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Abstract

With the growing popularity of high dynamic range (HDR) imaging, efficient compression
techniques are demanded, as HDR video entails typically higher raw data rate than tradi-
tional video. For this purpose, we introduce a hybrid spatially and temporally constrained
content-adaptive tone mapping operator (TMO) to convert the input HDR video into a
tone mapped video sequence, which is then encoded using the high efficiency video coding
(HEVC) standard. The proposed TMO simultaneously exploits intra-frame spatial redun-
dancies and preserves inter-frame temporal coherence of the tone mapped video sequence.
Extensive experimental results show that the developed spatio-temporal TMO (ST-TMO)
solution yields higher coding performance than existing frame-by-frame TMO’s, and com-
pares favorably with state-of-the-art methods based on a fixed transfer function.

Keywords: High dynamic range, video compression, tone mapping operator, convex
optimization

1. Introduction

With the increased demand for realism in entertainment applications in recent years, high
dynamic range (HDR) video has become ubiquitous [12, 19]. HDR video takes the users’
viewing experience beyond the inherent limitations of standard dynamic range (SDR) video
[7], such as limited luminance range and color gamut, resulting in substantially improved
visual experience. To this end, HDR pixels encode the physical luminance captured from
the real-world scene, with a peak brightness higher than 1000 candelas per square meter
(cd/m2).

The highly realistic visual experience of HDR video comes at the cost of significant
bitrate requirements. Efficient video compression is therefore one important aspect to be
addressed. With this objective, a substantial amount of work has been done in the last few
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years to standardize HDR video compression algorithms. To this end, nine contributions
were submitted as a response to the MPEG call for evidence (CfE) on HDR and wide color
gamut (WCG) video compression [34]. Those solutions [20, 27] were based on the state-
of-the-art video coding standard, high efficient video coding (HEVC) [28], and focused on
HDR video compression efficiency using an electro-optical transfer function (EOTF) with
10 bit-depth coding profile [21]. EOTF defines the mapping of digital code values to display
luminance.

EOTFs can be used with video compression standards to provide a perceptually uniform
representation that allows reducing the number of bits required for encoding. Especially,
two perceptually optimized transfer functions, hybrid log-gamma (HLG) [10] and perceptual
quantizer (PQ) [40], were recently introduced. Both transfer functions map absolute lumi-
nance values to perceptual codewords and share similarities with the perceptually uniform
(PU) encoding introduced by Aydin et al. in [1]. However, they are mainly addressing
two different applications. On one hand, HLG aims at providing a backward-compatible
representation with 10 bit-depth video devices, especially suited for TV broadcasting ser-
vices. On the other hand, PQ focuses on high bit precision representation coding, e.g., 10
or 12 bit-depth video representation, which is not backward-compatible with the currently
available SDR devices.

Unlike EOTF-based HDR video compression solutions, where a fixed curve is used for
converting each HDR frame to a reduced dynamic range representation, in this work we
consider a content-adaptive tone mapping operator (TMO). Therefore, our solution takes
statistical characteristics of the input HDR frame into account. More specifically, we fo-
cus on exploiting spatial and temporal pixel redundancies and introduce spatio-temporal
regularization terms to find the optimal rate distortion (RD) tone-mapping curves for each
frame. Our work exploits results from Mai et al. TMO [35]. It extends our previous con-
ference publications [32, 46] by providing a unified framework combining both spatial and
temporal regularization, and presenting a more comprehensive performance assessment in-
cluding comparisons with state-of-the-art methods and multiple objective quality metrics.
It is shown that the proposed scheme leads to significant coding gains compared to the
state-of-the-art methods based on a fixed transfer function.

The rest of this paper is organized as follows. Section 2 provides a brief summary of
the most relevant studies on HDR video coding, tone mapping operators, and the main
contributions of our work. Following that, the overview of the proposed method is described
in Section 3. Next, experimental results are provided in Section 4, and the conclusion in
Section 5.

2. Related Work

2.1. Studies related to HDR video compression

Applying an effective quantization on the raw HDR video format is one of the most
used solutions for HDR video compression [9, 57]. Boitard et al. proposed a motion-guided
quantization method in [9] to increase the correlation between successive frames. Their
method relies on the motion compensation between frames to adapt the quantization during
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tone mapping curve estimation. With a similar aim and different research perspective,
Zhang et al. developed a quantization model in [57] that removes perceptually redundant
pixels with the help of luminance masking. Their proposed approach, using the TMO
in [31], was implemented in HEVC and compared with the PQ transfer function in [58].
Both objective and subjective evaluation results showed that it achieves significant bitrate
savings compared to the PQ transfer function. It is noted that the TMO in [31] is one of the
first TMO solutions for HDR images. Using a video compression optimized tone mapping
algorithm, e.g., our proposed spatio-temporal constrained TMO in this paper, can generally
achieve higher coding efficiency.

Perceptually driven transfer functions are widely applied to the captured HDR video, in
conjunction with high bit-depth profiles of standard video codecs. The PQ transfer function,
which is proposed by Miller et al. in [40], achieves efficient HDR video coding gain compared
with reference methods. This transfer function is based on the contrast sensitivity model
developed by Barten [3]. It is more adapted to HDR video than the ITU-R Rec. BT.1886
[49], which is commonly referred to as the “gamma curve”.

To standardize the compression algorithms of HDR and WCG video, a substantial
amount of work has been done in the last few years by MPEG. Two parallel standardization
efforts, normative codec changes and non-normative encoder optimization, were organized
after the CfE responses. For the normative codec changes, technologies from five propo-
nents were incorporated to form the exploratory test model (ETM) [41]. The ETM uses
the forward and the inverse reshaping techniques with the delivered metadata to produce
the HDR video output at the receiver end. It can also be used to generate SDR output
for traditional displays. In the context of non-normative encoder optimization effort, its
main objective was to reduce the color artifacts. For this aim, the chrome QP offset, for
instance, was introduced in order to reduce color artifacts [52]. As a result of the HDR and
WCG video compression standardization progress, HEVC Main 10 profile was determined
to be sufficient and a short term standardization effort was stopped. The HDR and WCG
video compression works will continue within the future video compression standards de-
velopments. A detailed overview of MPEG CfEs for HDR/WCG video compression can be
found in the overview papers [20,27].

