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Abstract. Semantic Web applications require querying available RDF
Data with high performance and reliability. However, ensuring both data
availability and performant SPARQL query execution in the context of
public SPARQL servers are challenging problems. Queries could have
arbitrary execution time and unknown arrival rates. In this paper, we
propose SaGe, a preemptive server-side SPARQL query engine. SaGe
relies on a preemptable physical query execution plan and preemptable
physical operators. SaGe stops query execution after a given slice of
time, saves the state of the plan and sends the saved plan back to the
client with retrieved results. Later, the client can continue the query
execution by resubmitting the saved plan to the server. By ensuring a
fair query execution, SaGe maintains server availability and provides
high query throughput. Experimental results demonstrate that SaGe
outperforms the state of the art SPARQL query engines in terms of
query throughput, query timeout and answer completeness.

Keywords: Semantic Web, SPARQL query processing, Data availabil-
ity, Preemptive query execution

1 Introduction

The semantic web is a global unbound data space where data providers publish
data in RDF and data consumers execute SPARQL query though semantic web
applications [3]. When writing a semantic web application, it is crucial that RDF
data are available and SPARQL queries execution are performant and reliable.
However, ensuring both RDF data availability and query performance is a major
issue for the semantic web.
A semantic web application can rely on public SPARQL endpoints to access
RDF data. However, as reported in [5], during 27 month monitoring, only 32.2%
of public endpoints have a monthly "two-nines” up-times. Undoubtedly, this is
a problem for writing semantic web applications. This is also a problem for
data providers that have to support an unpredictable load of arbitrary SPARQL
queries. Public SPARQL endpoints protect themselves by using quotas in time
and query results as in DBPedia SPARQL endpoint 1. Such protections dras-
tically limit the availability of RDF data when executing long-running queries
pushing developers to copy data locally and query data dumps.
1 http://wiki.dbpedia.org/public-sparql-endpoint
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The Public SPARQL endpoints are not the only way to query the semantic
Web. Various tradeoffs have been explored with Link Traversal [8] or Linked
Data Fragments (LDF) [18] as reported in [10]. The LDF approach demonstrates
how SPARQL query execution can be distributed between data providers and
data consumers to improve data availability. The interface of the public LDF
servers can scale at low cost for data providers because this interface only pro-
cesses constant time operations, such as paginated triple patterns with the TPF
interface [18]. However, costly SPARQL operations, like joins, are performed on
client side. As a large number of intermediate results are transferred to the client,
the performances of the query execution can be significantly degraded compared
to the performances of public SPARQL endpoints. Consequently, writing web
applications with low performances SPARQL query execution remains a serious
limitation for the development of the semantic web. The main challenge is to
find an interface for public servers and a query execution model ensuring both
RDF data availability at low cost for data providers and high query execution
performances for semantic web application developpers.
In this paper, we propose SaGe, a new SPARQL query engine based on state-
less preemptable query plans. The main idea is to allow a SaGe public server to
preempt a query execution after a predefined slice of time, save the query execu-
tion state, and send this state to the smart SaGe client. Later, the client is free
to continue execution by resubmitting the saved execution state. This execution
model allows complex queries to be executed without explicit and costly pag-
ination performed by clients, based on Limit/Offset/OrderBy query rewriting
techniques [2]. The time quota allows queries with different number of results
and different execution time to run on the same server while ensuring propor-
tional fairness and a starvation-free for queries [13]. Finally, as query execution
states are stored in the SaGe client, queries can be resumed even after a failure
or a timeout from the SaGe server. The contributions of this paper are:
1. We outline practical limitations of public SPARQL processing models: SPARQL
endpoints and TPF servers. Availability and performance issues prevent the us-
age of existing infrastructures in real-world semantic web applications.
2. We propose SaGe, a stateless preemptable query engine that combines both
proportional fairness of TPF and performances of SPARQL endpoints.
3. We formalize preemptable query execution plan and present a set of physical
operators that allow a preemptable execution of BGP. We present the SaGe
implementation for preemptable query execution plan and preemptable iterators
for join processing.
4. We evaluate SaGe by running extensive experimentations using WatDiv [1].
Results suggest that SaGe query engine improves query throughput and query
timeout compared to SPARQL endpoints and TPF approaches.
This paper is organized as follows. Section 2 summarizes related works. Sec-
tion 3 presents the SaGe query execution model and the formalization of the pre-
emptable query execution plan and physical operators. Section 4 details SaGe
query optimizer and query engine. Section 5 presents our experimental results.
Finally, conclusions and future work are outlined in Section 6.
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2 Related Work

