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Abstract

We investigate numerically the inverse problem of locating small circular obstacles in a ho-
mogeneous medium from multi-frequency back-scattered data limited to four angles of incidence.
The main novelty of our paper is working with the position of the obstacles as parameter space
in the frame work of full-waveform inversion (FWI) procedure. The computational cost of FWI
is lowered by using a method based on single-layer potential. Reconstruction results are shown
up to twenty-four obstacles, from initial guesses allowed to be far from the target. In experi-
ments with six obstacles, we supplement the reconstruction with an analysis of the performance
of the nonlinear conjugate gradient and quasi-Newton methods, in used with various line search
algorithms.

1 Introduction

In this work, we use full-waveform inversion (FWI) to locate small circular obstacles in a homogeneous
medium using multi-frequency backscattered data generated from a limited numbers of fixed angles.
Obstacle localization problem has applications in materials imaging such as non-destructive testing
using acoustic waves to detect defects, buried objects location, geophysical exploration and medical
imaging, cf. [4, 20]. For our localization problem, we work with impenetrable (hard or soft-scattering)
non-overlapping obstacles. We assume that the number, size and type of the obstacles are known, and
that the obstacles are located strictly inside a rectangular domain of interest in which experiments
will be carried out to collect observed data. Motivated by physical experiments1, we also impose the
following constraints in data collection for all testing frequencies (see illustration in Figure 3),

• back-scattered data are obtained from the following angles: 0◦, 90◦, 180◦, 270◦;

• for each angle, the data are collected at a fixed number of 128 receivers (points).

In general, an inverse problem aims to reconstruct the unknown model/parameter which gives
rise to an observed data d. This is equivalent to solving for the inverse Φ−1(d) of the forward map
Φ : P → D, which assigns to a model in the parameter space P a corresponding data in the data
space D. In our approach, the parameter space P represents the set of ordered Npar-tuples of the
coordinates of the NObs obstacles, i.e. P = RNpar with Npar = 2NObs. The inverse problem is solved
by minimizing the cost/misfit function J = 1

2‖Φ(p)− d‖2. Minimization is carried out by gradient-
based optimization and corrects iteratively an initial guess in hope of converging towards the true
model. In our work, the gradient of the cost function is calculated by the adjoint-state method, which
avoids the computation of the Jacobian matrix of Φ.

In seismic inversion, the above methodology (nonlinear minimization of the cost function and
adjoint-state method for its gradient) is called Full Waveform Inversion (FWI), see e.g. [62, 57,
66, 30], and belongs to the so-called quantitative/iterative family, in contrast to qualitative/direct

∗Project-Team Magique-3D, Inria Bordeaux Sud-Ouest, Université de Pau et des pays de l’Adour, UMR CNRS
5142, E2S–UPPA.

1 In our case, backscattered data arise when one single sensory device acts as both a source (by emitting almost
planewaves) and receivers. Data of 128 points is the resolution set by the devices.
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one. We refer to the introduction in [15] for a list of quantitative inversion references classified
by their optimization method, as well as qualitative ones; for the latter family, see also [20, 40].
Quantitative inversion has the advantage of being ‘conceptually simple’ and giving reconstruction
with higher precision, cf. [45]; however, this family requires solving numerous direct and adjoint
problems and can thus be computationally intensive. The general idea of using efficient methods
(for the forward problem) in order to alleviate the overall computational cost in iterative inversion
is not new, cf. [16, 15] using fast solvers to solve forward obstacle and medium scattering. In our
paper, we use an integral equation method based on single-layer potential (called FSSL) which was
originally studied in [64, 6], and was shown in our previous works [14, 13] to be much more efficient,
compared to Finite Element methods (FEM), in simulating diffraction by a large number of small
impenetrable obstacles. In addition to this advantage, FSSL works more naturally with the current
choice of parametrization (obstacle positions), cf. Remark 5.

The first main novelty of our results is in working directly with the position of the obstacles as
parameters in the framework of nonlinear optimization with restrictive back-scattered data. In liter-
ature, most localization problems employ qualitative methods such as direct sampling, factorization,
MUSIC, probe methods, cf. [29, 3, 39, 22, 34, 27]. The remaining few which use quantitative meth-
ods are in fact (penetrable) medium reconstruction problem; they retrieve the location of obstacles
from the profile of the reconstructed sound speed/contrast/conductivity function of the medium2,
cf. [31, 42]. For quantitative medium reconstruction without the final goal of localizing obstacles, we
refer to cf. [7, 10, 15] and the references therein. The sensitivity and non-linearity of the scattered field
and hence the forward map, with respect to the contrast function (in an inhomogeneous Helmholtz
equation) are of different nature than that on the position of the obstacles (in a multiple-scattering
problem with Helmholtz equation)3. This distinction is even clearer, when scattering regions are
impenetrable (as in our cases), for which multiple-obstacle scattering framework is more natural than
inhomogeneous medium. Our work serves as an initial investigation of the feasibility of using the cur-
rent choice of parameter space in FWI with line-search strategy, under the aforementioned restrictive
data collection and starting from arbitrary initial guesses4.

Limited aperture data, especially back-scattered data, and limited number of radiation angles
present great challenges, both theoretically and experimentally, since they increase the ill-posedness
of the problem. Such restriction on data collection is a common feature in seismic inversion (that
works with ‘reflection data’), see [62, 63], review [66] and the references therein. In general, ill-
posedness is reduced by working with multi-frequency data, which is now a common technique; in
seismic, cf. [19, 58, 61, 59], in inverse scattering, see [25, 9, 10, 16, 15, 43] for quantitative methods,
and [34] and the references therein for qualitative ones. On the other hand, in the later context most
of these references assume full-aperture data, with the exception of [21, 34, 2, 40, 29] in qualitative
methods, and [12, 52, 48, 68] in quantitative and the references therein. Furthermore, the number
of angles of incidences and receiver points can be allowed to grow proportionally with the frequency,
cf. [15]. In our experiments, these quantities are kept constant at all frequencies, which greatly
affects the efficiency of higher frequencies, cf. Remark 8. Regardless of these constraints, we are able
to retrieve up to twenty-four obstacles. These results are on the higher end (in terms of the number
of obstacles) in both aforementioned references (for quantitative and qualitative methods).

Due to the lack of reference work implementing FWI with our parametrization, in choosing line
search strategy [53], we have to investigate which choice of search direction and line search algorithm
are most compatible with our problem. This motivates us to compare between nonlinear conjugated
gradient (NLCG) and quasi-Newton, in combination with different line search algorithms, which is
the second main novelty of our work. Quasi-Newton and NLCG were considered for medium or shape
reconstruction in [35, 47] and [42] respectively, however not in the framework of line search strategy

2Obstacles are considered as compactly supported inhomogeneities in a homogeneous background. In inhomogeneous
medium scattering, the obstacles are described by the contrast function q (n = 1 − q is also called refractive index),
and the direct problem is modeled as (−∆ − κ2n)u = 0 (called inhomogeneous Helmholtz equation) coupled with
an outgoing radiation condition at infinity. This can also be posed on bounded domain, e.g. in Electrical Impedance
Tomography (EIT), in which the information of the obstacles is contained in the conductivity γ, and the direct problem
modeled as ∇ · (γ∇u) = 0 coupled with a Dirichlet condition on the boundary of the domain.

3 For inhomogeneous Helmholtz equation, see Footnote 2. For multiple-scattering with Helmholtz equation, see the
discussion in Section 2.

4as opposed to one generated by a direct imaging method as done in [7].
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and/or nonlinear optimization.
The remaining of the paper is organized as follows. Section 2 introduces FSSL and the discrete

inverse problem. In Section 3, the derivative of the cost function and the frequency-hopping procedure
are presented. Numerical experiments are in Section 4. Convergence comparison among different
optimization methods for six obstacles is first carried out, after which the most reliable optimization
method is tested with twelve and twenty-four obstacles.

2 Discrete direct and inverse problem

In nondestructive experiments to detect the location of obstacles, incident waves are sent into the
domain of interest to be diffracted by the obstacles, and corresponding scattered waves u are recorded
at receivers. In frequency domain, one works with time-harmonic acoustic excitation; in particular,
assuming the wavespeed of the background homogeneous medium is c, and defining the wavenumber κ
by the dispersion relation κ = 2πf

c , our sources are time-harmonic planewave upw(x) ei2πf t of frequency
f and angle of incidence αinc,

(1) upw(x) = eiκx·(cosαinc,sinαinc) , x ∈ R2 .

Testing waves are sent from NAcq angles, denoted by u
(t)
pw, 1 ≤ t ≤ NAcq. We describe below how

simulated data, corresponding to one incident angle, are computed via the single-layer potential solver
(conveniently) called FSSL, for more details see [14, 13].

Notations Consider a configuration of NObs non-overlapping circular obstacles. The circular ob-

stacle I is of radius rI and centered at x(I) = (x
(I)
1 , x

(I)
2 ) ∈ R2. The configuration is described by

vector p ∈ RNpar , called the parameter vector of size Npar = 2×NObs.

(2) p = (x
(1)
1 , x

(1)
2 , . . . , x

(NObs)
1 , x

(NObs)
2 ) .

Denote the polar coordinates relative to x(I) by (rI(·), θI(·)),

(3) x = xI + rI(x) (cos θI(x) , sin θI(x) ) .

Denote by dIJ the distance between the centers of obstacle I and J , and by θIJ and θJI their relative
polar coordinates,

x(I) = x(J) + dIJ (cos θJI , sin θJI) ; x(J) = x(I) + dIJ (cos θIJ , sin θIJ) .

The non-overlapping assumption is given by dIJ > rI + rJ .

