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Summary 1

2

Brown algae share several important features with land plants, such as their photoautotrophic 3

nature and their cellulose-containing wall, but the two groups are distantly related from an 4

evolutionary point of view. The heterokont phylum, to which the brown algae belong, is a 5

eukaryotic crown group that is phylogenetically distinct not only from the green lineage, but 6

also from the red algae and the opisthokont phylum (fungi and animals). As a result of this 7

independent evolutionary history, the brown algae exhibit many novel features and, 8

moreover, have evolved complex multicellular development independently of the other major 9

groups mentioned above. In 2004, a consortium of laboratories, including the Station 10

Biologique in Roscoff and Genoscope, initiated a project to sequence the genome of 11

Ectocarpus siliculosus, a small filamentous brown alga that is found in temperate, coastal 12

environments throughout the globe. The E. siliculosus genome, which is currently being 13

annotated, is expected to be the first completely characterised genome of a multicellular alga. 14

In this review we look back over two centuries of work on this brown alga and highlight the 15

advances that have led to the choice of E. siliculosus as a genomic and genetic model 16

organism for the brown algae. 17

18 

198 words 19

20 
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diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine; DGTS, 12

diacylglyceryltrimethylhomoserine; MGDG, monogalactosyldiacylglycerol; PC, 13

phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PG, 14

phospahtidylglycerol; SQGD, sulfoquinovosyldiacylglycerol. 15
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I- Introduction  1

2

The brown algae belong to the division Heterokonta and are therefore only very distantly 3

related to the three most intensely studied eukaryotic groups, the animals, fungi and green 4

plants (Baldauf, 2003; Davis, 2004; Fig. 1a). This independent evolutionary history has 5

furnished brown algae with many novel metabolic, physiological, cellular and ecological 6

characteristics including a complex halogen metabolism, cell walls containing many unusual 7

polysaccharides and high resistance to osmotic stress. Developmental processes are 8

particularly interesting in this group, which evolved complex multicellularity independently 9

of the three other major groups listed above. From a more applied point of view, the 10

evolutionary history of the brown algae also underlies the high commercial value of several 11

members of the group in the sense that they have evolved novel biomolecules such as 12

polysaccharides and defence elicitors that have a wide range of applications in industry 13

(Klarzynski et al., 2000; McHugh, 2003).  14

It is important to note, however, that whilst the independent evolutionary history of the 15

brown algae is the source of much of the interest of this group, it can also be seen as a 16

handicap because the well-developed model organisms from the plant and animal lineages are 17

of limited relevance to brown algal biology. Specialised brown algal models have been 18

developed in specific domains, for example members of the fucoids for cell biology 19

approaches (see references in Corellou et al., 2005), but a polyvalent model organism that 20

allows access to a wide range of questions at the molecular level has been lacking. This 21

situation is changing with the development of genomic and genetic tools for the filamentous 22

brown alga Ectocarpus siliculosus. The sequencing of the genome of this alga has recently 23

been completed and the sequence is currently being annotated 24
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(http://www.cns.fr/externe/English/Projets/Projet_KY/organisme_KY.html). It is therefore an 1

opportune moment to look back at the emergence of Ectocarpus as a model organism.  2

Research on Ectocarpus began in the 19th century with descriptions of species and 3

taxonomy, followed by studies aimed at unravelling reproduction and life history. Other 4

major aspects that have been studied include the sexual pheromones and infection of 5

Ectocarpus by viruses. Research has also been carried out on ultrastructure, photosynthesis 6

and carbon uptake, gamete recognition and resistance to anti-fouling agents. Several 7

eukaryotic parasites of Ectocarpus have been described. A proposition to adopt Ectocarpus as 8

a general model organism for the brown algae was made in 2004 (Peters et al., 2004a). This 9

proposition was based partly on this alga's long history as an experimental organism but also 10

took into account several features that make Ectocarpus an interesting model for genetic and 11

genomic approaches. These features include its small size, the fact that the entire life cycle 12

can be completed in Petri dishes in the laboratory (Müller et al., 1998), its high fertility and 13

rapid growth (the life cycle can be completed in 3 months), the ease with which genetic 14

crosses can be carried out and the relatively small size of the genome (200 Mbp compared 15

with 1095 and 640 Mbp for Fucus serratus and Laminaria digitata respectively; Le Gall et 16

al., 1993 and Peters et al., 2004a).  17

Here we present an overview of the work that has been carried out on Ectocarpus over the 18

last two centuries and discuss how the availability of a number of genomic tools, in particular 19

the complete genome sequence, is expected to accelerate research in many domains of brown 20

algal biology in the coming years. 21

22 
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II– Diversity and taxonomy, distribution and ecology  1

1 - Diversity and taxonomy 2

Dillwyn (1802-1809) published the first valid description of Ectocarpus (using the name 3

Conferva siliculosa) based on material collected by W.J. Hooker on "rocks in the sea at 4

Cromer and Hastings". These English localities lie in Norfolk and East Sussex, respectively. 5

Type material, collected by Hooker in 1807, is housed at BM (BM000685585 and 6

BM000685588) under the name C. confervoides. Lyngbye (1819) described the genus 7

Ectocarpus based on material from Denmark and cited C. siliculosa Dillwyn as basionym. 8

The correct nomenclature, therefore, is E. siliculosus (Dillwyn) Lyngbye (see Silva et al., 9

1996 for further details). E. siliculosus is the type species of the order Ectocarpales which 10

includes most of the smaller brown algae. Originally regarded as phylogenetically primitive, 11

molecular systematics has shown the Ectocarpales to belong to a group of brown algal orders 12

that evolved rather recently. They are closely related to the large and highly differentiated 13

Laminariales which are major components of coastal marine floras (Rousseau & de Reviers, 14

1999; Draisma et al., 2003; Cho et al., 2004; Kawai et al., 2007, Fig. 1b). Many species have 15

been described in Ectocarpus (www.algaebase.org, April 2007, lists 392 taxa of Ectocarpus 16

of whom 98 are flagged as "current"; numerous strains publicly available at the Culture 17