Public SPARQL endpoints allow data consumers and semantic web applications
to execute expressive SPARQL queries without copying data locally. However,
as these endpoints are exposed to an unpredictable load of arbitrary SPARQL
queries, they enforce a fair use policy of server resources by relying on server
quotas. These quotas restrict the time for executing a query in the server, the
maximum number of results per query or the rate at which clients send queries.
The DBpedia public SPARQL endpoint restricts SPARQL query execution time
to 120 seconds, the maximum number of results to 2000 and the estimated cost
of queries to 1500 seconds 2. The rate of queries limits the number of queries
that a single IP can send to the server during a period of time. This is a common
technique to protect public HTTP servers against DOS attacks. Although, these
quotas are required to provide stable and responsive endpoints for the commu-
nity, the execution of complex queries under these quotas is more challenging
for data consumers and semantic web applications. If a query execution exceed
these quotas, the query has to be paginated using Limit/Offset/OrderBy rewrit-
ing techniques [2]. However, these techniques may require fine tuning and could
deteriorate performance.
The Triple Pattern Fragments (TPF) [18] proposes an alternative approach to
consume Linked Data by distributing SPARQL query processing between clients
and servers. The TPF server evaluates only triple patterns and retrieves pagi-
nated results. To execute a full SPARL query, a TPF client decomposes it into a
sequence of triple patterns queries, send them to the TPF server, collects pages
of results and performs all others operations, like joins, locally. By processing
only triple patterns in near constant time [6], TPF servers fairly allocate re-
sources to their clients without the need of server quotas, but they still need to
limit the rate at which clients access the Web server. Unlike SPARQL endpoints,
a TPF server has a simple interface that does not differentiate between simple
and complex queries. Developers do not need to paginate queries themselves to
bypass server quotas, as it is the server that handles pagination. The downside
is that complex queries requires much more HTTP requests to the TPF server
than the simple ones, which is a form of proportional fairness [19]. As joins
are performed on client side, all intermediate results are transferred to client
side. Consequently, the overall data transfer from TPF servers to TPF clients
leads to poor query processing performance [10]. Different LDF server inter-
faces [9,16,17] have been proposed to reduce the number of subqueries required
to evaluate SPARQL queries by increasing the expressivity of the TPF server
interface. However, as some SPARQL operations are still executed client-side,
query performance is still deteriorated by the transfer of intermediate results.
Preemption is a general approach to provide a fair use policy of resources. It is
commonly used in operating system, network and databases, and heavily stud-
ied in both queueing theory [4] and scheduling [13]. Considering one processor, a
FIFO queue of waiting tasks and a task arrival rate, a basic preemptive scheduler
2 http://wiki.dbpedia.org/public-sparql-endpoint
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stops the running task after a slice of time, saves the state of task in the waiting
queue and runs the next task. This technique is called round robin scheduling
and ensures that the system is starvation free, i.e., a long-running task cannot
block a short one in the queue. Consequently, the throughput of the system is
increased compared to a system with no preemption, i.e., with an infinite time
quota. Preemptive query execution has been studied in the context of database
management systems (DBMS) [15], where the DBMS support multitasking to
increase query throughput. A TPF server does not need to support preemption
mechanism because it returns one page of results for a triple pattern is nearly
in constant time [6]. Consequently, each task in the server’s waiting queue has
nearly the same execution time. SPARQL endpoints support multitasking e.g., a
Virtuoso server can run several queries in parallel in different threads using pre-
emption. However, such preemption is only used for running queries, and not for
the queries in the waiting queue. In this case, the server can quickly be congested
with long-running queries, as they occupy the server threads, deteriorating the
query throughput.
By analyzing existing public SPARQL processing approaches, we admit the poor
availability of RDF data for complex query processing. On one the hand, public
SPARQL endpoints rely on server-side quotas to diminish the impact of com-
plex queries on the server performance, reducing consequently the number of
queries that can get complete results. On the other hand, the TPF approach
does not require such server-side quotas and can process any query. However,
complex queries generate a large number of intermediate results that degrades
drastically query execution performance. Consequently, the limitations of exist-
ing approaches push semantic web application developers to make a local copy of
RDF data and execute queries locally. This paper proposes a solution for public
SPARQL processing for bypassing the problem of congestion of public servers
with complex queries. Preemption is a good solution for fair resources sharing
for unpredictable load or arbitrary queries.

