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Abstract
Background: Brown algae are plant multi-cellular organisms occupying most of the world coasts
and are essential actors in the constitution of ecological niches at the shoreline. Ectocarpus siliculosus
is an emerging model for brown algal research. Its genome has been sequenced, and several tools
are being developed to perform analyses at different levels of cell organization, including
transcriptomic expression analyses. Several topics, including physiological responses to osmotic
stress and to exposure to contaminants and solvents are being studied in order to better
understand the adaptive capacity of brown algae to pollution and environmental changes. A series
of genes that can be used to normalise expression analyses is required for these studies.

Results: We monitored the expression of 13 genes under 21 different culture conditions. These
included genes encoding proteins and factors involved in protein translation (ribosomal protein
26S, EF1alpha, IF2A, IF4E) and protein degradation (ubiquitin, ubiquitin conjugating enzyme) or
folding (cyclophilin), and proteins involved in both the structure of the cytoskeleton (tubulin alpha,
actin, actin-related proteins) and its trafficking function (dynein), as well as a protein implicated in
carbon metabolism (glucose 6-phosphate dehydrogenase). The stability of their expression level
was assessed using the Ct range, and by applying both the geNorm and the Normfinder principles
of calculation.

Conclusion: Comparisons of the data obtained with the three methods of calculation indicated
that EF1alpha (EF1a) was the best reference gene for normalisation. The normalisation factor
should be calculated with at least two genes, alpha tubulin, ubiquitin-conjugating enzyme or actin-
related proteins being good partners of EF1a. Our results exclude actin as a good normalisation
gene, and, in this, are in agreement with previous studies in other organisms.
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Background
Brown algae (Phaeophyceae) are multi-cellular marine
organisms that grow along temperate, tropical and polar
coasts. Many of them are subject to frequent changes in
their local environment, because they are uncovered at
low tide, and are hence exposed to desiccation, and to var-
iations in osmotic pressure due to rain or evaporation. In
addition, pollution of the coasts, due to human activities,
constitutes an additional source of abiotic stress, to which
they must develop adaptive mechanisms. Expression
analyses of genes involved in the perception of the stress,
and in the establishment of the appropriate responses,
provide a means to decipher the molecular mechanisms
potentially involved in such adaptations. Despite the
availability of medium scale cDNAs libraries for several
different species of the brown algae (Laminaria, Sargassum,
and Fucus), this task has been hindered by the lack of
genome-scale resources. In 2004, Peters et al. [1] have
compared a range of features in several species of Phaeo-
phyceae and concluded that Ectocarpus siliculosus was the
best candidate to consider for such developments.
Recently, the genome of this alga has been sequenced,
offering a unique opportunity to survey the expression of
gene families in brown algae (Genoscope, J.M. Cock,
unpublished data). E. siliculosus is a small filamentous
alga, extensively studied over the last two centuries for its
complex life cycle and its physiological features (reviewed
in [2]). The genome is currently being annotated, allow-
ing the initiation of both large scale and targeted surveys
of the Ectocarpus genes, such as microarrays or real-time
RT-PCR respectively.

Compared to high-throughput microarray techniques,
real-time quantitative RT-PCR only allows assays of gene
expression to be carried out at relatively low throughput
(10–20 genes in 10–50 samples). Nonetheless, this tech-
nique has been adopted by a large community as a stand-
ard method for gene expression studies, because of its
high reliability, and its rapidity of execution [3,4]. This
technique is now widely used for a large number of ani-
mal and plant organisms, as well as for bacteria and
viruses.

A few years after the emergence of this technique, a need
for a reliable normalisation method became insistent. Dif-
ferent methods of identifying normalisation genes, such
as geNorm [5], NormFinder [6] and BestKeeper [7], were
then developed. This was followed by a wave of reports on
the identification of the best normalisation genes from a
broad range of species and specific tissues. These biologi-
cal materials included human tissues [8-10] and viruses
[11], as well as tissues from a variety of animals such as
cow [12], pig [13], horse [14], dolphin [15], fishes
[16,17], worm [18] and others. In parallel, a similar exten-
sion of the use of this technique was observed in plant

research, for rice [19], poplar [20], potato [21], grapevine
[22], and for plant pathogens [23].

