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POSITIVE FUNCTIONALS AND HESSENBERG MATRICES

JEAN B. LASSERRE AND MIHAI PUTINAR

Abstract. Not every positive functional defined on bi-variate polyno-
mials of a prescribed degree bound is represented by the integration
against a positive measure. We isolate a couple of conditions filling this
gap, either by restricting the class of polynomials to harmonic ones,
or imposing the vanishing of a defect indicator. Both criteria offer con-
structive cubature formulas and they are obtained via well known matrix
analysis techniques involving either the dilation of a contractive matrix
to a unitary one or the specific structure of the Hessenberg matrix as-
sociated to the multiplier by the underlying complex variable.

1. Introduction

Typically, a positive functional on a space of continuous functions is rep-
resented as the integral against a positive measure. The departure from
this paradigm is notable on finite dimensional spaces, turning the existence
of a Riesz representation theorem into the basic quest of numerical cuba-
ture, solutions of the truncated moment problem or algebraic certificates for
positive elements.

The present note analyses the structure of positive functionals on spaces
of bi-variate real polynomials of a prescribed degree. In spite of the am-
ple references and recent progress on this topic, there are still challenging
open questions and notorious difficulties, mostly related to the constructive
aspects. Our approach uses complex variables, hence Hermitian forms over
complex variables rather than quadratic forms over the real field. The nat-
ural Hilbert space realization of Hermitian forms is also prominent in our
note. The balance between Hermitian algebra and Hilbert space geometry
turns out to be beneficial for entering into the fine structure of positive
functional on polynomial spaces.

Specifically, we import from operator theory the well known Sz.-Nagy uni-
tary dilation of a contractive matrix for constructing numerical cubatures
for harmonic polynomials; second, we identify, via a normality criterion in
matrix analysis, the numerical obstruction of a positive functional on poly-
nomials bi-variate polynomials of a prescribed degree to possess a cubature
on a real subspace of roughly half-dimension, but certainly containing all
polynomials of half-degree. In this quest we naturally touch the structure of
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2 JEAN B. LASSERRE AND MIHAI PUTINAR

the Hessenberg matrix representing the multiplier by the complex variable,
and reveal its normality up to a rank-one additive perturbation. A nor-
mal Hessenberg matrix characterizes finite point cubatures for polynomials
of a fixed maximum degree in the two variables. For the reader versed in
some operator theory, this part of our note deals with the Krylov subspace
analysis of truncations of a hyponormal operator.

A unifying conclusion of our observations is that one has to pay a price for
a positive functional to admit numerical quadratures (with positive weights).
Namely one has to drop the expectations/identities to some distinguished
subspaces of polynomials of approximatively half the original dimension.
Undoubtedly there are other paths to achieve such cubature formulas on
privileged polynomials, such it is the case of quadrature domains for har-
monic functions. A common feature of our study is the numerical and com-
putational accessibility to cubatures, modulo ubiqutiuous matrix analysis
techniques, having as solely input data the moments of the original func-
tional.

While a selected group of operator theory experts may find the main re-
sults below not surprising, our aim is to disseminate to a larger audience
some possibly novel, but very basic and versatile matrix analysis techniques.
The recent authoritative monograph by Schmüdgen [9] contains ample de-
tails and references, old and new, on the structure of positive functionals
on polynomial subspaces, cubature formulas, orthogonal polynomials and
(truncated) moment problems. All presented from the traditional point of
view of the functional analyst or function theorist. Hessenberg matrices
however are cultivated by rather disjoint groups of mathematicians, notably
in numerical analysis [6] and approximation theory [10].

Acknowledgement. Research of the first author and visit of the second
author at LAAS in Toulouse, funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement ERC-ADG 666981 TAMING).

2. Preliminaries

We denote by z = x + iy the complex variable in C, identified with
R
2. For a fixed positive integer d, Cd[z] is the complex vector space of

polynomials of degree less than or equal to d, and similarly for Cd[z, z],
respectively Cd[x, y] where in the case of two variables the total degree is
adopted. Similarly Ck,ℓ[z, z] stands for the vector space of polynomials of
bidegree k in z, respectively ℓ in z.

