that205

is jointly typical with the pair (yn
1 , vn

0 ). In the formal proof in Section IV, we argue that with an206

appropropriate choice of the communication rates R̃0,0, R̃0,1, R̃0,2, R̃1,0 and R̃1,1, as well as the sizes of207

the subbins, this scheme achieves the rate-distortion region of Theorem 1.208

A few remarks that connect Theorem 1 to known results on related models are in order.209

Remark 1. The setting of figure 1 generalizes two important settings which are the Gray-Wyner problem,210

through the presence of side-information sequences Yn
1 and Yn

2 , and the Heegard-Berger problem, through the211

presence of private links of rates R1 and R2. As such, the coding scheme for the setting of Figure 2 differs from212

that of the Gray-Wyner problem and that of the Heegard-Berger problem in many aspects as shown in Figure 4.213

First, the presence of side information sequences imposes the use of binning for each of the produced214

descriptions Vn
0 , Vn

1 and Vn
2 in the Gray-Wyner code construction. However, unlike the binning performed in215

the Heegard-Berger coding scheme, the binning of the common codeword Vn
0 needs to be performed with two216

different indices, each tailored to a side information sequence at the respective receivers, i.e., double binning.217

Another different aspect is the role of the private and common links. When in Gray-Wyner’s original work, these218

links carried each a description, i.e., Vn
0 on the common link and Vn

1 resp. Vn
2 on the private links of rates R1219

resp. R2, and when in the Heegard-Berger the three descriptions Vn
0 , Vn

1 and Vn
2 are all carried through the220

common link only, in the optimal coding scheme of the setting of figure 2, the private and common links play221

different roles. Indeed, the common description Vn
0 and the private description Vn

j are transmitted on both the222

common link and the private link of rates R0 and Rj, for j ∈ {1, 2}, through rate-splitting. As such, these key223

differences imply an intricate interplay between the side information sequences and the role of the common and224

private links, which we will emphasize later on in sections IV and V.225
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(a) Coding scheme for the Gray-Wyner
network

(b) Coding scheme for the
Heegard-Berger problem

(c) Coding scheme for the Gray-Wyner
network with side information

Figure 4. Comparison of coding schemes for the Gray-Wyner network with side information, the
Gray-Wyner network and the Heegard-Berger problem.

Remark 2. In the special case in which R1 = R2 = 0, the Gray-Wyner model with side information and226

degraded reconstruction sets of Figure 2 reduces to a Heegard-Berger problem with arbitrary side information227

sequences and degraded reconstruction sets, a model that was studied, and solved, recently in the authors’ own228

recent work [10]. Theorem 1 can then be seen as a generalization of [10, Theorem1] to the case in which the229

encoder is connected to the receivers also through error-free rate-limited private links of capacity R1 and R2230

respectively. The most important insight in the Heegard-Berger problem with degraded reconstruction sets is231

the role that the common description V0 should play in such a setting. Authors show in [10, Theorem1] that the232

optimal choice of this description is to contain, intuitively, the common source S2 intended to both users, and,233

maybe less intuitive, an additional description U0, i.e. V0 = (U0, S2), which is used to piggyback part of the234

source S1 in the common codeword though not required by both receivers, in order to balance the asymmetry of235

the side information sequences. In sections IV and V we show that the utility of this description will depend on236

both the side information sequences and the rates of the private links.237

Remark 3. In [16], Timo et al. study the Gray-Wyner source coding model with side information of Figure 1.238

They establish the rate-region of this model in the specific case in which the side information sequence Yn
2 is239

a degraded version of Yn
1 , i.e., (S1, S2) −
− Y1 −
− Y2 is a Markov chain, and both receivers reproduce the240

component Sn
2 and Receiver 1 also reproduces the component Sn

1 , all in a lossless manner. The result of Theorem 1241

generalizes that of [16, Theorem 5] to the case of side information sequences that are arbitrarily correlated among242

them and with the source pair (S1, S2) and lossy reconstruction of S1. In [16], Timo et al. also investigate,243

and solve, a few other special cases of the model, such as those of single source S1 = S2 [16, Theorem 4] and244

complementary delivery (Y1, Y2) = (S2, S1) [16, Theorem 6]. The results of [16, Theorem 4] and [16, Theorem245

6] can be recovered from Theorem 1 as special cases of it. Theorem 1 also generalizes [16, Theorem 6] to the case246

of lossy reproduction of the component Sn
1 .247
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4. The Heegard-Berger Problem with Successive Refinement248

An important special case of the Gray-Wyner source coding model with side information and249

degraded reconstruction sets of Figure 2 is the case in which R2 = 0. The resulting model, a250

Heegard-Berger problem with successive refinement, is shown in Figure 3a.251

In this section, we derive the optimal rate distortion region for this setting, and show how it252

compares to existing results in literature. Besides, we discuss the utility of the common description U0253

depending, not only on the side information sequences structures, but also on the refinement link rate254

R1. We illustrate through a binary example that the utility of U0, namely the optimality of the choice255

of a non-degenerate U0 6= ∅, is governed by the quality of the refinement link rate R1 and the side256

information structure.257

4.1. Rate-Distortion Region258

The following theorem states the optimal rate-distortion region of the Heegard-Berger problem259

with successive refinement of Figure 3a.260

Corollary 1. The rate-distortion region of the Heegard-Berger problem with successive refinement of Figure 3a
is given by the set of rate-distortion triples (R0, R1, D1) satisfying:

R0 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (14a)

R0 + R1 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (14b)

R0 + R1 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) (14c)

for some product pmf PU0U1S1S2Y1Y2 , such that:261

1) the following Markov chain is valid:

(U0, U1)−
− (S1, S2)−
− (Y1, Y2) (15)

2) and there exists a function φ : Y1 ×U0 ×U1 × S2 → Ŝ1 such that:

Ed1(S1, Ŝ1) ≤ D1 . (16)

Proof: The proof of Corollary 1 follows from that of Theorem 1 by setting R2 = 0 therein.262

Remark 4. Recall the coding scheme of Theorem 1. If R2 = 0, the second partition of the codebook of the
common description, which is relevant for Receiver 2, becomes degenerate since, in this case, all the codewords vn