In the brown alga E. siliculosus, the expression level of 20
genes specific to the two generations in the life-cycle of
this alga was recently reported in a mutant impaired in
development [24]. Additional developmental and physio-
logical studies are underway, including studies aimed at
assessing the resistance of this alga to environmental
changes. Hence, the availability of a set of housekeeping
genes for normalising the expression levels of genes of
interest is a pre-requisite to any valuable conclusion, espe-
cially since this organism lives in a frequently changing
environment.

In this paper, we propose optimal normalisation genes for
expression analyses in E. siliculosus. Thirteen housekeep-
ing genes that have been reported to be good potential
candidates in the previously cited literature, were chosen
for this task. Their expression was examined by Q-RT-PCR
in a diversity of algal samples corresponding to growth
kinetic series, osmotic stress experiments, and chemical
treatments. Namely, the candidate genes are involved in
the synthesis and the dynamics of the cytoskeleton, in the
synthesis, folding and degradation of proteins, and in the
metabolism of carbon, all of these processes being known
to be only moderately affected by the fluctuation of
growth conditions.

Results
Treatments applied to E. siliculosus and choice of 
housekeeping genes
Several different stresses were tested in this study. Chemi-
cal agents tested included H2O2, a reactive oxygen species
produced by many organisms, including seaweeds, under
conditions of abiotic and biotic stresses [25]. We also
tested heavy metals such as copper, which are among the
most significant pollution actors in marine environments
worldwide. Diuron and atrazine are herbicides that
inhibit photosynthesis by blocking the d1 protein of pho-
tosystem II [26,27]. Diuron is also an additive of antifoul-
ing paints, which prevent growth of organisms on ships'
hulls. In addition pathogen or grazer attacks were mim-
icked by wounding E. siliculosus tissues with a razor blade.
We also tested the effect of oxylipins. These are oxygen-
ated derivatives of polyunsaturated fatty acids which play
a major role in inflammatory processes, allergies, and, in
a wide sense, defensive stress responses to infection,
drugs, and xenobiotics [28]. In land plants, C18 derived
jasmonates play a pivotal role in defense induced mecha-
nisms [29]. In mammals, oxidation of the C20 arachi-
donic acid produces derivatives such as leukotriens and
prostaglandins. As brown algae are able to produce oxyli-
pins typical of both land plants and animals [30], their
putative action on the induction of stress signalling path-
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ways is of particular interest. Finally, as the metabolism
and the physiology of brown algae are regulated to a large
extent by diurnal rhythms, a time series of samples taken
over a single day was also analysed.

RNA was extracted from biological triplicates of algae that
had received the above treatments resulting in a total of 63
samples for 21 different treatments (see Table 1, and
Methods for details on concentration and timing). Single
strand cDNA was synthesised simultaneously from each
of the 63 extracts in order to minimize any variation dur-
ing this step of the process. The abundance of the tran-
scripts of 13 potential housekeeping genes was then
assayed on these cDNAs. The genes tested included com-
monly used genes such as a ribosomal protein and trans-
lation initiation or elongation factors (eIF2A, eIF4E, EF1a,
26S ribosomal protein), cytoskeleton proteins (tubulin
alpha, actin and actin-related proteins), and proteins
involved in the protein degradation process (ubiquitin
and ubiquitin-conjugating enzyme). In addition, cyclo-
phylin, two actin-related proteins, a tubulin molecular
motor (dynein) and an enzyme involved in the pentose
phosphate pathway (glucose 6-phosphate dehydroge-
nase) were included in this study. The genes tested are
listed in Table 2.

Quantification and data analysis
In order to assess whether the transcripts of these 13 genes
remained at comparable levels in the different samples
tested, we calculated the variation in the Ct value for each
gene. Figure 1A shows that the transcripts of these genes
exhibited different levels of abundance, with CYC being
expressed at the lowest level, and UBQ being expressed
the most strongly. Variation in transcript accumulation
across the 21 culture conditions was not the same for all
the genes tested. EF1a showed the weakest variation,
while G6PD expression seemed to be strongly influenced
by the treatments, its range of expression level exceeding
10 Ct (Figure 1B).