Some previous academic works focus on high bit-depth encoding for HDR content [23,40,
42,47,59]. For instance, Motra et al. in [42] extended the LogLuv transform [30] in order to
use adaptive transformation parameters. In their method, the minimum and maximum lu-
minance values are adaptively used to map the HDR floating point values to 14-bit quantized
integer values. Additionally, Zhang et al. in [59], compressed HDR video by considering
perceptual quality. For this, an optimized bit-depth transformation and perceptual model
based wavelet transform denoising are introduced for HDR video compression. In [23], a
weighted prediction method and quantization adaptation were proposed to compensate the
dynamic contrast variation across frames. In that work, a frame-wise adaptive luminance-
to-luma mapping and the usage of the weighted prediction tools of the video codec are
described to maintain the temporal coherence of HDR video. Similarly, Le Pendu et al.
proposed an adaptive re-quantization method [47], where the minimum and maximum lumi-
nance values are used to adapt the mapping of the data. Their work analyzes the complete
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Figure 1: General diagram of the proposed HDR video coding method.

group of picture (GOP) in order to keep the temporal consistency of inter prediction and
re-encodes frames accordingly. Conversely, here we consider a compression solution which
takes the current and previous frames into account and uses a TMO to improve the HDR
video coding performance.

2.2. Studies related to tone mapping operators

Even though most existing TMOs achieve good visual quality performance for still HDR
images [17], they may not be adequate for video contents [44]. Notably, applying a frame-
by-frame TMO may introduce spurious temporal discontinuities, i.e., flickering, in the tone
mapped video sequences. Straightforwardly, such discontinuities may negatively affect the
video compression efficiency.

Several solutions were introduced to deal with temporal discontinuities when applying
TMO on HDR video sequences [2, 8]. For instance, the quality impact of the TMOs is
explored for video compression in [8]. In their work, the photographic tone reproduction
[50] and temporal coherency method [5] were evaluated with respect to video compression
performance. Their work demonstrates smooth temporal coherency results at a target bi-
trate. However, as shown in their experimental results, their solution cannot preserve the
reconstructed quality of HDR video well. For this reason, Aydin et al. proposed a local
TMO for HDR video in [2]. More precisely, each frame was decomposed into two layers,
i.e., base and detail, using an edge-aware filter. Such decomposition allows processing each
layer’s dynamic range separately. This way, spatio-temporal filtering was applied along per-
pixel motion paths to prevent flickering artifacts between frames. Their proposed method
performs well with different content types, but with the limitation of not considering the
impact of video compression.

Besides flickering artifacts, applying TMO for each frame may cause temporal brightness
discontinuities. To this end, a zonal brightness coherency method was introduced in [6] to
tackle such artifacts. In order to reduce temporal discontinuities while maintaining local
contrast, each frame was divided into segments, which were independently tone mapped.
That solution focuses on the tone mapped HDR video quality on SDR displays. Conversely,
our TMO solution is targeting high coding performance for HDR video, where the quality
is measured on the reconstructed HDR signal.
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2.3. Limitations of existing works and contributions of the present one

One of the earliest works considering the optimization of a TMO in the context of scalable
HDR video coding is that of Mai et al. [35]. There, a global tone mapping curve was found
by minimizing the mean squared error (MSE) between the original and the reconstructed
HDR pixels, independently for each frame. A piecewise-linear parametrization of the tone
mapping curve enables to compute the solution to this optimization problem in closed form.
The resulting tone curve is optimal at high bitrates and close to optimal in the mid-to-low
bitrates. The evaluation reported in [35] for H.264/AVC video demonstrates significantly
better rate-distortion performance than popular TMOs such as [18, 38]. Since in this work
we employ a similar tone curve parametrization as [35], we discuss it in greater detail in
Section 3.1.

Later, Koz and Dufaux [29] improved the results of Mai et al., by adding two additional
constraints to the TMO optimization problem. First, they take into account the quality
of the tone-mapped frames, which was not considered in the original formulation [35]. To
this end, they assume that a visually pleasing tone-mapped image is the result of some
perceptually motivated, global tone mapping curve, e.g., [50]. Then, in the optimization
process they penalize curves that are far away from the visually favorable one. The second
constraint aims at reducing temporal flickering, by avoiding that consecutive frames differ
in average brightness beyond a certain visible threshold. Both constraints are applied when
HDR values are expressed in PU units [1] in place of logarithm, in order to reflect the lower
contrast sensitivity of the human visual system at darker luminance levels.

Interestingly, the authors of [35] have independently come up with similar constraints
in their follow-up work [36], though under a different optimization framework. Specifically,
in order to reduce flickering an additional constraint is added by considering the difference
between the average brightness of consecutive tone-mapped frames. In our work, we also
target temporal dependencies but we consider local (per pixel) motion trajectories. We show
that this finer granularity approach constitutes a more effective temporal regularization term.

In our previous work [32, 46], we have analyzed two drawbacks of [35]: the possible
loss of intra-frame spatial smoothness and of the inter-frame temporal coherence after tone
mapping. A spatial regularization term was introduced by Lauga et al. [32] to consider
spatial pixel variations in HDR image compression. The resulting problem was shown to
be convex and was efficiently solved using a proximal optimization algorithm. In [46], we
formulated a temporal constraint for HDR video compression. In this work, we provide
a unified framework by proposing a spatio-temporal constrained TMO, referred to as ST-
TMO, which brings larger compression gains. We complete the work with an extended
experimental evaluation, a comparison with state-of-the-art methods, and objective quality
assessment using several HDR video quality metrics.