0
of a superbin B00(w̃0,0) are assigned to a single subbin. Correspondingly, the common message that the encoder
sends over the common link carries only the index w̃0,0 of the superbin B00(w̃0,0) of the codebook of the common
description in which lies the typical pair vn

0 = (sn
2 , un

0 ), in addition to the index w̃1,0 of the subbin B10(w̃1,0) of
the codebook of the individual description in which lies the recovered typical un

1 . The constraint (14a) on the
common rate R0 is in accordance with that Receiver 2 utilizes only the index w̃0,0 in the decoding. Furthermore,
note that the constraints (14b) and (14c) on the sum-rate (R0 + R1) can be combined as

R0 + R1 ≥ max {I(U0S2; S1S2|Y1), I(U0S2; S1S2|Y2)}+ I(U1; S1|U0S2Y1) (17)

which resembles the Heegard-Berger result of [2, Theorem 2, p. 733].263

Remark 5. As we already mentioned, the result of Corollary 1 holds for side information sequences that are
arbitrarily correlated among them and with the sources. In the specific case in which the user who gets the
refinement rate-limited link also has the “better-quality" side information, in the sense that (S1, S2)−
−Y1−
−Y2
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forms a Markov chain, the rate-distortion region of Corollary 1 reduces to the set of all rate-distortion triples
(R0, R1, D1) that satisfy

R0 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (18a)

R0 + R1 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) . (18b)

for some joint pmf PU0U1S1S2Y1Y2 for which (15) and (16) hold. This result can also be obtained from previous264

works on successive refinement for the Wyner-Ziv source coding problem by Steinberg and Merhav [14, Theorem265

1] and Tian and Diggavi [8, Theorem 1]. The results of [14, Theorem 1] and [8, Theorem 1] hold for possibly266

distinct, i.e., not necessarily nested, distortion measures at the receivers; but they require the aforementioned267

Markov chain condition which is pivotal for their proofs. Thus, for the considered degraded reconstruction sets268

setting, Corollary 1 can be seen as generalizing [14, Theorem 1] and [8, Theorem 1] to the case in which the side269

information sequences are arbitrarily correlated among them and with the sources (S1, S2), i.e., do not exhibit270

any ordering.271

Remark 6. In the case in which it is the user who gets only the common rate-limited link that has the
“better-quality" side information, in the sense that (S1, S2) −
− Y2 −
− Y1 forms a Markov chain, the rate
distortion region of Corollary 1 reduces to the set of all rate-distortion triples (R0, R1, D1) that satisfy

R0 ≥ H(S2|Y2) + I(U0; S1|S2Y2) (19a)

R0 + R1 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (19b)

for some joint pmf PU0U1S1S2Y1Y2 for which (15) and (16) hold. This result can also be conveyed from [3].272

Specifically, in [3] Tian and Diggavi study a therein referred to as “side-information scalable" source coding273

setup where the side informations are degraded, and the encoder produces two descriptions such that the receiver274

with the better-quality side information (Receiver 2 if (S1, S2)−
−Y2 −
−Y1 is a Markov chain) uses only the275

first description to reconstruct its source while the receiver with the low-quality side information (Receiver 1276

if (S1, S2)−
−Y2 −
−Y1 is a Markov chain) uses the two descriptions in order to reconstruct its source. They277

establish inner and outer bounds on the rate-distortion region of the model, which coincide when either one of278

the decoders requires a lossless reconstruction or when the distortion measures are degraded and deterministic.279

Similar to the previous remark, Corollary 1 can be seen as generalizing the aforementioned results of [3] to280

the case in which the side information sequences are arbitrarily correlated among them and with the sources281

(S1, S2).282

Remark 7. A crucial remark that is in order for the Heegard-Berger problem with successive refinement of283

Figure 3a, is that, depending on the rate of the refinement link R1, resorting to a common auxiliary variable U0284

might be unnecessary. Indeed, in the case in which S1 needs to be recovered losslessly at the first receiver, for285

instance, parts of the rate-region can be achieved without resorting to the common auxiliary variable U0, setting286

U0 = ∅, while other parts of the rate region can only be achieved through a non-trivial choice of U0.287

As such, if R1 ≥ H(S1|S2Y1), then letting U0 = ∅ yields the optimal rate region. To see this, note that
the rate constraints under lossless construction of S1 write as:

R0 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) (20a)

R0 + R1 ≥ H(S1S2|Y1) (20b)

R0 + R1 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) + H(S1|U0S2Y1) (20c)

which, can be rewritten as follows

R0 ≥ H(S1S2|Y2) + min
PU0 |S1S2

[
(H(S1|S2Y1U0)− R1)

+ − H(S1|S2Y2U0)
]

(21a)
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R0 + R1 ≥ H(S1S2|Y1) (21b)

where (x)+ , max{0, x}.288

Under the constraint that R1 ≥ H(S1|S2Y1), the constraints in (21) reduce to the following

R0 ≥ H(S1S2|Y2)− max
PU0 |S1S2

H(S1|S2Y2U0) (22a)

R0 + R1 ≥ H(S1S2|Y1). (22b)

Next, by noting that maxPU0 |S1S2
H(S1|S2Y2U0) = H(S1|S2Y2) is achieved by U0 = ∅, the claim follows.289

290

However, when R1 < H(S1|S2Y1), the choice of U0 = ∅ might be strictly sub-optimal (as shown in the291

following binary example).292

4.2. Binary Example293

Let X1, X2, X3 and X4 be four independent Ber(1/2) random variables. Let the sources be294

S1 , (X1, X2, X3) and S2 , X4. Now, consider the Heegard-Berger model with successive refinement295

shown in Figure 5. The first user, which gets both the common and individual links, observes the side296

information Y1 = (X1, X4) and wants to reproduce the pair (S1, S2) losslessly. The second user gets297

only the common link, has side information Y2 = (X2, X3) and wants to reproduce only the component298

S2, losslessly.299

Figure 5. Binary Heegard-Berger example with successive refinement

The side information at the decoders do not exhibit any degradedness ordering, in the sense that none300

of the Markov chain conditions of Remark 5 and Remark 6 hold. The following claim provides the301

rate-region of this binary example.302

Claim 1. The rate region of the binary Heegard-Berger example with successive refinement of Figure 5 is given
by the set of rate pairs (R0, R1) that satisfy

R0 ≥ 1 (23a)