In order to test the robustness of these data, we performed
the geNorm pairwise analysis, which was first described
by Vandesompele et al. [5], and has since been widely
used to evaluate the stability of expression of genes from
many organisms. The results of this analysis (Figure 2)
were slightly different from those obtained with the Ct
value calculation. The two calculation methods identified
the same least and most stably expressed genes (G6PD
and CYC were the least stable, and TUA, EF1a and Dyn
were the most stable), but the intermediate genes were
ordered differently. This was particularly striking for
ARP2.1 and UBCE, which the geNorm analysis indicated
were the most stably expressed genes, and which the Ct
value analysis indicated to be among the least stably
expressed. In order to test whether averaging the biologi-
cal triplicates had an effect on the final result, we per-
formed the geNorm analysis using the transcript
abundances measured in the 63 individual cDNA sam-
ples, as previously described [31]. This analysis identified
the same genes as having either highly variable (CYC,
G6PD and ACT) or very stable (ARP2.1, UBCE, TUA, EF1a
and Dyn) transcript abundances, but the order of the six
remaining genes was again different (data not shown).
Thus, averaging the biological replicates modified the
results of the analysis for the intermediate genes, but not
for the most and the least stable genes. A one-way ANOVA
test showed that for most of the genes considered individ-
ually, the variance between the different culture condi-
tions is significantly higher than the variance between the
biological replicates for a given condition (see Additional
file 1). Therefore, averaging on the three biological repli-
cates should not introduce any significant distortion.

NormFinder is another approach that has been used to
assess the stability of expression of housekeeping genes
[6]. When NormFinder was applied to the data obtained
in this study, it indicated that the genes with the most sta-
ble levels of transcript abundance were TUA, ARP2.1,
EF1a and Dyn (Table 3). These were almost the same
genes as the ones identified by geNorm, with the excep-
tion that Dyn performed better than UBCE. Therefore,

Table 1: Culture conditions and duration. 

Type of treatment Final concentration Duration

Diurnal cycle 0 h
Diurnal cycle 6 h
Diurnal cycle 12 h
Diurnal cycle 18 h
Diurnal cycle 24 h

ASW 450 mM NaCl 3 h
DMSO 1% (V:V) 3 h
H2O2 10 mM 3 h
CuSO4 10 M 3 h
Atrazine 55 g. L-1 3 h
13-HOtrE 5 M 3 h
15-HEPE 5 M 3 h
ASW 450 mM NaCl 6 h
Ethanol 0.2% (V:V) 6 h
CuSO4 10 M 6 h
Diuron 42 g.L-1 6 h
Wounding 6 h

ASW 450 mM NaCl 6 h
Hyposaline 60 mM 6 h
Hypersaline 1,5 M 6 h
H2O2 1 mM 6 h

Treatments were applied under light (see Material and Methods for 
details). ASW: artificial sea water; DMSO: dimethyl sulfoxide; 13-
HOTrE: 13-hydroxyoctadecatrienoic acid; 15(S)-HEPE: 15-
hydroxyeicosapentaenoic acid.
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there was a very good correlation between the results
obtained from geNorm and NormFinder, despite the fact
that the methods of calculation are fundamentally differ-
ent.

In order to test whether the normalisation genes identi-
fied above were also the best choices for specific condi-
tions, we performed expression stability measurements
on distinct series of treatments i.e. osmotic stresses, chem-
ical treatments and diurnal rhythm. Figure 3 shows that
with both the geNorm and NormFinder calculation meth-
ods (A and B) the optimal choice of normalisation gene
depended on the type of experiments. Thus, although
EF1a remained among the most stable genes, variations in
the identity of the other very stable genes were observed
depending on the treatment. This was particularly striking
for the ACT gene, the abundance of its transcript showing
a high level of variability following all the treatments
except osmotic stresses. The transcript of the TUA gene
varied significantly in abundance in the diurnal sample
series (see Additional file 2), but remained at a stable level
in the abiotic stress treatments. Note that CYC and G6PD,
which showed the greatest variability in transcript abun-
dance in the global analyses, were also highly variable in
each of the different classes of experiment.