3. Content Adaptive Tone Mapping Operator

The general scheme of the proposed ST-TMO is illustrated in Figure 1. For each input
HDR video frame, we compute two cost terms: an estimation of the MSE between the orig-
inal and the reconstructed HDR frame; and a regularization term, which enforces spatial
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or temporal coherence, depending on whether the frame is Intra or Inter predicted, respec-
tively. Specifically, the temporal regularization relies on the knowledge of the motion field
between the current and the previous frame (without loss of generality, we assume here that
the temporal prediction at time t is obtained based on the frame at time t− 1).

We express the unknown tone mapping curve to be found using the simple, piecewise-
linear parametrization proposed in [35]. That is, the TMO is expressed as a vector s of
slopes as described in Section 3.1. This enables to define the cost terms mentioned above
as convex functions of s, and to solve the resulting convex optimization problem through a
proximal optimization method. As a result, we obtain a vector s∗ of optimal slopes, which
can be used to tone map the HDR picture into an SDR frame fSDR

t . The vector s∗ is sent
as metadata information to the decoder in order to invert the tone mapping and reconstruct
the HDR information. A detailed description of the parametrization employed, the cost
terms and the convex optimization follows.

ft
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Intra frame
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Figure 2: Block diagram of the proposed TMO. A content-adaptive spatially and temporally constrained
tone mapping curve is obtained for each frame.

3.1. TMO parametrization and distortion estimation

Tone mapping algorithms can be broadly classified into global [18, 29, 32, 35, 36, 38, 46,
50] or local [2], according to whether their result changes depending on the content and
characteristics of a local pixel neighborhood. Although local tone mapping is more flexible
and can generally preserve better fine-level details of a picture, global operators are the most
convenient option for HDR coding, as they require little side information to be sent to the
decoder. Mai et al. [35] proposed a simple, yet general enough, parametrization of a global
tone mapping curve as a piecewise-linear function in the logarithmic domain.

This parametrization is illustrated in Figure 3. The histogram of the log-luminance l is
divided into N segments of equal length δ. Let k ∈ [1, . . . N ] be the segment index, and
pk the associated probability mass. The TMO curve is then described by the set of nodes
{lk, vk}, where vk denotes the tone-mapped value; or, equivalently, by a vector s ∈ RN

+

composed by the non-negative slopes sk for each segment, that is:

sk =
vk+1 − vk

δ
. (1)
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Based on the sk, the tone-mapped pixel values v are obtained as

v(l) = (l − lk) · sk + vk, ∀l ∈ [lk, lk + 1), (2)

where l1 = lmin is the minimum luminance of the image. In order to inverse (2) and compute
the reconstructed log-luminance, l̂, the receiver needs to know as side information the slopes
sk, the value of δ as well as lmin. Therefore, the size of the metadata depends on the number
of segments, or equivalently on δ. Here we select δ = 0.1 in log10 units to approximately
match the Weber ratio (at least at high luminance), as proposed in [35]. For typical HDR
content, this results in a number N of segments around 70 ∼ 80, which represents a modest
overhead to overall transmission cost.

This parametrization can be used to find the optimal TMO curve, i.e., the slopes sk that
minimize the squared reconstruction error ε(sk) = ‖l− l̂‖2

2. It is shown in [35] that, at least
at high bitrates, the distortion is well approximated as a function of sk as:

ε(sk) ≈
N∑
k=1

pk
s2
k

. (3)

Based on this approximation, the authors of [35] find the slopes that minimize the squared-
error distortion by formulating the following optimization problem:

minimize
sk

ε(sk) subject to:
N∑
k=1

sk =
vmax

δ
; sk > 0, (4)

where the constraint guarantees that the TMO curve spans all the available standard dy-
namic range (e.g., vmax = 255 for 8-bit images). This problem can be solved in closed form,
yielding:

sk =
vmaxp

1/3
k

δ
∑N

n=1 p
1/3
n

. (5)

Notice that this result is optimal in the MSE sense, but does not take into account the
excess of bitrate produced by the possible loss of spatial and temporal coherency in the v
signal. In order to take these effects into account, in the following we propose a spatial and
a temporal regularization terms to be added to the problem in (4).

3.2. Spatial regularization

In [32] we have shown that the sk in (5) are indeed suboptimal from a video compression
perspective, i.e., they do not guarantee spatial smoothness in the resulting tone-mapped
pictures. This, in turn, leads to higher coding bitrate.

In order to alleviate this effect, we modify problem (4) by adding a spatial regulariza-
tion term, Cspa(f

SDR
intra), for tone-mapped Intra-coded images. Cspa is a real-valued convex

function that models the spatial complexity, and fSDR
intra is the intra frame of a given GOP of

the SDR (i.e., tone mapped) video. Since natural images usually exhibit a smooth spatial
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Figure 3: Piecewise parametrization of the optimal tone mapping curve as in [35].

behavior, except around some locations (e.g., object edges) where discontinuities arise, pop-
ular regularization models tend to penalize the image gradient. In this context, a number of
regularization terms have been proposed, e.g., frame-based representations [37], Total Vari-
ation (TV) [51], etc. Here we adopt TV due to its simplicity and effectiveness [11]. Thus,
we express the spatial regularization term as:

Cspa

(
fSDR
intra

)
=
∥∥∇fSDR

intra

∥∥
1,2

=
∑
i∈Ω

∥∥(∇fSDR
intra)i

∥∥
2
, (6)

where Ω is the rectangular lattice over which the image f is defined, and (∇fSDR
intra)i is the

2-element vector denoting the gradient of fSDR
intra at site i.

Notice that, since the log-luminance values l are constant for a given image, the tone
mapping in (2) is linear in s, and can thus be conveniently rewritten as a matrix-vector mul-
tiplication fSDR

intra = Zs. Specifically, for a given HDR image with M pixels, Z = [z1, . . . , zM ]T

is an M ×N matrix, where each row has the form:

zm = [δ, . . . , δ, l − lk, 0, . . . , 0], (7)

with the term l− lk in the k-th position if l ∈ [lk, lk+1). This formulation expresses the tone
mapping equation (2), in that an HDR pixel li, falling in the j-th bin of the histogram, is
mapped as vi =

∑j−1
k=1 δsk + (li − lj)sj. We will use this formulation to express the spatial

constraint in the convex optimization problem in Section 3.4.