Collection of Algae and Protozoa (CCAP) in Oban, U-K, Gachon et al., 2007a). However, 18

only E. fasciculatus Harvey (1841) is currently recognized as a second well-defined species, 19

based on morphology (Russell 1966, 1967a), crossing studies and sequence analyses (Stache-20

Crain et al., 1997). Crossing experiments have shown that the taxon E. siliculosus may 21

represent a species complex (Stache-Crain et al., 1997) and ongoing, refined analyses are 22

expected to resolve this complex, increasing the number of recognised species. Identification 23

of different species of Ectocarpus based on morphology is difficult due to the plasticity of the 24

commonly examined features (habit, branching pattern, size of sporangia). In addition, the 25
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two generations of a species may differ considerably (Müller, 1972a; Kornmann & Sahling, 1

1977). 2

3

2 – Distribution 4

E. siliculosus is distributed world-wide in temperate regions, but does not occur in the 5

tropics and south of the Antarctic convergence (Stache, 1990; Wiencke & Clayton, 2002). It 6

occurs in fully marine and in low-salinity habitats (e.g. 5 psu in Finland) and has even been 7

recorded at a fresh-water site in Australia (West & Craft, 1996) and in a salt polluted river in 8

Germany (Geissler, 1983). Records of E. fasciculatus are mainly from the North Atlantic but 9

there are some from Korea, Chile, South Georgia and South Africa (www.algaebase.org, 10

2007). On the shore, Ectocarpus occurs from high inter-tidal pools to the sub-littoral. It is 11

found on abiotic substrata (rocks, wood, plastic, ship hulls) and epiphytic on macrophytes or 12

free-floating (Russell, 1967a,b; 1983a,b). As a result of its ability to grow on a range of 13

abiotic substrates, Ectocarpus is a common fouling alga (Morris & Russell, 1974). 14

15 

3 – Ecology  16

There have been a limited number of ecophysiological and ecological studies in Ectocarpus.17

Growth rate is dependent on temperature, and there is evidence that temperature also 18

influences the life cycle, at least in some strains (Müller, 1963; Bolton, 1983; see the 19

“sporophyte and gametophyte architecture” section). The thermo-sensitivity of different 20

strains suggests that there is a genetic heterogeneity within the Ectocarpus genus (Bolton, 21

1983). A similar result was obtained for osmo-acclimation (Thomas & Kirst, 1991a,b; see the 22

“Abiotic stress” section). In the field, Ectocarpus is a short-lived annual which may dominate 23

the ectocarpoid flora on kelps (Russell, 1983a,b). Despite the commonness of Ectocarpus,24
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there are few data concerning phenology in the field (mostly to be extracted from floristic 1

works) and nothing precise on seasonality or habitats of the two generations. 2

The availability of the E. siliculosus genome sequence is expected to facilitate the analysis 3

of the ecology of this species by providing a basis for the development of molecular markers. 4

Particularly important challenges in this respect will include the identification of the sex locus 5

and of genes specifically expressed in the two generations, as these will provide molecular 6

tools that can be used to investigate several aspects of the life cycle under field conditions. 7

Molecular markers will also allow the exploration of genetic polymorphism amongst 8

Ectocarpus species from multiple locations across the globe. 9

10 

 11

III- Development  12

13 

1 – Life cycle and reproduction  14

Male and female gametes are morphologically identical in Ectocarpus (isogamy) but differ 15

with respect to their physiology and their behaviour: female gametes settle sooner and 16

produce a pheromone whilst male gametes swim for longer and are attracted to the 17

pheromone produced by the female. Studies on the reproduction of Ectocarpus began with the 18

observation of sexual fusions involving the attraction of male gametes to settled female 19

gametes from field thalli of E. siliculosus at Naples, Italy (Berthold, 1881). These findings 20

were hotly debated until Sauvageau (1896, 1897) and Oltmanns (1899) succeeded in 21

repeating the experiment. Gamete fusions in Ectocarpus were later used by Hartmann (1934) 22

to support his erroneous theory of relative sexuality (see Müller, 1976a for details). Knight 23

(1929) identified the young, unilocular sporangium as the site of meiosis, Papenfuss (1935) 24

and Kornmann (1956) published major contributions to the life history of Ectocarpus, and 25
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Boalch (1961) developed refined culture techniques. The entire life history of E. siliculosus 1

from Naples was finally unravelled by Müller (1964, 1966, 1967, 1972b) using clonal cultures 2

and chromosome counts. It is schematised in Fig. 2. The basic life history of E. siliculosus 3

involves an alternation between the sporophyte and dioecious gametophytes, and sex 4

determination is genotypic (Müller, 1967). Male and female gametophytes are 5

morphologically indistinguishable. One of the problems for understanding the life history was 6

that sporophytes and gametophytes are difficult to distinguish morphologically. Another 7

problem was that zoids from plurilocular reproductive organs have different functions 8

according to the generation forming them: on sporophytes they contain asexual zoospores that 9

directly reproduce the sporophyte, on gametophytes they contain gametes. Further 10

complications include the parthenogenesis of unfused gametes, which develop into haploid 11

parthenogenetic sporophytes morphologically indistinguishable from diploid sporophytes, and 12

heteroblasty (different fates) of spores from unilocular sporangia, developing either into 13

gametophytes or into sporophytes. Furthermore, life cycle generation is not determined 14

rigidly by ploidy (Müller, 1967).  15

An important challenge for the future will be the characterisation of the genetic mechanisms 16

that control life cycle progression in Ectocarpus. This will require the development of 17

methodologies for positional cloning of mutated loci and of genome-wide methods to analyse 18

gene expression throughout the life cycle. Work is currently ongoing in several groups to 19

develop these techniques.  20

21 

2 – Sporophyte and gametophyte architecture 22

E. siliculosus is a small filamentous alga that grows to about 30 cm in length in nature, but 23

it may become fertile in the laboratory at 1-3 cm.  24
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Sporophyte development is initiated with the germination of the zygote. The first division 1

produces two cells of identical developmental fate (Peters et al., 2004b). Subsequent mitoses 2

lead to the formation of a basal (or prostrate) filamentous structure, defining the early 3

sporophyte (Fig. 3a). Phaeophycean hairs, i.e. hyaline filaments devoid of plastids developing 4

from a basal meristem, are absent in Ectocarpus but present in the sister genus Kuckuckia. 5