The starting point is a linear functional

L : C2d[z, z] −→ C

which is real L(p) = L(p), p ∈ C2d[z, z], and positive semidefinite, that is

L(|f(z, z)|2) ≥ 0,
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for all f ∈ Cd[z, z]. In particular, but not equivalently, L is hermitian
positive semidefinite, meaning that

L(|f(z)|2) ≥ 0, f ∈ Cd[z].

A hermitian square is by definition a real polynomial of the form |p(z)|2 with
p ∈ C[z].

The inner product and associated semi-norm

〈p, q〉L = L(pq), ‖p‖2L = L(|p|2),
are considered either on Cd[z, z] or on the subspace Cd[z]. In either case,
Cauchy-Schwarz inequality holds

|〈p, q〉L| ≤ ‖p‖L‖q‖L,
as well as triangle inequality. An immediate consequence of the latter is
that the set of null vectors

N = {p ∈ Cd[z, z], ‖p‖L = 0},
is a vector subspace of Cd[z, z]. The quotient space Hd = Cd[z, z]/N en-
dowed with the induced norm ‖ · ‖L is therefore a Hilbert space of finite
dimension.

For any element f ∈ Cd−2[z, z] Cauchy-Schwarz inequality implies

‖zf‖2L = L(|z|2|f |2) ≤ ‖|z|2f‖L‖f‖L.
In particular, if ‖f‖L = 0, then ‖zf‖L = 0. Thus multiplication by the
complex variable is well defined as an induced linear transformation

Mz : Cd−2[z, z]/(N ∩ Cd−2[z, z]) −→ Cd−1[z, z]/(N ∩ Cd−1[z, z]).

The above quotient spaces can be interpreted thanks to the second isomor-
phism theorem as subspaces of Hd.

Similarly we can define the subspace Ad = Cd[z]/(Cd[z] ∩ N) and speak
about the well defined operator Mz : Ad−2 −→ Ad−1. Denote by πd−2 the
orthogonal projection of Ad (or even Hd) onto Ad−2. When there is no
danger of confusion we simply denote π = πd−2. The compressed operator

M = Md−2 = πMz|Ad−2

is therefore well defined and bounded, as an endomorphism of a finite di-
mensional Hilbert space.

3. Quadrature formulas

We start by isolating a direct consequence of Sz-Nagy dilation theorem.

Theorem 3.1. Let L : C2d+2[z, z] −→ C be a real functional which is non
negative on hermitian squares, and let R = ‖Md‖, with the notation adopted
in the preliminaries. There are at most N ≤ (d + 1)2 nodes zk = Reiθk on
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the circle with center at z = 0 and radius R, and positive weights ck > 0, 1 ≤
k ≤ N , such that

L(h) =

N
∑

k=1

ckh(zk, zk),

for all harmonic polynomials h ∈ Cd,d[z, z].

Proof. The linear transform T = Md/R is contractive on the space Ad

of complex polynomials. Counting monomials as generators we find that
dimAd ≤ d+1. By the finite dimensional analog of Sz.-Nagy dilation theo-
rem, there exists a Hilbert spaceK of dimension less than or equal to (d+1)2,
containing isometrically Ad, and a unitary transformation U : K −→ K with
the property:

〈T k1,1〉L = 〈Uk1,1〉K , 0 ≤ k ≤ d.

Throughout this note 1 stands for the constant function equal to 1. For a
proof see Sz.-Nagy appendix to the Functional Analysis treatise [8], or the
original construction in [2]. The spectral resolution of the unitary matrix
U :

U =

(d+1)2
∑

k=1

eiθk〈·, fk〉fk,

implies for any element p ∈ Cd[z]:

L(p) = 〈p(T )1,1〉L = 〈p(U)1,1〉K =
∑

k

p(eiθk)|〈1, fk〉|2.

Above fk are the unit, mutually orthogonal eigenvectors of U .
Since every real valued harmonic polynomial h ∈ Cd,d[z, z] can be rep-

resented as the real part of a complex polynomial of degree d or less, the
proof is complete. The bound N ≤ (d + 1)2 counts the non-zero weights
ck = |〈1, fk〉|2.

�

It is relevant for applications to remind that the construction of the larger
unitary matrix U is explicit, on blocks of size (d + 1) × (d + 1) involving
at most two square roots of positive matrices, to be more specific, with the
notation in the proof, the defect matrices

√
I − T ∗T and

√
I − TT ∗, cf. [2].