3.3. Temporal regularization

For Inter-predicted tone-mapped video frames, applying the frame-by-frame tone map-
ping curve in (1) might lead to a loss of temporal coherence and a consequent increase of
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coding bitrate. In this section, we describe how to enforce temporal smoothness in the tone-
mapped video by proposing a temporal regularization term, Ctemp, to add to problem (4).

In this work, Ctemp is defined as:

Ctemp(f
SDR
inter ) =

∑
i,j

(
fSDR
t (i, j)− Φ

[
fSDR
t−1 (i, j);Ψ(i, j)

])2
(8)

where Φ[ft−1(i, j);Ψ(i, j)] = ft−1 (i+ Ψ(i, j)x, j + Ψ(i, j)y) is a function that gives the value
of pixel at position (i, j) after motion compensation by the 2-element motion vector Ψ(i, j)
(x and y represent the horizontal and vertical components, respectively). The notation fSDR

inter

is used here to stress the fact that ft is inter predicted. In order to get a precise per pixel
motion field, we estimate Ψ by employing the optical flow algorithm in [13] directly on the
original HDR frames fHDR

t and fHDR
t−1 . This optical flow is then applied to obtain the motion

compensated frame Φ
[
fSDR
t−1 (i, j);Ψ(i, j)

]
.

Note that fSDR
t is a function of sk. By explicitly minimizing a temporal prediction

residual, such a constraint leads to improved rate-distortion performance when encoding the
tone mapped SDR video sequence. Instead of explicitly computing the sum of pixel-wise
differences, as defined in Eq. (8), we notice that the temporal term Ctemp is proportional
to the expected temporal difference between two (motion-compensated) frames. By the
definition of expected value, we can then compute (8) as the sum of all possible frame
difference values, weighted by the probability of occurrence of each difference, that is:

Ctemp(f
SDR
inter ) =

N∑
k=1

vmax∑
w=0

{(dk
2

+
k−1∑
i=1

di − w
)2

pk,w

}
, (9)

where, for notational convenience, we define dk = δsk; dk
2

+
∑k−1

i=1 di is then the SDR recon-
struction value for pixels falling in the bin k of the log-luminance histogram as in Eq. (2),
assuming a mid-tread quantizer on the real tone-mapped pixel values; w ∈ [0, vmax] is the
value of a pixel in the motion-compensated SDR frame Φ

[
fSDR
t−1 (i, j);Ψ(i, j)

]
; and, finally,

pk,w = Pr{fHDR
t = lk ∧ fSDR

t−1 = w} is the joint probability that a pixel with log-luminance
lk in fHDR

t has a motion-compensated predictor which has been tone mapped to the value
w in fSDR

t−1 . Notice that, while tone mapping fHDR
t , the previous SDR frame fSDR

t−1 has been
already computed, i.e., w depends only on the (constant) motion vector field Ψ . In practice,
we pre-compute pk,w after motion estimation, before computing Eq. (9). Finally, as shown
in the Appendix, the temporal constraint in (9) can be rewritten as a quadratic function:

Ctemp(f
SDR
inter ) = sTW2s+ sTW1, (10)

where W1 and W2 are constant matrices defined in Appendix.

3.4. Convex Optimization

Based on the spatial and temporal constraints defined above, we can redefine the opti-
mization problem for each frame fHDR

t in Eq. (4) as:

minimize
sk

ε̂(sk) + C subject to:
N∑
k=1

sk =
vmax

δ
, (11)
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where the term:

C =

{
λspaCspa(f

SDR
intra) if fHDR

t is Intra-predicted

λtempCtemp(f
SDR
inter ) if fHDR

t is Inter-predicted.

The weighting terms λspa and λtemp define the relative importance of spatial/temporal
smoothness with respect to MSE minimization, and are determined experimentally in Sec-
tion 4. Notice that Problem (11) consists in minimizing the sum of two convex functions – C
is either linear or quadratic for spatial and temporal regularization, respectively, as discussed
in Sections 3.2 and 3.3 – over the convex set:

Θ =

{
s ∈ RN

∣∣∣∣∣
N∑
k=1

sk =
vmax

δ

}
. (12)

Moreover, the term ε̂(sk), defined as:

ε̂(sk) =

{
+∞ if sk ≤ 0

ε(sk) otherwise,
(13)

is also a convex function.
The solution of Problem (11) requires an efficient algorithm for dealing with non-smooth

functions. Among the many approaches proposed to solve convex optimization problems
[15], we resort here to proximal algorithms [37], since they provide a unifying framework
that allows one to address both non-smooth functions and hard constraints. Within the large
panel of existing proximal algorithms [14,15,48], we consider the primal-dual M+LFBF al-
gorithm proposed in [16], which can address general convex optimization problems involving
non-smooth functions and linear operators without requiring any matrix inversion.

4. Experiments

In this section, we evaluate the compression performance of the proposed ST-TMO
through an extensive set of experiments. We start describing the experimental setup, fol-
lowed by results and discussion.

4.1. Setup

The input to the proposed ST-TMO is an HDR video frame in linear (photometric) RGB
domain. The required color conversion and chroma sub-sampling algorithms suggested in
the MPEG CfE on HDR and WCG video coding [34] are used. We employ the optical flow
algorithm (with the publicly available implementation) in [13, 24], with the configuration
parameters reported in Table 1.
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Table 1: Optical flow parameters.