R0 + R1 ≥ 2 . (23b)

Proof. The proof of Claim 1 follows easily by computing the rate region

R0 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) (24a)

R0 + R1 ≥ H(S1S2|Y1) (24b)

R0 + R1 ≥ H(S1S2|Y2)− H(S1|S2Y2U0) + H(S1|U0S2Y1) (24c)
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in the binary setting under study.303

First, we note that

H(S1S2|Y2) = H(X1X4|X2X3) = 2 (25)

H(S1S2|Y1) = H(X2X3|X1X4) = 2. (26)

which allows then to rewrite the rate region as

R0 ≥ 2− H(X1|X4U0) ≥ 2− H(X1|X4) = 1 (27a)

R0 + R1 ≥ 2 + max{0, H(X2X3|X1X4U0)− H(X1|X2X3X4U0)} ≥ 2 (27b)

The proof of the claim follows by noticing that the following inequalities hold with equality for the304

choices U0 = (X2, X3) or U0 = X2 or U0 = X3.305

306

The rate region of Claim 1 is depicted in Figure 6. It is insightful to notice that although the307

second user is only interested in reproducing the component S2 = X4, the optimal coding scheme that308

achieves this region sets the common description that is destined to be recovered by both users as one309

that is composed of not only S2 but also some part U0 = (X2, X3), or U0 = X2 or U0 = X3, of the source310

component S1 (though the latter is not required by the second user). A possible intuition is that this311

choice of U0 is useful for user 1, who wants to reproduce S1 = (X1, X2, X3), and its transmission to also312

the second user does not cost any rate loss since this user has available side information Y2 = (X2, X3).313

Figure 6. Rate region of the binary example of Figure 5. The choices U0 = (X2, X3) or U0 = X2 or
U0 = X3 are optimal irrespective of the value of R1, while the degenerate choice U0 = ∅ is optimal
only in some slices of the region.

5. The Heegard-Berger Problem with Scalable Coding314

In the following, we consider the model of Figure 3b. As we already mentioned, the reader may315

find it appropriate for the motivation to think about the side information Yn
2 as being of lower quality316

than Yn
1 , in which case, the refinement link that is given to the second user is intended to improve its317

decoding capability. In this section, we describe the optimal coding scheme for this setting, and show318

that it can be recovered, independently, from the work of Timo et al. [15] through a careful choice of319

the coding sets. Next, we illustrate through a binary example the interplay between the utility of the320

common description U0 and the side information sequences, and the refinement rate R2.321
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5.1. Rate-Distortion Region322

The following theorem states the rate-distortion region of the Heegard-Berger model with scalable323

coding of Figure 3b.324

Corollary 2. The rate-distortion region of the Heegard-Berger model with scalable coding of Figure 3b is given
by the set of all rate-distortion triples (R0, R2, D1) that satisfy

R0 ≥ H(S2|Y1) + I(U0U1; S1|S2Y1) (28a)

R0 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) (28b)

for some product pmf PU0U1S1S2Y1Y2 , such that:325

1) the following Markov chain is valid:

(U0, U1)−
− (S1, S2)−
− (Y1, Y2) (29)

2) and there exists a function φ : Y1 ×U0 ×U1 × S2 → Ŝ1 such that:

Ed1(S1, Ŝ1) ≤ D1 . (30)

Proof. The proof of Corollary 2 follows from that of Theorem 1 by seeting R1 = 0 therein.326

Remark 8. In the specific case in which Receiver 2 has a better-quality side information in the sense that
(S1, S2)−
− Y2 −
− Y1 forms a Markov chain, the rate distortion region of Corollary 2 reduces to one that is
described by a single rate-constraint, namely

R0 ≥ H(S2|Y1) + I(U; S1|S2Y1) (31)

for some conditional PU|S1S2
that satisfies E[d1(S1, Ŝ1)] ≤ D1. This is in accordance with the observation327

that, in this case, the transmission to Receiver 1 becomes the bottleneck, as Receiver 2 can recover the source328

component S2 losslessly as long as so does Receiver 1.329

Remark 9. Consider the case in which S1 needs to be recovered losslessly as well at receiver 1. Then, the rate
region is given by (??), which can be expressed similarly as follows

R0 ≥ H(S1S2|Y1) (32a)

R0 + R2 ≥ H(S1S2|Y2) + min
PU0 |S1S2

[H(S1|U0S2Y1)− H(S1|U0S2Y2)] . (32b)

An important comment here is that the optimization problem in PU0|S1S2
does not depend on the refinement330

link R2, and the optimal solution to it, i.e., the optimal choice of U0, meets the solution to the Heegard-Berger331

problem without refinement link, R2 = 0, rendering it optimal for all choices of R2, which is a main difference332

with the Heegard-Berger problem with refinement link of Figure3a in which the solution to the Heegard-Berger333

problem (with R1 = 0) might not be optimal for all values of R1.334

Remark 10. In [15, Theorem 1], Timo et al. present an achievable rate-region for the multistage
successive-refinement problem with side information. Timo et al. consider distortion measures of the form
δl : X×X̂l → R+, where X is the source alphabet and X̂l is the reconstruction at decoder l, l ∈ {1, . . . , t};
and for this reason this result is not applicable as is to the setting of Figure 3b, in the case of two decoders.
However, the result of [15, Theorem 1] can be extended to accomodate a distortion measure at the first decoder
that is vector-valued; and the direct part of Corollary 2 can then be obtained by applying this extension.
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Table 1. Auxiliary random variables associated with the subsets that appear in (36).

