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Abstract
Background: Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived
plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin
resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies,
this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for
phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes.

Results: The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced.
These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The
sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally
to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar
with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar
rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast
to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown
algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom
plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship
between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using
several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the
available red algal and chromist plastid genomes.

Conclusion: The phylogenetic studies using concatenated plastid proteins still do not resolve the question of the monophyly
of all chromist plastids. However, these results support both the monophyly of heterokont plastids and that of cryptophyte and
haptophyte plastids, in agreement with nuclear phylogenies.
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Background
The endosymbiotic captures of free-living prokaryotes,
leading to the evolution of two types of organelles, mito-
chondria and plastids, are considered to be key events in
the establishment and success of extant eukaryotic line-
ages [1,2]. If all mitochondria are likely to be derived from
an α-proteobacterium-like ancestor, possibly due to a sin-
gle and ancient endosymbiotic event, the history of plas-
tid acquisition in the diverse photosynthetic eukaryotic
lineages seems to be more complex [3-6]. It is now largely
accepted that a single primary endosymbiotic event
involving the capture of a cyanobacterium led to an ances-
tral primary plastid, which subsequently gave rise to the
green plastids of the terrestrial plants and chlorophytes,
the rhodoplasts of red algae and the cyanelles of the glau-
cophytes. Once established, primary red or green algal
plastids later spread independently to other eukaryote lin-
eages via secondary or tertiary endosymbioses, whereby a
photosynthetic eukaryote was engulfed by another
eukaryote. Subsequently, plastids have also been inde-
pendently lost and/or replaced in several eukaryote line-
ages, making the reconstruction of plastid evolution very
difficult.

The current consensus of eukaryote phylogeny recognizes
six putative super-clusters: Opisthokonta, Amoebozoa,
Plantae, Chromalveolata, Rhizaria, and Excavata [7,8],
but this division is still debated [9,10]. The three primary
plastid-containing lineages, Viridiplantae, Rhodophyta
and Glaucophyta form the "Plantae" or "Archaeplastida"
supergroup. Photosynthetic eukaryotes with secondary or
tertiary plastids have evolved independently in the Chro-
malveolata, Rhizaria, and Excavata [3,5]. Among the sec-
ondary plastids, chlorophyll c-containing plastids have
been shown to be derived from an ancestral red alga via a
secondary endosymbiotic process that took place around
one billion years ago [11,12]. This type of plastid is found
in Cryptophyta, Haptophyta, Heterokonta (also called
stramenopiles) and Dinophyceae algae [3,4]. Crypto-
phyta, Haptophyta and Heterokonta eukaryotic lineages
have been grouped under the name of "Chromista" by
Cavalier-Smith [13], and were later associated with the
Alveolata, which includes the apicomplexans, dinoflagel-
lates and ciliates, to form the "Chromalveolata" super-
group. In 1999, Cavalier-Smith proposed that all the
chlorophyll c-containing plastids were derived from a sin-
gle secondary endosymbiotic event and that the common
ancestor of chromalveolates was originally photosyn-
thetic [14]. During diversification of the four extant chro-
malveolates lineages, photosynthetic capacity and/or the
plastid organelle would then have been independently
lost several times in different eukaryotic lineages, such as
oomycetes (non-photosynthetic heterokonts), apicompl-
exa or ciliates (non-photosynthetic alveolates). According
to this so-called "chromalveolate" hypothesis, plastid and

nuclear genomes have similar evolutionary histories and
one would expect monophyly of chromalveolate lineages
in both nuclear and plastid phylogenies. This hypothesis
has been extensively debated over the last ten years (for
recent references, [5,6,15-17]), in part because of incon-
gruence between plastid and nuclear phylogenies [9].

At the nuclear level, both the monophyly of heterokonts
and alveolates and that of cryptophytes and haptophytes
have received increasing support in recent years (for recent
review and references therein, [6]). Two contemporary
phylogenetic analyses based on expressed sequences tag
surveys of the cryptomonad Guillardia theta and the hap-
tophyte Emiliania huxleyi supported the close relationship
of cryptophyte and haptophyte host lineages [18,19]. In
nuclear phylogenies alveolates and heterokonts often
form a sister group [9,20]. Unexpectedly, several large
scale nuclear phylogenies have also shown a very robust
relationship between members of Rhizaria, cercozoans,
and these two main clades of the "chromalveolates", but
with the exclusion of haptophytes and cryptophytes
[18,21,22]. The debate is becoming more complex with
the emergence of this new putative SAR (stramenopiles/
alveolata/rhizaria) supergroup, as proposed by Burki [23].
Recent phylogenetic studies employing large gene- and
taxon-rich datasets continue to question the reality of the
"chromalveolate" supergroup, by placing the haptophyte-
cryptophyte clade as a sister group to the Plantae [24,25]
or by having them emerging independently and sepa-
rately from the SAR supergroup [10]. It is however well
known that reconstructing the evolution of host cell line-
ages can be difficult, especially because of the chimeric
nature of nuclear genomes and because large-scale hori-
zontal gene transfers have occurred in some lineages dur-
ing evolution [26].