However, in Ectocarpus the distal end of filaments, or of plurilocular sporangia, may be less 6

pigmented and resemble a hair; such structures may be referred to as pseudo-hairs (Cardinal, 7

1964; Pedersen, 1989). If the growth conditions are favourable (Ravanko, 1970), erect 8

filaments (called "upright" filaments) emerge after a few days, contributing to the 9

establishment of an overall filamentous architecture (Fig. 3c).  10

The typical structure of a vegetative cell is illustrated in Fig. 4. Features common to all 11

brown algal cells include a chloroplast surrounded by four membranes, arranged as two 12

double-membraned envelopes (chloroplast envelope, CE). The second envelope is loosely 13

associated with the chloroplast and forms part of the chloroplast endoplasmic reticulum 14

(CER). The lamellae of the chloroplast are composed of three thylakoids, which are absent 15

from the pyrenoid space (Bouck, 1965; Oliveira & Bisalputra, 1973). In Ectocarpus the 16

chloroplast is ribbon-shaped. The size and number of chloroplasts may vary within the same 17

organism (Ravanko, 1970). Other typical features of Ectocarpus include several prominent 18

and pedunculated pyrenoids on the inner face of the chloroplast, which are used as a 19

taxonomic marker for the Ectocarpales (Evans, 1966; Rousseau & de Reviers 1999). CER and 20

CE envelopes also surround pyrenoids, this time being tightly adjacent. A third external 21

envelope, called the pyrenoid sac, surrounds the pyrenoid but has no connection with the 22

reticulum system (Bouck, 1965). The nuclear envelope is continuous with the CER, which, 23

itself is in close vicinity to the Golgi apparatus (Bouck, 1965; Oliveira & Bisalputra, 1973). It 24

has been hypothesised that these connections create a complex network of membranes 25
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allowing photosynthates to be efficiently transferred from the chloroplast to the Golgi 1

apparatus, the latter being also in direct contact with the CER (Oliveira & Bisalputra, 1973). 2

Cytoplasmic ER is dispersed throughout the cytoplasm and is mainly rough (Oliveira & 3

Bisalputra, 1973). Osmiophilic bodies (OSB) which are thought to contain lipids, are 4

dispersed throughout the cytoplasm and probably originate from the CER (Oliveira & 5

Bisalputra, 1973). They have been observed within the cell wall, and also external to it. 6

Vacuoles can be either large structures occupying peripheral locations (Oliveira & Bisalputra, 7

1973) in fixed material, or most of the cellular space (as in land plant cells; Knight, 1929, 8

confirmed by data from our laboratory, after staining with cresyl blue or neutral red, on 9

sporophytic filaments). The nuclear region encompasses two centrioles, which are considered 10

as a microtubule organising centre (MTOC; Katsaros et al., 1991). The chromosome number 11

in the haploid nucleus is estimated to be ca 25 (Peters et al., 2004a). Mitochondria are 12

preferentially peripherally located. They are maternally inherited (Peters et al., 2004b). The 13

cell wall consists of a fibrillar matrix (see the “Photosynthesis and carbohydrate metabolism” 14

section) with several plasmodesmata distributed uniformly along the cross walls. Upon 15

ageing, cell wall ingrowths occur, accompanied by a reduction in the size of the nucleus, 16

mitochondria, ER and Golgi, followed by the disintegration of the chloroplasts and finally by 17

autolysis of the cytoplasm (Oliveira & Bisalputra, 1977a,b).  18

19 

Most of the reproductive organs are carried by upright filaments (Müller, 1964). Two types 20

of reproductive organs are produced by the sporophyte: plurilocular and unilocular sporangia. 21

Plurilocular sporangia are cone-shaped three-dimensional structures of variable size (Knight, 22

1929), composed of a large number of locules with different shapes (Baker & Evans, 1973b; 23

Fig. 3e). These locules are generated by several successive mitoses and each gives rise to a 24

single zoospore, which is released through the apex of the sporangium. The mito-spores, 25
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which are bi-flagellate and competent for swimming shortly after their release (Müller, 1980), 1

are a means of vegetative reproduction. Unilocular sporangia are born on the side of branches 2

(Fig. 3f, Baker & Evans, 1973a). A single meiosis occurs within the single thick-walled locule 3

(Baker & Evans, 1973a) and this is followed by several mitoses, which generate about a 4

hundred meio-spores, half of which are female and half male (Müller, 1980). Müller (1963) 5

and Ravanko (1970) reported that plurilocular sporangia were produced when the external 6

temperature was relatively high (~20°C or summer), whereas unilocular sporangia were 7

produced when the temperature was lowered to 13°C (mimicking winter conditions). 8

However, this temperature dependence is not observed in many strains of Ectocarpus (A.F. 9

Peters, unpublished results). Meio-spores germinate to produce haploid, dioecious 10

gametophytes (Fig. 3b,d). These are filamentous organisms similar to the sporophyte, but with 11

two important differences. Firstly, the meio-spore germinates asymmetrically to produce a 12

rhizoid and an upright filament, so no prostrate structure forms (A.F. Peters, unpublished 13

results). Secondly, the thallus is more ramified than that of the sporophyte (Müller, 1980). 14