Note that in the proof of the preceding theorem we have used only the
hermitian positivity of the linear form L. If we assume L positive semi-
definite, then we may expect more. We elaborate two such consequences.

First, remark that a real polynomial change of variables X = X(z, z), Y =
Y (z, z) (specifically X = X and Y = Y ) enables to consider the subalgebra
C[X,Y ] and the harmonic polynomials there. That is pull-backs by the
base change of harmonic polynomials in the variables X,Y . Since we deal
with bounded degrees we have to impose the necessary degree reductions.
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Assume that max(degX,deg Y ) ≤ n. Then the functional L defines by pull-
back a non-negative functional on C2e+2[X,Y ] with 2e+ 2 the largest even
integer less than or equal to 2d/n. The corresponding “complex” variable is
Z = X(x, y)+ iY (x, y) and so on. We leave the details of adapting Theorem
3.1 to the reader.

As simple as it might be, the following observation is instrumental for the
rest of the article.

Lemma 3.2. Assume the real functional L : C2d+2[z, z] −→ C is non-
negative on hermitian squares and denote M = πdMzπd.Then

L(pq) = 〈p(M)1, q(M)1〉L, (1)

provided max(deg(p),deg(q)) ≤ d+ 1,deg(pq) ≤ 2d+ 1.

For the proof note that

Mp(M)1 = Mp(z) = πd(zp(z))

whenever deg(p) ≤ d. In short we do not allow in the Lemma both polyno-
mials p and q to have maximal degree d+ 1.

Second, and more interesting, are some additional constraints on the ma-
trix M = Md, assuming that the functional L is defined on C2d+2[z, z] and
it is non-negative on all real squares.

Let f(z, z) be a polynomial of degree at most d in z, respectively z:

f(z, z) =

d
∑

j,k=0

fjkz
jzk.

The positivity of L implies in view of Lemma 3.2

0 ≤ L(|f |2) =
∑

j,k,r,s

fjkfrsL(z
j+szk+r) =

∑

j,k,r,s

fjkfrs〈M j+s1,Mk+r1〉.

Definitely these are non-trivial constraints on the matrix M = Md. If we
simplify the form of f to

g(z, z) = p(z) + zq(z),

Lemma 3.2 yields

0 ≤ L(|g|2) = L(|p(z)|2 + |z|2|q(z)|2) + 2ReL(zp(z)q(z)) =

‖p‖2 + ‖Mq‖2 + 2Re〈Mp, q〉
whenever deg(p) ≤ d and deg(q) ≤ d − 1. This is reminiscent of Halmos-
Bram subnormality condition for the matrix M , except that the quadratic
form, defined on Ad ⊕Ad:

σM (p, q) = ‖p‖2 + ‖Mq‖2 + 2Re〈Mp, q〉
is positive semi-definite only on the codimension-one subspace Ad ⊕ Ad−1.
For details about the operator theory background see for instance Halmos’
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problem book [3]. Consequences of such positivity conditions, and in partic-
ular relations to moment problems are explicitly discussed in the monograph
[7] and the article [1], where a question raised by Halmos was solved.

If we impose the stronger condition

‖p‖2 + ‖Mq‖2 + 2Re〈Mp, q〉 ≥ 0, p, q ∈ Ad, (2)

then the matrix M is what is called hyponormal, that is [M∗,M ] ≥ 0. Since
the trace of the commutator of two matrices is always zero, we infer that
M is actually normal. The spectral resolution for normal matrices will then
provide the desired quadrature formula.

Theorem 3.3. Let L : C2d+2[z, z] −→ C be a real functional which is non
negative on all real squares. Assume that L is strictly positive on hermitian
squares of bi-degree less than or equal to (d, d).

There are at most d+ 1 points ak ∈ C and weights ck > 0, so that

L(p(z)q(z)) =
N
∑

k=1

ckp(ak)q(ak) (3)

for all p, q ∈ Cd+1[z], subject to deg(pq) ≤ 2d + 1 if and only if the only
non-positive eigenvalue of the quadratic form σM is equal to zero.

We have stated the conclusion in terms of one defect number, to stress
that a single numerical criterion certifies the existence of the quadrature (3).

Proof. Assume condition (2) holds. Then

|〈Mp, q〉| ≤ ‖p‖‖Mq‖, p, q ∈ Ad.

