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A GENERATING FUNCTION FOR RANKIN-COHEN BRACKETS

We give a closed formula for the Rankin-Cohen formal covariant quantization in terms of generating functions of Jacobi polynomials.

The idea to interpret the quantization procedure as a formal deformation of the commutative algebra structure of classical observables comes back to the celebrated work of F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer ( [START_REF] Bayen | Deformation theory and quantization. I. Deformations of symplectic structures[END_REF][START_REF] Bayen | Deformation theory and quantization[END_REF]). Apart from physical considerations motivated by the perturbation theory this approach is originated from the semi-classical analysis of the Weyl operator calculus which is a way to associate with a reasonable function, say f ∈ L 2 (R 2n ), an operator Op W (f ) defined on L 2 (R n ) by ( 1)

(Op W (f )u) (x) = ̵ h -n ∬ R n ×R n f x + y 2 , η e 2iπ ̵ h ⟨x-y,η⟩ u(y)dydη u ∈ L 2 (R n ).
Notice that the composition of two operators Op W (f 1 )○Op W (f 2 ) is given in terms of their Weyl symbols f 1 and f 2 (without loss of generality one may assume f 1 , f 2 ∈ S(R 2n )) as follows:

f 1 ⋆ f 2 (X) = Op -1 W (Op W (f 1 ) ○ Op W (f 2 )) (2) = (2 ̵ h) 2n R 2n ×R 2n f 1 (Y ) f 2 (Z) e -4iπ ̵ h -1 ω(Y -X, Z-X) dY dZ (3)
Using spectral theory we get another, fully equivalent, expression for the composition of symbols

f 1 ⋆ f 2 (X) = Rest X=Y =Z , exp(iπL) (f 1 (Y ) ⋅ f 2 (Z)). (4) 
where

X = (x, η), Y = (y, η), Z = (z, ζ) ∈ R 2n , ω(X, Y ) = -⟨x, η⟩ + ⟨y, ξ⟩ is the standard symplectic form on R 2n and (5) iπL = ̵ h 4iπ n j=1 - ∂ 2 ∂y j ∂ζ j + ∂ 2 ∂z j ∂η j .
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Expanding the exponential into a series, the expression (4) gives rise to the Moyal formula

(6) (f 1 ⋆ f 2 )(x, ξ) = (-1) α α ! β ! ̵ h 4iπ α + β ∂ ∂x α ∂ ∂ξ β f 1 (x, ξ) ∂ ∂x β ∂ ∂ξ α f 2 (x, ξ) ,
which can be understood as an asymptotic expansion of (f 1 ⋆ f 2 ) with respect to the rescaling parameter ̵ h and yields the prototypical example of a deformation quantization or a ⋆-product.

The exponential function arising in the expression (4) plays an important role in the whole construction and underlines the very nature of the Weyl calculus which can be understood as an extension of the Schrödinger representation of the Heisenberg Lie algebra h n to the group algebra of the Heisenberg group.

Both approaches, the operator calculus and the formal deformation have their own interests and merits. The aim of this short note is to give an explicit formula analogous to (4) for the covariant deformation quantization of the upper half-plane based on the family of Rankin-Cohen bi-differential operators.

We notice that the first two terms of ( 6) are respectively the usual point-wise product of functions f 1 ⋅ f 2 and their image {f 1 , f 2 } by the Poisson bracket associated with the standard (constant coefficient) symplectic form ω(⋅, ⋅) on R 2n .

The fact that any smooth Poisson structure on a real manifold M defines a formal associative product on C ∞ (M ) is a deep result of cohomological nature that follows from Kontsevich' formality theorem. In presence of symmetries, that is, under the assumption that the manifold M is a homogeneous space, the construction of a covariant deformation is even more involved and different techniques were recently developed for appropriate classes of symmetry groups (see for instance [START_REF] Bieliavsky | Deformation quantization for actions of Kählerian Lie groups[END_REF][START_REF] Dolgushev | Covariant and equivariant formality theorems[END_REF][START_REF] Fischer | Quantization on nilpotent Lie groups[END_REF][START_REF] Gayral | Deformation quantization for actions of Q d p[END_REF][START_REF] Pevzner | Covariant quantization: spectral analysis versus deformation theory[END_REF][START_REF] Pevzner | Rankin-Cohen brackets and representations of conformal Lie groups[END_REF] and the literature quoted therein).