To calculate the number of normalisation genes necessary
to obtain the normalisation factor we determined, using
geNorm, the pairwise variation between sets of normalisa-
tion factors obtained when using two, three or more genes
for normalisation. Figure 4 shows that the normalisation
factors are only modified slightly when a third (or more)
gene is added (pairwise variation of 0.13 for 3 genes).
Vandesompele et al. [5] recommended that additional
normalisation genes be included if the pairwise variation
between the normalisation factors is higher than 0.15.
According to geNorm, measuring the expression levels of
ARP2.1 and UBCE is sufficient to normalise the expres-
sion of genes of interest in these samples.

Discussion
In this study, the three methods used to identify the best
normalisation genes were concordant, as previously
reported in other studies [10]. Comparison of the three
methods indicates that EF1a is the most reliable gene to
normalise gene expression in experiments aiming at
quantitatively measuring the transcriptional response to
abiotic stresses and chemical treatments. The V pairwise
analysis shows that two genes are sufficient for a proper
expression normalisation. The choice of the second gene,
however, will depend on the type of experiment that is
being carried out. For osmotic stresses and chemical treat-

Table 2: Candidate housekeeping genes tested in this study.

Gene 
symbol

Homologous to Description of trace 
archive

Accession 
number

Oligonucleotides – Forward – Reverse E (%) R2 Tm 
product

PCR 
product 
length (bp)

ACT Actin KY0AIB94YO18AHM1 1927036313 CCCAGATCATGTTCGAGACGTT
CACGCCGTCACCCGAGTC

91 1.000 87.80 119

ARP2.1 p34-arc subunit of the 
actin-related protein 
complex ARP2/3

KY0AFIPA38YJ23RM1 1927195696 GAAGGAGTTCTGCCGGGAAG
ACAAAGCAGCAACGCAGAGA

98 0.994 84.50 121

ARP2.2 ARP2 subunit of the 
actin-related protein 
complex ARP2/3

KY0AIB269YJ02AHM1 1929831232 GAAGAAGTTCAAGCTCAACATCGA
CCGCACCCCCAATGAAA

104 0.998 80.90 68

CYC Cyclophilin KY0ADB29YF06FM1 1291599781 AGACGGCGGTGCAAGTAGG
GTGAGTCACGGCTGCTTTTATG

92 0.997 84.80 101

Dyn Dynein light chain 
protein

KY0AEB344YP09RM1 1306215256 GGAACAAAGCATGGTGACAACA
CGCGTGCCTATCCAAGCT

100 0.999 81.20 65

EF1alpha Translation elongation 
factor 1 alpha

KY0AEC342YI10RM1 1291335619 GCAAGGGCCTCAGCTCTG
ACAAGCCGTCTGGGTATATGTTAGC

92 0.997 81.50 160

G6PD Glucose 6 phosphate 
dehydrogenase

KY0AEF243YN02RM1 1299896231 GTGAGGATGTTCAGGTCCCAG
GTGGAAGACCCGGTGAGGT

90 0.996 84.50 101

IF2A Translation initiation 
factor eIF2 alpha

KY0AIB251YB11AHM1 1918199315 GCGGTACGTGATGGACACC
CCCCCGACTCGATGATCTTT

94 0.991 84.80 101

IF4E Translation intiation 
factor eIF4E

KY0ADA42YE14FM1 1291478318 TCGCGATTCGAGGTTTGAGTA
CAAACGCTGCGGCAGC

100 0.991 82.40 71

R26S Ribosomal protein 26S KY0AEC624YL15RM1 1300144654 GCTAGGCTTGCGTTTGTGTG
GGCGAGACAGAAAGATTCCG

93 0.995 85.40 101

TUA Alpha tubulin KY0AEC614YE14RM1 1299935912 TTTGAGGAGTTTCGTCGGAGAT
CACACAGCGCAAAACGGC

92 0.999 83 140

UBCE Ubiquitin conjugating 
enzyme

KY0AFIPA87YJ24RM1 1917772478 AACAATGGCCTTTGCGAAAA
GCGTACGTCTTGAAGCCCAG

95 0.997 84.50 101

UBQ Ubiquitin C KY0AEC576YH18FM1 1306241438 CAACGCCCATGATTGTTCAC
GATTATTCCCATCCACGGCA

100 0.997 82.70 101

mN Intron amplification KY0AEF302YN21FM1 1306150449 TCATTTTTCATGTGGAGGTCTCTG
GCCAAACAAACAACAACCCTC

83 0.981 84.80 93

The identity of the sequences (gene name, function) is indicated in the left part of the table. The trace corresponds to trace archive at NCBI http://
www.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=retrieve&val=species_code%3D%22ECTOCARPUS+SILICULOSUS%22. Parameters on the corresponding amplified 
product (oligonucleotides, amplicon Tm and size, reaction efficiency and reliability) are indicated in the right part.

http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=retrieve&val=species_code%3D%22ECTOCARPUS+SILICULOSUS%22
Mark Cock
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ments, TUA can be used reliably, while for the diurnal
cycle ARP2.2 is more relevant.