The continuous forward problem in frequency domain The unknown scattered wave u is
required to solve the Helmholtz equation

(4) (−∆− κ2)u = 0, outside of the obstacles ,

and to satisfy the κ-outgoing condition at infinity to ensure that it does not re-enter the domain of
interest

(5) lim
r→∞

√
r (∂ru− iκu) = 0, r = |x| .

We assume that the obstacles are either soft or hard scattering, upon which Dirichlet boundary
condition (BC) γ+

0 (u+ uinc) = 0 or Neumann BC γ+
1 (u+ uinc) = 0 respectively are imposed on their

boundaries. See [14] for the definition of the exterior trace γ+
0 and γ+

1 .
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Discretization of the forward problem by FSSL Denote by ΓI the boundary of obstacle I,

H
(1)
0 the Hankel function of the first kind, and by wJ,l the l-th order Fourier nodes on the boundary

of obstacle J , i.e.

(6) wJ,l(θJ(x) , rJ(x)) := ei l θJ (x).

Define the single-layer potential along ΓJ with continuous density v ∈ C(ΓJ) by

(7) (SJ v)(x) :=

∫
ΓI

i
4 H

(1)
0 (κ |x− y|) v(y) dσ(y) .

Such a quantity satisfies the Helmholtz equation and the radiation condition. At approximation
order m, the approximate diffractive field is written as a linear combination of single-layer potentials
with approximate single-layer densities {vh,J}, the latter expressed in terms of 2m + 1 Fourier nodes
between −m and m,

(8) uh =

NObs∑
J=1

SJ vh,J ; with vh,J =

m∑
l=−m

VJ,l wJ,l .

In this way, with the Helmholtz equation and the radiation condition already fulfilled, it remains
to satisfy the boundary conditions imposed on the boundary of obstacles. When the obstacles are
circular, the scattered wave can be written as multipole expansion defined in terms of Hankel functions

of the first kind H
(1)
k ,

(9) uh(x) =
iπ

2

NObs∑
J=1

rJ

m∑
l=−m

VJ,l H
(1)
l (κ rJ(x)) ei l θJ (x) .

To obtain the linear system solved by the unknowns V , exterior traces corresponding the boundary
conditions along the obstacles are applied to the Ansatz (8) to obtain,

(10) A(p)V = F (p, upw).

The size of the linear system is given by

(11) N = (2m + 1)NObs.

That V is a solution of (10) is equivalent to V = S(p, upw), where solution operator S is defined as

(12) S : RNpar −→ CN , p 7→ A(p)−1 F (p, upw).

When there are several angles of incidence, we denote by St the solution operator corresponding to

planewave u
(t)
pw. The multi-scattering matrix A composes of NObs × NObs block matrices, each of

which is a matrix of size (2m + 1)× (2m + 1).

(13) A =


A1 A12 ... A1 (N−1) A1N

A21 A2 ... A2 (N−1)) A2N

... ... ...
. . .

...
A(N−1) 1 A(N−1) 2 ... AN−1 A(N−1)N

AN 1 AN 2 ... AN (N−1) AN

.
The diagonal operator AI , describes self-reflection by obstacle I. The off-diagonal AIJ with I 6= J
describes the diffraction by obstacle I of the wave emitted by J .

For circular obstacles, the multiple-scattering linear system can be described explicitly in the form

of multipole expansion, using the Hankel functions of the first kind H
(1)
k and the Bessel function Jk

and their derivatives. The diagonal blocks AI are diagonal matrices, with diagonal components given
by

(14) (AI)ll = iπ rI Jl(κ rI) ×
{

H
(1)
l (κ rI) , soft-scattering,

κH
(1)′
l (κ rI) ,hard-scattering.

4



For I 6= J , the components of the off-diagonal block AIJ are given by,

(15) (AIJ)lm = iπ rJJm(κ rJ) H
(1)
m−l (κ dIJ) ei (m−l)θJI ×

{
Jl(κ rI) , soft-scattering,

κ J′l(κ rI) ,hard-scattering.

The components of the right-hand-side in (10) corresponding to planewave upw (1) are given by

(16) FI,l = − 2upw(x(I)) il e−i l αinc ×
{

Jl(κ rI) , soft-scattering,

κ J′l(κ rI) ,hard-scattering.

Remark 1 (Invertibility and condition number of (10)). FSSL is efficient in low-frequency scattering,
i.e. up to medium-sized obstacles. For circular obstacles, to guarantee the invertibility of (10), the
testing wavenumber and the radius of the obstacles have to satisfy: κ r are not in the set of zeros of
Bessel functions. A ‘cheap’ requirement however sufficient for our tests is that 0 < κ r ≤ 2 (also
holds for arbitrarily-shaped obstacles), for more details see [14, Remark 2]. With r = 0.5 (size of the
obstacles taken in the experiments), this means 0 < κ ≤ 4. In our inversion experiments, we use
the wavenumber range 0.08 ≤ κ ≤ 3.0, in which the condition number of the scattering matrix A is
bounded, see Figure 1.

0 0.5 1 1.5 2 2.5 3 3.5

0

200

400

κ

C
on

d
(A

)

Figure 1: Condition number of the scattering matrix A (13), shown for m = 12 and in the frequency
range used for inversion: for six hard obstacles with the red circles ( , see Subsection 4.1); for
twelve soft obstacles in periodic configuration with the blue crosses ( , see Subsection 4.2) and for
twelve hard obstacles in irregular configuration with the green asterisks ( , see Subsection 4.3).

Remark 2. Comparable to our approach for the direct problem is the generalized Foldy-Lax model used
in [8] and the references therein. However a combination of single-layer and double-layer potentials,
called ‘Combined Field Integral Equation’ (CFIE) [8, Eqn 2.13] was used. This has the advantage of
guaranteeing invertibility at all wavenumbers. As noted in Remark 1, we only work in the interval
0.08 ≤ κ ≤ 3, and do not incur problem with instability. Since we can get away with a simpler operator
(less effort with matrix construction and storage, simpler integral equations) with the same behavior
in invertibility, we decide to go with this option. Note that inversion method in [8] is qualitative.

Remark 3. In dealing with small scatterers or homogeneities, a reductive model is usually employed
by asymptotic expansion (see e.g. [4]), or the interaction between the obstacles is approximated by
single-scattering (also called Born approximation), or the scatterers are considered point-like (e.g. in
Foldy-Lax model [39]). In contrast, FSSL imposes no reductive assumption; it takes into consideration
all levels of interaction between the scatterers, and treats both small and extended scatterers, cf.
Remark 1.

Remark 4. It was shown in [14, 13] that compared with highly-optimized software using Finite
Element methods (FEM), a ‘naive’ implementation of FSSL is still drastically faster5, e.g. see [14,
Experiment 3] in which it is 2000 times faster. However, it is noted that we are in a very special case

5The current implementation of FSSL does not employ any technique of fast solver, in the sense of FMM [32], FMPS
[33] and PVFMM [50]. However, they will be necessary for the case of general-shaped obstacles.
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for FSSL: we have analytic expressions for the linear system, which is constructed and solved, using
intrinsic operations in BLAS3 with Lapack ([5]), or Mumps ([1]). A crude upper bound for a basic
LU-factorization (without further optimization or speed up) is O(N3

Obs) (the size of the linear system
is given in (11), we focus here on the complexity with respect to the number of obstacles).

The discrete forward map Φ Consider a set of receivers located at R1, . . . ,RNrec
∈ R2. Denote

by R the linear evaluation (restriction) of a function to this set. For a given incident angle and
configuration p, we define the forward map Φ which gives the simulated data, which is the field
scattered by the configuration, recorded at receivers positioned at R1, . . . ,RNrec ∈ R2,

(17)

Φ : P = RNpar −→ D = CNrec

p 7→ Φ(p) := Ruh =

(NObs∑
J=1

∑
l∈Z

vJ,l
(
SJwJ,l

)
(Rk)

)
1≤k≤Nrec

.

It is convenient to write

(18) Φ(p) = R(p)S(p) ,

where R(·), called the evaluation matrix, is of size Nrec×N with row indexed by k with 1 ≤ k ≤ Nrec

and the columns indexed by (J, l) with 1 ≤ J ≤ NObs, −m ≤ l ≤ m. Its component at row k and
column (J, l) is given by

(19)
(
R(p)

)
k,(J,l)

=
(
SJ wJ,l

)
(Rk).

When there are several angles of incidence, we write Φt the forward map corresponding to planewave

u
(t)
pw.

Discrete inverse problem Denote by dt the observed data corresponding to planewave u
(t)
pw,

1 ≤ t ≤ NAcq. In FWI approach, the discrete inverse problem is written as an unconstrained
optimization problem

(20) min
p ∈P

J (p)

of the reduced cost function J , which represents the difference between observed data and simulated
data over all angles of incidence,

(21) J (p) :=
1

2

NAcq∑
t=1

∥∥∥Φt(p) − dt

∥∥∥2

D
.

3 Optimization method

3.1 Calculation of the gradient by adjoint-state method

We will use a gradient-based optimization to correct the initial guess to the true models. The main
ingredient of these first-order methods is the Fréchet derivatives of the cost function J with respect
to the parameters we wish to retrieve, which in this case is the position of the obstacles p. Variable
p is real, hence we are only requiring real-Fréchet differentiability of the forward map Φt and J . If
they exist (under sufficient regularity assumption), ∂pΦt is identified with a matrix of size Nrec×Npar

and ∂p J , also written J ′(p), a row vector of size Npar. The differentiability of J is related to that
of Φt via, see e.g. [55, Prop. 1],

(22) ∂p J (p) =

NAcq∑
t=1

Re
(

(Φt − dt)
? ∂pΦt

)
.
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The differentiability of Φt depends on that of the incident wave (i.e. the right-hand side of (10)), the
scattered field and the multiple-scattering matrix, cf. (39) and (40), the latter two quantities depend
on the differentiability of the single-layer potential. For arbitrarily-shaped obstacles, techniques in
[56] can be adapted to show the Fréchet differentiability of the single-layer potential with respect to
the position of obstacles6.