On the other hand

|〈Mp, q〉| = |〈p,M∗q〉| ≤ ‖p‖‖M∗q‖, p, q ∈ Ad,

and the inequality is an equality for p = M∗q. Hence

‖M∗q‖2 ≤ ‖M∗q‖‖Mq‖, q ∈ Ad,

and consequently
‖M∗q‖ ≤ ‖Mq‖

regardless M∗q = 0 or not. But the later inequality means

〈MM∗q, q〉 ≤ 〈M∗Mq, q〉, q ∈ Ad,

or in operator inequality terms, the commutator [M∗,M ] is non-negative.
Since trace[M∗,M ] = 0 we deduce that M is a normal matrix, with a

spectral decomposition

M =
n
∑

k=0

ak〈·, fk〉fk,

with n ≤ d+ 1. Lemma 3.2 implies

L(p(z)q(z)) = 〈p(M)1, q(M)1〉 =
N
∑

k=1

p(ak)q(ak)|〈1, fk〉|2
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for all p ∈ Cd+1[z] and q ∈ Cd+1[z], but excluding the top degree corner,
that is so that deg(pq) ≤ 2d+ 1.

Conversely, assume that quadrature formula 3 holds in the given range of
bi-degrees. Then we can reverse the preceding computations and find

〈p(M)1, q(M)1〉 =
N
∑

k=1

ckp(ak)q(ak),

whenever p, q ∈ Cd+1[z] and deg(pq) ≤ 2d + 1. The assumption that the
functional L is stricly positive on hermitian squares of bidegree less than or
equal to (d, d) is equivalent to the fact that the vectors 1, z = M1, . . . , zd =
Md1 form a basis of the vector space Ad. In other termsM is a matrix with a
cyclic vector, acting on a (d+1)-dimensional space. Its minimal polynomial
h(λ) coincides then with the characteristic polynomial det(λI −M), and in
particular has degree d + 1. As a matter of fact one can identify h(λ) with
the orthogonal polynomial in degree d + 1 of the associated inner product.
Whence

0 = 〈h(M)1, q(M)1〉 =
N
∑

k=1

ckh(ak)q(ak).

By assumption, N ≤ d + 1, so that we can choose the polynomial q(z)
of degree at most d to be zero at all points ak except one. Consequently
h(ak) = 0 for all k, 1 ≤ k ≤ N .

Let P,Q ∈ C[z] be arbitrary degree polynomials. The division algorithm
yields

P = P0h+ P1, Q = Q0h+Q1,

with max(deg(P1),deg(Q1)) ≤ d. Since P0(M)h(M) = 0 and P0(ak)h(ak) =
0, 1 ≤ k ≤ N, and similarly for Q, we find the identity

〈P (M)1, Q(M)1〉 =
N
∑

k=1

ckP (ak)Q(ak)

valid over the entire polynomial ring C[z]. In other terms the operator
M is unitarily equivalent to the multiplication by the complex variable on
Lebesgue space L2(ν), with ν =

∑N
k=1 ckδak . That is M is normal and the

quadratic form σM is necessarily positive semi-definite. �

A few remarks are in order. One can start with the functional L merely
non-negative on hermitian squares, but then the statement has be adapted
to include the positivity of the form σM , and not only the reference to
its only possible negative square. The following section gives more details
along this path. Given the non-degeneracy assumption in the statement
of Theorem 3.3, we found during the proof that the number N of nodes
is necessarily maximal, that is N = d + 1. Finally one can compress the
multiplier Mz to other subspaces and have cubature formulas derived from
the same normality principle. Some examples collected in the final section
will complement these general statements.
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4. The Hessenberg matrix representation

We keep the notation introduced in the previous section and assume that
the functional L : C2d+4[z, z] −→ C is real and non negative on all real
squares. We adopt the hypothesis of Theorem 3.3, namely that L is strictly
positive on hermitian squares of bi-degree less than or equal to (d, d). Then
one can speak without ambiguity of the associated orthogonal complex poly-
nomials Pj(z), 0 ≤ j ≤ d+ 1 :

L(PjPk) = δjk, 0 ≤ j, k ≤ d+ 1.

We can also assume that the leading term of Pj is positive:

Pj(z) = κjz
j +O(zj−1), κj > 0, 0 ≤ j ≤ d+ 1.