As a brown alga, E. siliculosus is member of the kingdom
of the Heterokonta, which is phylogenetically very distant
from animals and land plants [32]. Interestingly, and

despite this evolutionary distance, a consensus seems to
emerge from similar analyses performed in organisms
belonging to distant lineages. The gene coding for the
elongation factor of protein translation EF1a was shown
to be the best reference genes in salmon [17] and in sev-
eral plants such as in rice [19], grapevine [22] and potato
[21]. The alpha tubulin encoding gene was also reported
to be one of the best reference genes for horse tissues [13]
and in poplar [19]. On the other hand, actin genes have
been very often reported as exhibiting highly variable lev-
els of expression in both human and animals tissues
[10,12,16-18], and in plants [19]. In this study, we have
shown that this is also true for E. siliculosus.

Despite the fact that ubiquitin and related enzymes
(UBCE) are not commonly used as normalisation genes,
in this study, they were found to be quite suitable. Inter-
estingly, Czechowski et al. [31] showed, using microarray
analysis, that genes of the ubiquitin complex, comprising
an ubiquitin conjugating enzyme such as UBCE, and sev-
eral E3-ubiquitin protein ligases, were very stably
expressed. They also pointed out that genes with fairly low
levels of expression such as UBCE may be of particular
interest for normalising expression levels of genes that are
expressed at moderate to low levels, such as transcription
factors. This latter example illustrates how microarray
analyses may be useful to find additional normalisation
genes, which can be then tested by Q-PCR for their suita-
bility.

Conclusion
E. siliculosus is recognised as the genomic and genetic
model of brown macroalgae [1,2]. As the genome
sequence is currently in the phase of expert annotation,
the community interested in E. siliculosus is likely to grow
in the near future. The results presented in this paper pave

Table 3: Normfinder analysis of the expression stability of the 13 
genes.  

Gene name Stability value

TUA 0.099
ARP2.1 0.182
EF1a 0.220
Dyn 0.227
UBCE 0.240
UBQ 0.401
IF4E 0.403
IF2A 0.406
ARP 2.2 0.422
R26S 0.479
ACT 0.558
G6PD 0.655
CYC 1.964

The stability of expression of the 13 genes was calculated using the 
Normfinder method designed by Andersen et al.[6]

Expression level of 13 housekeeping genesFigure 1
Expression level of 13 housekeeping genes. A: The 
range of the expression level of the 13 genes over the 21 cul-
ture conditions is expressed in Ct values. The black diamond 
represents the arithmetic mean. B: Variations observed in 
the range of Ct values.
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the way for further studies on different aspects of E. silicu-
losus biology including development/morphogenesis and
abiotic/biotic stress responses. In addition, they will be
helpful for comparison with results from microarray
hybridizations, which are currently in progress.

Methods
Culture conditions and treatments
E. siliculosus (Ectocarpales, Phaeophyceae) unialgal strain
32 (CCAP accession 1310/4, origin san Juna de Marcona,
Peru) was cultivated in 10 L plastic flasks in a culture
room at 14°C using filtered and autoclaved natural sea-
water enriched in Provasoli nutrients [33]. Light was pro-
vided by Philips daylight fluorescence tubes with a
photon flux density of 40 mol. m-2 .s-1 for 14 hours per
day. Cultures were bubbled with filtered (0.22 m) com-
pressed air to avoid CO2 depletion. To conduct the chem-
ical treatment experiments, algal tissues were transferred
into Petri dishes containing artificial seawater enriched
with Provasoli (ASW) for at least 18 h before treatments in
order to acclimatize the cultures to the change of growth
conditions. They were then treated with different chemi-