Remark 5. For circular obstacles, the explicit multipole expansions can be used to show differentia-
bility and give explicit expressions for the derivatives7, cf. [55, App. B]. In FSSL, the parameters to
be reconstructed, p, appear explicitly in the quantities that need to be differentiated, in particular, the
coefficient matrix A, the evaluation matrix R, and the right-hand side F . This is another advantage
(in addition to reducing the computational cost) of FSSL compared to discretization methods like finite
elements or finite differences.

Identity (22) shows that J ′ is the action of the Jacobian ∂pΦt on the vector Φt(p) − dt. Since
this is the only needed information, we calculate this action using the adjoint-state method, and
avoid computing the whole Jacobian (a method called ‘the sensitivity approach’)8. The adjoint-
state method was originally developed in the context of control theory by [49], and was used for
the computation of a gradient with respect to a parameter in [23]. For general discussion of the
adjoint-state method, see [41, 24]. In literature, all formulations of the adjoint-state method in FWI
work with volume discretization, e.g. [30, 18]. In addition to the advantage discussed in Remark 5,
FSSL, typical of integral equation methods, allows a simple implementation in FWI without the need
of domain truncation. In our case, the main idea of adjoint-state method is the derivation of (25)
which is then used, instead of (22), to calculate J ′. The details of this derivation are presented from
two perspectives, the ‘traditional’ one in A.1 and another one using a Lagrangian in A.2. To finish
the discussion, we summarize the procedure and formulas used for the calculation.

For a fixed set of parameter p, to calculate J ′(p), we use the following steps (the complexity of
which is addressed afterwards).

Step 1: We solve for Vt = St(p), solution to the direct problem defined in (10), now with multiple
right-hand-sides,

(23) A(p)
[
V1 . . . VNAcq

]
=
[
F (p, u(1)

pw) . . . F (p, u(NAcq)
pw )

]
.

Recall that matrix A is given by (14), and the right-hand side F corresponding to one angle
of incidence in (16). This step also provides the value of J .

Step 2: We then solve the adjoint equation, also with multiple right-hand-sides,
(24)

A(p)?
[
γ1(p) . . . γNAcq

(p)
]

= −R?(p)
[(

Φ1(p)− d1

)
. . .

(
ΦNAcq

(p)− dNAcq

)]
,

for the adjoint-states γt(p), which is a vector of size N = (2m+1)×NObs. The matrix R(p)
is defined in (19).

Step 3: The derivative of the reduced cost function J at p is given by , cf. Proposition 1

(25) J ′(p) =

NAcq∑
t=1

Re
[(

Φt(p)−dt

)?
∂pR ·

(J,l)
St(p) + (γt)

?
(
∂pA ·

(J,l)
St(p)−∂pF (p, u(t)

pw)
)]
.

In expression (25), the derivative ∂pF is a matrix (a tensor of order 2) of size N ×Npar. Matrix
R is of size Nrec × N . The Fréchet derivatives ∂p R and ∂pA are tensors of order 3, their sizes

6In [56], the differentiability of Φt and the potentials are shown with respect to the boundary of the obstacles.
Other references for the differentiability of Φt with respect to the boundary of the obstacles with the range of Φt being
far-field patterns, are given in [37, 38, 44, 45].

7This task is further simplified in the discretized problem, since the multi-pole expansions involved comprise of a
finite number of terms.

8 The Jacobian ∂pΦ is also needed, if one uses Newton’s method to solve the inverse problem which is viewed as
solving the nonlinear equation Φ(p) = d, cf. [16, 15, 9, 44]. In this approach, the linear problem is first linearized as
Φ(pinitial guess) + ∂pΦ′(pinitial guess)δp = d and one solves for δp .
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are Nrec × N × Npar and N × N × Npar respectively. The notation ·
(J,l)

, borrowed from tensor

calculus, denotes the contraction over the (second) index labeled by the tuples (J, l). The quantity
∂pR ·

(J,l)
St(p) is then a matrix of size Nrec ×Npar, and ∂pA ·

(J,l)
St(p) of size N ×Npar.

We next describe how each summand in (25) is calculated for each incidence angle.

• To calculate the first term in (25), we need the difference in data given in Step 1 and the action of
matrix ∂pR ·

(J,l)
St(p), whose k-th row is given by the following expression evaluated at Vt = St(p).

(26)

( ∑
−m≤m≤m

iπ rI
2

Jm(κ rI)e
imθI(Rk) VIm

[
− κe H(1)′

m

(
κ rI(Rk)

)(cos θI(Rk)
sin θI(Rk)

)t

+
imH

(1)
m

(
κ rI(Rk)

)
‖Rk − xI‖

(
sin θI(Rk)
− cos θI(Rk)

)t ])
1≤I≤NObs

,

The above formula comes from the Fréchet derivatives of the single layer, an explicit calculation of
which is given in [55, Eqn (66) App. B1].

• The calculation of the second term in (25) uses the explicit calculations of ∂pA and ∂pF , cf.
[55, App. B1 and B3]. Below, we list the final formula for this term; its I-th block, denoted by
(2I − 1 : 2I), is given by the following expression evaluated at W = γt and Vt = St(p).

−(W t ∂pF )(2I−1 : 2I) = 2κu(t)
pw(x(I))

(
cosαinc

sinαinc

) m∑
l=−m

WIl il+1 e−i l αinc×
{

Jl(κ rI) , soft-scattering

κ J′l(κ rI) ,hard-scattering
.

(W t ∂p A ·
(J,l)

V )(2I − 1 : 2I) =
(
∂p W

tA(p)V
)
(2I − 1 : 2I)

=

NObs∑
J=1

[ m∑
l,m=−m

WIlαIlM(1)
IJ,lm βJm VJm + WJmαJmM(2)

IJ;lm βIl VIl

](cos θJI
sin θJI

)t

+

NObs∑
J=1

[ m∑
l,m=−m

WIlαIlM(3)
IJ,lm βJm VJm + WJmαJmM(4)

IJ,lm βIl VIl

](− sin θJI
cos θJI

)t
.

The block matrices M(1)
IJ , M(2)

IJ , M(3)
IJ , M(4)

IJ , are defined as follows: for I 6= J ,
(27)

M(1)
IJ,lm = ei (m−l) θJI κH

(1)′
m−l (κ dIJ) ; M(2)

IJ,lm = ei (l−m) θJI κH
(1)′
m−l (κ dIJ) ;

M(3)
IJ,lm = i ei (m−l) θJI

(m− l) H
(1)
m−l (κ dIJ)

dIJ
; M(4)

IJ,lm = i ei (l−m) θJI
(l −m) H

(1)
m−l (κ dIJ)

dIJ
;

for I = J , M(1)
IJ =M(2)

IJ =M(3)
IJ =M(4)

IJ = 0(2m+1)×(2m+1). Matrix α and β are given by

(28) αIl =

{
Jl(κ rI) soft-scattering

κ J′l(κ rI) hard-scattering
; βJm = iπ rJ Jm(κ rJ) .

Complexities for the cost function and its gradient The complexities are stated in terms
of NObs the number of obstacles, with other variables considered bounded or constant, Nrec = 128,
NAcq ≤ 4, and m ≤ 6. We assume only a brute-force implementation of FSSL, see Remark 4.

• The complexities of J , denoted by workJ , comes from the resolution of the forward linear system
(23) whose main cost resides in the factorization of the scattering matrix A. This linear system has
to be solved for each angle of incidence, however, the use of direct solver (e.g. Mumps or Lapack)
allows multiple right-hand sides resolution, at low cost, i.e. a cost that is of smaller order compared
to that of the factorization9. From Remark 4, an upper bound of workJ is O(N3

Obs).

9 For a specific example of CPU time, see [14, Table 1– 2] which shows that the construction time and resolution
time for the matrix is less than that needed for its factorization.
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• Denote by work∇J the complexities for the gradient. Using direct solvers, the adjoint problem (24)
can reuse the LU factorization of the forward problem. In this way, the extra cost for ∇J only
includes back substitution for the adjoint state and matrix-vector products in (25), and work∇J =
O(N2

Obs). This highlights the benefits of direct solvers, compared to iterative solvers, in solving the
forward and adjoint problems (23)–(24).

These advantages of direct solvers are critical in frequency domain seismic inversion (due to the high
computational cost, e.g. [54, 28]) and are also exploited in [16, 15].

3.2 Frequency-hopping inversion procedure

In this section, we describe the algorithm used to correct a prescribed initial guess to the true
model. The overall process, called frequency-hopping, uses multi-frequency data and carries out
gradient-based optimization procedure described in Figure 2 at each prescribed frequency called a
‘run’. We first proceed with the lowest frequency and then proceed consecutively to higher ones, in a
process called ‘low-to-high frequency progression’. At the lowest frequency, the algorithm uses (user-
)prescribed initial guess; at successive frequencies, initial guesses are the reconstructed parameters
given by the algorithm at the previous frequency. For the twenty-four obstacles, after some frequency
progression, we employ a recycling of frequency, because the fixed number of receivers prevents us
from using arbitrarily high frequencies, cf. Remark 8.

Reconstruction at lower frequencies allows the initial guesses, although far from the true models
both in terms of position and nature, to converge to the vicinity of the true position; higher frequencies
are essential for taking into account the multiple-scattering effect between the obstacles, and are
necessary for convergence to positions hidden (in the middle of) in the configurations. As mentioned
in the introduction, low-to-high frequency marching is a common technique is seismic inversion,
e.g. [19, 58, 61]. It is also the principle in Recursive linearization Algorithm [25], see discussions in
[43, 60, 16]. Multifrequencies data are also used in [34, 11, 17] for location of homogeneities, [7, 10, 15]
for medium reconstruction, [16] for shape reconstruction.

