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Limiting Energy Storage Cycles of Operation
Md Umar Hashmi, and Ana Bušić

Abstract—Batteries are an expensive form of energy storage,
therefore, must be operated in an efficient manner. Battery life is
often described a combination of cycle life and calendar life. In
this work we propose a mechanism to limit the number of cycles
of operation over a time horizon in a computationally efficient
manner. We propose a modification in an optimal arbitrage
algorithm proposed in our previous work [1] to efficiently control
the number of cycles of operation of a battery. The cycles of
operation have to be tuned based on price volatility to maximize
the battery life and arbitrage gains. We propose a mechanism to
distinguish arbitrage returns.

I. INTRODUCTION

With increased share of power coming from Renewable
Energy Sources (RES), the uncertainty in power networks is
increasing. This variability makes the power, frequency and
voltage regulation more challenging. Inverter based RES has
small inertia compared to conventional synchronous power
generators, reducing the capability of the future power grid
to withstand perturbation. The future power network will
need fast dynamic ancillary services to avoid additional in-
frastructure development in installing fast ramping power
generators. Distributed energy storage devices such as bat-
teries are suitable for assisting the grid because of its fast
ramping capability. Authors in [2] highlight the diverse roles
energy storage technologies can play in future power networks.
Energy storage not only improves the reliability of power
network but also facilitates arbitrage and increases the value
of renewable energy sources in the energy markets. Authors
in [3] point that battery owners participating in electricity
markets should consider cycle aging of batteries. This is due to
finite battery cycle life, which is affected by charge-discharge
operational cycles, temperature etc. Using a case study on ISO
New England energy and reserve markets, authors demonstrate
that participants maximize their operational profit while con-
sidering cycle aging cost.

The variability in the price is due to the variable generation
cost and demand and supply mismatch components caused
due to scheduling delays and errors in forecast of RES. This
variability in the price can be used by batteries for performing
arbitrage. However, sometimes charge and discharge cycles
generate very small revenue and it would be beneficial for the
battery to be idle. Maximizing idle time would lower stress
on the battery and maximize the cycle life of the battery [4].
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The key contributions are:
• Limiting cycles of operation: In this work we highlight how
at the cost of small portion of arbitrage gains, the battery cycle
life can be significantly improved.
• By introducing friction coefficient, ηfriction in energy arbitrage
control we can efficiently control the cycles of operation. If
the battery is operating more number of cycles per day then
ηfriction is decreased so that the battery on average operates
for lower number of cycles. Note the selection of ηfriction will
governed by variability of price, number of cycles of operation
in absence of any friction, i.e., ηfriction = 1.
• Distinguishing arbitrage returns: We present a mechanism
to eliminate low returning transactions to maximize battery
life.

The rest of the paper is organized as follows. In Section
II we describe the cycle and calendar life of battery and
list the typical values for power grid batteries. Section III
summarizes the optimal arbitrage algorithm proposed in [1].
Section IV presents the mechanism to limit cycles of operation
of a battery. Section V presents the numerical results. Section
VI concludes the work.

II. BATTERY LIFE

There are two distinct, but inter-related ways that are used to
measure the life of Li-ion batteries deployed in energy storage
system applications for smart grid - calendar life and cycle life.

A. Cycle Life

One of the indexes which decides the life of operation is the
rated cycles of operation of a battery. This information is often
provided by manufacturers in their data-sheets. In this section
we will enlist the values of the cycle of operation provided by
the manufacturers under controlled environment. This value
of cycles will with high probability lead to the end-of-life
(EoL) of the battery. EoL is frequently defined as a state of
the battery when the maximum capacity of the battery reduces
to 80% of its rated initial capacity. In order to understand the
typical cycle life of Li-ion based grid batteries, we summarize
the cycle life information provided by the manufacturers in
their data-sheets in Table I.
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Fig. 1: Li-ion cycle of operation with DoD [11]



TABLE I: Cycles of operation as listed in datasheets

Manufacturer Cycles of operation Remarks
C&D Techno [5] 4,300 cycles 20oC, 80%DoD

AES Advancion [6] 2000 to 3000 at 80%DOD
LG Chem 6.4 [7] > 6000 90% DoD, 25oC

QINOUS Li-ion [8] 4000 cycles 1C/1C, 80%DoD, 25oC
Tesla Powerwall 1 [9] 5000 cycles daily cycle application

Tesvolt 8000 cycles for 70% DoD
Li-phosphate [10] 5000 cycles for 90% DoD

6 000, no aging 25 deg.C, 70% DOD
Forsee Power 5 000, with aging 25oC , 2 cycles/day

HE48 [11] 4400, with aging 25oC , 1 cycles/day
aentron Li-ion [12] 3000 50% DoD, 20oC
Bosch Storage [13] 4500 -

REFU [14] 6000 80% DoD, 20oC ,
max discharge=0.5C

The factors affecting the rated cycles of operation are:
• Battery type: Chemical composition of the battery,
• Depth of discharge (DoD): Operational cycles,
• Temperature should be maintained,
• Ramp rate: affects the stress on the battery,
• Cycles per day.
Fig. 1 shows the effect of number of cycles of operation

with variation in DoD. It should be noted that 10 cycles of
10% DoD will be equal to 1 cycle of 100% DoD, in terms of
energy exchange.