cals for 3 and/or 6 h (see Table 1) during the light phase.
The treatments were 10 mM H2O2 (final concentration),
42 g.L-1 Diuron, 55 g.L-1 atrazine, 5 M 13-HOTrE and
15(S)-HEPE. Algae were also incubated in 10 M CuSO4
for 3 and 6 h. An equal volume of solvent (ASW or DMSO
1%) was used in each corresponding control treatment.
Wounding was carried out by damaging the tissues with a
razor blade. To perform saline stress and an additional
H2O2 treatment, tissues were transferred to ASW for one
week before applying the stress. The NaCl concentration
in control ASW was 450 mM, while it was 60 mM and 1.5
M in ASW used to submit the alga to hyposaline and
hypersaline conditions respectively. In addition, H2O2
was added at 1 mM final concentration to the control
ASW for generating oxidative stress. Treatments were
applied for 6 h before harvesting the tissues for RNA
extraction. To collect samples through the diurnal cycle,
algae were incubated in ASW and tissue harvested every 6
h during one day. The first sample was taken 30 min after
the beginning of the light period. The summary of the cul-
ture conditions is presented in Table 1.

Ranking of the 13 housekeeping genes over the three different series of culture conditionsFigure 3
Ranking of the 13 housekeeping genes over the three different series of culture conditions. Both geNorm (A) and 
Normfinder (B) were used to order the housekeeping genes according to three axes, corresponding to the three series of cul-
ture conditions/treatments. The position of each gene in the 3-D graph indicates its suitability as a reference gene. The front 
bottom position corresponds to the most stable gene, the far top position to the most regulated gene. Note the different 
scales on the axes.
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Three biological replicates were obtained for each treat-
ment and these were used for total RNA extraction.

RNA extraction
The protocol used for RNA extraction was based on the
method developed by Apt et al. [34] with some modifica-
tions. Frozen tissue was ground in liquid nitrogen and
immediately incubated in the presence of extraction
buffer (100 mM Tris-HCl pH 7.5, 2% CTAB, 1.5 M NaCl,
50 mM EDTA, 50 mM DTT). The sample was shaken at
room temperature for 30 min, then one volume of chlo-
rophorm:isoamylic alcohol (24:1, V/V) was added and
the sample shaken again for 25 min. After centrifugation,
the upper phase was transferred to a new tube and mixed
with 0.3 V of absolute ethanol to precipitate the polysac-
charides, and extracted with 1 V of chlorophorm. After
centrifugation the upper phase was transferred to a fresh
tube and RNA was precipitated by addition of 0.25 V of 12
M LiCl and -mercapto-ethanol to 1% final concentra-
tion, overnight at -20°C. After centrifugation, the pellet
was resuspended for DNAse treatment by an RNAse-free
DNAse I (Turbo DNAse, Ambion) according to the manu-
facturer's instructions, in order to eliminate any residual
genomic DNA from the preparation. An extraction was
then carried out by adding Phenol-Chlorophorm (1:1, V/
V). After centrifugation the upper phase was transferred to
a fresh tube, and extracted with 1 V of chlorophorm:iso-
amylic alcohol (24:1, V/V) and centrifuged again. The
upper phase was precipitated with 0.3 M NaAc pH 5.5 and
75% ice cold ethanol by incubating overnight at 20°C.
After centrifugation, the supernatant was removed, and
the pellet washed with 80% ethanol. After centrifugation
and drying on ice, the pellet was resuspended in an appro-
priate volume of RNAse-free water.

Quantification of RNAs and cDNA synthesis
Nucleic acid concentrations were measured by the absorb-
ance at OD260 using a NanoDrop ND-1000 spectropho-
tometer. The purity of the RNA samples was assessed by
measuring the ratio OD260/OD280 and OD230/OD260 (see
Additional file 3). RNA integrity was then verified on
1.5% agarose gel stained with ethidium bromide (see
Additional file 4). From each RNA sample, 1.4 g was
reverse transcribed to cDNA using oligo(dT)12–18 and the
Superscript™ First Strand synthesis for RT-PCR (Invitro-
gen) according to the manufacturer's instructions, and
subsequently diluted with nuclease free water to 1 ng. l-1

cDNA.