Parameter Description Value

Lambda Regularization weight 50
PyramidFactor Gaussian pyramid scale 0.7
MaxIts number of iteration per Gaussian level 50
SizeFilter The size of the filter to remove outlier 7

(a) Market3Clip4000r2 (b) FireEater2Clip4000r1 (c) SunRise (d) EBU 04 Hurdles

(e) EBU 06 Starting (f) Carousel fireworks 03 (g) Carousel fireworks 04 (h) Smith Welding

Figure 4: Sample frames from the eight selected test sequences used for the experiment. Images are tone-
mapped using a tone mapping technique in [39] for visualization purposes.

4.1.1. Test Sequences

Experiments were carried out for eight high-definition (HD) test sequences. Figure 4
shows a sample thumbnail from the test videos, namely Market3Clip4000r2, FireEater2Clip4000r1,
SunRise, EBU 04 Hurdles, EBU 06 Starting, Carousel fireworks 03, Carousel fireworks 04,
and Smith Welding.

In order to gauge the performance of the proposed ST-TMO for different input conditions,
the selected test sequences have varied characteristics of spatial/temporal complexity and
dynamic range, reported in Table 2. The video dynamic range, DR = Lmax / Lmin where
Lmax and Lmin are the average maximum and minimum relative luminance values of the video
sequence. Spatial information (SI) and temporal information (TI) indexes were computed as
described in the ITU-R P.910 recommendation [26] on the logarithmic luminance component
of each content.

Table 2: Dynamic Range, Spatial Information and Temporal Information of the HDR video sequences used
in the results.

Sequence Market3Clip4000r2 FireEater2Clip4000r1 SunRise EBU 04 Hurdles EBU 06 Starting Carousel fireworks 03 Carousel fireworks 04 Smith Welding

DR 5421 55172 1613 873 9958 1718 2425 1790
SI 1.59 0.80 0.83 0.99 1.34 0.85 0.83 1.82
TI 0.31 0.17 0.17 0.11 0.04 0.48 0.50 0.41
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4.1.2. Benchmarks and Coding Conditions

We compare the proposed ST-TMO with the frame-by-frame TMO of Mai et al. (2011) [35]
and with the anchor solution based on the PQ EOTF proposed in the MPEG CfE [34],
available in the MPEG HDRTools v.0.17 [54]. In addition, we implemented the temporally
optimized TMO in [36], Mai et al. (2013), which is the most related approach to ours. The
overhead from the proposed ST-TMO method (i.e., metadata) is included in all reported
results. Table 3 shows the average overhead of the required metadata for the proposed
ST-TMO.

Table 3: Average metadata overhead for the proposed ST-TMO.

Sequence Market3Clip4000r2 FireEater2Clip4000r1 SunRise EBU 04 Hurdles EBU 06 Starting Carousel fireworks 03 Carousel fireworks 04 Smith Welding

Bitrate (kbps) 132 138 126 123 126 138 135 138

In order to evaluate the compression performance, video test sequences were encoded
using the HEVC reference model (HM) ver. 16.2 software. The low-delay HEVC encoder
configuration we used is as follows: GOP length of 16, predictive coded (P) pictures, YCbCr
4:2:0 chroma sampling, and an internal bit-depth of 10. We set vmax to 1023 for TMOs.
Variation in bitrates was achieved using different quantization parameter (QP) values.

Evaluation of HDR video distortion is more challenging than conventional SDR qual-
ity assessment, as only few ad hoc metrics have been proposed for the extended luminance
range of HDR content. In order to provide a more informative comparison, we evaluate HDR
video distortion using the following metrics: Peak signal to noise ratio (PSNR) and struc-
tural similarity index (SSIM) [53], both computed on either log-luminance or PU-encoded
values [1]; HDR-Visible differences predictor (HDR VDP 2.2.1) [45]; the HDR-Video Quality
Measure (HDR-VQM) [43]; HDR Metrics in the MPEG HDRTools [54], including tPSNR,
L100 and L1000. These metrics have been recently found to be sufficiently good predictors of
image quality for the case of HDR image compression [25,55]. The SSIM metric uses values
between zero and one; the higher SSIM index indicates higher quality. The logarithmic en-
coding is based on the fact that the human visual system sensitivity approximately follows
a logarithm function for light luminance values. The PU encoding, which is derived from
the contrast sensitivity function, converts luminance values into perceptual code values [1].
Additionally, HDR VDP ver. 2.2.1 and HDR-VQM, which have been demonstrated to be
well correlated with the visual perception in subjective studies [25, 55], were used to make
a more robust comparison concerning perceptual quality. Both metrics require absolute lu-
minance values as input. HDR-VDP metric is a calibrated metric which takes into account
multi-scale and multi-orientation characteristics of the early visual system. Also, a neural
noise block is defined to calculate per-pixel probabilities maps of visibility and the predicted
quality metric. We used the HDR-VDP 2.2.1 metric with the following settings: 120 cm
viewing distance, 1920×1080 display resolution, and 47-degree viewing angle. Differently,
HDR-VQM was designed for quality assessment of HDR video content. HDR-VQM uses the
PU space and relies on a multi-scale and multi-orientations analysis, similarly to HDR-VDP.
We limit our choice to luma-only quality metrics based on a recent study conducted by some
of the authors on the effect of color space on HDR video compression quality [56]. There,

12



it has been found that i) color artifacts due to using different color spaces have little or no
effect on the overall quality of compressed video, which is instead dominated by structural
distortion; and ii) that color metrics are not providing better prediction of mean opinion
scores that color-blind metrics. Color metrics such as ∆E2000 have been found to be poorly
correlated with subjective scores in [55]

The compression performance was measured for luma pictures using the Bjøntegaard
delta (BD) metric [4], which describes the average quality difference between two RD curves.

4.2. Performance Evaluation

We present parameter selection of our proposed ST-TMO in this section, an analysis
of the luminance temporal variation, the measured compression performances is evaluated
using RD curves and the Bjøntegaard metric, and some qualitative visual examples.

4.2.1. Determination of the parameter λspa and λtemp
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Figure 5: Optimum value selection of the λspa and λtemp for the Carousel fireworks 04 sequence, which
presents several temporal light variations. The video coding setup is the same as that described in Sec. 4.1.