Gametophytes produce only plurilocular gametangia and these are similar structurally to 15

plurilocular sporangia on sporophytes. Gametes resemble mito-spores in terms of their size 16

and motility.  17

The developmental patterning varies greatly across the Ectocarpus species complex and is 18

also dependent on the environment, growth conditions and even the age of the algae for some 19

features (Ravanko, 1970). This plasticity is observed for the branching frequency and the 20

number, shape, structure and positioning of the reproductive organs on filaments (Knight, 21

1929; Müller, 1980; Kim & Lee, 1992). Phytohormones, especially cytokinins, have also been 22

reported to influence the development of Ectocarpus sporophytes (Pedersén, 1968, 1973).  23

24 
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As mentioned above, brown algae are interesting for developmental studies because they 1

have independently evolved complex multicellularity. Ectocarpus is a relevant model to 2

address this problem as it is closely related to complex algae such as the Laminariales and the 3

Fucales. However, developmental processes in Ectocarpus are clearly simplified compared 4

with its morphogenetically more complex sister families, which provides an advantage for the 5

detailed dissection of these developmental processes. In particular the simple growth pattern 6

of the uniseriate, branched filaments represents an ideal system for the combined application 7

of genetic and mathematical modelling approaches to understanding developmental patterning 8

and then addressing the issue of the evolution of development and multicellularity.  9

10 

3 – Gametes and spores  11

Several electron microscopy studies of the motile cells (zoids) of Ectocarpus have been 12

reported (Baker & Evans 1973a,b; Lofthouse & Capon, 1975; Maier, 1997a,b). The typical 13

structure of an Ectocarpus zoid is illustrated fig. 5. 14

Ectocarpus zoids correspond to the “primitive” type of brown algal zoid according to Kawai 15

(1992). Gametes and spores typically contain a single chloroplast with a pyrenoid (Baker & 16

Evans, 1973a; Lofthouse & Clayton, 1975; Maier, 1997a). As in the vegetative cells, lamella 17

are composed of three thylakoids and the nuclear envelope is in continuity with the 18

chloroplast endoplasmic reticulum (Maier, 1997a). The nucleus of the male gamete is rich in 19

heterochromatin. Several dictyosomes are present in gametes and spores (Baker & Evans, 20

1973b; Maier, 1997a). The Golgi apparatus of mito-spores is very active both before and after 21

release (Baker & Evans, 1973b). This secretory activity may have important functions in the 22

biosynthesis of the adhesive required for gamete adhesion and for the synthesis of new cell 23

wall compounds during germination.  24
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Ectocarpus gametes and spores are characterized by two flagella with lateral insertion. One 1

is oriented forward and equipped with mastigonemes (hairs), and propels the cell with 2

meandering beats. The second is oriented obliquely backwards, and has no mastigonemes. 3

Most of the time this posterior flagella is passively dragged but occasional lateral beats induce 4

abrupt changes in direction of up to 180° (Geller & Müller, 1981). Gametes and spores have a 5

concave depression at the level of the eyespot into which the swelling of the proximal part of 6

the posterior flagellum fits (Baker & Evans, 1973b; Kreimer et al., 1991; Maier, 1997a). The 7

possible function of the eyespot is to reflect and focus incident light onto the site of 8

photoreception (Kawai et al., 1990; Kreimer et al., 1991). Zoids are capable of positive 9

phototaxis and their posterior flagellum shows strong autofluorescence when irradiated by 10

blue light (450 nm). The photoreceptor pigment is a flavoprotein, which is periodically 11

shaded by a carotenoid stigma (Müller et al., 1987; Kawai, 1988). The acronema (the 12

whiplash tip) is extremely sensitive to mechanical stress and plays an important role in 13

establishing the initial sexual contact between gametes. The details of the flagellar apparatus 14

of both female and male gametes have been studied by electron microscopy (Müller & Falk, 15

1973; Maier, 1997b). Despite their different behaviours, no difference in their fine structure 16

has been detected (Müller & Falk, 1973).  17

The pheromone that attracts male gametes to female gametes is an unsaturated hydrocarbon. 18

The substance initially identified was ectocarpene (all-cis-1-(cycloheptadiene-2’,5’-yl)-19

butene-1) (Müller et al., 1971; Müller, 1976b; Müller, 1978; Müller & Schmid, 1988) but 20

more recently Boland et al. (1995) have shown that a thermally labile cyclopropyl precursor, 21

pre-ectocarpene, is more active by three orders of magnitude and is thus the actual 22

pheromone.  23

There is evidence that cell-to-cell recognition between Ectocarpus gametes is mediated by 24

N-acetyl glucosamine residues exposed on the plasma membrane of the female gametes and 25
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that these residues are specifically recognized by a receptor on the male gamete (Schmid, 1

1993; Schmid et al., 1994a). In addition, the lectins concanavalin A (Con A) and Aleuria 2

aurantia agglutinin (AAA) bind specifically to the anterior flagella of Ectocarpus gametes 3

and the molecules with which they interact also may be involved in the gamete recognition 4

process (Maier & Schmid, 1995).  5

Zoids from plurilocular and unilocular Ectocarpus sporangia share similar overall 6

intracellular structures, but there are some important differences: plurilocular zoids are 7

smaller and swim faster with more rapid changes of direction (Baker & Evans, 1973a). Zoids 8

from unilocular sporangia are strikingly different from the other Ectocarpus cell types (both 9

plurilocular zoids and vegetative cells) in that the nucleus is physically separated from the 10

chloroplast. Moreover, secretory activity is lower than in zoids from plurilocular sporangia 11

(Baker & Evans, 1973b).  12

Gametes of Ectocarpus have also been used to study chemotaxis (Boland et al., 1983), 13

receptor modelling (Boland et al., 1989) and phototaxis (Kawai et al., 1990; Kreimer et al.,14