In particular the cyclic vector 1 has the coordinates:

1 = (κ0, 0, 0, . . . , 0)
T .

The (d + 1) × (d + 1) matrix representation of the compressed multiplier
M = πdMzπd : Cd[z] −→ Cd[z] with respect to the orthonormal basis
{P0, P1, . . . , Pd} has only a first sub-diagonal non-zero:

ajk := 〈MPk, Pj〉 = 0, k < j − 1.

Such a structure bears the name of a Hessenberg matrix:

M =



















a00 a01 a02 . . . a0,d−1 a0d
a10 a11 a12 . . . a1,d−1 a1d
0 a21 a22 . . . a2,d−1 a2d
0 0 a32 . . . a3,d−1 a3d
...

. . .
. . .

...
0 0 . . . ad,d−1 add



















.

Note that the sub-diagonal entries are non-zero:

aj+1,j = 〈MPj , Pj+1〉 = 〈κjzj+1 + . . . , Pj+1〉 =
κj
κj+1

, 0 ≤ j < d.

Returning to the quadratic form σM defined in the previous section, we
turn to its matrix representation:

σM (p, q) = (p, q)

(

I M∗

M M∗M

)(

p
q

)

.

Our assumption implies, as explained in the previous section, that the above
block matrix is non-negative on the subspace Cd[z]⊕ Cd−1[z].

A notable change of coordinates block-diagonalizes this matrix with self-
commutator [M∗,M ] as one of the blocks:

(

I 0
−M I

)(

I M∗

M M∗M

)(

I −M∗

0 I

)

=

(

I 0
0 [M∗,M ]

)

.

In virtue of the min-max principle, the self-adjoint matrix [M∗,M ] has at
most one negative eigenvalue.
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With some elementary computations, we can say more about the possible
negative eigenspace of this self-commutator. To be more precise, start with
the one dimension up compressionMd+1 = πd+1Mzπd+1. This is well defined
as a linear transform due to the assumption that the original functional is
non-negative on C2d+4[z, z]. All the above computations hold, except the
existence of the orthogonal polynomial Pd+2, which is not needed in what
follows. In particular the matrix

(

I M∗

d+1
Md+1 M∗

d+1Md+1

)

is non-negative on the subspace Cd[z]⊕ Cd[z]. That is, the matrix
(

I M∗

M πdM
∗

d+1Md+1πd

)

is non-negative on Cd[z]⊕ Cd[z]. But

πdM
∗

d+1Md+1πd = M∗M + πdM
∗

d+1(πd+1 − πd)Md+1πd.

It remains to identify along the orthonormal basis given by the complex
polynomials Pj the contribution of the last rank-one matrix:

πdM
∗

d+1(πd+1 − πd)Md+1Pj = πdM
∗

d+1(πd+1 − πd)(zPj(z)) =

πdM
∗

d+1(zPj(z)− zPj(z)) = 0, j < d,

and

πdM
∗

d+1(πd+1−πd)Md+1Pd = πdM
∗

d+1〈zPd, Pd+1〉Pd+1 = ad,d+1πdM
∗

d+1Pd+1.

Note that K = πdM
∗

d+1(πd+1 − πd)Md+1πd is a non-negative self-adjoint
matrix, with the only non-zero entry on the d× d diagonal position:

〈Kq, q〉 = a2d+1,d|〈q, Pd〉|2, q ∈ Cd[z].

We infer that the matrix
(

I M∗

M M∗M +K

)

is non-negative on the whole space Cd[z]⊕Cd[z], and via the same elementary
transforms we conclude that [M∗,M ] + K is a non-negative matrix. This
information gives a lower bound for the only possible negative eigenvalue of
the self-commutator:

λ− = inf{〈[M∗,M ]q, q〉; ‖q‖ ≤ 1}.
Indeed, fix a polynomial q ∈ Cd[z] of norm less than 1. Then

λ− + a2d+1,d ≥ 〈[M∗,M ]q, q〉+ a2d+1,d‖q‖2 ≥

〈[M∗,M ]q, q〉+ a2d+1,d|〈q, Pd〉|2 = 〈([M∗,M ] +K)q, q〉 ≥ 0.