Protocol for DNA extraction
Frozen tissue was ground in liquid nitrogen and then in a
wheaton potter with 15 ml of extraction buffer (100 mM
Tris-HCl pH7.5; 1.5 M NaCl; 2% CTAB; 50 mM EDTA; 50
mM DTT) per g of wet tissue. The suspension was then
mixed vigorously at room temperature for at least 30 min.
Proteins were degraded with 25 units of proteinase K for
2 h at 55°C, and then extracted with chlorophorm/iso-
amyl alcohol for several minutes. Polysaccharides were
precipitated with progressive addition of 0.2 – 0.3 V of
ethanol, and then extracted with 1 V of chloroform after
spinning at 10,000 g and 20°C for 20 min. Nucleic acids
were recovered from the upper phase by addition of 0.25
V of 12 M LiCl and 1% of -mercaptoethanol, incubation
at -20°C overnight and spinning at 10,000 g and 4°C for
1 h. The supernatant was precipitated with 0.6 V isopropa-
nol, 0.3 M NaAc pH 5.2, left at 4°C for 30 min, and then
spun down for 30 min at 13,000 g. The pellet was then
dissolved in 400 l H2O, and precipitated again with eth-
anol and NaAc. DNA was dissolved in 500 l of TE (10
mM Tris-HCl pH 8.0; 1 mM EDTA), 5.4 M CsCl (density
1.66) and 250 g.mL-1 of ethidium bromide. Spinning at
90,000 g for 24 h at room temperature allowed the recov-
ery of a band containing ultrapure genomic DNA under
UV. Ethidium bromide was extracted 4–5 times with TE-
saturated butanol and CsCl eliminated by successive eth-
anol precipitations.

Real-time PCR
All the genes were quantified on the same lot of cDNAs, to
minimize experimental variation that could be due to
cDNA synthesis. For each gene, a pair of oligonucleotide
sequences was designed in the 3' UTR of the genes when
the sequence was known, or in the 3'coding sequence
using Primer Express TM1.0 (PE Applied Biosystems, Fos-
ter City, CA, USA) (Table 2). The Q-PCR reactions were
performed in a 96-well thermocycler (Biorad, Opticon)
with SYBRgreen reaction mix from ABgene (AB-1162/B),
for 15 min at 95°C, followed by 41 runs of 15 sec at 95°C
and 1 min at 60°C. Each sample was technically dupli-
cated. E. siliculosus genomic DNA was used as a quantifica-

Determination of the optimal number of control genes for normalisationFigure 4
Determination of the optimal number of control 
genes for normalisation. The pairwise variation V of the 
normalisation factors was calculated for the 21 different cul-
ture conditions for the 13 housekeeping genes with the 
geNorm software [5].

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

V2/
3

V3/
4

V4/
5

V5/
6

V6/
7

V7/
8

V8/
9

V9/
10

V10
/1

1

V11
/1

2

P
a

ir
w

is
e

v
a
ri

a
ti

o
n

 V



BMC Molecular Biology 2008, 9:75 http://www.biomedcentral.com/1471-2199/9/75

Page 8 of 9
(page number not for citation purposes)

tion reference. A dilution series ranging from 37 to 48671
copies of the E. siliculosus genome was prepared and tested
for each gene. The amplification efficiency was tested
using this dilution series (Table 2). The specificity of
amplification was checked with a dissociation curve
obtained by heating the samples from 65°C to 95°C
(Table 2). In addition to the DNAse-I treatments of RNAs,
the absence of a genomic DNA contaminants was
checked, by amplifying an intron sequence on the cDNAs.
The number of copies of contaminant gDNA was sub-
tracted from all other values, prior to any further analyses.

Abbreviations
13-HOTrE: 13-hydroxyoctadecatrienoic acid; 15(S)-
HEPE: 15-hydroxyeicosapentaenoic acid; ACT: actin;
ARP2: actin-related protein 2/3; ASW: artificial sea water;
CYC: cyclophilin; DMSO: dimethyl sulfoxide Dyn:
dynein; EF1a: translation elongation factor alpha; G6PD:
glucose 6-phosphate dehydrogenase; IF2A: translation
initiation factor 2 A; IF4E: translation initiation factor 4E;
R26S: ribososomal protein 26S; TUA: tubulin alpha;
UBCE: ubiquitin conjugating enzyme; UBQ: ubiquitin.
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