1991). Protocols for isolation and biochemical characterisation of plasma membrane and CER 15

membrane have also been developed (Schmid et al., 1992). Together with more recently 16

developed molecular tools, these methods now offer access to a range of interesting 17

biochemical events that take place during gamete interaction at fertilization such as 18

chemoreception, cell-cell recognition and fusion processes. 19

20 

 21

IV- Metabolism  22

23 

1- Photosynthesis and carbohydrate metabolism 24
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Marine environment constrains several aspects of photosynthesis in brown algae. First, 1

carbon dioxide is not the main source of inorganic carbon (Ci). Indeed, seawater in 2

equilibrium with air contains only 13 µM CO2, but more than 2 mM anionic carbon, mainly in 3

the form of HCO3- (Beer, 1994). Secondly, when seaweeds are immersed they do not receive 4

the full light spectrum. Light absorption increases with water depth and varies according to 5

the wavelength: red-light (650 nm) is first absorbed followed by purple (400 nm) and yellow- 6

(550 nm) lights. In contrast green (500 nm) and blue (450 nm) lights display a strong 7

penetration: at 10 m depth red light is almost fully absorbed whereas the absorption of green- 8

and blue lights is not significant.  9

Adapted to these conditions, brown algae differ from land plants by the pigment 10

composition of their light harvesting complexes (LHCs). Chlorophyll c (chl c) and the 11

carotenoid fucoxanthin are indeed the main light-haversting pigments of brown algae. Their 12

presence broadens the absorption spectrum toward the green light relative to the chlorophytes. 13

Brown algae features two different LHCs associated to photosystems I and II (PSI and PSII), 14

but their pigment composition is controversial. Barrett and Anderson (1980) described a 15

fucoxanthin-chl a/c protein and a violaxanthin enriched-chl a/c protein. Conversely Alberte et 16

al. (1981) reported a chl a/c protein devoid of fucoxanthin and a second LHC containing chl a 17

and fucoxanthin but not chlorophyll c. More recent analyses showed that the LHCs associated 18

to PSI and PSII are in fact virtually identical with respect to their pigmentation and peptide 19

composition. All complexes bound chl a, chl c and fucoxanthin in the proportion 6 : 2 : 7, but 20

the LHC associated to PSI is significantly enriched in violaxanthin (De Martino et al., 2000). 21

As in plants, these accessory pigments transfer energy to chlorophyll a within the 22

photosynthetic reaction centres (Grossman et al., 1995). Violaxantin does not participate in 23

light harvesting but is involved in photoprotection (Demmig-Adams & Adams, 1992; 24

Lemoine et al., 1995). 25
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1

Under saturating red light, photosynthesis of E. siliculosus follows a circadian rhythm 2

with maxima at about noon and can be stimulated by a pulse of blue light (BL) (Schmid & 3

Dring, 1992). This stimulation is also observed in other Phaeophytes, but mostly absent in 4

green or red algae (Schmid et al., 1994b). BL induces several responses: an acidification at 5

the surface of E. siliculosus (Schmid & Dring, 1993), accompanied by bicarbonate uptake 6

(Schmid, 1998). A plasma membrane H+-ATPase is thought to be activated, and the resulting 7

acidification to increase the conversion of HCO3- to CO2 in the extracellular space (Schmid & 8

Dring, 1993). Recently, such BL-induced H+-ATPases have been identified in the brown alga 9

Laminaria digitata (Klenell et al., 2002). BL also triggers the mobilization of an internal 10

carbon source, since photosynthesis is stimulated even in the absence of external Ci (Schmid 11

& Dring, 1996). As a result, a C4-like metabolism was initially proposed to exist in E. 12

siliculosus (Schmid & Dring, 1996) but not all the enzymes necessary for a C4 cycle were 13

detected (Bush & Schmid, 2001) and the pool of intermediates seems to be too small to act as 14

an organic carbon stock (Hillrichs & Schmid, 2001). The sequestration of a pool of inorganic 15

carbon in the vacuole and its movement to the cytosol in response to BL is now the favoured 16

hypothesis (Schmid & Hillrichs, 2001). Analysis of the sequence of the E. siliculosus genome 17

will help to confirm whether or not a C4 pathway exists in the brown algae. 18

In contrast to the Plantae (Moreira et al., 2000), the Phaeophyceae do not store the carbon 19

assimilated by photosynthesis as insoluble starch granules, but instead as the soluble 1,3-β-20

glucan polymer (laminarin) localised in the cytosol (Craigie, 1974), and as mannitol, involved 21

in osmo-acclimation (Davis et al., 2003; see the “Abiotic stresses” section). Brown algae also 22

produce complex polysaccharides which constitute their cell wall. They synthesize some 23

neutral polysaccharides in common with land plants, such as cellulose (Carpita & McCann, 24

2000), but also unique anionic polysaccharides, such as alginates and sulphated fucans 25
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(Kloareg & Quatrano, 1988). Ectocarpus has not been well studied in this respect, but 1

preliminary analyses in our laboratory confirm that all of the polysaccharides typical of brown 2

algae are present in this genus (Estelle Deniaud, pers. comm.). The biosynthetic pathways of 3

these brown algal polysaccharides are essentially unknown and the genome of E. siliculosus 4

will be a much anticipated asset to investigate these crucial metabolisms. 5

6

2- Lipid metabolism 7

Worldwide, at least 50 species of brown algae are used as human food. Their lipid content 8

has therefore attracted considerable attention from the viewpoint of both nutrition and 9

pharmacology. A number of studies have been conducted to profile and quantify the fatty 10

acids and the different classes of lipids in these organisms, and to investigate whether the 11

various lipid patterns correlate with the taxonomic position or any other characteristic of the 12

brown algae. Brown algal polar lipids include several common glycolipids (MGDG, DGDG, 13

SQGD, see list of abbreviations) and phospholipids (PC, PE, PI, PG and DPG). Interestingly, 14

several reports have highlighted the high proportion of long chain polyunsaturated fatty acids 15

(LC-PUFAs) (Eichenberger et al., 1993). Moreover, most of the Phaeophyceae contain the 16

betaine lipids DGTA and DGTS, and either contain the common phosphatidylcholine 17

phospholipids in surprising low amounts or do not produce them at all (Eichenberger et al.,18