T0 T1 T2
A−Tj

∅ ∅ U1

A⊃Tj
∅ U12 U12

A+
Tj

{U1, U2} ∅ ∅

A†
Tj

∅ ∅ ∅

A‡
Tj ,1

∅ ∅ ∅

A‡
Tj ,2

∅ ∅ ∅

Specifically, in the case of two decoders, i.e., t = 2, and with X = (S1, S2), and two distortion measures
δ1 : S1 × S2 × Ŝ1,1 × Ŝ1,2 → {0, 1} ×R+ and δ2 : S1 × S2 × Ŝ1,2 × Ŝ2,2 → {0, 1} chosen such that

δ1

(
(s1, s2), (ŝ1,1, ŝ2,1)

)
=

(
dH(s2, ŝ2,1), d1(s1, ŝ1,1)

)
(33)

and
δ2

(
(s1, s2), (ŝ1,2, ŝ2,2)

)
= dH(s2, ŝ2,2) (34)

where dH(·, ·) is the Hamming distance, letting d1 = (0, D1) and d2 = 0, a straightforward extension of [15,335

Theorem 1] to this setting yields a rate-region that is described by the following rate constraints (using the336

notation of [15, Theorem 1])337

R0 ≥ Φ(T0, 1) + Φ(T1, 1) (35a)

R0 + R2 ≥ Φ(T0, 2) + Φ(T1, 2) + Φ(T2, 2) (35b)

where T0 = {1, 2}, T1 = {1}, T2 = {2}, and for j = 0, 1, 2 and l ∈ 1, 2 such that Tj ∩ {1, . . . , l} 6= ∅, the
function Φ(Tj, l), j = 0, 1, 2, is defined as

Φ(Tj, l) = I
(

S1S2A†
Tj

; UTj |A
⊃
Tj

)
− min

l′∈Tj∩[1:l]
I
(

UTj ;A
‡
Tj ,l′

Yl′ |A⊃Tj

)
(36)

where A = {U12, U1, U2} and the sets A−Tj
, A⊃Tj

, A+
Tj

, A†
Tj

, A‡
Tj ,1

, A‡
Tj ,2

, evaluated in this case, are given in
Table 1. It is easy to see that the region described by (35) can be written more explicitly in this case as

R0 ≥ I(U12; S1S2|Y1) (37a)

R0 + R2 ≥ max{I(U12; S1S2|Y1), I(U12; S1S2|Y2)}+ I(U1; S1S2|Y1U12) + I(U2; S1S2|Y2U12) . (37b)

Also, setting U12 = (U0, S2) and U2 = S2 in (37) one recovers the rate-region of Corollary 2. ( Such a338

connection can also be stated for the result of Corollary 1 ).339

5.2. Binary Example340

Consider the setting of ??. Let X1, X2, X3 and X4 be four independent Ber(1/2) random variables.341

Let the sources be S1 , (X1, X2, X3) and S2 , X4. Now, consider the Heegard-Berger model with342

scalable coding shown in Figure 7. The first user, which gets both only the common link, observes the343

side information Y1 = (X1, X4) and wants to reproduce the pair (S1, S2) losslessly. The second user344

gets both the common and private links, has side information Y2 = (X2, X3) and wants to reproduce345

only the component S2, losslessly.346
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Figure 7. Binary Heegard-Berger example with scalable coding

Claim 2. The rate region of the binary Heegard-Berger example with scalable coding of Figure ?? is given by the347

set of all rate pairs (R0, R2) that satisfy R2 ≥ 0 and R0 ≥ 2.348

Proof. The proof of Claim 2 follows easily by specializing, and computing, the result of Remark 9 for
the example at hand. First note that

R0 + R2 ≥ H(S2S1|Y2) + min
PU0 |S1S2

[H(S1|U0S2Y1)− H(S1|U0S2Y2)] (38a)

= 2 + min
PU0 |S1S2

[H(X2X3|X1X4U0)− H(X1|X2X3X4U0)] (38b)

≥ 2 + min
PU0 |S1S2

[−H(X1|X2U0)] (38c)

≥ 1 (38d)

where equality in all previous inequalities is satisfied with U0 = (X2, X3) or with U0 = X2 or U0 = X3.349

Note as well that the single rate constraint on R0 writes as:

R0 ≥ H(S1S2|Y1) (39a)

= 2 (39b)

which renders the sum-rate constraint redundant and ends the proof of the claim.350

The optimal rate region of Claim 2 is depicted in Figure 8, as the region delimited by the lines351

R0 = 1 and R2 = 0. Note that for this example, the source component X2, which is the only source352

component that is required by Receiver 2, needs to be transmitted entirely on the common link so as to353

be recovered losslessly also by Receiver 1. For this reason, the refinement link is not-constrained and354

appears to be useless for this example.355

There is a sharp difference with the binary Heegard-Berger example with successive refinement356

of Figure 5 for which the refinement link may sometimes be instrumental to reducing the required rate357

on the common link. With scalable coding, the refinement link with rate R0 does not improve the rate358

transmitted on the common link.359

Also, it is insightful to notice that for this example, because of the side information configuration,
the choice U0 = ∅ in Corollary 2 is strictly suboptimal and results in the smaller region that is described
by

R0 ≥ 2 (40a)

R0 + R2 ≥ 3. (40b)



Version July 27, 2017 submitted to Entropy 16 of 23

Figure 8. The optimal rate region for the setting of Figure 7 given by (R0 ≥ 2, R2 ≥ 0). The choice of
U0 = ∅ is optimal only in a slice of the region.

6. Proof of Theorem 1360

In the following, we give the proof of the converse part and the direct part of Theorem 1.361

The converse part is strongly dependent on the system model we investigate and consists in a362

series of careful bounding steps resorting to Fano’s inequality, Markov chains and Csiszár-Körner363

sum-identity.364

The proof of achievability is two-fold, and consits in proving a general result that holds for a365

Gray-Wyner setting with side information, and then deriving the optimal choice of the auxiliary366

codewords involved for the specific setting with degraded reconstruction sets.367

6.1. Proof of Converse Part368

Assume that a rate triple (R0, R1, R2) is D1-achievable. Let then Wj = f j(Sn
1 , Sn

2 ), where j ∈369

{0, 1, 2}, be the encoded indices and let Ŝn
1 = g1(W0, W1, Yn

1 ) be the reconstruction sequence at the first370

decoder such that Ed(n)1 (Sn
1 , Ŝn

1 ) ≤ D1.371

Using Fano’s inequality, the lossless reconstruction of the source Sn
2 at both decoders implies that

there exists a sequence εn →n→∞
0 such that:

H(Sn
2 |W0W1Yn

1 ) ≤ nεn (41)

H(Sn
2 |W0W2Yn

2 ) ≤ nεn (42)

We start by showing the following sum-rate constraint,

R0 + R1 + R2 ≥ H(S2|Y2) + I(U0; S1|S2Y2) + I(U1; S1|U0S2Y1) . (43)

We have that

n(R0 + R1 + R2)