One such a nontrivial but handable example is provided by the covariant quantization of the Lobachevsky upper half plane

H 2 = {z = x + iy ∈ C ∶ y > 0} ≃ SL(2, R) SO(2, R).
One may mention at least four different constructions. Namely, (1) A. Unterberger and J. Unterberger (cf. [START_REF] Unterberger | Algebras of symbols and modular forms[END_REF]) developed an SL(2, R)-equivariant analog of the Weyl operator calculus which introduces, in the spirit of (2), a covariant noncommutative product of functions on H 2 via the composition of operators they correspond to. It turns out that in an appropriate setting such a product can be expressed in terms of Rankin-Cohen brackets defined for any a ∈ N and

f j ∈ B k j (H 2 ) ∶= O(H 2 ) ∩ L 2 (H 2 , y k j -2 dxdy), with k j ∈ N ∖ {0}, j = 1, 2 by: (7) RC k 3 k 1 ,k 2 (f 1 , f 2 )(z) ∶= a =0 (-1) k 1 + a -1 k 2 + a -1 a - f (a-) 1 (z)f ( ) 2 (z),
where [START_REF] Cohen | Sums involving the values at negative integers of L-functions of quadratic characters[END_REF]). More precisely, the associativity of the natural composition of operators implies that the formula ( 8)

f (n) (z) = d n dz n f (z), and 
k 3 ∶= k 1 + k 2 + 2a (see
f 1 ♯ f 2 = a∈N c k 3 k 1 ,k 2 RC k 1 +k 2 +2a k 1 ,k 2 (f 1 , f 2 ), defined for f j ∈ B k j (H 2 ), k j ∈ N ∖ {0}, j = 1, 2
, where c k 3 k 1 ,k 2 are explicit constants obtained from the multiplication table of reproducing kernels of Hilbert spaces B k j (H 2 ), k j ∈ N ∖ {0} for j = 1, 2, 3 (see [START_REF] Unterberger | Algebras of symbols and modular forms[END_REF]Theorem 4.2]), gives rise to an associative, noncommutative product on H 2 deforming the point-wise product

RC k 1 +k 2 k 1 ,k 2 in the direction of the Poisson bracket RC k 1 +k 2 +2 k 1 ,k 2 .
(2) P. Cohen, Yu. Manin and D. Zagier (cf. [START_REF] Cohen | Automorphic pseudodifferential operators. Automorphic pseudodifferential operators[END_REF]) followed the opposite way and having imposed de facto the associativity constraint on formal expressions of the form

(9) f 1 ⋆ α f 2 ∶= a∈N ̵ h a α k 3 k 1 ,k 2 RC k 1 +k 2 +2a k 1 ,k 2 (f 1 , f 2 )
found, up to a rescaling of coefficients α k 3 k 1 ,k 2 , the same expression for the deformed product as in [START_REF] Connes | Rankin-Cohen brackets and the Hopf algebra of transverse geometry[END_REF].

The fact that the authors looked for formal deformations given in terms of Rankin-Cohen brackets is not an ad hoc requirement: one shows (e.g. [START_REF] Van Dijk | Ring structures for holomorphic discrete series and Rankin-Cohen brackets[END_REF]) that such bi-differential operators are the only, up to a scalar multiple, operators intertwining the tensor product of SL(2, R) representations in B k 1 (H 2 ) and B k 2 (H 2 ) with its irreducible component isomorphic to B k 3 (H 2 ) (such representations are precisely the holomorphic discrete series representations of the Lie group SL(2, R)).

Motivated by the work [START_REF] Cohen | Automorphic pseudodifferential operators. Automorphic pseudodifferential operators[END_REF] A. Connes and H. Moscovici gave an intrinsic explanation of the associativity of deformations of type [START_REF] Connes | Rankin-Cohen brackets and the Hopf algebra of transverse geometry[END_REF] in terms of Hopf algebras of transversal geometry ( [START_REF] Connes | Rankin-Cohen brackets and the Hopf algebra of transverse geometry[END_REF]). The authors also emphasized that putting all the combinatorial coefficients α k 3 k 1 ,k 2 to be equal to one leads, as predicted by W. Eholzer and T. Ibukiyama (cf [START_REF] Eholzer | Rankin-Cohen type differential operators for Siegel modular forms[END_REF]), to an associative product:

(10) f 1 ⋆ 1 f 2 ∶= a∈N ̵ h a RC k 1 +k 2 +2a k 1 ,k 2 (f 1 , f 2 ).
(3) One may also capture the associativity of a formal deformation through the Yang-Baxter equation and, in the covariant setting, the fusion matrices for Verma modules. This construction is due to A. Alekseev and A. Lachowska [START_REF] Alekseev | Invariant * -products on coadjoint orbits and the Shapovalov pairing[END_REF] and the link with Rankin-Cohen deformations (8) was established by M. Medina-Luna in [START_REF] Medina-Luna | Opérateurs de Rankin-Cohen et matrices de fusion[END_REF].

(4) Yet another method is based on the Fedosov construction adapted by P. Bieliavsky, X. Tang and Y. Yao [START_REF] Bieliavsky | Rankin-Cohen brackets and formal quantization[END_REF] to the natural symplectic structure of H 2 . However none of these methods exhibits a closed formula of type ( 4) for the covariant quantization of the Lobachevsky upper half-plane H 2 .