Within a gradient-based procedure at a fixed frequency, cf. Figure 2, each iteration to update
or correct a guess uses line search-based strategy. To go from a current iterate pk to the next
value pk+1 at which the (cost) function J would have a lower value, one needs a search direction
sk (usually chosen to be descent i.e. stk∇J (pk) < 0), and a step length αk in this direction, to
update pk+1 = pk + αk sk. To find αk, one can solve exactly the one-dimensional minimization
problem min

α>0
J (pk +αsk), but this can be expensive. A line search algorithm is employed instead, to

generate a limited number of trial step lengths until a candidate, which approximates the minimum
by satisfying decrease criteria, is found. We investigate three line search algorithms, differing from
one another by decrease criteria and how search intervals and trial step lengths are updated. The
line search algorithms are based on the optimization theory in [53], however their implementation can
vary with different choices of initial step length, interval update and stop criteria. We briefly describe
their main features and refer to [55, Subsection 4.1] for more details on their actual implementation
in our codes. To describe the decrease criteria, we introduce the following notations,

(29) ψk(α) := J (pk + α sk) ; ψk(0) := J (pk) ; ψ′k(0) = J ′(pk) sk.

• The most expensive of the three algorithms presented here, is the line search algorithm LS3, cf. [55,
Algo 3–4], which requires trial step lengths to satisfy the strong Wolfe conditions comprising of

(30)
ψ(α) ≤ ψ(0) + µ α ψ′(0) , µ ∈ (0, 1) Armijo condition;

|ψ′(α)| ≤ η |ψ′(0)| , 0 < µ ≤ η Curvature condition.

The first condition, also called the sufficient decrease condition, controls the decrease in J , while
the second one prevents trial step lengths α from being too small. For the interval updates in LS3,
see detailed description in [55, Algo 3,4].

• As an intermediate, line search algorithm LS2, cf. [55, Algo 2], imposes sufficient decrease (Armijo
condition) and second-order quadrature (minimizer of a quadratic) for update.

9



Initial guess p1 Initial computation: J1, ∇J1

|Ji| ≤ εJ
or ‖∇Ji‖ ≤ ε∇J
or i > NIterMax

In : pi , Ji , ∇Ji, with ∇Jk := ∇J (pk)

• Calculate search direction si
• Carry out a line search algorithm to obtain αi

Out : pi+1 = pi + αi si , Ji+1 , ∇Ji+1

|Ji − Ji−5| < εStag J
or ‖pi+1 − pi‖ ≤ εStag Pos

or LS not sucessful
Stagnation test

Update
frequency

True

True

False

False

set i = 1

Figure 2: Optimization algorithm at each fixed frequency. At the lowest frequency, the algorithm uses
prescribed initial guess; at later frequencies, initial guesses are reconstructed parameters given by the
algorithm at previous one. The values of J and its gradient ∇J are obtained by the adjoint-state
method, using Step 1–3 in Subsection 3.1. To skip to the next frequency or to stop the overall pro-
cedure, the following criteria are employed. Parameters εcritical point and εerr tol control the smallness
of ∇J and J . Stagnation of the algorithm is controlled by εStag Steplength (which signals that a new
step length is too close to the previous one), εStag Pos (new configuration is too close to the current
one), and εStag J (the algorithm does not reduce the value of the cost function). The number of outer
iterations is controlled by NIterMax, while those in a line search are by NLS IterMax 1 and NLS IterMax 2

(the latter is only used for LS3). Other criteria are whether a line search is successful or not, and the
number of frequencies prescribed by user.

• The ‘cheapest’ line search algorithm is LS1, cf. [55, Algo 1], which imposes no control over how
much J decreases and requires only ψ(α) < ψ(0). This line search (LS1) uses reduction by half to
update trial step lengths.

In combination with the above line searches, we investigate the effectiveness of two search direc-
tions:

• Broyen-Fletcher-Goldfarb-Shannon (BFGS), cf. [53, p. 140], in the quasi-Newton family (that we
further refer to as SD1);

• Polak-Ribière (PR) with restart (referred to as SD2), cf. [53, Eqn (5.44), (5.45) p.122-123], in the
nonlinear-conjugate gradient (NLCG) family10.

For general motivation and history of NLCG, we refer to [36], and of quasi-Newton to [26]. Theses
search directions are chosen so that as many obstacles as possible can be retrieved while using only

10The restart, in which the direction is set to Steepest Descent direction, is needed, since the defined PR search
direction ([53, Eqn (5.44) p.122]) is not guaranteed to be a descent direction. On the other hand, BFGS implemented
with strong Wolfe line search algorithm (LS3) guarantees descent direction. The initial approximate for the Hessian
used in BFG follows [53, Eqn 6.20].
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first-order information (i.e. the gradient of the cost function), and allowing the initial guesses to be
far from the true models.

NLCG and the simpler version, Steepest Descent, are popular in seismic inversion since there is
no need for matrix storage, a useful feature for problems which aim to retrieve a large number of
parameters. Gradient-based optimization using variants in the NLCG family, have been investigated
in seismic inversion, e.g. [28] and in the context of inverse scattering, e.g. [65, 42]. An extensive
comparison between the variants (in NLCG) is carried out in [67]. These references suggest the
effectiveness of PR which is thus chosen in our work among others variants in NLCG. Quasi-Newton
is less computational intensive than methods in the Newton-like family used in e.g. [47, 44, 46, 42, 16]
and the references therein, while still offers good convergence rate of Newton’s method cf. [47].

Remark 6. In general, µ < 1
2 , so that the criteria is satisfied for quadratics, cf. discussion in [51].

In our numerical experiments, µ = 0.0001 and η = 0.9, following the comment in [53, p.142] that
these values are ‘commonly used’. We also test with η = 0.411.

Computational complexities Assume the gradient of cost function is already calculated, the cost
of search direction, denoted by worksd is

(31) worksd =

{
O(N2

Obs) for BFGS,

O(NObs) for NLCG-PR.

In simple backtracking LS1 and enhanced backtracking LS2, one needs to evaluate the cost of J at
each candidate steplength, while for strong Wolfe line search LS3, one needs to evaluate cost function
and its gradient at each linesearch iteration. Thus the cost of each line search iteration, denoted by
workls, is

(32) workls =

{
workJ = O(N3

Obs), for LS1 or LS2,

workJ + work∇J = O(N3
Obs) + O(N2

Obs), for LS3.

For a specific choice of search direction and linesearch algorithm, assuming an inversion procedure of

nrun runs and n
(k)
iter iterations per run k, the work load is given as

(33)

Work =
∑

1≤k≤nrun

∑
1≤i≤n(k)

iter

workJ + work∇J + worksd + n
(k,i)
ls × workls

∼
∑

1≤k≤nrun

∑
1≤i≤n(k)

iter

O(N3
Obs) .

Here n
(k,i)
ls is the number of linesearch iterations within iteration i in run k and is set to be ≤ 60 for

all tests. We note that the cost of the matrix factorization dominates that of other computational
operations.

4 Numerical experiments

For the experiments, the methods are identified with the keyword SDx-LSy, where SD refers to the
search direction, x is either 1 (for quasi-Newton) or 2 (for nonlinear conjugate gradient). LS stands
for the line search method and y can be 1 (simple backtracking), 2 (sufficient descent) or 3 (strong
Wolfe condition), see Section 3. To test the robustness of the reconstruction procedure, numerical
experiments are carried out in domains of different sizes, with soft or hard scattering obstacles in
structured or irregular configurations. For simplicity, we assume that all of the obstacles are of the
same radius rI = r. The inversion procedure should still work with obstacles of different size, see also
Remark 1. We will work with circular obstacles of radius 0.5. The nature of the configuration (periodic
or irregular) is not known a priori, this naturally increases the difficulties of the reconstruction.

11This was originally chosen so that Fletcher-Reeves (FR) directions [53, Eqn 5.41] are descent, by satisfying hy-
pothesis µ < η < 1

2
in strong Wolfe linesearch [53, Lemma 5.6]. Due to space limitation, we do not included tests with

FR which was found to perform less well than PR. However, we kept η = 0.4 as another parameter to see how PR
performs with a smaller η.
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Remark 7. In figures illustrating the configurations and reconstructions, e.g. Figure 4, the true
positions (centers of the obstacles) are represented by red circles ( ). This is not to be mistaken as a
representation of the obstacles themselves, which are actually much smaller.

Recall that the backscattered data are collected according to the restriction mentioned in the
introduction (i.e., from at most four angles of incidence, and 128 receiver points per angle and
frequency, see Figure 3.) To avoid the ‘inverse crime’, synthetic data are produced by FSSL order 12
with solver Lapack [5] in a separate set of codes. The solver used for the resolution of the forward
problem is Mumps [1] at lower order of FSSL (≤ 6). For more realistic experiments, complex Gaussian
white noise is added by Matlab routine awgn with the noise level described by signal-to-noise ratio
per sample in decibel (dB). The frequencies range is

(34) κmin = 0.08 ≤ κ ≤ κmax = 3 ; 0.04 ≤ κr ≤ 1.5.

These ranges satisfy the requirement for the invertibility of the linear system (10), cf. Remark 1.
The inversion codes are written in Fortran90. The experiments are run in sequential on personal

laptop. In initial runs for each configuration and initial guess, the parameters are set so that con-
vergence is obtained even with high number of iterations. After convergence is obtained, the results
are refined by increasing the error tolerance and stagnation criteria and by removing redundant high
frequencies, in a way so that the same convergence results are obtained at lower time-cost. This is
done in order to reduce the number of iterations. For reproducibility, the actual parameters for each
experiment are listed in [55, App. E], for more comments on the implementation see also [55, Section
5].