≥ H(W0) + H(W2) + H(W1) (44a)

≥ H(W0) + H(W2|W0) + H(W1) (44b)

= H(W0W2) + H(W1) (44c)

≥ H(W0W2|Yn
2 ) + H(W1|W0Sn

2 Yn
1 ) (44d)

≥ I(W0W2; Sn
1 Sn

2 |Yn
2 ) + I(W1; Sn

1 |W0Sn
2 Yn

1 ) (44e)

= H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 Sn
2 |W0W2Yn

2 ) + H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0W1Sn
2 Yn

1 ) (44f)
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(a)
≥ H(Sn

1 Sn
2 |Yn

2 )− H(Sn
1 |W0W2Sn

2 Yn
2 ) + H(Sn

1 |W0Sn
2 Yn

1 )− H(Sn
1 |W0W1Sn

2 Yn
1 )− nεn (44g)

≥ H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 |W0Sn
2 Yn

2 ) + H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0W1Sn
2 Yn

1 )− nεn (44h)

where (a) stems from Fano’s inequality (42), which results from the lossless reconstruction of Sn
2 at372

receiver 2.373

Let us define then:

A , H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0Sn
2 Yn

2 ) , (45)

B , H(Sn
1 |W0W1Sn

2 Yn
1 ) . (46)

In the following, we aim for single-letter bounds on the two quantities A and B.374

Since the side information sequences Yn
1 and Yn

2 are not degraded and do not exhibit any structure,375

together with the sources (Sn
1 , Sn

2 ), single-letterizing the quantity A can be obtained through some376

judicious bounding steps that are reported below, in which some important Markov chain are shown to377

hold and quantities are manipulated appropriately, together with several invocations of Csiszár-Körner378

sum identity .379

Let us start by writing that

A , H(Sn
1 |W0Sn

2 Yn
1 )− H(Sn

1 |W0Sn
2 Yn

2 ) (47a)

= I(Sn
1 ; Yn

2 |W0Sn
2 )− I(Sn

1 ; Yn
1 |W0Sn

2 ) (47b)

=
n

∑
i=1

[
I(Sn

1 ; Y2,i|W0Yi−1
2 Sn

2 )− I(Sn
1 ; Y1,i|W0Yn

1,i+1Sn
2 )
]

(47c)

(a)
=

n

∑
i=1

[
I(Sn

1 Yn
1,i+1; Y2,i|W0Yi−1

2 Sn
2 )− I(Sn

1 Yi−1
2 ; Y1,i|W0Yn

1,i+1Sn
2 )
]

(47d)

(b)
=

n

∑
i=1

[
I(Sn

1 ; Y2,i|W0Yi−1
2 Yn

1,i+1Sn
2 )− I(Sn

1 ; Y1,i|W0Yi−1
2 Yn

1,i+1Sn
2 )
]

(47e)

(c)
=

n

∑
i=1

[
I(S1,i; Y2,i|W0Yi−1

2 Yn
1,i+1Sn

2 )− I(S1,i; Y1,i|W0Yi−1
2 Yn

1,i+1Sn
2 )
]

(47f)

=
n

∑
i=1

[
H(S1,i|Y1,iW0Yi−1

2 Yn
1,i+1Sn

2 )− H(S1,i|Y2,iW0Yi−1
2 Yn

1,i+1Sn
2 )
]

(47g)

=
n

∑
i=1

[
H(S1,i|Y1,iS2,iU0,i)− H(S1,i|Y2,iS2,iU0,i)

]
(47h)

where U0,i , (W0, Yi−1
2 , Yn

1,i+1, S2,<i>) ( note that the lossless reconstruction of Sn
2 at both receivers is

instrumental to the definition of U0 which plays the role of the common auxiliary variable in the proof
of converse), and where (a) follows using the following Csiszár-Körner sum-identity

n

∑
i=1

I(Yi−1
2 ; Y1,i|Sn

1 W0Yn
1,i+1Sn

2 ) =
n

∑
i=1

I(Yn
1,i+1; Y2,i|Sn

1 W0Yi−1
2 Sn

2 ), (48)

(b) follows using the Csiszár-Körner sum-identity given by

n

∑
i=1

I(Yi−1
2 ; Y1,i|W0Yn

1,i+1Sn
2 ) =

n

∑
i=1

I(Yn
1,i+1; Y2,i|W0Yi−1

2 Sn
2 ) , (49)

while (c) is the consequence of the following sequence of Markov chains

(Si−1
1 , Sn

1,i+1, Si−1
2 , Sn

2,i+1, Yn
1,i+1, Yi−1

2 )−
− (S1,i, S2,i)−
−Yj,i (50a)
(a)⇒ (Si−1

1 , Sn
1,i+1, Si−1

2 , Sn
2,i+1, Yn

1,i+1, Yi−1
2 , W0)−
− (S1,i, S2,i)−
−Yj,i (50b)
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⇒ (Si−1
1 , Sn

1,i+1)−
− (Si−1
2 , Sn

2,i+1, Yn
1,i+1, Yi−1

2 , W0, S1,i, S2,i)−
−Yj,i (50c)

where (50a) results from that the source sequences (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless, while (a) is a380

consequence of that W0 is a function of the pair of sequences (Sn
1 , Sn

2 ).381

To upper-bound the term B, note the following

B , H(Sn
1 |W0W1Sn

2 Yn
1 ) (51a)

=
n

∑
i=1

H(S1,i|W0W1Sn
2 Yn

1 Si−1
1 ) (51b)

=
n

∑
i=1

H(S1,i|S2,iY1,iW0S2,<i>Yn
1,i+1Si−1

1 W1Yi−1
1 ) (51c)

(a)
=

n

∑
i=1

H(S1,i|S2,iY1,iW0S2,<i>Yn
1,i+1Si−1

1 Yi−1
2 W1Yi−1

1 ) (51d)

≤
n

∑
i=1

H(S1,i|S2,iY1,iW0S2,<i>Yn
1,i+1Yi−1

2 W1Yi−1
1 ) (51e)

where (a) is a consequence of the following sequence of Markov chains:

Yi−1
2 −
− (Si−1

1 , Si−1
2 , Yi−1

1 )−
− (S1,i, Sn
1,i+1, S2,i, Sn

2,i+1, Yn
1,i+1) (52a)