Plastid genomes are less affected by horizontal gene trans-
fer, with some rare exceptions [27]. At the plastid level, the
monophyly of chromist plastids is supported by analyses
of single genes [28], of small numbers of concatenated
plastid genes [12,29], and of larger datasets of plastid-
associated genes, i.e. plastid and nuclear-encoded plastid-
targeted genes [30-35]. The relationships among chloro-
phyll c-containing plastids are, however, particularly hard
to resolve and the results obtained are sometimes incon-
gruent with host cell phylogenies [9]. Haptophyte plastid
genes more often group with the heterokont/dinoflagel-
late clade, than with those of cryptophytes [30,31,33,34].
A clade grouping haptophyte and cryptophyte species has
been inferred from some plastid gene phylogenies [31,33-
35]. This clustering was not strongly supported and was
highly dependent on the plastid gene dataset used [31,35]
and/or on taxon-sampling [33,34]. Other variant topolo-
gies have included the placing of dinoflagellates either as
a sister-group to haptophyte plastids [30,33] or to heter-
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okont plastids [34,35]. However, a close evolutionary
relationship between haptophyte and cryptophyte plas-
tids would be consistent with the presence of a unique lat-
erally transferred bacterial rpl36 gene in both plastid
genomes [27]. Other multigene analyses produced alter-
native results, such as low support for the chromist clade
[29] or paraphyly of red-algal derived plastids [35,36].

The inability to recover congruencies between plastid and
nuclear phylogenies, especially concerning haptophyte
and cryptophyte monophyly, may be explained by poor
taxon sampling of red algal and chromist species [31,36].
Until now, insufficient sequence data have been available
for the chromalveolates, in terms of both nuclear and
plastid genome sequences. In public databases, more than
110 complete plastid genomes are available from land
plants and green algae, whereas less than 15 sequences
belong to red algae or photosynthetic chromalveolate spe-
cies. Only five complete plastid sequences have been
reported for red algal species [36-39]. For the chromalve-
olates, with the exception of the highly diverged red-algal
derived plastid genomes of non-photosynthetic apicom-
plexans [40] and those of dinoflagellates [41,42], com-
plete plastid sequences have been published for two
cryptomonads, Guillardia theta and Rhodomonas salina
[11,31], one haptophyte, Emiliania huxleyi [43], 3 dia-
toms, Odontella sinensis, Phaeodactylum tricornutum and
Thalassiosira pseudonana [44,45], one raphidophyte Heter-
osigma akashiwo [46] and one xanthophyte Vaucheria lito-
rea [47].

Here we report the complete sequences of the plastid
genomes of Ectocarpus siliculosus and Fucus vesiculosus.
These sequences represent the first fully characterized
plastid genomes from two distinct orders of Phaeophyc-
eae, namely Ectocarpales and Fucales [48]. We have per-
formed phylogenetic studies using large sets of genes and
different reconstruction methods. The results still do not
resolve the question of the monophyly of chromist plas-
tids. However the topologies of concatenated plastid pro-
tein phylogenetic trees support both the monophyly of
heterokont plastids and that of cryptophyte and hapto-
phyte plastids, in agreement with nuclear phylogenies.

Results
Structure and gene content of the phaeophyte plastid 
genomes
The plastid genomes of E. siliculosus and F. vesiculosus are
139,954 and 124,986 base pairs (bp) in size, respectively,
and both contain two inverted repeat regions (IR). These
IRs divide the circular molecules into large (LSC) and
small single copy (SSC) regions (Figure 1 and see general
features of the two plastid genomes in additional file 1,
Table S1). The size difference between the genomes was
partly due to the presence of longer IRs of 8,615 bp in the