1993). All Ectocarpales contain phosphatidylcholine, but exhibit interspecific variation in 19

their DGTA content: E. fasciculatus strains contain this lipid while E. siliculosus strains do 20

not (Müller & Eichenberger, 1995; Müller, 1995). DGTA may therefore be used as a 21

taxonomic marker (Müller, 1995), although an E. fasciculatus strain deficient in DGTA 22

biosynthesis has been described. Genetic analysis of such a strain identified an autosomal 23

locus necessary for the biosynthesis of this lipid (Müller & Eichenberger, 1997).  24
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A novel phosphoglyceride, designated PX, was first isolated from E. siliculosus. It was 1

shown to account for 2-4% of total lipids (Schmid et al., 1994c), and to accumulate mostly in 2

the plasma membrane of gametes. Since PX is rich in 20:4n-6 (ARA) and 20:5n-3 (EPA), it 3

has been suggested that it could represent a potential reservoir for pheromone precursors. PX 4

was subsequently detected in other brown algae (Ectocarpales, Fucales and Sphacelariales; 5

Schmid et al., 1994c). 6

Lipid metabolism plays also major roles in the control of defense mechanisms. Therefore, 7

together with the genome sequence, it is likely that the efforts to screen mutants with altered 8

resistance to pathogen attacks, will lead to the phenotyping of plants impaired in lipid or fatty 9

acid metabolic pathways, thereby potentially revealing novel specific traits of this metabolism 10

in brown algae. 11

12 

 13

V- Interactions with the environment  14

15 

1- Ectocarpus pathogens 16

Despite of their small size and ephemeral life stages, filamentous brown algae have been 17

frequently reported to be plagued by various pathogens, including viruses (Müller et al.,18

1998) and eukaryotic parasites of different phylogenetic lineages: oomycetes, chytrids and 19

hyphochytrids (Andrews 1976; Küpper & Müller 1999; Müller et al. 1999) and by parasites 20

related to the Plasmodiophorea (Karling, 1944; Maier et al., 2000). In addition, numerous 21

historical records described ectocarpoids with abnormal sporangia or vegetative cells 22

suspected to contain unknown parasites (Rattray, 1885; Müller et al., 1998).  23

The oomycete Eurychasma dicksonii has been described mainly in wild populations of 24

Pylaiella littoralis (Küpper & Müller, 1999) but it displays a broad host range and infects 25
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various brown algae including Ectocarpus (Müller et al., 1999) in which it was initially 1

described by Wright (1879). There is a current effort to set up a defined pathosystem using E. 2

siliculosus and E. dicksonii, and Ectocarpus strains have been shown to exhibit differential 3

susceptibility to a defined Eurychasma strain. Conversely, several Eurychasma strains exhibit 4

different host specificities, suggesting co-evolution of the two species (Gachon et al., 2007b). 5

The molecular bases of resistance and virulence are under investigation.  6

Chytrids were described earlier by Petersen (1905) and the hyphochytrid Anisolpidium 7

ectocarpii was described by Karling (1943) and Johnson (1957). Like E. dicksonii,8

Chytridium polysiphoniae (Chytridiomycota) is ubiquitous and can infect many hosts, 9

including E. siliculosus and E. fasciculatus (Müller et al., 1999). Interestingly, its negative 10

effects on photosynthesis of its host was described at the cellular level in the related 11

ectocarpoid P. littoralis using fluorescence kinetic microscopy (Gachon et al., 2006). 12

Recently, the 18S rRNA genes of Chytridium polysiphoniae and Eurychasma dicksonii were 13

sequenced and used to clarify their phylogenetic affiliations (Küpper et al., 2006). The 14

plasmodiophorean Maullinia ectocarpii is an obligate intracellular parasite of Ectocarpus spp. 15

(Maier et al., 2000). However, the extent to which this infection occurs in nature and its effect 16

on algal fitness are presently unknown.  17

Viral infections represent by far the most studied phenomenon in E. siliculosus (Müller, 18

1996; Müller & Knippers, 2001). Until the late eighties most reports of virus infections in 19

brown algal tissues were based on electron microscopy studies, which sporadically described 20

“virus-like particules” (VLP). Viruses were obtained in culture for the first time from a New 21

Zealand strain of E. siliculosus after lysis of host cells allowing evaluation of their infection 22

potential (Müller et al., 1990; Müller, 1991). Virus infections were found in about 50% of the 23

individuals of a given natural population (Dixon et al., 2000; Müller et al., 2000) and were 24
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shown to occur worldwide in correlation with the cosmopolitan distribution of E. siliculosus 1

(Müller, 1991; Sengco et al., 1996). 2

The viruses that infect different ectocarpoid algae exhibit considerable variability in size 3

and diameter and, in general, they display a high level of host specificity (Müller et al., 1998). 4

However, several instances of trans-specific infection have been described, for example 5

between EsV-1 (Ectocarpus siliculosus virus-1) and Kuckuckia kylinii (Müller, 1992; Müller 6

& Schmid, 1996) and also between EfasV-1 (Ectocarpus fasiculatus virus-1) and E. 7

siliculosus (Müller et al., 1996; Sengco et al., 1996). Interestingly, EsV-1 and EfasV-1 are the 8

most similar of the brown algal viruses in terms of their genome size (Müller et al., 1996).  9

The EsV-1 virus specifically infects the single-celled gametes or spores, i.e. the only cells in 10

the life history that lack a cell wall (Maier & Müller, 1998). Following infection, a single 11

copy of the viral DNA appears to integrate into the host genome (Delaroque et al., 1999). The 12

viral DNA is then transmitted, via mitotic divisions, to all the cells of the developing alga. 13