3 SaGe Approach

SaGe is a stateless preemptable SPARQL query execution based on time sharing
principles. This new execution model combines both proportional fairness of
TPF and performances of SPARQL endpoints. A SaGe server executes a Basic
Graph Pattern query for a fixed slice of time, called time quota, and returns
a page of results, with variable size, combined with the state of the resumable
physical plan of the BGP. Compared to the TPF approach, the execution of
a BGP instead of triple patterns queries reduces the number of intermediate
results. The quota of time and the variable size pagination discharge developers
of the burden of query rewriting. Finally, the stateless preemption prevents the
problem of congestion of complex queries in the server.
During this work, we made the following hypotheses: (i) SaGe servers are
single writers, i.e., all updates are controlled by the data providers through
revisions. Consequently, queries are executed on immutable versioned datasets.
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Fig. 1: The SaGe query execution model

(ii) Versioned datasets are efficiently indexed by the data providers. In this paper,
we rely on HDT [6] for indexing and storing RDF data. (iii) In this paper, we
focus on the execution Basic Graph Patterns (BGP queries), i.e., conjunctive
queries of triple patterns.

3.1 SaGe Query execution Model

Figure 1 illustrates the SaGe model. As for TPF, SaGe relies on a SaGe smart
client and a light SaGe server. The architecture of the server follows the same
architecture as Web servers: a pool of server workers are in charge of query
execution, and a query queue is used to store incoming BGP queries when all
workers are busy. The queue contains one new incoming query Q1, i.e., a query
that has not been executed by the server previously, and two preempted queries
Qpre

2 and Qpre
3 , i.e., queries with interrupted physical plans.

The SaGe client starts by submitting a BGP query Q to the SaGe server. The
query is added to the queue until a server worker is available to process it. When
a worker is available, the server computes a preemptable physical query execution
plan for Q. A preemptable physical plan allows to evaluate Q while supporting
preemption. The SaGe server executes the preemptable physical plan as follows:
1. The server executes the plan until the quota is exhausted. Next, the SaGe
query engine interrupts the execution and saves the current state of the query
execution plan. This corresponds to the Round-Robin Scheduling algorithm that
is starvation-free and preserves fairness [13][section 6.3.4]. Others scheduling
algorithms are also adequate, we chosen Round-Robin for its simplicity.
2. The server builds a page of results using all retrieved results solution map-
pings, and a hypermedia link next, which contains the saved state of the query
execution plan. This page is described in the Figure 2 (we explain how this saved
state is build in Section 4.1). Then, the page is returned to the client. The SaGe
server is fully stateless, i.e. the saved state of the plan is not saved by the server.
3. When the results are received, the SaGe client is able to continue Q exe-
cution with a fresh quota by submitting the saved execution plan back to the
server, using the next link, which resume the preemptive execution of Q. If no
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PREFIX wm: <ht tp : // db . u w a t e r l o o . ca /~ g a l u c /wsdbm/>
SELECT DISTINCT ∗ WHERE {

? v0 <ht tp :// p u r l . o rg / g o o d r e l a t i o n s / i n c l u d e s > ? v1 . # tp1
? v1 <ht tp :// schema . org / c o n t e n t S i z e / c o n t e n t S i z e > ? v3 . # tp2
? v0 <ht tp :// schema . org / c o n t e n t S i z e / e l i g i b l e R e g i o n > wm: Country9 . # tp3

}

(a) BGP query Q1, extracted from the WatDiv benchmark [1]

A SaGe page
mappings NestedLoopIterator

NestedLoopIterator

TriplePatternIterator
tp “ tp2

offset = 224
so
ur
ce

tp “ tp1
µc “ t ?v1: wm:Product11972,

?v3:"4356" u
offset = 2

inner

so
ur
ce

tp “ tp3
µc “ nil
offset = 0

inner

next

?v0: wm:Offer79386,
?v1: wm:Product10014,

?v3: "5960"

?v0: wm:Offer81506,
?v1: wm:Product10066,

?v3: "6563"

...