The quality of a reconstruction is calculated after the inversion has been carried out (outside
of the inversion codes), and is based on: the number of frequencies used, the number of iterations
taken and the errors in the misfit J and in position. The error in position is calculated as the

distance between reconstructed model precon = (x
(1)
1 , x

(1)
2 , . . . , x

(NObs)
1 , x

(NObs)
2 ) and the true model

pmodel = (x̃
(1)
1 , x̃

(1)
2 , . . . , x̃

(NObs)
1 , x̃

(NObs)
2 ),

(35) Err. Pos.
(
precon

)
:= dist

(
precon,pmodel

)
=

√√√√NObs∑
I=1

dist2(x(I),pmodel),

with

(36) dist(x(I),pmodel) := min
1≤J≤NObs

‖x(I), x̃(J)‖.

The relative error position is the scaled distance with respect to the size of the domain. On a domain
[a, b]x × [c, d]y,

(37) Rel. Err. Pos (precon) :=
Err. Pos. (precon)

min{|b− a| , |d− c|} .

Relative error in J of a reconstruction is calculated as

(38) Rel. Err. J (precon) =

√
2J (precon)

‖d‖ at final reconstruction frequency .

Note that when there is noise, d is the noisy synthetic data.

4.1 Localization of 6 hard-scattering obstacles

In this experiment, we consider the recovery of the position of six hard-scattering obstacles, their
centers are located, inside the domain of interest of size 42× 38, at

(17, 21), (21, 21), (25, 21), (17, 17), (21, 17), (25, 17).

As mentioned, we do not know a priori the periodicity of the true configuration. In Figure 4, we
illustrate the obstacles configuration for the domain of interest. We investigate the convergence of
all optimization options, first with two specific initial guesses shown Figures 4(a) and 4(b). For more
conclusive observations, we then test with 200 initial guesses that are randomly generated.
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(d) 270◦ incidence

Figure 3: For each angle of incidence, synthetic data are collected at 128 receivers (in blue, ) equally
spaced and lying on a line perpendicular to the angle of incidence, on the side of the domain. The
goal is to retrieve the positions of the obstacles indicated by the red circles ( ).

4.1.1 Inversion using data with noise with initial guess 1 and 2

For these two guesses, we work with noisy data at 23dB obtained from three angles of acquisition: 90◦,
0◦ and 180◦, illustrated in Figure 3. This noise level corresponds to total relative L2 error (polluted
observed data compared to true observed data) between 6% and 8%, in L∞ norm between 10% and
21%, depending on the angle of incidence and κ. For this reconstruction, we use a set of frequencies:
0.08, 0.09, and from 0.1 to κmax with step 0.1 and κmax ≤ 0.8. We illustrate the observed data (with
and without noise) as well as the data corresponding to both initial guesses at frequencies κ = 0.08
and κ = 1 in Figure 5.
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(a) Initial Guess 1 (IG1): Error
Position is 20.5, relative Error
Position is 54%

0 10 20 30 40
0
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30

(b) Initial Guess 2 (IG2): Error
Position is 29.5, relative Error
Position is 77.6%

Figure 4: True positions (red circles, ) and initial guesses (green pluses, ) in the reconstruction of 6
hard-scattering obstacles.

We see that low frequencies give poor information about the interaction between the obstacles
(showing little oscillation) and that there is a small gap between the synthetic data (both noise-free
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(a) Real part of the data for an incidence angle of 0◦ at frequency κ = 0.08. Relative error between
observed and noisy data is 3% with L2-norm and 6.5% with L∞ norm.
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(b) Real part of the data for an incidence angle of 0◦ at frequency κ = 1. Relative error between
observed and noisy data is 7% with L2-norm and 13.3% with L∞ norm.

Figure 5: Data obtained at the 128 receivers at different frequencies. The blue line ( ) represents
the synthetic data, the blue dashed line with crosses ( ) the data incorporating 23dB noise, the
red dashed line ( ) simulated data associated to the initial guess 1 (see Figure 4(a)) and the green
dashed line ( ) simulated data associated to initial guess 2 (see Figure 4(b)).

and polluted) and the simulated data of the initial guesses (see Figure 5(a)). This helps explain
intuitively how beginning the reconstruction at low frequencies allows the initial guess to be far from
the true model and of different nature. At higher frequency, the data collected for the different
configurations provide a much larger contrast (see Figure 5(b)).

Results for initial guess 1 For all methods, κmax = 0.7 with the exception of SD1-LS2 (Search
Direction method 1, Line Search method 2) for which κmax = 0.6. In Table 1, we provide the
information for the iterative reconstruction and illustrate a reconstruction in Figure 6. Figure 7
shows the evolution of the cost function for five selected frequencies. Figure 8 shows the evolution of
the error of the reconstructed position with iterations. We have the following observations.

• Optimization at lower frequencies stagnates faster than at higher frequencies, see Figure 7.

• In this configuration, the two search directions perform similarly well. Although they might take
different numbers of iterations to convergence, all methods are able to arrive at a reconstruction of
similar accuracy, see Table 1. SD2-LS1 is actually the fastest method here.

Table 1: Results for the 6 obstacles reconstruction using noisy data from three angles of radiation
and the initial guess 1 (Figure 4(a)).

Method ]
freq

κmax Final rel. error
J

] iterations Final rel. position
error

Run time
(s)

SD1-LS1 9 0.7 7.00% 88 0.7% 0.64
SD1-LS2 8 0.6 6.77% 67 1.0% 0.4
SD1-LS3 9 0.7 7.00% 72 0.8% 0.6
SD2-LS1 9 0.7 7.00% 42 1.0% 0.31
SD2-LS2 9 0.7 7.00% 131 0.6% 0.72
SD2-LS3 9 0.7 7.00% 59 0.8% 0.82
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(a) Iteration 2, κ = 0.08; J =
1; position error is 19.9; scaled
position error is 52%.
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(b) Iteration 21, κ = 0.3; J =
0.9; position error is 4.3; scaled
position error is 11%.

0 10 20 30 40
0

10

20

30

(c) Iteration 42, κ = 0.7; J =
0.8; position error is 0.4; scaled
position error is 1%.

Figure 6: Six obstacles position recovery from noisy data with method SD2-LS1 and starting from
initial guess 1 (Figure 4(a)). The true positions of the obstacles are the red circles ( ), initial guesses
the green pluses ( ) and current reconstruction the blue crosses ( ).
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κ = 0.08
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Figure 7: Evolution of the cost function in the reconstruction of 6 obstacles with noisy data of 23dB
and starting from the initial guess 1 (Figure 4(a)). The blue circles ( ) indicate method SD1-LS1;
the red crosses ( ) method SD1-LS2; the green squares ( ) method SD1-LS3; the yellow triangles
( ) method SD2-LS1; the black stars ( ) method SD2-LS2; the orange diamonds ( ) method
SD2-LS3. The results of the reconstruction are given Table 1. All methods do not have the same
number of iterations per frequency due to the stagnation criteria in the iterative algorithm.

Results for initial guess 2 The convergence results are given in Table 2. In Figure 10, we plot the
evolution of the position error of the obstacles with iterations. In Figure 9, we illustrate the accuracy
of the reconstruction results of SD2-LS2 method. We have the following observations.

• Overall, while taking different numbers of iterations, all methods are able to provide similar accu-
racy in the reconstruction, with less than 1% position error. In particular, here, all methods based
on SD1 and SD2-L2 perform equally well.

• SD1 (quasi-Newton) seems less affected by starting model. While SD2-LS1 using initial guess 1
performs the fastest, with initial guess 2, the convergence of SD2-LS1 and SD2-LS3 requires twice
the number of iterations compared to SD2-LS2. On the other hand, the behavior of the line searches
coupled with SD1 remains the same for both initial guesses; in particular, the convergence pattern
among SD1-LS1, SD1-LS2 and SD1-LS3 remain the same for both initial guesses.
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Figure 8: Progression of the position error in the reconstruction of 6 obstacles with noisy data of
23dB and starting from the initial guess 1 (Figure 4(a)). The markers are indicated one iteration
over two for clarity. The blue circles ( ) indicate method SD1-LS1; the red crosses ( ) method
SD1-LS2; the green squares ( ) method SD1-LS3; the yellow triangles ( ) method SD2-LS1; the
black stars ( ) method SD2-LS2; the orange diamonds ( ) method SD2-LS3. The results of the
reconstruction are given Table 1.

Table 2: Results for the 6 obstacles reconstruction using noisy data from three angles of radiation
and the initial guess 2 (Figure 4(b)).

Method ]
freq

κmax Final rel. error
J

] iterations Final rel. position
error

Run time
(s)

SD1-LS1 9 0.7 7.00% 72 0.8% 0.67
SD1-LS2 8 0.6 6.77% 79 1.0% 0.48
SD1-LS3 8 0.6 6.77% 75 0.8% 0.68
SD2-LS1 10 0.8 6.88% 181 0.7% 2.64
SD2-LS2 9 0.7 7.00% 79 0.75% 0.46
SD2-LS3 8 0.6 6.77% 155 0.73% 1.40
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(a) Iteration 2, κ = 0.08; J =
0.96; position error is 20; scaled
position error is 54%.
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(b) Iteration 39, κ = 0.4; J =
1; position error is 2.7; scaled
position error is 7%.
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(c) Iteration 79, κ = 0.7; J =
0.8; position error is 0.3; scaled
position error is 0.8%.

Figure 9: Six obstacles position recovery from noisy data with method SD2-LS1 and starting from
initial guess 2 (Figure 4(b)). The true positions of the obstacles are the red circles ( ), initial guesses
the green pluses ( ) and current reconstruction the blue crosses ( ).