Optimum λspa and λtemp parameters are needed to be selected to achieve high overall
compression gain. In our preliminary experiments, we found that varying λtemp plays a
major role in the overall coding performance than λspa. Therefore, in order to conservatively
tune λtemp, we optimize it using the video sequence with highest motion and flickering in
our dataset, i.e., Carousel fireworks 04 which from Table 2 is found to have the highest
temporal complexity. We report in Figure 5 rate-distortion curves (using the log PSNR
metric) for several different values of λspa and λtemp, for Carousel fireworks 04. We observe
that λtemp = 0.01 and λspa = 0.006 provide the best results for this sequence. Accordingly,
we use these parameters for all the video sequences in our experiments.

4.2.2. Temporal variation of luminance

Our proposed ST-TMO is supposed to reduce the temporal variation of luminance in the
tone mapped frames, leading to rate-distortion gains. To analyze this luminance variation,
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we calculate the mean luminance of each tone mapped frame, for each video sequence, as
illustrated in Figure 6. Also, we compute the average value of the mean luminance differences
between two consecutive tone mapped frames, for each video sequence, to observe the effect
of the temporal regularization in our proposed formulation. Table 4 shows the temporal
average luminance differences for the proposed ST-TMO and the references.

For four of the tested sequences, namely Market3Clip4000r2, FireEater2Clip4000r1,
Carousel fireworks 03, and Carousel fireworks 04, the proposed ST-TMO method shows the
lowest temporal variation. However, we notice that in other cases, the temporal variation
in the ST-TMO is in-between the minimum and maximum values obtained by other meth-
ods. This suggests that our optimization, which mixes both per frame fidelity and temporal
regularization, enables to trade the two terms in a non-trivial way; specifically, it avoids an
excessive flattening of the luminance temporal profile, which might reduce further the bi-
trate but remove essential details. We can also notice from Figure 6 that our TMO tends to
produce brighter tone-mapped pictures, while the PQ produces darker images (as observed
in previous work). Finally, from Table 4 we notice that, differently from PQ and Mai et
al. (2011), the temporal variation in our method does not change too much from content
to content; this suggests that the ST-TMO has more consistent performance on varying
content characteristics.

Table 4: Average variation of mean luminance across consecutive tone-mapped frames.

Method

Mai et al. Mai et al. PQ ST-TMO
Sequence (2011) (2013)

Market3Clip4000r2 0.286 1.0 0.6 0.357
FireEater2Clip4000r1 3.501 2.857 2.786 1.786
SunRise 0.428 1.428 0.172 0.643
EBU 04 Hurdles 0.071 1.571 0.052 0.571
EBU 06 Starting 0.428 3.143 0.214 1.642
Carousel fireworks 03 6.010 3.857 7.214 3.571
Carousel fireworks 04 7.786 2.929 9.357 2.786
Smith Welding 11.857 3.429 8.510 6.785

4.2.3. Assessment of coding performance

In order to assess the coding gains obtained with the proposed ST-TMO, we compute
rate-distortion curves for the 8 video sequences reported in Table 2. Due to space limitation,
we report the graphs only for HDR-VQM and HDR-VDP in Figures 7 and 8, respectively.
Notice that these two metrics are HDR specific and are generally considered to be well corre-
lated to human judgments [55]. For HDR-VQM, a lower value of the quality metric implies
a higher visual quality, while the opposite is true for HDR-VDP. With respect to HDR-VDP,
we observe that for all the tested contents the proposed ST-TMO provides important gains
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Figure 6: Comparison of luminance temporal variation between our proposed ST-TMO and the reference
methods, for the first 15 frames of the tested video sequences. The x and y axes of the figure represent the
tone-mapped video frame number and mean luminance of the tone-mapped video frames, respectively.

with respect to both tone mapping based solutions [35, 36] and PQ, across a wide range of
bitrates. For FireEater2, sequences tone mapped with ST-TMO have substantially simi-
lar performance as the PQ solution and as [35]. This is somehow expected as FireEater2
has low motion and spatial complexity, so the potential advantages of spatial and temporal
smoothing are limited.

The results with the HDR-VQM metric (Figure 8) somewhat confirm those with HDR-
VDP, although with some exceptions, in particular with respect to Smith Welding, where
PQ performs considerably better than all tone mapping based approaches. Notice that, with
respect to HDR-VDP, the HDR-VQM pools errors both spatially and temporally, i.e., it is
a video-specific metric; however, it employs a simpler model of the human visual system,
which might justify the extra penalty assigned to errors in dark areas which are likely to be
less visible in practice.

In order to complete the figures, we report average BD gains in Table 5 for 7 additional
quality metrics. The reported values are the average gain in the corresponding quality
metric. We opted for reporting BD quality instead of BD rate gains since the computation
of the latter is unstable when the RD curves are not properly aligned on the quality axis, as
it can be seen in Figures 7 and 8. From the table, it is evident that the proposed ST-TMO
leads to superior coding performance in most cases, and on average yields consistent gains
with all the considered quality metrics with respect to both a fixed transfer function and
a state-of-the-art TMO-based HDR video compression scheme. In particular, our proposed
TMO is beneficial for contents that display local motion and high spatial and temporal
complexity.

4.2.4. Visual comparison

In order to provide qualitative visual comparison between methods, Figures 9 and 10
report some examples of reconstructed HDR frames for each method (tone mapped using
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Figure 7: Performance comparison using the rate distortion curves computed with the HDR-VQM metric.
The lowest HDR-VQM values indicate the best results.
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Figure 8: Performance comparison using the rate distortion curves computed with the HDR-VDP metric.
The highest HDR-VDP Q values indicate the best results.
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Table 5: Quality gain of the proposed ST-TMO in terms of BD quality (dB) gains. The highest BD-quality
gains in blue and BD-quality losses in red .