(b) One page returned by the SaGe server during Q1 evalua-
tion

Fig. 2: A tree representation of a page returned by the SaGe server when exe-
cuting Q1 on the WatDiv Dataset

next link is received, then the client knows that Q has been fully executed, i.e.,
the client had received the complete results of Q.
The SaGe execution model has several advantages:
BGP on server side: Compared to TPF, the BGP are processed on server
side, the intermediate results are no more transmitted to the client, so the SaGe
client doest not compute join operators, but just follow the next link to complete
the query execution.
Constant arrival rate: While executing a query, a client submits only one
HTTP request at time to the server. The client gets the results for the query
sequentially, by following the next links provided by the server, as with a classic
REST collection. Thus, at a given time, a client cannot have more than one
request in the waiting queue of the SaGe server. This is not the case with TPF,
where a client can have several pending queries in the TPF server.
Proportional fairness: Thanks to preemption and constant arrival rate, SaGe
executes BGPs with proportional fairness, which increase query throughput un-
der high load. Proportional fairness means ‘fair’ for the response time of queries
to be proportional to the queries complexity [19], i.e., evaluation of long-running
queries just require more calls to the SaGe server than short queries.
Stateless Server: Finally, the SaGe server is fully stateless, i.e., stopped
query execution plans are sent back to the clients. Consequently, a long-running
query cannot stay in the waiting queue. It exits the server to re-enter the waiting
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queue again, when the client uses the next link. This allows a fair access to the
waiting queue of the SaGe server and releases the server from storage overhead.
Moreover, saving the state of query execution plans client-side allows the SaGe
client to tolerate server failures. If a call to the server is failed, the client can
retry later. This opens the opportunities for client-side load-balancing [11].

3.2 SaGe Requirements
To be effective and avoid performance deterioration during query execution, the
preemptive execution performed by SaGe requires a fair value for the time quota
and low overhead in time and space complexity for the preemption.
Fair value for the time quota Finding the fair value for the time quota is
important for performance. This value depends on query workloads. If the time
quota is extremely small, the preemption impacts negatively all queries. Queries
require more HTTP requests to be completely evaluated. In contrast, if the time
quota is extremely large, the time sharing approach will degenerate to a FIFO
policy and the server throughput is deteriorated i.e., long-running queries will
impact negatively short ones. According to [13][section 6.3.4], a rule of thumb is
that 80 percent of the CPU bursts should be shorter than the time quantum, and
the preemption overhead is a small fraction of the time quantum. For SaGe,
in the experimental study (see Section 5), we computed the time quota such
that 80% of queries of workloads are executed under the time quota, the time
quota is around 75ms. We check the accuracy of the 80% rule in the workload
and ensure that the overhead of preemption (saving and loading the preempted
plan) represent less than 10% of the time quota.
Low Preemption overhead As the state of the physical plan is sent to the
client, its space complexity must be bound by the complexity of the BGP query
Op|BGP |q, i.e., the number of triple patterns in the BGP query. Moreover,
the time complexity for stopping, saving and reloading a preemptable physical
execution plan should be negligible compared to the time quota itself. This
complexity must also be in Op|BGP |q.

3.3 Formalization of Preemptable Physical Query Execution Plan
The preemptable physical query execution and the corresponding join operators
used in SaGe support three functions: Stop, Save and Load. Definition 1 and
Definition 2 gives the specifications and the properties of these three functions
for preemtable physical query execution plan and its join operators, respectively.

Definition 1 (Preemptable physical query execution plan).
Given a BGP B “ ttp1, . . . , tpmu and a RDF dataset D. A preemptable physical
query execution plan for B is a physical query execution plan that allows to
evaluate B over D and is composed by join preemptable physical operators. The
plan supports the following functions:
– Stop: interrupts the plan in a correct state, i.e. waits for all physical operators
to have finished their critical sections. This function is executed in Op|B|q time
complexity.
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– Save: serializes the correct state of the plan obtained by the Stop function.
The space complexity of the serialized state is in Op|B|q.
– Load: reloads the plan in a correct state using the serialized state obtained
by the last Save function. This function is in Op|B|q time complexity.

The time and space complexity of Stop, Save and Load functions determine
the overhead of the preemption by the query engine. Intuitively, this overhead
must be negligible compared to the time quota allocated for query execution, to
avoid deterioration of query performance.