We collect the above computations into a single statement.
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Theorem 4.1. Let L : C2d+4[z, z] −→ C be a real functional which is non
negative on all real squares. Assume that L is strictly positive on hermitian
squares of bi-degree less than or equal to (d, d). Denote by (ajk)

d+1
j,k=0 the Hes-

senberg matrix associated to the system of complex orthogonal polynomials
induced by L.

Then the matrix M = (ajk)
d
j,k=0 is normal after a rank-one perturbation,

in particular the self-commutator [M∗,M ] has at most one negative eigen-
value λ− ≥ −a2d+1,d. Moreover, the matrix M is normal, that is [M∗,M ] = 0
if and only if ad+1,d = 0.

Remark that the non-negativity assumption in the statement implies that
the (d+2)× (d+2) Hessenberg matrix M̃ = (ajk)

d+1
j,k=0 is well defined, hence

the normality of its submatrix M is equivalent to the fact that M̃ leaves
invariant the subspace Cd[z]. More precisely,

M̃ =

(

M ∗
u ad+1,d+1

)

, where u = (0, 0, . . . , 0, ad,d+1).

While there is a simpler, operator theoretic derivation of the conclusion of
the above theorem, we preferred to enter minimally into the structure of
complex orthogonal polynomials for alerting the reader about the potential
of the Hessenberg matrix approach. For the linear numerical analyst or
approximation theory expert it is hardly a surprise to put the Hessenberg
matrix representation at work, see for instance [4, 10], to only touch the
ample literature devoted to the subject.

With the above understanding of the normality of the compressed mul-
tiplier M , we can return to the main result of the previous section, with a
quantitative criterion.

Corollary 4.2. Let L : C2d+4[z, z] −→ C be a real functional which is non
negative on all real squares. Assume that L is strictly positive on hermitian
squares of bi-degree less than or equal to (d, d).

There are at most d+ 1 points ak ∈ C and weights ck > 0, so that

L(p(z)q(z)) =

N
∑

k=1

ckp(ak)q(ak)

for all p, q ∈ Cd+1[z], subject to deg(pq) ≤ 2d+1 if and only if the Hessenberg
matrix entry ad,d+1 vanishes.

Summing up, the main observation supporting the preceding Corollary is
stated in the following rather surprising property of the associated Hessen-
berg matrix.

Proposition 4.3. Let L : C2d+4[z, z] −→ C be a real functional which is non
negative on all real squares. Assume that L is strictly positive on hermitian
squares of bi-degree less than or equal to (d, d) and denote by Mk = πkMzπk
the associated Hessenberg matrix of order k, k ≤ d+ 1.

The following are equivalent:
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(1) Md is a normal matrix,
(2) det([M∗

d ,Md] + ǫI) ≥ 0 for ǫ > 0,
(3) The entry ad,d+1 in Md+1 vanishes,
(4) Md+1 leaves invariant the subspace Cd[z].

To complete the proof, it suffices to recall that the self-commutator [M∗,M ]
can possess at most one negative eigenvalue. Condition (2) simply states
that [M∗,M ] cannot have a negative eigenvalue, hence [M∗,M ] ≥ 0, hence
M is normal. We stress that in general condition (2) offers a numerical
certificate for a symmetric matrix with at most one negative eigenvalue to
be non-negative.

So far, we have only used the positivity of the functional L on hermitian
squares and on squares of the form |f(z) + zg(z)|2. A whole hierarchy of
stronger non-equivalent conditions, for instance on the Hessenberg matrix
M , can be derived from the positivity of L on elements |P (z, z)|2 where
degz P ≤ k. This later property, called k-hyponormality, is analyzed in
detail and put at work in [1].

5. Examples

In this section we gather a few simple examples which support the general
theme of this note: that combining complex variables with positivity of
linear functionals is leading to useful, sometimes unexpected, consequences.