Method Sequence log-PSNR log-SSIM PU-PSNR PU-SSIM HDR-VDP Q HDR-VQM tPSNR L100 L1000

PQ
Market3Clip4000r2

0.247 0.001 -0.070 -0.001 1.029 0.071 0.252 -0.241 -0.272
Mai et al. (2011) 1.507 0.011 0.85 0.002 2.119 0.185 1.468 0.237 0.216
Mai et al. (2013) 0.813 0.003 0.543 0.002 1.198 0.070 0.687 0.066 0.061

PQ
FireEater2Clip4000r1

0.794 0.008 0.002 -0.001 -0.367 0.056 4.469 1.911 1.903
Mai et al. (2011) 4.556 0.028 3.370 0.014 -0.309 0.074 5.863 2.299 2.104
Mai et al. (2013) 0.221 -0.001 0.789 0.001 0.579 0.088 10.180 -1.219 -0.985

PQ
SunRise

5.337 0.004 6.838 0.003 7.265 0.020 4.537 3.492 0.060
Mai et al. (2011) 3.516 0.006 4.794 0.002 2.902 0.030 0.071 3.867 3.932
Mai et al. (2013) -0.896 -0.003 -0.892 -0.002 0.638 -0.030 -0.477 -0.154 -0.155

PQ
EBU 04 Hurdles

0.128 -0.006 -0.217 -0.008 5.324 0.142 6.402 0.915 0.932
Mai et al. (2011) 1.477 -0.001 1.239 -0.001 2.901 0.042 2.138 1.351 1.357
Mai et al. (2013) 2.514 0.017 2.437 0.021 11.581 0.240 6.685 1.202 1.196

PQ
EBU 06 Starting

0.959 0.001 0.217 -0.001 2.744 0.017 2.276 1.358 1.369
Mai et al. (2011) 2.025 0.006 1.595 0.002 2.226 0.095 2.702 1.389 1.401
Mai et al. (2013) 0.952 0.003 0.744 0.003 1.716 0.011 1.485 0.912 0.919

PQ
Carousel fireworks 03

3.688 0.042 4.770 0.008 2.172 0.158 3.598 1.288 1.363
Mai et al. (2011) 7.529 0.147 10.294 0.040 4.323 0.065 7.438 4.209 4.798
Mai et al. (2013) 1.249 0.020 1.441 0.01 1.670 0.280 1.837 0.865 0.915

PQ
Carousel fireworks 04

4.819 0.021 5.679 0.013 4.523 0.247 5.543 1.558 1.465
Mai et al. (2011) 7.862 0.043 9.074 0.023 5.254 -0.014 7.987 3.626 3.635
Mai et al. (2013) 2.938 0.052 3.649 0.040 3.349 0.203 2.798 1.698 1.640

PQ
Smith Welding

0.071 0.014 -1.091 -0.001 1.406 -0.138 -0.335 0.558 0.752
Mai et al. (2011) 14.954 0.909 14.077 0.093 3.466 0.024 2.057 7.232 6.778
Mai et al. (2013) 0.366 0.002 1.121 0.001 0.031 0.072 1.032 0.432 0.698

Average

PQ 2.005 0.011 2.018 0.002 3.012 0.072 3.343 1.355 0.946
Mai et al. (2011) 5.428 0.144 5.662 0.022 2.860 0.063 3.716 3.026 3.027
Mai et al. (2013) 1.02 0.012 1.229 0.008 2.595 0.117 3.028 0.475 0.536

the method in [39]). We magnify some details to display the most significant differences.
As can be seen in the figures, the proposed ST-TMO method is able to reproduce more
precisely the high-frequency details in those regions, compared to the benchmark methods.

4.2.5. Computational complexity

To compare fixed transfer functions such as PQ and frame-based TMOs such as Mai et al.
(2011) and PQ, we investigate average per frame computation times for each method. For
this, MATLAB implementation of Mai et al. (2011), Mai et al. (2013), and ST-TMO were
utilized, where each implementation was not well optimized for runtime. In contrast, we used
an official C++ implementation of the PQ algorithm in MPEG HDRTools v.0.17 [54], which
is well optimized. Each estimated run-time value was obtained in the preprocessing step,
i.e., before the HEVC encoding, using an Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz
with 16 GB of RAM. Table 6 reports average per frame computation times for each method.

Compared to fixed transfer functions such as PQ, or to the closed-form TMO of Mai
et al. (2011), the proposed ST-TMO has clearly a higher complexity. Indeed, while the

Table 6: Average computation time of the proposed ST-TMO and reference TMOs.

Method Mai et al. (2011) Mai et al. (2013) PQ ST-TMO

Run-time (average sec. per frame) 1.21 269.15 3.212 370.35
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Figure 9: Examples of reconstructed HDR frames (details) using: a) Mai et al. (2011), b) Mai et al. (2013),
c) PQ, and d) the proposed ST-TMO. e) represents the original HDR frame. Each HDR frame is displayed
by the Luminance HDR software [33] using Mantiuk’06 tone mapping for visualization.
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Figure 10: (Continued) Examples of reconstructed HDR frames (details) using: a) Mai et al. (2011), b)
Mai et al. (2013), c) PQ, and d) the proposed ST-TMO. e) represents the original HDR frame. Each HDR
frame is displayed by the Luminance HDR software [33] using Mantiuk’06 tone mapping for visualization.
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tone mapping of Intra frame takes relatively little time (0.491 seconds on average in our
experiments), the tone mapping time for Inter frames is much longer (383.10 seconds on
average). About 30% of the time for Inter-frame optimization is actually due to optical flow
motion estimation. However, this might probably be speeded up by more efficient motion
estimation techniques, and indeed it is an interesting future research to investigate how
the performance would be influenced by the choice of motion estimation approach. The
remaining complexity is due to convex optimization, and is similar in magnitude to Mai
et al. (2013), which also uses similar tools. Notice that our Matlab implementation is
not optimized for performance. Much more efficient parallel implementations of proximal
optimization methods exist, which can make use of GPUs with considerable time savings [22].