Definition 2 (Preemptable physical join operators). A preemptable phys-
ical join operator is a physical query operator that performs join processing and
supports the following functions:
– Stop: interrupts the join operator in a correct state, i.e. waits the physical
operator to have completed its critical section. This function executes in Op1q
time complexity.
– Save: serializes the correct state of the operator obtained by the Stop func-
tion. The space complexity of the serialization is Op1q.
– Load: reloads the join operator in a correct state using a serialized state
obtained by the last Save function. This function is in Op1q time complexity.

According to Definition 2, not all possible join operators can be implemented
as preemptable join operators. For example, hash joins based operators must
maintain an internal state which size depends on data complexity [12], i.e., the
number of triples in the RDF dataset. Thus, the correct state of such operator
cannot be serialized in Op1q.
These restrictions limit the choices of join operators for the SaGe query opti-
mizer, as it can only use preemptable join operators in the preemptable physical
query execution plan. Thus, the optimizer is limited in term of the shapes of the
plans it can generate. For example, a bushy tree requires join operators that can
join either base relations, i.e., triple patterns, or intermediate relations, i.e., an-
other joins. If no available preemptable operators can meet these requirements,
then the query optimizer cannot generate bushy trees.

4 SaGe Query Optimizer and Query Engine

Given a BGP query, the SaGe query optimizer builds a left-linear tree using
the cardinalities of the triple patterns in the BGP. The optimizer relies on the
cardinalities of triple patterns in the query retrieved by using indexes and the join
ordering heuristic [14] for building the tree. Figure 3 shows the plan produced
by the SaGe query optimizer for query Q1 of Figure 2a, supposing than |tp2| ă
|tp1| ă |tp3|. The first triple pattern in the plan, i.e., the left-most children in the
plan, is implemented using a TriplePatternIterator, while joins are implemented
using NestedLoopIterators. In SaGe, both the physical query execution plan and
the physical operators must be implemented as preemptive.
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NestedLoopIterator

NestedLoopIterator

TriplePatternIterator
over tp2

so
ur
ce

tp1

inner

so
ur
ce

tp3
innerQ1:- SELECT DISTINCT * WHERE {
ptp1q ?v0 <http://purl.org/goodrelations/includes> ?v1.
ptp2q ?v1 <http://schema.org/contentSize> ?v3.
ptp3q ?v0 <http://schema.org/eligibleRegion>
<http://db.uwaterloo.ca/ galuc/wsdbm/Country9>. }

Fig. 3: Preemptable physical query execution plan produced by the SaGe query
optimizer for Q1, from Figure 2a

4.1 Implementation of preemptable physical query execution plan

Algorithm 1 presents the implementation of the functions required for a pre-
emptable physical query execution. The Stop function simply calls Stop on each
operator in the tree and wait until all operators have been stopped. The Save
function recursively saves each operator in the tree while saving its structure.
The Load function can recursively inspect the save state produced to rebuild the
tree of operators without the re-executing of the query optimizer.

Algorithm 1: SaGe preemptable physical query execution plan
Require: P: tree of operators, S: saved plan (as generated by Plan.Save)

1 Function Plan.Stop(P):
2 let opÐ P
3 while op ‰ nil do
4 Call op.Stoppq
5 opÐ op.predecessor

6 Function Plan.Save(P):
7 if P “ nil then
8 return nil

9 let sÐ P.Savepq
10 let predÐ Plan.SavepP.predecessorq
11 return xpred, sy

12 Function Plan.Load(S):
13 let xpred, sy Ð S
14 let xtp, µ, ny Ð s
15 if pred “ nil then
16 opÐ TriplePatternIterator over tp in D
17 else
18 Ipred Ð Plan.Loadppredq
19 opÐ NestedLoopIteratorptp,D, Ipredq

20 op.Loadptp, µ, nq
21 return op

These functions require to recursively stop, save or load respectively, each op-
erator in the plan. Thus, if these operators ensure the properties of Definition 2,
stopping, saving and loading a plan is done in Opmq, where m is the number of
operators in the plan, i.e., the number of triple patterns in the query. Conse-
quently, all functions of Algorithm 1 are conform to the constraints of Definition 1
and implement a preemptable physical query execution plan.
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Consider now the SaGe page from Figure 2b, which contains a saved state of
the plan of Figure 3. Notice that this saved state maintains the structure of the
original plan. The TriplePatternIterator in charge of tp2 has been preempted
after reading 224 solution mappings (offset), the tp1 nested loop has been pre-
empted after examining 2 triples belonging to mappings@tp1. The tp3 nested
loop has been interrupted in the outer loop, so mapping are null and offset is 0.