E. siliculosus cpDNA. The 4,863 bp F. vesiculosus IRs con-
tain only the ribosomal RNA operons. Another reason for
the difference in size between the two genomes is the pres-
ence of longer intergenic regions in the E. siliculosus
cpDNA. These sequences represent about 20% of the
genome, whereas only 14.5% of the F. vesiculosus cpDNA
is intergenic. The overall GC content is 30.7% for E. silic-
ulosus and 28.9% for F. vesiculosus. In both Fucus and Ecto-
carpus, the cpDNA IRs contain two ribosomal operons
encoding 16S, 23S and 5S rRNA. The F. vesiculosus and E.
siliculosus plastid genomes are predicted to encode a total
of 139 and 144 protein-coding genes, and 26 and 27 tRNA
genes, respectively, when the duplicated genes in the IRs
are counted only once. An intron was identified in the F.
vesiculosus trnL2 gene, which encodes tRNA-Leu. Interest-
ingly, its closest homologue in E. siliculosus cpDNA (93%
nucleotide identity) does not possess an intron. The other
tRNA-Leu genes in these plastid genomes, trnL1_1 of E.
siliculosus and trnL1 of F. vesiculosus, present 98% sequence
identity to each other and also lack the intron (Figure 2).

Gene organisation is highly similar between the two
genomes and around two thirds of both molecules are
conserved with respect to both gene identity and order.
About 50% of each genome is incorporated into two large,
locally collinear blocks. One block contains a large pro-
portion of ribosomal protein-coding genes and covers up
to 24% of the plastid genomes. The second block extends
between trnM and atpA and covers 26-27.5% of each
genome (Figure 1 and see the MAUVE analysis, provided
in additional file 1, Figure S1). When compared to other
heterokont plastid genomes, the number of genome rear-
rangements since the common ancestor of E. siliculosus
and F. vesiculosus is comparable to the number of rear-
rangements that have occurred since the divergence of the
three diatom species (see the reversal distance matrix pro-
vided in additional file 1, Table S2). This number
increases more than twofold when higher taxonomic lev-
els are considered (e.g., xanthophyte, raphidophyte or
diatoms vs. brown algae).

The two plastid genomes are also very similar in terms of
total gene content (Table 1). As already found in most of
the green and red photosynthetic plastid genomes,
excluding those of dinoflagellates [43], they possess the
common core set of 44 genes, but with the exception of
the psbZ gene (listed in additional file 2, Table S3). They
also contain 42 additional protein-coding genes, which
are only found in red algal and chromist plastid genomes,
giving a total of 86 genes that are shared with the red plas-
tid lineage (Table 1). These genes mainly encode essential
plastid proteins, involved in transcription, protein synthe-
sis and transport, and photosynthetic metabolism, such as
components of ATP synthase, cytochrome, photosystem I
and II complexes. Nine genes are shared by all the chro-
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Plastid genome maps of E. siliculosus and F. vesiculosusFigure 1
Plastid genome maps of E. siliculosus and F. vesiculosus. Genes on the outside of the circles are transcribed clockwise, 
whereas those on the inside counter clockwise. Annotated genes are colored according to the functional categories shown in 
the legend and the tRNA genes are indicated by the single-letter code of the corresponding amino-acid. Abbreviations: IR, 
inverted repeats; SSC, small single-copy region; LSC, large single-copy region.



BMC Evolutionary Biology 2009, 9:253 http://www.biomedcentral.com/1471-2148/9/253
mist plastid genomes, but not with all the red algal plastid
genomes (Table 1). Another 27 genes are encoded by
most heterokont plastid genomes, but are not consistently
present in the plastid genomes of haptophytes, crypto-
phytes and red algae. Of the 17 remaining genes that are
common to E. siliculosus, F. vesiculosus and V. litorea cpD-
NAs, nine are present in the raphidophyte plastid
genome, but all are absent from the diatom cpDNAs
(Table 1).

Among the unknown plastid proteins, the conserved open
reading frames (ORFs) Ectocarpus Escp124 and Fucus
ORF76 encode putative proteins of 222 and 229 amino-
acids, with 48% identity between species. Both protein
sequences are predicted to possess five transmembrane
helices. A homolog of these plastid proteins is also
encoded by the plastid genome of the xanthophyte V. lito-
rea. Interestingly, the most similar protein in the public
databases is a nuclear-encoded protein, Tic20, found in
several apicomplexa species, including Toxoplasma and
Plasmodium. The C-terminal ends of these proteins also
share weak similarity with the conserved hypothetical

plastid proteins encoded by the ycf60 genes of plastid
genomes from E. huxleyi, G. tenuistitipata and Cyanidiales
(see partial multiple alignment provided in additional file
3, Figure S2).