5. Conclusion

In this paper, to achieve efficient video coding performance for HDR video, a content-
adaptive tone mapping algorithm is introduced that efficiently minimizes the spatial and
temporal complexity of the tone mapped video. The proposed coding solution considers
high bit-depth coding profile of the high efficient video coding (HEVC) standard, which
uses 10-bit depth. To evaluate the performance of the proposed TMO, existing content-
adaptive TMOs and the perceptual quantizer (PQ) transfer function were considered and
extensive experimental results showed that the proposed TMO solution outperforms the
reference methods. Despite the remarkable rate distortion (RD) gains achieved, the proposed
TMO still has room for enhancement. Future work will focus to further increase the coding
performance with the help of perceptual and color encoding techniques.

6. Appendix

By expanding Eq. (9) we obtain:

Ctemp(f
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inter ) =
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(
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 pk,w
 .

(14)
By recalling the definition of dk = δsk, we can rewrite Eq. (6) in terms of sk:
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Factoring the sk terms, we can write Ctemp(f
SDR
inter ) as a quadratic function of the vector s:

Ctemp(f
SDR
inter ) = sT

[ W2︷ ︸︸ ︷
vmax∑
w=0

N∑
k=1

Akpk,w

]
s

+sT
[ W1︷ ︸︸ ︷

vmax∑
w=0

N∑
k=1

bk,wpk,w

]

+

W0︷ ︸︸ ︷
vmax∑
w=0

N∑
k=1

w2pk,w,

(16)

with:

Ak =
1

4
A

(1)
k + A

(2)
k + A

(3)
k ,

bk,w = −(b
(1)
k,w + b

(2)
k,w),

(17)

where A
(1)
k , A

(2)
k , and A

(3)
k are N × N matrices and b

(1)
k,w and b

(2)
k,w are N -element column

vectors, defined in terms of k and w as follows. A
(1)
k is such that A

(1)
k (i, j) = 1 if i = j = k

and A
(1)
k (i, j) = 0 elsewhere. A

(2)
k is such that A

(2)
k (i, j) = 1 if i = k∧ 1 ≤ j ≤ k− 1 and zero

otherwise. A
(3)
k is such that A

(3)
k (i, j) = 1 if 1 ≤ i ≤ k−1∧1 ≤ j ≤ k−1 and zero otherwise.

The vector b
(1)
k,w is such that b

(1)
k,w(i) = w if i = k and zero otherwise. Finally b

(2)
k,w(i) = 2w if

1 ≤ i ≤ k − 1 and is zero elsewhere.
By noting that the zero-order term W0 in Eq. (16) does not depend on s, we obtain the

cost function of Eq. (9).
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[22] Raffaele Gaetano, Giovanni Chierchia, and Béatrice Pesquet-Popescu, Parallel implementations of a
disparity estimation algorithm based on a proximal splitting method, Ieee int. conf. on visual communi-
cations and image processing (vcip), 2012, pp. 1–6.

[23] J U Garbas and H Thoma, Temporally coherent luminance-to-luma mapping for high dynamic range
video coding with H.264/AVC, 2011 IEEE international conference on acoustics, speech and signal
processing (ICASSP), May 2011, pp. 829–832.

[24] GPU4vision, http://gpu4vision.icg.tugraz.at/, 2015.

[25] P. Hanhart, M. V. Bernardo, M. Pereira, A. MG Pinheiro, and T. Ebrahimi, Benchmarking of objective
quality metrics for HDR image quality assessment, EURASIP Journal on Image and Video Processing
2015 (2015), no. 1, 1–18.

[26] P.910 ITU-T Recommendation, Subjective video quality assessment methods for multimedia applica-
tions, ITU-T, 1999.

[27] L Kerofsky, Y Ye, and Y He, Recent developments from MPEG in HDR video compression, 2016 IEEE
international conference on image processing (ICIP), 2016, pp. 879–883.

[28] I.-K. Kim, K. McCann, K. Sugimoto, B. Bross, and W.-J. Han, High efficiency video coding (HEVC)
test model 10 (HM10) encoder description, Technical Report N12242, ISO/IEC JTC1/SC29/WG11,
Geneva, Switzerland, 2013.

[29] A. Koz and F. Dufaux, Methods for improving the tone mapping for backward compatible high dynamic
range image and video coding, Signal Processing: Image Communication 29 (2014), no. 2, 274–292.

[30] G. W. Larson, Overcoming gamut and dynamic range limitations in digital images, Color and imaging
conference, 1998, pp. 214–219.

[31] G. W. Larson, H. Rushmeier, and C. Piatko, A visibility matching tone reproduction operator for high
dynamic range scenes, IEEE Transactions on Visualization and Computer Graphics 3 (1997Oct), no. 4,
291–306.

[32] P. Lauga, G. Valenzise, G. Chierchia, and F. Dufaux, Improved tone mapping operator for HDR coding
optimizing the distortion/spatial complexity trade-off, 22nd European Signal Processing Conference
(EUSIPCO), 2014Sept, pp. 1607–1611.

[33] Luminance HDR, http://qtpfsgui.sourceforge.net/, 2018.

[34] A. Luthra, E. Francois, and W. Husak, Call for Evidence (CfE) for HDR and WCG Video Coding,
Technical Report MPEG2011/N12036, ISO/IEC JTC1/SC29/WG11, Geneva, Switzerland, 2015.

[35] Z. Mai, H. Mansour, R. Mantiuk, P. Nasiopoulos, R. Ward, and W. Heidrich, Optimizing a tone curve
for backward-compatible high dynamic range image and video compression, IEEE Transactions on Image
Processing 20 (2011June), no. 6, 1558–1571.

[36] Z. Mai, H. Mansour, P. Nasiopoulos, and R. K. Ward, Visually Favorable Tone-Mapping With High
Compression Performance in Bit-Depth Scalable Video Coding, IEEE Transactions on Multimedia 15
(2013Nov), no. 7, 1503–1518.
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