4.1.2 Statistics from two hundred different initial guesses

We have seen from previous experiments that the convergence of the optimization methods depends
on the initial guess. In order to have more sound observations, we test with 200 different initial guesses
randomly generated in the domain. For these tests, we employ all four angles for the data acquisition
and the following frequencies: 0.08, 0.09 and from 0.1 to 1 with a step of 0.1. For consistency, the
robustness is analyzed for each method keeping the exact same set parameters for all initial guesses
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Figure 10: Progression of the position error in the reconstruction of 6 obstacles with noisy data of
23dB and starting from the initial guess 2 (Figure 4(b)). The markers are indicated one iteration
over two for clarity. The blue circles ( ) indicate method SD1-LS1; the red crosses ( ) method
SD1-LS2; the green squares ( ) method SD1-LS3; the yellow triangles ( ) method SD2-LS1; the
black stars ( ) method SD2-LS2; the orange diamonds ( ) method SD2-LS3. The results of the
reconstruction are given Table 2.

(i.e., maximal number of iterations, initial step length for the line search, parameters µ and η) so
that no ‘tuning’ is performed (which is important for users). Because we do not seek the optimal
convergence speed, the stagnation criteria are set low and the maximal number of iterations high:
slow convergence is accepted. Because of this, the run time is higher compared to the previous
experiments. Table 3 provides the results for all methods, with the average number of iterations, run
time and final cost.

Table 3: Results for the 6 obstacles reconstruction using four angles of acquisition for the data and 200
different initial guesses. The average and standard deviation given correspond only with experiments
that have successfully recovered the obstacles.

Method SD1-
LS1

SD1-
LS2

SD1-
LS3

SD2-
LS1

SD2-
LS2

SD2-
LS3

Success rate 91% 83% 99% 85% 75% 92%

Average run time (s) 7.6 2.1 2.0 16.0 4.3 2.8

Standard deviation
run time (s)

1.1 0.7 0.5 6.0 1.4 0.6

Average iteration
number

221 291 150 417 655 234

Standard deviation
iteration number

39 114 31 149 237 45

Average final J 3× 10−10 5× 10−11 5× 10−11 7× 10−9 8× 10−8 7× 10−11

Standard deviation
final J

6× 10−10 1× 10−10 2× 10−11 2× 10−8 5× 10−7 9× 10−11

We draw the following observations.

• It seems that the LS option has more influence than the choice of search direction.

• The LS3 option gives the best success rate for both search directions. Namely, LS3 performs better
than LS1 which itself performs better than LS2. More precisely, SD1-LS3 is the best method as it
always converges to the solution (99% success rate, 92% for SD2-LS3) and takes the smallest run
time (2s). SD1-LS1 is also a good candidate with high success rate (91%) but it takes much more
time than the methods using LS3 (almost four times more than SD1-LS3). SD1-LS2 and SD2-LS1
performs well (83% and 85% of success rate) but SD2-LS1 takes the largest time of all methods
(with an average of 16 s). Finally, SD2-LS2, performs the worst with only 75% of success. Note
that it is possible to obtain the convergence for all methods and initial guesses by increasing the
number of frequency used.
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• The simplest method to implement (LS1) is actually the more time consuming in applications.

• Quasi-Newton (SD1) performs better than nonlinear conjugate gradient (SD2).

In short, the most robust and effective methods in this configuration are SD1-LS3, and SD2-LS3
slightly behind. For Quasi-Newton, the efficiency of using Wolfe condition (i.e. SD1-LS3) over other
methods (SD1-LS1 and SD1-LS2) can actually be anticipated, as indicated in [53, p.142].

4.2 Localization of 12 soft-scattering obstacles

In this subsection, we consider a structured configuration of twelve soft-scattering obstacles centered
at

(22, 32), (26, 32), (30, 32), (34, 32), (22, 36), (26, 36),

(30, 36), (34, 36), (22, 40), (26, 40), (30, 40), (34, 40),

inside a domain of size 56×72. We use four angles of radiation for the data, sending planewaves from
all four sides of the domain. In Figure 11, we show the initial guess taken to start the reconstruction
algorithm.
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Figure 11: True positions (red circles, ) and initial guesses (green pluses, ) in the reconstruction of
12 soft-scattering obstacles.

We incorporate noise in the generated data, using a signal-to-noise ratio of 30dB. It leads to a
relative L2-norm error between 2.8% and 3.5% and L∞-norm between 4.1% and 8.1% compared to the
synthetic, noise-free data. We restrict ourselves to two methods for the reconstruction: quasi-Newton
search direction using strong Wolfe condition for line search (SD1-LS3) and nonlinear conjugate
gradient search direction, also using strong Wolfe condition for line search (SD2-LS3). These are the
most robust combination as shown in previous experiments. Both methods use the same line search
parameters with µ = 1.0× 10−4 and η = 0.4 (see (30)). The frequency varies from κ = 0.09 to 0.7.

The information for the iterative algorithm are given in Table 4. In Figure 12, we show the
obstacle position recovery at three iterations, for the SD1-LS3 method. The progression of the cost
function with iterations is plotted in Figure 13 and of the position error with iterations in Figure 14.

Table 4: Results for the 12 obstacles reconstruction using noisy data starting from initial guess
Figure 11. The number of matrix factorizations takes into account the ones realized during the line
search algorithm.

Method ]
freq

κmax Final rel.
error J

] iterations Final rel.
position error

Run time
(s)

] facto.

SD1-LS3 8 0.7 3.18% 423 0.3% 11 1167
SD2-LS3 8 0.7 3.18% 401 0.4% 11 902

One can observe the following,

• the convergence for low frequencies is more rapid with method SD2-LS3, while at higher frequency,
it is faster with SD1. However, the slow convergence of SD1-LS3 at low frequencies is compensated
by the rapid convergence at higher frequencies.
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(a) Iteration 2, κ = 0.1;
J = 100; position error is 31;
scaled position error is 56%.
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(b) Iteration 60, κ = 0.2; J =
0.25; position error is 5.5 ;
scaled position error is 10%.
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(c) Iteration 424, κ = 0.7;
J = 0.25; position error is
0.15 ; scaled position error is
0.25%.

Figure 12: Twelve obstacles position recovery from noisy data with method SD1-LS3 and starting
from initial guess of Figure 11. The true positions of the obstacles are the red circles ( ), initial guesses
the green pluses ( ) and current reconstruction the blue crosses ( ).
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Figure 13: Evolution of the cost function in the reconstruction of 12 obstacles with noisy data of
30dB and starting from the initial guess of Figure 11. The markers are indicated one iteration over
two for clarity. The blue circles ( ) indicate method SD1-LS3 and the red crosses ( ) method
SD2-LS3. The results of the reconstruction are given Table 4. The methods do not have the same
number of iterations per frequency due to the stagnation criteria in the iterative algorithm.

• Eventually, the difference in performance is imperceptible between the two methods. In particular,
the number of iterations and their run time are comparable.
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Figure 14: Progression of the position error in the reconstruction of 12 obstacles with noisy data of
30dB and starting from the initial guess of Figure 11. The markers are indicated one iteration over
four for clarity. The blue circles ( ) indicate method SD1-LS3 and the red crosses ( ) method
SD2-LS3. The results of the reconstruction are given Table 4.
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4.3 Localization of 12 hard-scattering obstacles in irregular configuration

As another validation of our reconstruction method, we design an experiment with twelve hard-
scattering obstacles, now positioned irregularly in the domain of interest of size 50×60. The obstacles
are centered at

(25.5, 42.0), (27.0, 31.0), (24.0, 38.0), (15.4, 39.9), (32.0, 33.9), (23.0, 29.0),

(20.0, 26.0), (27.0, 25.2), (17.0, 31.2), (31.0, 28.2), (20.0, 35.0), (30.5, 39.8).

The distance between the centers of two obstacles is between 4.24 and 19.5, with corresponding
ratio (dIJ/r) between 8.5 and 39. The domain and the obstacles configuration are illustrated in the
Figure 15, together with the initial guess for the reconstruction. Similar to previous experiment, the
initial guess is of very different nature compared to the true model. The data are generated using
the four angles of illumination. For simplicity, we only test the reconstruction with SD1-LS3 method,
which appears as the most reliable combination from previous experiments.
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Figure 15: True positions (red circles, ) and initial guesses (green pluses, ) in the reconstruction of
12 obstacles irregularly positioned. The position error for the initial guess if of 40, and the underlying
relative error of 79.4%.

We incorporate noise in data with 30dB signal-to-noise ratio. The L2-norm error with the noise-
free data is between 2.7% and 3.6%; the L∞-norm is between 3.9% and 8.8%. We illustrate the data
captured at the receivers location in Figure 16. Table 5 provides the parameters of the reconstruction.
Here, 10 frequencies are used, from κ = 0.08 to 0.8. Figure 18 shows the evolution of the cost function
with iterations for three frequencies, Figure 19 shows the evolution of the obstacle position error. In
this figure, we observe that despite the decrease in the cost function, the error in the obstacle position
may increase along with the iteration. This is perhaps due to the randomness of the configuration.
However, the final reconstruction remains very accurate, with 0.3% error in the position, as illustrated
in the visualization of Figure 17.
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Figure 16: Real part of the data obtained at the 128 receivers at frequency κ = 0.08 for incidence
angle of 90◦. The blue line ( ) represents the synthetic data and the red dashed line with crosses
( ) the data incorporating 30dB noise. Relative error between observed and noisy data is 3.3%
with L2-norm and 6.8% with L∞ norm.

We observe that the periodic configuration in Subsection 4.2 is harder to retrieve than the current
irregular one. Both start from the same type of initial guess, use the same method of optimization
SD1–LS3, the same type of data at the same level of noise. However, the periodic case takes more
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(a) Iteration 8, κ = 0.08; J =
0.3; position error is 16; scaled
position error is 32%.
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(b) Iteration 120, κ = 0.4;
J = 0.3; position error is 2.5;
scaled position error is 5%.
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(c) Iteration 317, κ = 0.8;
J = 0.17; position error is
0.17 ; scaled position error is
0.3%.