4.2 Preemptable iterators for join processing

SaGe implements join operators in the query plan using iterators [7]. An it-
erator is a group of three functions: Open, GetNext and Close. Open initializes
the internal data structures needed to perform the function, GetNext returns the
next results of the function and update the iterator internal data structures, and
Close ends the iteration and releases the allocated ressources. The TriplePat-
ternIterator implements the scan operator and returns solution mappings for a
triple pattern. For SaGe, the GetNext function of a TriplePatternIterator is non
interruptible. Later, we do not discuss this helper iterator, details can be found
in [18].
Evaluation of Basic Graph Patterns using iterators has already been studied
in [8]. SaGe follows a similar approach for BGP evaluation and uses NestedLoo-
pIterators to implements preemptable join operators. These iterators follow the
Nested Loop Join algorithm [7] for join processing. Given a BGP query B and
the associated preemptable physical query execution plan, a pipeline of iterators
is built, where each iterator is responsible for the evaluation of a triple pat-
tern from B. Iterators are chained together in a pull-fashion to respect the join
ordering computed by the SaGe optimizer, such as one iterator pulls solution
mappings from its predecessor to produce results. The iterators used by SaGe
are preemptable join operators, as defined in Definition 2.
Algorithm 2 gives the implementation of the NestedLoopIterator used by SaGe.
To produce solutions, each iterator Ii in the pipeline executes the same steps,
repeatedly until all solutions are produced: (1) It pulls solutions mappings µc

from its predecessor Ii´1. (2) It applies µc to tpi to generate a bound pattern
b “ µcJtpiK. (3) If b has no solution mappings in D, it tries to read again from its
predecessor (jump back to Step 1). (4) Otherwise, it reads triple matching b in
D and produces the associated solution mappings using a TriplePatternIterator.
(5) When all triples matching b have been read, it goes back to Step 1.
A NestedLoopIterator supports preemption through the Stop, Save and Load
functions given in Algorithm 2. The Stop function waits for all non interruptible
section to have been executed before interrupting the iterator execution. The
Save function saves the position of the iterator while scanning its current bound
pattern, and the Load function uses these informations to resume evaluation of
the bound pattern. According to Definition 2, the saved state of the iterator has
a size in Op1q. Additionally, all functions are in Op1q. All interruptible sections
(lines 12-14) that Stop waits for completion do not depend on the inputs, and
the state of a NestedLoopIterator can be reloaded in constant time if the offset
function (line 30) can be applied in constant time, like in HDT [6].
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Algorithm 2: A NestedLoopIterator Ii: a preemptable join operator used
by SaGe

Require: tpi: triple pattern evaluated by Ii, D: RDF dataset queried, Ii´1:
iterator responsible for the evaluation of tpi´1.

1 Function Open():
2 Ii´1.Openpq
3 µc Ð nil
4 Ifind Ð nil
5 Function GetNext():
6 while Ifind.GetNextpq “ nil do
7 µc Ð Ii´1.GetNextpq
8 if µc “ nil then
9 return nil

10 Ifind Ð TriplePatternIterator
11 over µcJtpiKD

12 non interruptible
13 let µÐ Ifind.GetNextpq
14 return µ

Ť

µc

15 Function Close():
16 Ii´1.Closepq

17 Function Stop():
18 Wait until all non interruptible

sections have been evaluated
19 Interrupt ongoing GetNextpq calls
20 Function Save():
21 let nÐ the number of triples already

read by Ifind

22 return xtpi, µc, ny

23 Function Load(tp1, µ1, n):
24 tpi Ð tp1

25 if µ1 ‰ nil then
26 µc Ð µ1

27 Ifind Ð TriplePatternIterator over
28 µcJtpiKD
29 if n ą 0 then
30 Skip the n first results of Ifind

Consider again the saved plan from Figure 2b. The TriplePatternIterator for
tp2 has been interrupted after reading 224 solution mappings. The NestedLoo-
pIterator for tp1 has been interrupted after two scan in the inner loop (offset
= 2) with µc bounded to {?v1: wm:Product11972, ?v3:"4356"}. Finally, the
iterator for tp3 has been interrupted in the outer loop (lines 6-11), i.e., when its
pulling a solution mappings from its predecessor, so its µc is not yet binded to
a value and the offset is meaningless.