This has been confirmed by regenerating algae from protoplasts derived from virus-infected 14

gametophytes (Kuhlenkamp & Müller, 1994). Despite the fact that they carry the integrated 15

virus, vegetative cells do not produce viral particles (Müller et al., 1998). Viral particles are 16

only produced in reproductive organs (sporangia and gametangia) of mature algae from where 17

they are released to infect a new generation of zoids. In addition to these cycles of re-18

infection, the viral genome can be also transmitted to progeny through meiosis, in which case 19

it segregates as a Mendelian factor and is inherited by half of the progeny (Müller, 1991; 20

Bräutigam et al., 1995). The pathogenic character of viral infections has been unambiguously 21

confirmed, but this association's main impact is on reproductive success. Plant sterility varies 22

from partial (Müller et al., 1990) to total (Müller & Frenzer, 1993) but no significant 23

difference in photosynthesis, respiration and growth rate were observed in infected 24
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gametophytes or sporophytes (Del Campo et al., 1997). This contrasts with the reduced 1

photosynthetic performance of Feldmannia species infected with FsV (Robledo et al., 1994). 2

The EsV-1 genome is a circular DNA molecule of a relatively large size (335 Kbp) for a 3

phycodnavirus (Van Etten & Meints, 1999; Van Etten et al., 2002) with double-stranded 4

regions interrupted by single-stranded regions (Lanka et al., 1993; Klein et al., 1994). Both 5

EsV-1 and the related Feldmania irregularis virus (FirrV-1) have been sequenced (Delaroque 6

et al., 2001; Delaroque et al., 2003). EsV-1 contains approximately 231 genes with a wide 7

range of predicted functions including DNA metabolism, signalling, transposition, DNA 8

integration and polysaccharide metabolism (Delaroque et al., 2000a,b; Delaroque et al.,9

2003). It has also been proposed that the ability of the virus to integrate into its host's genome 10

could be exploited to develop a transformation vector for a wide range of brown algae, 11

including E. siliculosus (Henry & Meints, 1994, Delaroque et al., 1999). However, the 12

complex integration pattern of the virus into the algal genome will considerably complicate 13

this task (N. Delaroque, pers. comm.). A microarray has been constructed to analyse EsV-1 14

gene expression (Declan Schroeder, pers. comm.) and it will be particularly interesting in the 15

future to couple the analysis of viral and genome-wide host gene expression during viral 16

infection. 17

The development of genomic tools provides a new context to investigate the possible 18

genetic basis of the co-evolution between some pathogens and brown algae. The search for 19

inducers of defense responses and resistance against parasites is also still opened as, in 20

contrary with kelps, Ectocarpus does not react with an oxidative burst upon recognition of 21

alginate fragments (Küpper et al., 2002a). 22

23 

 24

2- Abiotic stresses 25
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E. siliculosus is able to exploit a wide range of habitats and environmental conditions (see 1

the “Distribution” section). This feature seems likely to be based at least as much as on a high 2

intrinsic genetic variability as on a general physiological toughness, as illustrated by work 3

carried out on copper and saline stress responses.  4

Interspecific variations in copper tolerance have been observed between different 5

strains of E. fasciculatus and E. siliculosus, with the latter being the most tolerant (Morris, 6

1974). Differences have also been observed among E. siliculosus strains that are differently 7

exposed to copper in their natural habitat (Russell & Morris, 1970; Hall, 1981). Cu2+ 8

interferes with the general process of photosynthesis in brown algae, and particularly in E. 9

siliculosus, by competing with magnesium for metal binding sites in the chlorophyll 10

molecules (Küpper et al., 2002b). A study of the mechanism of tolerance to copper and other 11

heavy metals suggested a co-tolerance to copper, cobalt and zinc, and provided evidence for 12

an exclusion mechanism to explain the particularly low sensitivity of E. siliculosus copper 13

tolerant strains (Hall et al., 1979; Hall, 1980, 1981). However, as yet there is no clear 14

explanation for the intra-specific variation with respect to this trait within this species. 15

Ability of some E. siliculosus strains to tolerate copper has been considered to 16

develop bioassays in which this alga is used for monitoring marine antifouling characteristics 17

of copper-based materials (Hall and Baker, 1985, 1986). In addition, copper chloride was 18

used to inhibit E. siliculosus infestations in tank cultures of Gracilaria gracilis (Van Heerden 19

et al., 1997). 20

21 

Russell and Bolton (1975) reported the occurrence of salinity ecotypes within E. siliculosus.22

This study was extended by Thomas and Kirst (1991a,b) who showed that large differences in 23

photosynthesis, accumulation of osmotically active compounds (mannitol; Davis et al., 2003)24

and vitality occur between E. siliculosus isolates from different geographic locations 25
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following changes in salinity. They also observed that sporophytes were more salt tolerant 1

than gametophytes, irrespective of their level of ploidy.  2

Detailed investigations are necessary to decipher the physiological and cellular bases of salt 3

and heavy metal tolerance in E. siliculosus. Mutagenesis and transcriptomic approaches will 4

thus help to better understand the mechanisms involved in osmotic and oxidative adaptation, 5

and to explain how these algae can cope with such a wide range of environmental conditions. 6

7

8

VI- Conclusion  9

10 

Taken together, the above sections illustrate the broad range of phenomena that have been 11

studied in Ectocarpus and provide an indication of the domains that could be further explored 12

in the future. Notably, a large proportion of this past work, covering many diverse aspects of 13

Ectocarpus biology, was carried out in Dieter Müller's laboratory in Konstanz, and the efforts 14

of this group have therefore laid the foundations for the development of Ectocarpus as a 15

model organism.  16

The Ectocarpus genome project has federated a consortium of laboratories with an interest 17

in this organism and these laboratories are currently developing several molecular tools. 18

These include mutant screens, genetic transformation and genome-scale analysis of gene 19

expression. Several developmental mutants have been isolated and positional cloning of some 20

of the affected genes should be feasible in the near future. The availability of the genome 21

sequence together with the ability to analyse gene function by forward and reverse genetic 22

approaches will make it possible to address additional questions, many of which have been 23

evoked in this review. Examples include the biosynthesis of diverse, brown-algal-specific 24

metabolites, such as lipids and complex cell wall components, and the genetic basis of 25