(a)⇒ Yi−1
2 −
− (Si−1

1 , Si−1
2 , Yi−1

1 )−
− (S1,i, Sn
1,i+1, S2,i, Sn

2,i+1, Yn
1,i+1, W0, W1) (52b)

⇒ Yi−1
2 −
− (Si−1

1 , Si−1
2 , Yi−1

1 , S2,i, Si−1
2 , Yn

1,i+1, W0, W1)−
− S1,i . (52c)

where (52a) results from that the source sequences (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless, while (a) is a382

consequence of that W0 and W1 are each function of the pair of sequences (Sn
1 , Sn

2 ).383

Finally, letting U1,i , (W1, Yi−1
1 ) so that the choice of (U0,i, U1,i) satisfy the condition: Ŝ1,i =

gi(Y1,i, U0,i, U1,i, S2,i), we write the resulting sum-rate constraint as

n(R0 + R1 + R2) ≥ nH(S1S2|Y2) +
n

∑
i=1

[
H(S1,i|S2,iY1,iU0,i)− H(S1,i|S2,iY2,iU0,i)

]
−

n

∑
i=1

H(S1,i|S2,iY1,iU0,iU1,i)− nεn (53)

Let us now prove that the following bound holds

R0 + R1 ≥ H(S2S1|Y1)− H(S1|U0U1Y1S2) . (54)

We have

n(R0 + R1) ≥ H(W0) + H(W1|W0) (55a)

= H(W0, W1) (55b)

≥ H(W0W1|Yn
1 ) (55c)

≥ I(W0W1; Sn
1 Sn

2 |Yn
1 ) (55d)

= H(Sn
1 Sn

2 |Yn
1 )− H(Sn

1 Sn
2 |W0W1Yn

1 ) (55e)
(a)
≥ H(Sn

1 Sn
2 |Yn

1 )− H(Sn
1 |W0W1Sn

2 Yn
1 )− nεn (55f)

= nH(S1S2|Y1)− B− nεn (55g)
(b)
≥ nH(S1S2|Y1)−

n

∑
i=1

H(S1,i|S2,iY1,iU0,iU1,i)− nεn . (55h)
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where (a) is a consequence of Fano’s inequality in (41), which results from the lossless reconstruction384

of Sn
2 at receiver 1, and (b) results from the upper bound on B in (51e).385

As for the third rate constraint

R0 + R2 ≥ H(S1S2|Y2)− H(S1|U0Y2S2) , (56)

we write

n(R0 + R2) ≥ H(W0W2) (57a)

≥ H(W0W2|Yn
2 ) (57b)

≥ I(W0W2; Sn
1 Sn

2 |Yn
2 ) (57c)

= H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 Sn
2 |W0W2Yn

2 ) (57d)
(a)
≥ H(Sn

1 Sn
2 |Yn

2 )− H(Sn
1 |W0W2Sn

2 Yn
2 )− nεn (57e)

≥ H(Sn
1 Sn

2 |Yn
2 )− H(Sn

1 |W0Sn
2 Yn

2 )− nεn (57f)

= nH(S1S2|Y2)−
n

∑
i=1

H(S1,i|S2,iY2,iW0S2,<i>Y2,<i>Sn
1,i+1)− nεn (57g)

(b)
= nH(S1S2|Y2)−

n

∑
i=1

H(S1,i|S2,iY2,iW0S2,<i>Y2,<i>Sn
1,i+1Yn

1,i+1)− nεn (57h)

≥ nH(S1S2|Y2)−
n

∑
i=1

H(S1,i|S2,iY2,iW0S2,<i>Yi−1
2 Yn

1,i+1)− nεn (57i)

= nH(S1S2|Y2)−
n

∑
i=1

H(S1,i|S2,iY2,iU0,i)− nεn . (57j)

where (a) is a consequence of Fano’s inequality in (42) and (b) stems for the following sequence of
Markov Chains

Yn
1,i+1 −
− (Sn

2,i+1, Sn
1,i+1, Yn

1,i+1)−
− (S1,i, Si−1
1 , S2,i, Si−1

2 , Yi−1
1 ) (58a)

(a)⇒ Yn
1,i+1 −
− (Sn

2,i+1, Sn
1,i+1, Yn

1,i+1)−
− (S1,i, Si−1
1 , S2,i, Si−1

2 , Yi−1
1 , W0, W1) (58b)

⇒ Yn
1,i+1 −
− (Sn

2,i+1, Sn
1,i+1, Yn

1,i+1, S2,i, Si−1
2 , Yi−1

1 , W0, W1)−
− S1,i . (58c)

where (58a) results from that the source sequences (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless, while (a) is a386

consequence of that W0 and W1 are each function of the pair of sequences (Sn
1 , Sn

2 ).387

Let Q be an integer-valued random variable, ranging from 1 to n, uniformly distributed over [1 : n]
and independent of all other variables (S1, S2, U0, U1, Y1, Y2). We have

R0 + R1 + R2 ≥ H(S1S2|Y2) +
1
n

n

∑
i=1

[
H(S1,i|S2,iY1,iU0,i)− H(S1,i|S2,iY2,iU0,i)

]
− 1

n

n

∑
i=1

H(S1,i|S2,iY1,iU0,iU1,i)− nεn (59a)

= H(S1S2|Y2) +
n

∑
i=1
P(Q = i)

[
H(S1,Q|S2,QY1,QU0,Q, Q = i)− H(S1,Q|S2,QY2,QU0,Q, Q = i)

]
−

n

∑
i=1
P(Q = i)H(S1,Q|S2,QY1,QU0,QU1,Q, Q = i)− nεn (59b)

= H(S1S2|Y2) + H(S1,Q|S2,QY1,QU0,QQ)− H(S1,Q|S2,QY2,QU0,QQ)

−H(S1,Q|S2,QY1,QU0,QU1,QQ)− nεn . (59c)
(a)
= H(S1S2|Y2) + H(S1|S2Y1U0,QQ)− H(S1|S2Y2U0,QQ)

−H(S1|S2Y1U0,QU1,QQ)− nεn . (59d)
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where (a) is a consequence of that all sources (Sn
1 , Sn