Figure 17: Twelve obstacles in irregular configuration recovery from noisy data with method SD1-LS3
and starting from initial guess Figure 15. The true positions of the obstacles are the red circles ( ),
initial guesses the green pluses ( ) and current reconstruction the blue crosses ( ).

Table 5: Results for the 12 obstacles irregularly-positioned reconstruction starting from initial guess
of Figure 15 and using noisy data. SD1-LS3 corresponds with quasi-Newton search direction imposing
a strong Wolfe condition for line search. Line search parameters are µ = 10−4 and η = 0.4. The
number of matrix factorizations takes into account the ones realized during the line search algorithm.

Method ]
freq

κmax Final rel.
error J

] iterations Final rel.
position error

Run time
(s)

] facto.

SD1-LS3 10 0.8 3% 317 0.3% 8 584

iterations and thus longer to converge, cf. Table 4 (it uses around 1200 factorizations, double the
number needed by the irregular configuration). In Figure 14, which shows the position error for
periodic configuration, after the first initial sharp drop, the error decreases but very slowly before
iteration 300. On the other hand, for the irregular case, cf. Figure 17, the drop is steady and by
iteration 300, all true positions are almost located. Intuitively, the distribution of obstacles is much
more dense in the periodic case, with more obstacles obstructed from view (in fact all but those on
the boundary layer of the configuration). These locations, insensitive to low frequencies, are much
more difficult and require a greater number of iterations to retrieve.
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κ = 0.2
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κ = 0.7

10 20

κ = 0.8

Figure 18: Evolution of the cost function in the reconstruction of 12 obstacles in irregular configuration
with noisy data of 30dB, starting from the initial guess Figure 15 and using method SD1-LS3. The
markers are indicated one over two iterations for clarity. The results of the reconstruction are given
Table 5.
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Figure 19: Progression of the position error in the reconstruction of 12 obstacles in irregular configu-
ration with noisy data of 30dB, starting from the initial guess Figure 15 and using method SD1-LS3.
The markers are indicated one iteration over four for clarity. The results of the reconstruction are
given Table 5.

4.4 Localization of 24 hard-scattering obstacles in irregular configuration

We increase the number of obstacles and consider an irregular configuration with twenty-four hard-
scattering obstacles centered at

(39.0, 57.7), (40.0, 25.0), (26.3, 22.5), (43.1, 56.4), (15.9, 13.4), (17.4, 25.0), (11.0, 39.6), (58.2, 20.2),

(58.5, 30.0), (15.0, 49.9), (33.4, 32.0), (42.8, 42.5), (24.5, 49.8), (47.7, 21.7), (37.9, 47.0), (31.4, 15.6),

(23.4, 35.8), (47.7, 51.9), (54.9, 56.0), (46.4, 34.9), (30.3, 23.9), (56.9, 42.6), (22.8, 55.9), (36.7, 35.5),

inside a square domain of size 70 × 70. This case is the most difficult compared to previous ones.
We choose a configuration with obstacles equally distributed in the four angles. This configuration is
illustrated Figure 20. However, this is more challenging than starting from an irregular configuration
in which obstacles are dispersed inside the domain. For the reconstruction, we work with noise-free
data from four angles of radiation. The iterative reconstruction is conducted using quasi-Newton
search direction with strong Wolfe condition for line search (SD1-LS3), which is the most robust
method, as established before.

0 20 40 60
0

20

40

60

Figure 20: True positions (red circles, ) and initial guesses (green pluses, ) in the reconstruction of
24 hard-scattering obstacles. Its relative position error is of 48%.

The reconstruction is conducted in two stages, the first uses a set of frequency from 0.08 to 3
(with 0.08, 0.09 and from 0.1 to 3 with a step of 0.1). The algorithm run for 2533 iterations and the
current reconstruction is shown in Figure 21(a). We see that most of the obstacles are accurately
recovered, with the exception of two which are in the interior of the configuration. However, at this
configuration, the value of the cost function is still quite high, with J = 2.28 at frequency κ = 3, see
Table 6 and Figure 21(a). In the next stage, instead of continuing frequency marching (from low to
high), we recycle nine medium-ranged frequencies: {0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 2.5, 3}. This is due to
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the loss of efficiency of higher frequencies, cf. Remark 8. The results after the recycling are shown
Figure 21(b), the cost function is significantly reduced to J = 1.4× 10−7 (cf. Table 6). Figure 22
shows the progression in the cost function at three (relatively low) frequencies and compare the first
and second stages in the procedure. Recycling allows a faster and stronger decrease in the cost
function, as it starts with more information. From this experiment, we observe that the cost function
is able to capture the difference and allows the user to identify if recycling should be used.

Table 6: The iterative reconstruction for the 24 obstacles follows two sets of frequencies. The second
set comprises of recycled frequencies and starts from the final guess given by the first set. Overall,
there is a total of 2893 iterations and the run time is of 4min7sec. The number of matrix factorizations
takes into account the ones realized during the line search algorithm.

Stage ]
freq

κmax Final J ] iter. Final rel. position
error

Run time
(s)

] facto.

1 32 3 2.28 2533 11.8% 200 5854
2 9 3 1.4× 10−7 360 2× 10−4% 47 971
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(a) Before frequency cycle, iteration
2533, κ = 3.0; J = 2.28; scaled po-
sition error is 12%, run time is 200
s.
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(b) Final reconstruction after fre-
quency cycle for a total of 2893 it-
erations, κ = 3.0; J = 1.4× 10−7;
scaled position error is 2× 10−4%,
total run time including the first cy-
cle is 260 s.

Figure 21: Twenty-four obstacles position recovery with method SD1-LS3, the true positions of the
obstacles are the red circles ( ), initial guesses the green pluses ( ) and current reconstruction the blue
crosses ( ).
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Figure 22: Evolution of the cost function in the reconstruction of 24 obstacles. The markers are
indicated one iteration over four for clarity. The blue circles ( ) indicate the first stage in the
reconstruction and the red crosses ( ) the second stage. The methods do not have the same
number of iterations per frequency due to the stagnation criteria in the iterative algorithm.

Remark 8 (Sampling of receivers per wavelength). In our experiments, we are limited to 128 receivers
per angle of incidence; this is motivated by physical experiments, cf. Footnote 1. This prevents
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iterating over higher and higher frequencies, due to the decreasing number of receivers point per
wavelength. Figure 23 shows the number of points per wavelength corresponding to 128 receivers. We
see that wavenumber κ > 3 gives less than four points per wavelength and carries too few information
for inversion purposes12. Because of this, we resort to recycling over medium ranged frequencies.
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Figure 23: Receivers sampling per wavelength for varying wavenumber κ. Our experiment use 128
fixed receiver points to capture the data, they are equally spaced on a line between 0 and 70. The red
dashed line ( ) corresponds with 4 points per wavelength (usually recommended to obtain enough
information on the wave propagation).

Remark 9. The localization problem becomes increasingly difficult as the number of obstacles grows.
This is evidenced by an extremely steep increase in the number of iterations and hence the number
of factorizations (of forward problems). For 6 obstacles, this is about 150 factorizations, for 12
obstacles, this increases to 580 in irregular configuration, and 1200 in periodic configurations; for
24 obstacles, the number of factorization is 6800. This translates to a steep increase in inversion
time. For configuration of 6 obstacles, most reconstructions take less than 1s. For 12 obstacles, the
inversion results take around 11s. For 24 obstacles, it takes around 4 min.

In a reconstruction, it is usually the locations on the outer rim of the true configuration that get
retrieved first. The later iterations are usually spent on locating the positions in the interior, which
require higher frequencies and more iterations per position. This factor is also determined by the
denseness of obstacle distribution in a configuration, see also the observations made in subsection
4.3, comparing between the periodic configuration and the irregular one with 12 obstacles. With 6
obstacles, even in a periodic configuration, all are on the boundary layer of the configuration. In
short, a configuration with more obstacles which are hidden-from-view are more difficult and take
more iterations and thus time to retrieve.

5 Conclusion

In this paper, we have implemented FWI procedure with gradient based line search optimization
strategy to locate soft or hard-scattering obstacles inside a homogeneous medium. Restricted to
backscattered data from at most four angles of incidence and with fixed data resolution, we use low-
to-high frequency progression and frequency recycling, and have been able to recover up to 24 obstacles
with high-precision, without a priori information on the true locations. Despite the large number of
factorizations needed, the inversion time is kept reasonably low by FSSL (10s for 6 obstacles, 11s for
12 and 4min for 24 obstacles in sequential execution).

We have also investigated several methods of optimization, including two search directions: quasi-
Newton BFGS (SD1) and nonlinear conjugate gradient (SD2), combined with three line search al-
gorithms imposing different criteria for choosing a step length: simple backtracking (LS1), sufficient
descent (LS2) and strong Wolfe conditions (LS3). Our comparisons with 200 randomly generated
initial guesses for six obstacles show that SD1 and LS3 are the most reliable methods. This is again

12Note that Shannon sampling theorem would require two points per wavelength, we double this value per safety.
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confirmed in the experiment with twelve obstacles, which shows a slight edge towards SD1-LS3. The
latter option also allows us to locate twenty-four obstacles. We also note that, SD2 performs better at
lower frequencies, giving steeper descent in the value of the cost function, right from the start. How-
ever, at higher frequencies, it is SD1 that gives faster convergence. This means that mixed algorithms
could be investigated to optimize the iterations number.