5 Experimental study

We implemented the SaGe client in NodeJS and the SaGe server as a Python
web service, using HDT v1.3.2 as backend. The code, the experimental setup
and the online demo are available at the companion web site 3. We run SaGe
with a quota of 75ms and a quota of 150ms to check assumptions on the best
quota values detailed in section 3.2. We name these configurations SaGe-75 and
SaGe-150. We compare SaGe with the following approaches:
Virtuoso: Many public SPARQL endpoints rely on Virtuoso. We run Virtu-
oso 7.2.4 with no restrictions (V NQ), with the quotas of the public DBpedia
SPARQL endpoint 4 (V Q) and finally with quotas and pagination (V QP ). The
3 https://github.com/Callidon/sage-bgp
4 http://wiki.dbpedia.org/public-sparql-endpoint

https://github.com/Callidon/sage-bgp
http://wiki.dbpedia.org/public-sparql-endpoint
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maximum query execution time is set to 120s and the maximum of number of
results per query is set to 2000. The client-side pagination retrieves results per
page of 2000, using the Limit/Offset/OrderBy technique [2].
TPF: Many data providers publish their data through TPF servers as Wardrobe 5.
We run the version 2.0.5 of TPF client and the version 2.2.3 of the TPF server.
BrTPF: In [10], BrTPF exhibits better performances than other LDF inter-
faces. For a fair comparison with TPF, we re-implemented the BrTPF client [9]
with the version 2.0.5 of the TPF client.

5.1 Experimental setup

Dataset and Queries: The WatDiv benchmark [1] is designed to generate
diversified BGP queries for stress testing RDF data management systems. We
reused the setup of the BrTPF experiments [9] based on WatDiv. The dataset
contains 107 triples 6encoded in the HDT format [6]. The workload contains 145
SPARQL conjunctive queries with STAR, PATH and SNOWFLAKE shapes.
These queries vary in complexity, with very high and very low selectivity. 20%
of queries requires more than 1s to be executed using the virtuoso server. 7% of
queries produces more than 2000 results.
Servers configurations: We run all the servers on a machine with Intel(R)
Xeon(R) CPU E7-8870@2.10GHz and 1.5TB RAM. The clients access to the
server through an HTTP proxy to ensure that client-server latency is kept around
50ms. We configured a WEB cache NGINX of 500Mo for TPF and BrTPF, which
represents approximately 2{3 of the size of the dataset. As they dont́ use it, SaGe
and Virtuoso has no WEB cache. We run the servers with one worker to highlight
starvation issues. For a fair comparison, we also run SaGe and Virtuoso with 4
workers to study the impact of multitasking on starvation.
Setup for load generation: In order to generate load over servers, we rely
on n clients. the first n ´ 1 clients, the loaders, continuously evaluate the 20%
of complex SPARQL queries of the workload. The last client, the measurement
client, evaluates the 145 queries of our workload. All reported results are com-
puted on this last client. Except the workload, the loaders and the measurement
client share the same configuration.
Evaluation Metrics: Presented results correspond to the average obtained of
three successive execution of the queries workload. (i) Query timeout: percentage
of queries of the workload that terminate before producing complete results. The
maximum query time is set to 120s as a client timeout for SaGe, TPF and
BrTPF and as a server timeout for Virtuoso. (ii) Query throughput: the number
of executed query per hour including timeout queries, i.e., 145 queries of the
workload divided by the total execution time of the workload. (iii) Preemption
overhead: is the total time taken by the server for stoping, saving and reloading
a preemptable physical query execution plan. (iv) Number of HTTP requests:
is the total number of HTTP requests sent by a client to a server in order to
5 http://lodlaundromat.org/wardrobe/
6 http://dsg.uwaterloo.ca/watdiv/

http://lodlaundromat.org/wardrobe/
http://dsg.uwaterloo.ca/watdiv/
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evaluate a query. (v) Completeness: is the ratio between the number of query
answers produced during the experiment and the number of complete results.
We used Virtuoso to compute complete results.