2 , Yn
1 , Yn

2 ) are memoryless.388

Let us now define U1 , (Q, U1,Q) and U0 , (Q, U0,Q), we obtain

R0 + R1 + R2 ≥ H(S1S2|Y2) + H(S1|S2Y1U0)− H(S1|S2Y2U0)− H(S1|S2Y1U0U1) . (60)

The two other rate constraints can be written in a similar fashion,

R0 + R1 ≥ H(S2S1|Y1)− H(S1|U0U1Y1S2) (61a)

R0 + R2 ≥ H(S1S2|Y2)− H(S1|U0Y2S2) ; (61b)

and this completes the proof of converse.389

6.2. Proof of Direct Part390

We first show that the rate-distortion region of the proposition that will follow is achievable. The391

achievability of the rate-distortion region of Theorem 1 follows by choosing then the random variable392

V0 of the proposition as V0 = (U0, S2).393

Proposition 1. An inner bound on the rate-distortion region of the Gray-Wyner model with side information
and degraded reconstruction sets of Figure 2 is given by the set of all rate-distortion quadruples (R0, R1, R2, D1)

that satisfy

R0 + R1 ≥ I(V0U1; S1S2|Y1) (62a)

R0 + R2 ≥ I(V0; S1S2|Y2) (62b)

R0 + R1 + R2 ≥ max {I(V0; S1S2|Y1), I(V0; S1S2|Y2)}+ I(U1; S1S2|V0Y1) (62c)

for some choice of the random variables (V0, U1) such that (V0, U1)−
− (S1, S2)−
− (Y1, Y2) and there exist
functions g1, g2,1, and g2,2 such that:

Ŝ1 = g1(V0, U1, Y1) (63a)

S2 = g2,1(V0, U1, Y1) (63b)

S2 = g2,2(V0, Y2) , (63c)

and
Ed1(S1; Ŝ1) ≤ D1. (64)

Proof of Proposition 1: We now describe a coding scheme that achieves the rate-distortion region394

of Proposition 1. The scheme is very similar to one that is developed by Shayevitz and Wigger [4,395

Theorem 2] for a Gray-Wyner model with side information. In particular, similar to [4, Theorem 2] it396

uses a double-binning technique for the common codebook, one that is relevant for Receiver 1 and397

one that is relevant for Receiver 2. Note, however, that, formally, the result of Proposition 1 cannot be398

obtained by readily applying [4, Theorem 2] as is; and one needs to extend the result of [4, Theorem399

2] in a manner that accounts for that the source component Sn
2 is to be recovered losslessly by both400

decoders. This can be obtained by extending the distortion measure of [4, Theorem 2] to one that is401

vector-valued, i.e., d ((s1, s2), (ŝ1, ŝ2)) = (d1(s1, ŝ1), dH(s2, ŝ2)), where dH(·, ·) denotes the Hamming402

distance. For reasons of completeness, we provide here a proof of Proposition 1.403

Our scheme has the following parameters: a conditional joint pmf PV0U1|S1S2
that satisfies (63) and404

(64), and non-negative communication rates T0, T1, T0,0, T0,p, T1,0, T1,1, R̃0,0, R̃0,1, R̃0,2, R̃1,0 and R̃1,1405

such that406

T0 = T0,0 + T0,p , 0 ≤ R̃0,0 ≤ T0,0 , 0 ≤ R̃0,1 ≤ T0,p , 0 ≤ R̃0,2 ≤ T0,p (65a)
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T1 = T1,0 + T1,1 , 0 ≤ R̃1,0 ≤ T1,0 , 0 ≤ R̃1,1 ≤ T1,1. (65b)

407

Codebook Generation408

1) Randomly and independently generate 2nT0 length-n codewords vn
0 (k0) indexed with the pair409

of indices k0 = (k0,0, k0,p), where k0,0 ∈ [1 : 2nT0,0 ] and k0,p ∈ [1 : 2nT0,p ]. Each codeword vn
0 (k0)410

has i.i.d entries drawn according to
n

∏
i=1

PV0(v0,i(k0)). The codewords {vn
0 (k0)} are partitioned411

into superbins whose indices will be relevant for both receivers; and each superbin is partioned412

int two different ways, each into subbins whose indices will be relevant for a distinct receiver413

(i.e., double-binning). This is obtained by partitioning the indices {(k0,0, k0,p)} as follows. We414

partition the 2nT0,0 indices {k0,0} into 2nR̃0,0 bins by randomly and independently assigning each415

index k0,0 to an index w̃0,0(k0,0) according to a uniform pmf over [1 : 2nR̃0,0 ]. We refer to each416

subset of indices {k0,0} with the same index w̃0,0 as a bin B00(w̃0,0), w̃0,0 ∈ [1 : 2nR̃0,0 ]. Also, we417

make two distinct partitions of the 2nT0,p indices {k0,p}, each relevant for a distinct receiver. In418

the first partition, which is relevant for Receiver 1, the indices {k0,p} are assigned randomly and419

independently each to an index w̃0,1(k0,p) according to a uniform pmf over [1 : 2nR̃0,1 ]. We refer420

to each subset of indices {k0,p} with the same index w̃0,1 as a bin B01(w̃0,1), w̃0,1 ∈ [1 : 2nR̃0,1 ].421

Similarly, in the second partition, which is relevant for Receiver 2, the indices {k0,p} are assigned422

randomly and independently each to an index w̃0,2(k0,p) according to a uniform pmf over423

[1 : 2nR̃0,2 ]; and refer to each subset of indices {k0,p} with the same index w̃0,2 as a bin B02(w̃0,2),424

w̃0,2 ∈ [1 : 2nR̃0,2 ].425

2) For each k0 ∈ [1 : 2nT0 ], randomly and independently generate 2nT1 length-n codewords un
1 (k1, k0)426

indexed with the pair of indices k1 = (k1,0, k1,1), where k1,0 ∈ [1 : 2nT1,0 ] and k1,1 ∈ [1 : 2nT1,1 ].427