Our results serve as a satisfactory initial feasibility assessment for the procedure. We observe that
the difficulty of the localization problem increases sharply with the number of obstacles, especially
when there are more hidden-from-view positions. This is the subject of future work. Problem with
higher number of obstacles would require an improved computational framework (parallel code, which
is in progress) and an analysis to treat the increased ill-posedness (e.g., with the frequency cycling as
proposed here). In addition, we could work with second order optimization, and start from an initial
guess given by a direct image method, as was done in [7] for medium reconstruction.
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A Calculation of the gradient by adjoint-state method

As announced in Section 3, the main ingredient of these first-order methods is the Fréchet derivatives
of the cost function J with respect to the position of the obstacles p. The adjoint-state method
allows to calculate J ′ without having to calculate the whole Jacobian ∂pΦ. For simplicity, in the
following we take NAcq = 1. In case of multiple angles of incidence, the final result of Proposition 1
is summed over all angles of illumination.

A.1 The adjoint-state method

Step 1 We first explore the structure of ∂p Φ.

(39) ∂p Φ =

(
∂p

NObs∑
J=1

m∑
l=−m

(SJ wJ,l)(Rk)SJl

)
1≤k≤Nrec

= R ∂p S + (∂p R) ·
(J,l)

S ,

where we have written ∂p Φ as the sum of two matrices,

(40)

R ∂p S =

(
NObs∑
J=1

m∑
l=−m

(
SJ wJ,l

)
(Rk)

[
∂p SJl

])
1≤k≤Nrec

;

(∂p R) ·
(J,l)

S :=

(
NObs∑
J=1

m∑
l=−m

[
∂p (SJ wJ,l)(Rk)

]
SJl

)
1≤k≤Nrec

.

Recall that the single-layer operator SJ and the Fourier nodes wJ,l are defined in (7) and (6). At
each index k, the quantities in the parentheses of (40) are row vectors of size Npar. The contraction
·

(J,l)
is described in Step 3 in Subsection 3.1. An explicit expression of the tensor ∂p R is given by

(26).
To calculate the second matrix in (39), one simply needs the Fréchet derivative of R which in

essence requires the Fréchet derivatives of the single layer S. An explicit calculation of this is given
by in [55, Eqn (66) App. B1], with the expression evaluated at V = S(p). It remains to study the
first matrix in (39). We write

A(p)S(p) = F (p) ⇒ W(p) + A(p) ∂p
[
S(p)

]
= ∂pF (p) .
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Here, W(p) is matrix of size N ×Npar,

(41) W := ∂pA ·
(J,l)

S

with its (I, l) row given by

(42) W((I, l), :) =
(NObs∑
J̃=1

m∑
m=−m

(
∂p AIJ̃;lm

)
SJ̃m

)
1≤I≤NObs ,−m≤l≤m

.

As a result, we obtain

(43) ∂p S(p) = A(p)−1
(
−W(p) + ∂p F (p)

)
.

Step 2 We now compute the action of ∂pΦ on the vector Φ(p)− d. Using the decomposition (39),
we obtain

(44) (Φ− dobs)
? ∂pΦ = (Φ− dobs)

?R ∂pS + (Φ− dobs)
? (∂p R) ·

(J,l)
S.

Rewrite further the first term by substituting in (43) (by convention, all vectors are column),

(45)

(Φ− dobs)
?R ∂p S = (Φ− dobs)

?R A−1(−W + ∂pF )

=
(
A−?R? (Φ− dobs)

)?
(−W + ∂pF )

= γ1
? (−W + ∂pF ) .

Here, we have denoted the expression in the first parentheses by γ1,

(46) γ1 = −A−?R? (Φ− dobs) ⇔ A? γ1 = −R?(Φ− dobs) .

Now using (22), (44)–(46), we arrive at the following formula to calculate J ′.

Proposition 1. With adjoint state γ1 given by (46), S(p) (12), and W (41)–(42), the derivative of
the cost function is given by the following expressions,

(47)

J ′(p) = Re
[
(RV − dobs)

? ∂p(RV ) + γ?1
(
∂p (AV ) − ∂pF )

]∣∣
V=S(p) , γ1=γ1

= Re
[
(Φ(p)− dobs

)?
∂pR ·

(J,l)
S(p) + γ1

? (∂p A ·
(J,l)

S(p) − ∂pF )
]

= Re
[
(Φ(p)− dobs)

? ∂pR ·
(J,l)

S(p) + γ1
? (W − ∂pF )

]
.

A.2 The adjoint-state method by the Lagrangian

We now the results of Prop. 1 from the Lagrangian point of view. Introduce the cost function G
defined as

(48) G : RNpar × CN −→ R ; G(p, V ) := ‖R(p)V − d ‖2CNrec .

By the definition of the forward map Φ in (17), the cost function G evaluated at V = S(p), defined
in (12), gives the reduced cost function J ,

(49) J (p) := G
(
p , S(p)

)
= ‖Φ(p) − d ‖2CNrec .

Lagrangian To calculate J ′, we consider the following optimization problem

min
p ∈RNpar , V ∈CN

G(p, V ) subject to A(p)V − F (p) = 0 ,
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with p and V treated as independent variables, with the linear equation (10) (also called state
equation) posed as a constraint. For this purpose, we introduce the Lagrangian L and the adjoint
state variable γ1 ∈ CN

(50)
L : RNpar × CN × CN −→ C

L(p, V, γ1) := G(p, V ) + l(p, V, γ1) ,with l(p, V, γ1) := γ?1 (A(p)V − F (p)) .

Here ? is the transposed complex conjugate. In terms of Lagrangian L, the cost function is given by,

J (p) = Re L
(
p , S(p) , γ1

)
, ∀ γ1 , p ; J ′(p) = ∂p

[
Re L

(
p , S(p) , γ1

)]
.

By [55, Eqn 56 in App. A],

(51)
J ′(p) δp = Re

[(
∂pL

)
(p, V, γ1

)
+
(
∂CRV L

)
(p, V, γ1) ∂pS(p)

+
(
∂CR
V
L
)
(p, V, γ1) ∂p S(p)

]∣∣∣
V=S(p)

δp .

Here, ∂pL is the usual partial derivative of L with respect to p, while ∂CRV L, and ∂CR
V
L are the complex

partial derivatives defined in [55, Def 1 in App. A].

The adjoint-state problem We would like to avoid calculating ∂p S(p). For this purpose, we can
and will choose γ1 so that the terms in (51) containing this quantity and its conjugate vanish, i.e.

(52)
(
∂CRV L

)
(p, V,γ1) ∂pS(p) +

(
∂CR
V
L
)
(p , V , γ1) ∂pS(p) = 0 .

To arrive at a more explicit equation, we now calculate LV , and LV . We have

∂CRV L = ∂CRV G + ∂CRV l ; ∂CR
V
L = ∂CR

V
G + ∂CR

V
l .

By its definition, l is linear in S which is itself linear in V , thus l is Fréchet differentiable with respect
to V and

∂CRV l = ∂CRV

[
γ1

?(AV − F )
]

= γ1
?A ; ∂CR

V
l = 0 .

By [55, Def 1 in App. A], we have

∂CRV G = 1
2 (R V − dobs)

?R ; ∂CR
V
G = 1

2 (RV − dobs)
tR .

LHS of condition (52) is(
∂CRV L

)
(p , V , γ1) ∂pS(p) +

(
∂CR
V
L
)
(p , V , γ1) ∂pS(p)

= 1
2

(
RV − dobs

)?
R ∂pS(p) + 1

2

(
RV − dobs

)t
R ∂pS(p) + γ?1A ∂pS(p) .

This then gives

Re
[(
∂CRV L

)
(p, V, γ1) ∂pS(p) +

(
∂CR
V
L
)
(p, V, γ1) ∂pS(p)

]
= Re

[((
RV − dobs

)?
R + γ?1 A

)
∂p S(p)

]
.

Condition (52) is satisfied, if γ1 solves the following equation(
RV − dobs

)?
R + γ?1 A = 0 ⇔ A?γ1 = −R? (RV − dobs)

evaluated at V = S(p). We have thus arrived at the adjoint problem (46).
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Final step We use the adjoint state γ1 = γ1 as defined in (46) to simplify (51) to

Ĵ ′(p) δp = Re
[(
∂pL

)
(p, V, γ1)

∣∣
V=S(p) , γ1=γ1

δp
]
.

It remains to calculate ∂pL = ∂pG + ∂p l. By using [55, Prop 4,App. A], one obtains, for details see
[55, p.19]

(∂pG)(p, V, γ1) = 2 Re [1
2

(
RV − dobs

)?
∂p(RV )] .

On the other hand,(∂p l)(p, V, γ1) = γ?1 [∂p(AV ) − ∂pF ]. As a result, we arrive at results of Prop
1.
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[66] Jean Virieux and Stéphane Operto. An overview of full waveform inversion in exploration geo-
physics. Geophysics, 74(6):WCC1–WCC26, 2009.

[67] Xiaodong Zhang, Shira L Broschat, and Patrick J Flynn. A numerical study of conjugate gradient
directions for an ultrasound inverse problem. Journal of Computational Acoustics, 12(04):587–
604, 2004.

[68] A Zinn. On an optimisation method for the full-and the limited-aperture problem in inverse
acoustic scattering for a sound-soft obstacle. Inverse Problems, 5(2):239, 1989.

31


	Introduction
	Discrete direct and inverse problem
	Optimization method
	Calculation of the gradient by adjoint-state method
	Frequency-hopping inversion procedure

	Numerical experiments
	Localization of 6 hard-scattering obstacles
	Inversion using data with noise with initial guess 1 and 2
	Statistics from two hundred different initial guesses

	Localization of 12 soft-scattering obstacles
	Localization of 12 hard-scattering obstacles in irregular configuration
	Localization of 24 hard-scattering obstacles in irregular configuration

	Conclusion
	Acknowledgment
	Calculation of the gradient by adjoint-state method
	The adjoint-state method
	The adjoint-state method by the Lagrangian