5.2 Experimental results

Impact of the quota on SaGe Figure 4 shows the average preemption over-
head obtained after evaluation of our workload by SaGe-75 and SaGe-150, with
an increasing load. First, we observe that the preemption overhead do not in-
crease with the load in both cases. This is consistent with the properties of SaGe
preemptable physical query execution plan, as the preemption overhead only
depends on the number of triple pattern in each query. The difference between
SaGe-75 and SaGe-150 is in the margin of error of measurement (<0,1ms)
and are meaningless. Second, the overhead does not exceeded 0.4% of the time
quota for SaGe-75 and 0.2% for SaGe-150, and is negligible compared to quo-
tas, as expected in Section 3.2. In the Figure 7, we compare the performances of
SaGe-75 and SaGe-150 in terms of timeout ratio and query throughput. SaGe-
75 respect the rule of 80/20%, explained in Section 3.2, while SaGe-150 slices
the workload in 84/16%. We observe that SaGe-75 has a much better tradeoff
than SaGe-150 in term of query throughput and ratio of timeout. Thus, we
focus on SaGe-75 for the rest of the experiments.
Performance analysis Figure 6 shows the ratio of query timeouts obtained
during query execution with different load configurations, up to 100 clients.
Figure 7 shows the corresponding average throughput.
Concerning the ratio of query timeout, SaGe outperforms all other approaches.
The poor performances in throughput and timeouts of TPF and BrTPF are due
to the high data transfers. The Figure 5 confirms this observation, i.e., the
number of calls of SaGe is clearly lower than BrTPF and TPF. V Q exhibits
constant timeout ratio, even when the server is not loaded. Indeed, the queries
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that return more than 2000 results are timed-out by the server. As only simple
queries are completely executed, the throughput is high, but is not significative.
This is confirmed by the completeness of results: V Q only delivers 20% of results
for the workload whatever the number of clients. SaGe delivers complete results
up to 60 clients, which drops to 98% at 100 clients. V QP also exhibits constant
timeout ratio, even when not loaded. Here, Virtuoso timeout queries because
they exceeded the maximum number of row that can be sorted by an ORDER
BY clause. Consequently, complex queries in the workload cannot be executed
just relying on the SPARQL interface and, as for V Q, the query throughput of
V QP is not significative. V NQ timeouts grow quickly up to 100% after a load of
15 clients. The queue of server is clearly congested with the complex queries of
the loaders. This demonstrates a poor management of preemption with queries
in the server queue.
Concerning the query throughput, V Q and V QP are not significative due to
the timeouts. SaGe outperforms BrTPF and TPF. V NQ outperforms SaGe on
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the range 1 to 15 clients, However, after 15 clients, SaGe clearly outperforms
V NQ. We conjecture that V NQ produces more efficient plans with more efficient
operators than SaGe. After 15 clients, due to the congestion of the server, the
V Q throughput collapses. We rerun the same experiment with 4 workers for
SaGe and V NQ to observe how more multitasking impact the results. As we
see in the Figures 8 and 9, the general behavior of V NQ remains nearly the
same, the four workers support just a slightly more load before congestion. We
observe that SaGe performances are significantly improved with four workers;
all queries produce complete answers and the throughput is multiplied by 5.
According to these results, the SaGe approach seems to be the best option for
a public endpoint. Indeed, only V NQ delivers a better throughput for a slightly
loaded server, but a public SPARQL endpoint without quotas is not a viable
option for a data provider.

6 Conclusion and Future Works

In this paper, we proposed SaGe: a stateless preemptable SPARQL query en-
gine for public endpoints. Thanks to preemptable query plans and time-sharing
scheduling, SaGe tackles the problem of RDF data availability for complex
queries in public endpoints. Consequently, SaGe provides a convenient alterna-
tive to the current practice of copying RDF data dumps. Experimental study
demonstrates that SaGe outperforms BrTPF, TPF and Virtuoso in terms of
the ratio of query timeout.
SaGe opens several perspectives. First, in this paper, we focused on the eval-
uation of conjunctive SPARQL queries. We plan to extend SaGe to support
full SPARQL queries. Second, we implemented the preemptable plans as simple
as possible. We think that there is room for building more efficient preempt-
able plans with better preemptable operators. Third, we used a Round-Robin
scheduling strategy for its simplicity, we plan to explore if a more elaborated
scheduling strategy [13] can increase the performances. Fourth, we determined
the time quota statically by analyzing the workload of the experiment. We plan
to compute the quota dynamically on server side. Finally, we plan to extend
SaGe to support federated SPARQL query processing to overcome problems
highlighted in [2].
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