Page 24 of 48

Manuscript submitted to New Phytologist for review



For Peer Review

25

resistance to biotic and abiotic aggression. The genome will also be an invaluable aide for the 1

study of the ecology of Ectocarpus, by serving as the base for the development of neutral and 2

selected molecular markers for the analysis of field isolates. In conclusion, the Ectocarpus 3

genome sequence and the tool development associated with this project are providing access 4

to a relatively unexplored branch of the eukaryotic tree and some exciting discoveries can be 5

expected in this domain in the coming years. 6

7
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Figure legends:  17

18 

Figure 1: Phylogeny of brown algae and Ectocarpales. 19

a: Position of brown algae within the eukaryotes (adapted from Baldauf, 2003). Brown algae 20

belong to the heterokont phylum, which is phylogenetically distant from land plants and the 21

green and red algae. Photosynthetic organisms are framed. b: Position of the Ectocarpales (in 22

bold) within the brown algae (adapted from Kawai et al., 2007). 23

24 
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Figure 2: Life cycle of Ectocarpus siliculosus.1

Diploid sporophytes produce meio-spores (by meiosis) in unilocular sporangia (UL). Meio-2

spores grow into male or female gametophytes (dioecism). Gametophytes produce gametes in 3

plurilocular gametangia (PL). Fusion of gametes produces a zygote that grows into a diploid 4

sporophyte, completing the sexual cycle. Unfused gametes may grow parthenogenetically and 5

form a parthenosporophyte, which is indistinguishable from the diploid sporophyte. Both 6

sporophytes and parthenosporophytes can reproduce themselves asexually by the production 7

of mito-spores in plurilocular sporangia. 8

9

Figure 3: Morphology of Ectocarpus siliculosus.10

Photographies of one week old vegetative sporophyte (a) and gametophyte (b) and schemes 11

representing the whole body of the mature sporophyte (c) and gametophyte (d) after six 12

weeks of growth, are shown. e: Plurilocular sporangium or gametangium (occurring on the 13

sporophyte and the gametophyte, respectively) before (left) and after (right) release of zoids. 14

f: Unilocular sporangium from sporophyte. Sporangia  and gametangia can be either sessile or 15

pedicellate (Kim & Lee, 1992).  16

17 

Figure 4: General ultrastructure of a vegetative cell of Ectocarpus siliculosus.18

The general ultrastructure of a vegetative cell is similar in both prostrate and erect filaments 19

(Oliveira & Bisalputra, 1973). The different compartments of the cell are illustrated (see text 20

for details). Lines represent membranes and define sub-cellular compartments, except for 21

thylakoids, drawn as a thick black line. Depending on their type and age, vegetative cell size 22

varies from 10 to 35 µm in length, and 5 to 15 µm in width (in laboratory culture conditions).  23

24 

Figure 5: General intracellular structure of Ectocarpus siliculosus zoids. 25
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43

A scheme representing the different compartments of an Ectocarpus siliculosus zoid cell from 1

a plurilocular sporangium or gametangium is presented (see text for details). Legends are the 2

same as in fig. 4. 3

4
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Figure 1: Phylogeny of brown algae and Ectocarpales. a: Position of brown algae within 
the eukaryotes (adapted from Baldauf, 2003). Brown algae belong to the heterokont 

phylum, which is phylogenetically distant from land plants and the green and red algae. 
Photosynthetic organisms are framed. b: Position of the Ectocarpales (in bold) within the 

brown algae (adapted from Kawai et al., 2007). 
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Figure 2: Life cycle of Ectocarpus siliculosus. Diploid sporophytes produce meio-spores 
(by meiosis) in unilocular sporangia (UL). Meio-spores grow into male or female 

gametophytes (dioecism). Gametophytes produce gametes in plurilocular gametangia 
(PL). Fusion of gametes produces a zygote that grows into a diploid sporophyte, 

completing the sexual cycle. Unfused gametes may grow parthenogenetically and form a 
parthenosporophyte, which is indistinguishable from the diploid sporophyte. Both 
sporophytes and parthenosporophytes can reproduce themselves asexually by the 

production of mito-spores in plurilocular sporangia. 
254x190mm (300 x 300 DPI)  

 

Page 45 of 48

Manuscript submitted to New Phytologist for review



For Peer Review

Figure 3: Morphology of Ectocarpus siliculosus. Photographies of one week old vegetative 
sporophyte (a) and gametophyte (b) and schemes representing the whole body of the 
mature sporophyte (c) and gametophyte (d) after six weeks of growth, are shown. e: 

Plurilocular sporangium or gametangium (occurring on the sporophyte and the 
gametophyte, respectively) before (left) and after (right) release of zoids. f: Unilocular 

sporangium from sporophyte. Sporangia and gametangia can be either sessile or 
pedicellate (Kim & Lee, 1992). 

254x190mm (300 x 300 DPI)  
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Figure 4: General ultrastructure of a vegetative cell of Ectocarpus siliculosus. The general 
ultrastructure of a vegetative cell is similar in both prostrate and erect filaments (Oliveira 

& Bisalputra, 1973). The different compartments of the cell are illustrated (see text for 
details). Lines represent membranes and define sub-cellular compartments, except for 
thylakoids, drawn as a thick black line. Depending on their type and age, vegetative cell 
size varies from 10 to 35 m in length, and 5 to 15 m in width (in laboratory culture 

conditions). 
254x190mm (300 x 300 DPI)  
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Figure 5: General intracellular structure of Ectocarpus siliculosus zoids. A scheme 
representing the different compartments of an Ectocarpus siliculosus zoid cell from a 

plurilocular sporangium or gametangium is presented (see text for details). Legends are 
the same as in Fig. 4. 
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