Phylogenetic analyses
For phylogenetic analyses, three concatenated amino acid
datasets were constructed (see additional file 2, Table S3)
and analysed using maximum likelihood (ML), neigh-
bour joining (NJ) and Bayesian inference (BI) methods.
For the ML analyses, cpREV and JTT amino acid substitu-
tion matrices gave the same tree topologies (data not
shown). Trees were constructed using a dataset of 44 pro-
teins (8,652 amino-acid positions) from a broad range of
species, including 13 taxa of red-algal type plastids, 4 taxa
of Viriplantae, the glaucophyte Cyanophora, and two
cyanobacteria (see additional file 2, Table S4 for species
list). Plastid sequences of chlorophyll-c-containing dino-
flagellates were not included in the analyses because this
would have resulted in a significantly reduced common
protein dataset. All but four of the nodes in the trees were
well resolved and supported by the three different meth-
ods (Figure 3). As observed in previous studies, the red-
algal and red-derived type plastid sequences grouped
together, whereas green plastids formed a separate mono-
phyletic group, derived from the cyanobacterial
sequences. In all our analyses, the glaucophyte plastid
from Cyanophora emerged at the base of the green plastids,
with high confidence in the BI analysis but with low boot-
strap support in the ML and NJ analyses (56 and 66%).
Among the green plastids, the order of branching of Mes-
ostigma and Arabidopsis was not fully resolved, but the phy-
logenetic position of Mesostigma within the Streptophyta
has been studied recently, with expanded taxon sampling
of the Viridiplantae [49]. In the other part of the tree, the
Cyanidiales grouped together outside a strongly sup-
ported clade that includes the Florideophyceae and Bangi-
ophyceae, together with the heterokont, the haptophyte
and the cryptophyte plastids. The trees also strongly
grouped all heterokont plastids together, with a split
between diatom plastid sequences and those of the
raphidophyte and phaeophytes. The Florideophyceae and
Bangiophyceae branched together with high confidence
using all the methods, as did the two species of crypto-
phytes. In these phylogenetic studies, the haptophyte E.
huxleyi emerged as the closest branch to cryptophytes in
the BI analysis but this topology had low bootstrap sup-
port in the ML analysis (67%), and no support in the NJ
analysis. The order of branching of the following three
major groups: heterokonts, (florideophyte+bangiophyte),
and (cryptophytes+haptophyte), was also uncertain. In
fact, the clade of heterokonts and (cryptophyte+hapto-
phyte) plastids was only well-supported by the BI analy-
sis, and very poorly (49%) or not supported by the ML
and NJ analyses, respectively.

The canonical group I intron in the plastid tRNA-Leu (trnL) geneFigure 2
The canonical group I intron in the plastid tRNA-Leu 
(trnL) gene. (A) Multiple alignments of plastid trnL genes 
from E. siliculosus (Es) and F. vesiculosus (Fv), showing the posi-
tion of the group I intron located in the F. vesiculosus trnL2 
gene. Structural features of tRNA are indicated on the two 
first lines. (B) Schematic phylogeny of the phaeophytes 
(redrawn from [48]), showing the presence (+) and absence 
(-) of the trnL intron in the different orders.
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To strengthen the topology of branching in the region of
the tree corresponding to the red-alga derived plastids, we
decided to increase the protein dataset by focusing the
phylogenetic studies on 13 species. A full dataset of 83
plastid-encoded proteins (16,738 amino acid positions)
was analyzed in parallel with a sub-dataset of 33 slowly-
evolving plastid proteins, excluding the fast-evolving pro-
teins (Figure 4). Using the PhyloBayes software, the values
of the saturation index have been calculated for each data-
set. The observed and predicted homoplasy rates are,
respectively, 1.98 ± 0.05 and 2.00 ± 0.05 for the 83-pro-
tein dataset, and 1.01 ± 0.03 and 1.00 ± 0.04 for the 33-
protein dataset. These results show that the exclusion of
the fast-evolving proteins tends to decrease the global
level of saturation. Both trees still showed two well-sup-
ported plastid groups, corresponding to heterokonts and
the Cyanidiales. Globally, the branches that were strongly
supported by the 44-protein dataset were maintained.
Interestingly, the group formed by haptophyte and cryp-
tophyte plastids had greater support in the ML analysis
(97% bootstrap value) but little support with NJ method

with the 83-protein dataset (Figure 4A) and was strongly
supported by the three methods in the analyses of the
slowly-evolving proteins (Figure 4B). Compared to the
44-protein trees, the 83- and 33-protein trees differed in
their branching patterns with respect to the (florideo-
phyte+bangiophyte) and the (cryptophytes+haptophyte).
Both the ML and NJ trees built with the dataset of 83 pro-
teins clustered these two groups with high bootstrap val-
ues, whereas the red algal plastids were found outside the
clade of heterokont/(cryptophyte+haptophyte) plastids in
the 33-protein trees. This latter topology was strongly sup-
ported in the ML, NJ and BI analyses (Figure 4B).