B. Calendar Life

Calendar life refers to the number of years the battery is ex-
pected to last till the battery will reach EoL. It is independent
of how much the battery is charged and discharged. However,
calendar life is dependent on the state of charge of the battery
and the temperature.

TABLE II: Calendar Life as listed in datasheets

Manufacturer Calendar life and Remarks
AES Advancion [6] 7-8 years Lifespan

Evolion Li-ion battery [15] at 20 deg. C is 20 years
at 40 deg. C is > 10 years

LG Chems RESU 6.4 EX [7] at 25 deg. C is > 10 years
Tesla Powerwall 2 [9] warranty of 10 years

Tesvolt Li-phosphate [10] 10 years
Forsee Power Li-ion HE48 [11] 10 years

aentron Off grid Li-ion [12] 10 yr. at 20 deg. C, Warranty 5 yr.
Bosch Storage Solutions [13] > 10 years

BYD [16] Warranty of 5 years

Table II indicate that the typical value of calendar life is
around 10 years. The calendar life deteriorates drastically with
temperature as shown in Table II for Evolion Li-ion battery.

The life of a battery will be a function of cycle life and
calendar life. If the battery operates more cycles per unit of
time then the battery EoL will be achieved due to cycle life
limitations and vice versa. Data-sheet [17] shows how the
calendar life of the battery is a function of SoC level and
temperature. An interesting observation is that a high SoC level
affects the calendar life drastically at high temperatures. It can

be observed that below 35oC expected life is independent of
SoC. In this work we assume temperature is controlled and
SoC is regulated in the optimal band of operation.

III. OPTIMAL STORAGE CONTROL

In a commodity market, arbitrage can be performed if the
price of that commodity varies in time. Often, the buy and
sell decisions are coupled in time because of the finite size of
the buffer/capacity/inventory, where the commodity is stored.
Similarly, when energy storage devices perform arbitrage, the
buy and sell decisions are coupled because of the finite storage
size; a decision to buy or sell in the present time instant will
influence the potential to charge or discharge in future.

The total duration, T , of operation is divided into N equal
steps, where in each step i ∈ {1, ..., N} the price of electricity
is denoted as pi. The sampling time is denoted as h. The
efficiency of charging and discharging of the battery are
denoted by ηch ∈ (0, 1] and ηdis ∈ (0, 1], respectively. We
denote the change in the energy level of the battery at ith

instant by xi = hδi, where δi denotes the storage ramp rate
at ith instant; δi > 0 implies charging and δi < 0 implies
discharging. Amount of energy that comes from the battery at
ith instant is given by si = 1

ηch
[xi]

+ − ηdis[xi]
−.

Storage Constraints: The battery has limited capacity. We
incorporate the battery capacity constraints by imposing bi ∈
[bmin, bmax],∀i, where bmin, bmax is the minimum and the
maximum battery charge level. In operating Li-ion battery
it should be ensured that it is never over-charged or over-
discharged. The instantaneous battery charge level is given as
bi = bi−1 + xi.

The ramp rate constraint is given as δi ∈ [δmin, δmax],∀i,
where δmin ≤ 0, δmax ≥ 0 are the minimum and the maximum
ramp rates (kW). The change in battery charge level xi ∈
[Xmin, Xmax], where Xmin = δminh and Xmax = δmaxh.

An optimal control problem for an energy storage device
such as a battery is proposed in [18], [19] using convex-
ity property of the optimization function and saddle point
inequality. Authors in [1] propose optimal energy arbitrage
algorithm under time varying electricity prices. In this work
it is shown that a time horizon of optimization can be sub-
divided into sub-horizons. In each of these sub-horizons, the
shadow price is a function of price levels in a sub-horizon
and is independent of all past and future sub-horizons. This
value of the shadow price is altered only when the battery
capacity reaches its maximum or minimum permissible charge
levels. Based on the value of shadow price in a sub-horizon,
the optimal control decisions are selected depending on the
level of price of electricity at that instant.

The threshold based structure of the optimal solution is
presented in Remark 1.

Remark 1. The optimal control decision x∗i in the ith instant
minimizes the function C(i)

storage(x)−µ∗
i x for x ∈ [Xmin, Xmax].



The optimal decision x∗i (µ) is

x∗i (µ) =



Xmin, if µ < pdis(i),

[Xmin, 0] , if µ = pdis(i),

0, if pch(i) > µ > pdis(i),

[0, Xmax] , if µ = pch(i),

Xmax, if µ > pch(i),

(1)

where pch(i) = pi/ηch, pdis(i) = piηdis, C
(i)
storage(xi) = sipi and

µ represents the shadow price of the transaction.

Note for µ = pch(i) or µ = pdis(i), x∗i (µ) takes an envelope
of values and for any other value of µ it is a singleton set.