Each codeword un
1 (k1, k0) is with i.i.d elements drawn according to

n

∏
i=1

PU1|V0
(u1,i(k1, k0)|v0,i(k0)).428

We partition the 2nT1,0 indices {k1,0} into 2nR̃1,0 bins by randomly and independently assigning429

each index k1,0 to an index w̃1,0(k1,0) according to a uniform pmf over [1 : 2nR̃1,0 ]. We refer to each430

subset of indices {k1,0} with the same index w̃1,0 as a bin B10(w̃1,0), w̃1,0 ∈ [1 : 2nR̃1,0 ]. Similarly,431

we partition the 2nT1,1 indices {k1,1} into 2nR̃1,1 bins by randomly and independently assigning432

each index k1,1 to an index w̃1,1(k1,1) according to a uniform pmf over [1 : 2nR̃1,1 ]; and refer to433

each subset of indices {k1,1} with the same index w̃1,1 as a bin B11(w̃1,1), w̃1,1 ∈ [1 : 2nR̃1,1 ].434

3) Reveal all codebooks and its partitions to the encoder, the codebook of {vn
0 (k0)} and its partitions435

to both receivers, and the codebook of {un
1 (k1, k0)} and its partitions to only Receiver 1.436

Encoding437

Upon observing the source pair (Sn
1 , Sn

2 ) = (sn
1 , sn

2 ), the encoder finds an index k0 = (k0,0, k0,p)

such that the codeword vn
0 (k0) is jointly typical with (sn

1 , sn
2 ), i.e.,

(sn
1 , sn

2 , vn
0 (k0)) ∈ T

(n)
[S1S2V0]

. (66)

By the covering lemma [17, Chapter 3], the encoding in this step is successful as long as n is large and

T0 ≥ I(V0; S1S2). (67)

Next, it finds an index k1 = (k1,0, k1,1) such that the codeword un
1 (k1, k0) is jointly typical with the

triple (sn
1 , sn

2 , vn
0 (k0)), i.e.,

(sn
1 , sn

2 , vn
0 (k0), un

1 (k1, k0)) ∈ T
(n)
[S1S2V0U1]

. (68)
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Again, by the covering lemma [17, Chapter 3], the encoding in this step is successful as long as n is
large and

T1 ≥ I(U1; S1S2|V0). (69)

Let w̃0,0, w̃0,1 and w̃0,2 be the bin indices such that k0,0 ∈ B00(w̃0,0), k0,p ∈ B01(w̃0,1) and k0,p ∈438

B02(w̃0,2). Also, let w̃1,0 and w̃1,1 be the bin indices such that k1,0 ∈ B10(w̃1,0) and k1,1 ∈ B11(w̃1,1). The439

encoder then sends the product message W0 = (w̃0,0, w̃1,0) over the error-free rate-limited common link440

of capacity R0. Also, it sends the product message W1 = (w̃0,1, w̃1,1) over the error-free rate-limited441

individual link to Receiver 1 of capacity R1, and the message W2 = w̃0,2 over the error-free rate-limited442

individual link to Receiver 2 of capacity R2.443

Decoding444

Receiver 1 gets the messages (W0, W1) = (w̃0,0, w̃1,0, w̃0,1, w̃1,1). It seeks a codeword vn
0 (k0) and a

codeword un
1 (k1, k0), with the indices k0 = (k0,0, k0,p) and k1 = (k1,0, k1,1) satisfying k0,0 ∈ B00(w̃0,0),

k0,p ∈ B01(w̃0,1), k1,0 ∈ B10(w̃1,0) and k1,1 ∈ B11(w̃1,1), and such that

(vn
0 (k0), un

1 (k1, k0), yn
1 ) ∈ T

(n)
[V0U1Y1]

. (70)

By the multivariate packing lemma [17, Chapter 12], the error in this decoding step at Receiver 1
vanishes exponentially as long as n is large and

T0,0 − R̃0,0 + T0,p − R̃0,1 ≤ I(V0; Y1) (71a)

T1,0 − R̃1,0 + T1,1 − R̃1,1 ≤ I(U1; Y1|V0) . (71b)

445

Receiver 1 then sets its reproduced codewords ŝn
2,1 and ŝn

1 respectively as

ŝn
2,1 = g2,1 (vn

0 (k0), un
1 (k1, k0), yn

1 ) (72a)

ŝn
1 = g1 (vn

0 (k0), un
1 (k1, k0), yn

1 ) . (72b)

Similary, Receiver 2 gets the message (W0, W2) = (w̃0,0, w̃1,0, w̃0,2). It seeks a codeword vn
0 (k0), with

k0 = (k0,0, k0,p) satisfying k0,0 ∈ B00(w̃0,0) and k0,p ∈ B02(w̃0,2), and such that

(vn
0 (k0), yn

1 ) ∈ T
(n)
[V0Y2]

. (73)

Again, using the multivariate packing lemma [17, Chapter 12], the error in this decoding step at
Receiver 2 vanishes exponentially as long as n is large and

T0,0 − R̃0,0 + T0,p − R̃0,2 ≤ I(V0; Y2). (74)

Receiver 2 then sets its reconstructed codeword ŝn
2,1 as

ŝn
2,2 = g2,2 (vn

0 (k0), yn
2 ) . (75)

Summarizing, combining (67), (69), (71) and (74), the communication rates T0, T1, T0,0, T0,p, T1,0, T1,1,
R̃0,0, R̃0,1, R̃0,2, R̃1,0 and R̃1,1 satisfy the following inequalities

T0 ≥ I(V0; S1S2) (76a)

T1 ≥ I(U1; S1S2|V0) (76b)

T0,0 − R̃0,0 + T0,p − R̃0,1 ≤ I(V0; Y1) (76c)

T0,0 − R̃0,0 + T0,p − R̃0,2 ≤ I(V0; Y2) (76d)
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T1,0 − R̃1,0 + T1,1 − R̃1,1 ≤ I(U1; Y1|V0). (76e)

Choosing R̃0,0, R̃1,1, R̃0,2, R̃1,0 and R̃1,1 to also satisfy the rate relations

R0 = R̃0,0 + R̃1,0 (77a)

R1 = R̃0,1 + R̃1,1 (77b)

R2 = R̃0,2. (77c)

and, finally, using Fourier-Motzkin elimination (FME) to successively project out the nuisance variables446

T0,0, T0,p, T1,0, T1,1, T0, T1, and then R̃0,0, R̃0,1, R̃0,2, R̃1,0 and R̃1,1 from the set of relations formed by (65),447

(76) and (77), we get the region of Proposition 1.448

This completes the proof of the proposition; and so that of the direct part of Theorem 1.449
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