Example 5.1. Contrary to the tacit convention of this note, we start with a
scalar product rather than a potential integration functional with positivity
assumption. Specifically, let [−a, a] be a compact interval of the real line
and consider the Dirichlet type inner product:

〈p, q〉 =
∫ a

−a
[p(x)q(x) + p′(x)q′(x)]dx,

defined for all polynomials p, q ∈ C[x] with complex coefficients. Apparently
there is no linear functional L, so that

L(pq) = 〈p, q〉.
One can remedy this by passing to complex coordinates. Namely, define for
p, q ∈ C[z] the sesquilinear form

Λ(pq) =

∫

(1 +
1

4
∆)(pq)dµ,

where µ is any rapidly decreasing at infinity positive measure. Above ∆ is
Laplace operator, and its factorization via complex variables

∆ = 4
∂

∂z

∂

∂z

implies

Λ(pq) =

∫

(pq + p′q′)dµ,
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when this time p′(z), q′(z) denote complex derivatives. By choosing dµ =
χ[−a,a]dx one finds unexpectedly

Λ(pq) = 〈p, q〉, p, q ∈ C[z].

The multiplier Mz is well defined on the whole algebra C[z], but its compres-
sions to prescribed degrees are not normal. However, a familiar computation
borrowed from Sturm-Liouville theory shows that one can restrict M to a
space of polynomials where it is. To be precise,

〈Mzp(z), q(z)〉 + 〈p(z),Mzq(z)〉 =
∫ a

−a
[xp(x)q(x)+p(x)xq(x)+(xp′(x)+p(x))q′(x)+p′(x)(xq′(x) + q(x))]dx =

2

∫ a

−a
(1 +

1

4
∆)(pq)xdx+

∫ a

−a
[p(x)q′(x) + p′(x)q(x)]dx.

Fix a dimension d and consider the subspace V (e)d of even polynomials
vanishing at ±a, of degree less or equal than d, or the subspace V (o)d of
odd polynomials vanishing at ±a. Along every one of these two subspaces
the last to integrals vanish. Hence the compressions Me, respectively Mo of
Mz to these subspaces are skew symmetric, i.e. Me +M∗

e = 0, respectively
Mo+M∗

o = 0. Hence Mo and Me are normal with purely imaginary spectra.
In conclusion, there are quadrature formulas of the form

∫ a

−a
[p(x)q(x) + p′(x)q′(x)]dx =

N
∑

k=1

ckp(iak)q(iak),

with ck > 0 and ak ∈ R for all k, 1 ≤ k ≤ N , valid for both polynomials
p, q either of the form (z2 − a2)f(z2), or (z2 − a2)zf(z2) and f ∈ Cn[z] with
a prescribed n. Counting degrees we can specify N ≤ n + 1. The complex
location of the quadrature nodes is another strong indication that passing
from real to complex variables is very natural in this case.

Example 5.2. To prove that the minimal node number (producing a so
called Gaussian type quadrature) in Theorem 3.3 is needed, we simply look
at a counting measure supported by the vertices of a regular n-gon.

Indeed, let n > 2 be a positive integer and let ǫ = ei2π/n be the primitive
root of order n of unity. The measure dν = 1

n(δ1 + δǫ + . . . + δǫn−1) has
complex moments concentrated on the diagonal, up to degree n:

∫

zkzℓdν = 0, 0 ≤ k, ℓ ≤ n, k 6= ℓ.

The associated complex orthonormal polynomials are 1, z, . . . , zn. Let d < n
and consider the orthogonal projection πd of the finite Hilbert space L2(ν)
onto the space Ad of complex polynomials of degree less than or equal to d.
The compressed matrix Md = πdMzπd of the multiplier Mz is the Jordan
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block of size (d+1)×(d+1), hence far from being normal. However, a finite
point quadrature exists (with more than d+ 1 nodes)

〈p(Md)1, q(Md)1〉 =
∫

pqdν,

whenever deg(p) ≤ d+ 1 and deg(q) ≤ d.

Example 5.3. A non-negative real functional which is positive on hermitian
squares is offered by the integration with respect to arc length on the unit
circle:

L(zjzk) = δjk, j, k ≥ 0.

The associated Hessenberg matrix of order (d+1)×(d+1) is the Jordan block,
that is the Toeplitz matrix with equal entries to 1 on the sub diagonal and
zero elsewhere. The complex orthogonal polynomials are Pj(z) = zj , j ≥ 0.

Note that

L(|z|2q(z, z)) = L(q(z, z))

for any polynomial q ∈ C[z, z] and in particular

L(|1− zz|2) = 0.

In other terms the form σM and the self-commutator [M∗,M ] may be de-
generate, in spite of the fact that L is positive definite on hermitian squares,
that is:

L(|f(z)|2) = 0 ⇒ f = 0.
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