In order to find optimal decisions among an envelope of
possible solutions based on the price variations, the Backward
Step algorithm is used one time. The details of the algorithm
can be found in prior work [1].

IV. LIMITING CYCLES OF OPERATION

In Section II we discussed that the cycles of operation is
one of the primary indicators of battery life. In other words,
if the battery is used a lot then the battery will last less. To
maximize the operational life, the average number of cycles
of operation per unit of time (Iop) should be set to

Iop =
Cycle Life

Calendar Life
. (2)

EoL of a battery operating more than Iop will be caused
by the limitation on cycle life of the battery, implying the
battery is over-used. If the battery is under-used, EoL will be
caused by the calendar life. We assume that if cycle life equals
calendar life of the battery than the operational life the battery
is maximized. This criterion will be met if battery operates Iop
cycles per unit time on average, shown in Eq. 2.

Note the volatility across all days in a year can vary
drastically, implying battery should perform more cycles when
the volatility is high. The friction coefficient ideally should be
selected adaptively ensuring maximizing gains and battery’s
operational life.

We propose limiting the operation of the battery by adding
friction in mode changes for the battery. Adding friction will
ensure that the battery does not operate for lower returns. This
idea of creating dead-band of no operation is motivated by
Eq. 1. The threshold based structure of the optimal solution
indicates that the optimal decision for the battery when the
condition pch(i) > µ > pdis(i) is true, is to do nothing. This
band signifies the additional profit the charge discharge cycle
of a battery should make in order to compensate the losses
incurred due losses in charging and discharging. Increase of
this band will indicate eliminating low returns transactions in
arbitrage. We define modified charging and discharging cost
as a function of friction coefficient denoted as

pLch(i) = pch(i)/ηfriction =
pi

ηchηfriction

pLdis(i) = pdis(i)ηfriction = piηdisηfriction

The threshold based structure of the solution is modified as

x∗i (µ) =



Xmin, if µ < pLdis(i),

[Xmin, 0] , if µ = pLdis(i),

0, if pLch(i) > µ > pLdis(i),

[0, Xmax] , if µ = pLch(i),

Xmax, if µ > pLch(i),

(3)

The selection of ηfriction will be governed by: volatility of the
price, maximizing operational life of the battery and arbitrage
gains. Note the value of ηfriction ∈ [0, 1]. The control of ηfriction
should only be considered if the cycles of operation per day
is higher than Iop.

V. NUMERICAL RESULTS

In this section we present a numerical example demonstrat-
ing the effect of friction coefficient on arbitrage gains, number
of cycles of operation and the shadow price of transaction. The
battery parameters used for the numerical evaluation is listed
in Table III. Consider the battery has a cycle life of 6000 cycles

TABLE III: Battery Parameters

Parameter Value Parameter Value
δmax 0.5 kW δmin −0.5 kW
bmax 1 kWh bmin 0.1 kWh
ηch 0.95 ηdis 0.95
h 0.25 hour b0 0.1 kWh

and calendar life of 10 years. The optimal number of cycles
the battery should operate per day should be Iop = 1.644
per day, using Eq. 2. Real-time 15-minute locational marginal
price data for 21st December, 2016 from NYISO [20] is
used for simulation analysis. The electricity price is plotted
in Fig. 2. Fig. 3 shows the variation of cycles of operation
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Fig. 2: Price of Electricity NYISO [20]

and arbitrage gains with friction coefficient. When friction
coefficient is 1 implies battery operates more and the arbitrage
gains are higher. As the coefficient is reduced the decrease
in gains and cycles of operation can be observed. For Iop
cycles per day, the optimal value of friction coefficient for
this numerical example is ηfrictionopt = 0.855 as shown in
Fig. 3. Note that for achieving Iop cycles the reduction in
arbitrage gains is ≈ 10% and the cycles of operation decreases
by ≈ 36%. A risk averse user may prefer to maximize it’s
current gains, for example for ηfriction = 0.928, the reduction
in gains is 1.47% and the reduction in cycles of operation
will be 11.7%. Fig. 4 shows the variation of shadow price
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Fig. 3: Variation of cycles and gains with ηfriction

across the time horizon of 1 day as the friction coefficient is
varied. Note as the friction coefficient is reduced, the shadow
price converges to a single level. Fig. 5 shows the variation
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of ramp rate of the battery with ηfriction. On comparing Fig. 5
with respect to price variations in Fig. 2, it is evident that
battery operates only when the gains are significantly higher
for lower values of ηfriction. As the ηfriction is reduced the battery
operates only around midnight to charge in order to discharge
during morning peak and during evening peak. The friction
coefficient distinguishes arbitrage gains based on the returns.
Inclusion of ηfriction ensures battery operates for only when the
gains are high enough.

VI. CONCLUSION

We propose a mechanism to compare arbitrage gains and
cycles of operation for a battery. The users can tune the coef-
ficient of friction according the price volatility over a period to
maximize operational life of a battery and its arbitrage gains.
The inclusion of friction coefficient ensures that low returning
transactions are eliminated and battery operates only when
returns are higher.
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