Investigating the general structure of intertwining operators for discretely decomposable branching rules of infinite dimensional representations of real reductive Lie groups (the decomposition

B k 1 (H 2 ) ⊗ B k 2 (H 2 ) ≃ ⊕a∈N B k 1 +k 2 +2a (H 2 )
into irreducible components of the tensor product of two holomorphic discrete series representations of SL(2, R) mentioned above is a first example of this paradigm) it was recently pointed out (cf [16, (9.9)]) that Rankin-Cohen brackets are related to the classical Jacobi polynomials:

P α,β (t) = Γ(α + + 1) Γ(α + 1) ! 2 F 1 -, α + β + + 1; α + 1; 1 -t 2 (11) = Γ(α + + 1) Γ(α + β + + 1) m=0 m Γ(α + β + + m + 1) Γ(α + m + 1) ! t -1 2 m ,
where 2 F 1 (a, b; c; z) denotes the Gauss hypergeometric function that can be defined, for instance, for z ∈ C∶ z < 1 by a power series = ∑ n∈N Namely, define a homogeneous polynomial in two variables obtained from the classical Jacobi polynomial P α,β (t) of degree by the following inflation procedure:

P α,β (x, y) ∶= y P α,β 2 x y + 1 (12) = Γ(α + + 1) Γ(α + β + + 1) m=0 m Γ(α + β + + m + 1) Γ(α + m + 1) ! x m y -m .
Then, for avery a ∈ N the following identity on holomorphic bidifferential operators holds:

(13) RC k 1 +k 2 +2a k 1 ,k 2 = Rest z 1 =z 2 =z ○ (-1) a P k 1 -1,1-k 1 -k 2 -2a a ∂ ∂z 1 , ∂ ∂z 2 .
Of course, once known, the above formula ( 13) is elementary to check. The general method, referred to as the F -method and developed in [START_REF] Kobayashi | Differential symmetry breaking operators. I. General theory and F-method[END_REF], gives a general framework for constructing all differential symmetry breaking operators for discretely decomposable branching rules of real reductive Lie groups and explains the "raison d'être" of the formula [START_REF] Gayral | Deformation quantization for actions of Q d p[END_REF] interpreting the covariance property of the Rankin-Cohen bidifferential operators RC k 3 k 1 ,k 2 as a constraint on their symbols, a constraint which turns out to be in this case the Gauss hypergeometric equation.

The formula [START_REF] Gayral | Deformation quantization for actions of Q d p[END_REF] can be expressed in a more symmetric way.

Lemma 1. Let P α,β (x, y) = (-1) (x + y) P α,β y-x x+y . Then, for any a ∈ N:

RC k 1 +k 2 +2a k 1 ,k 2 = Rest z 1 =z 2 =z P k 1 -1,k 2 -1 a ∂ ∂z 1 , ∂ ∂z 2 ,
Proof. According to the first Kummer's relation for the hypergeometric function (see for instance [14, 8.962]):

P α,β (t) = (-1) Γ( + 1 + β) !Γ(1 + β) 2 F 1 + α + β + 1, -; 1 + β; 1 + t 2 = Γ( + 1 + β) !Γ(1 + β) t -1 2 2 F 1 -, --α; 1 + β; 1 + t t -1 = Γ( + 1 + α) !Γ(1 + α) t + 1 2 2 F 1 -, --β; 1 + α; t -1 t + 1 we get P α,β (t) = 1 + t 2 P α,-α-β-2 -1 3 -t 1 + t ,
and therefore

P k 1 -1,1-k 1 -k 2 -2a (1 -2s) = (1 -s) P k 1 -1,k 2 -1 1 + s 1 -s ,
what concludes the proof together with the definition [START_REF] Fischer | Quantization on nilpotent Lie groups[END_REF].

Let us recall ((cf [20, (4.4.5)]) that the generating series of Jacobi polynomials is given by : (14

) ≥0 P α,β (t)z = 2 α+β R -1 (1 -z + R) -α (1 + z + R) -β ,
where R = r(t, z) = √ 1 -2tz + z 2 . This leads us to the following conclusion.

Theorem 2. Consider the following function of two variables (x, y) depending on a formal parameter ̵ h:

F ̵ h α,β (x, y) = 1 + ̵ h(x + y) + 1 + 2(y -x) ̵ h + ̵ h 2 (x + y) 2 -α 1 -̵ h(x + y) + 1 + 2(y -x) ̵ h + ̵ h 2 (x + y) 2 -β 2 -α-β 1 + 2(y -x) ̵ h + ̵ h 2 (x + y) 2
Then the formal Rankin-Cohen covariant quantization ⋆ 1 of the upper half-plane H 2 is given by

f 1 ⋆ 1 f 2 (z) = a∈N ̵ h a RC k 1 +k 2 +2a k 1 ,k 2 (f 1 , f 2 ) = Rest x=y=z ○ F ̵ h k 1 ,k 2 ∂ ∂x , ∂ ∂y (f 1 (x) ⋅ f 2 (y)),
where f k j ∈ B k j (H 2 ), k j ∈ N ∖ {0}, j = 1, 2.

Proof. The formula [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] for the generating function of Jacobi polynomials implies that ≥0 (-1) P α,β y -x x + y (x + y) ̵ h = F ̵ h α,β (x, y).

Together with Lemma 1 this observation concludes the proof.

  nn! z n (here (x) n denotes the rising Pochhammer symbol).