To further test these phylogenetic positions, we compared
different topologies by performing the approximately
unbiased (AU) and Shimodaira-Hasegawa (SH) tests (Fig-
ure 5). Four topologies were selected to evaluate two
hypotheses: 1) Are chromist plastids indeed mono-
phyletic; 2) Are haptophyte plastids specifically related to
cryptophyte plastids to the exclusion of heterokont or
(florideophyte+bangiophyte) plastids? Our analyses

Table 1: Gene content comparisons between plastid genomes.

Genes Species

No. Heterokonts Hapto Crypto Rhodophytes

Esil Fves Vlit Haka Ptri Osin Tpse Ehux Gthe Rsal Gten Ppur Ccal Cmer

83 genes listed in Table S3*, 
rpl36, rbcR, ccsA

86 + + + + + + + + + + + + + +

rpoC1, rpoC2, ycf35, ycf46 4 + + +/- + + + + + + + + + +/- -
cbbX, ccs1, tatC 3 + + + + + + + + + + + - +/- +
petL, petM 2 + + + + + + + + + + - + - +
thiG, thisS 2 + + + + + + + + - - + +/- + +
dnaB, ftsH, petF, psaE, psbX, 
rpl1, rpl4, rpl11, rpl12, rpl13, 
rpl18, rpl24, rpl29, rpl32, rpl35, 
rps20, sufC, ycf33

18 + + + + + + + - + + + + +/- +

psbY 1 + + + + + - + - - + - - - +
ycf41, ycf42, ycf66 3 + + + +/- + +/- + - - - - - - -
psbW, secG, tsf 3 + + +/- - + + + +/- + + +/- +/- +/- +/-
ftrB, ilvB, ilvH 3 + + + + - - - - + + + + +/- +/-
ycf65 1 + + + + - - - + - - + - + +
acsF, petJ, rps1, ycf34, ycf54 5 + + +/- + - - - - - - +/- +/- +/- +/-
chlB, chlL, chlN, rpl9 4 + + + - - - - - - - +/- +/- +/- +/-
ycf19, ycf37 2 + + + - - - - +/- + + + + + +/-
Escp124 (FvORF76) ~ ycf60 1 + + + - - - - + - - + - + +
Escp152 (FvORF501) 1 + + - - - - - - - - - - - -
hlip ~ ycf17 1 + - + - - - - - + + - + + +
syfB 1 + - - - + - - - - - + + - -
Escp36, Escp117, Escp161 3 + - - - - - - - - - - - - -

E. siliculosus (Esil) and F. vesiculosus (Fves) cpDNAs were compared with those of other heterokonts, haptophyte (Hapto), cryptophytes (Crypto) 
and rhodophytes. Presence (+), absence (-) or presence of only a subset (+/-) of the genes listed in the first column is indicated. Species 
abbreviations: Vaucheria litorea (Vlit), Heterosigma akashiwo (Haka), Phaeodactylum tricornutum (Ptri), Odontella sinensis (Osin), Thalassiosira pseudonana 
(Tpeu), Emiliania huxleyi (Ehux), Guillardia theta (Gthe), Rhodomonas salina (Rsal), Gracilaria tenuistitipata (Gten), Porphyra purpurea (Ppur), Cyanidium 
caldarium (Ccal), Cyanidioschyzon merolae (Cmer).
(*) see additional file 2.
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showed that, for the 83- and 33-protein datasets, the best
topologies correspond to the trees shown in Figure 4A
(topology I) and 4B (topology II), respectively. Consider-
ing the two datasets, these two topologies had a much
higher likelihood in AU and SH tests, than topologies that
place either the haptophyte plastid outside a (crypto-
phyte+(florideophyte+bangiophyte)) clade (topology III)
or that propose that the closest relationship is between
heterokont and haptophyte plastids (topology IV). For the
83-protein dataset, the three topologies (II, III and IV)
were significantly rejected with p value under 0.05 for AU
tests, but not for SH tests. For the 33-protein dataset, the
topology I could not be significantly rejected by both tests
(P = 0.09; P = 0.24), whereas the other topologies were
refuted with P values below the significance level.

Discussion
Monophyly and evolution of heterokont plastid genomes
Until very recently, all of the plastid genomes available for
the heterokont lineage were from diatoms (O. sinensis, P.
tricornutum and T. pseudonana), and these genomes fea-
tured conserved gene content and gene clusters [45].
Along with the recently published plastid genomes of two
strains of the raphidophyte H. akashiwo [46]) and the xan-
thophyte V. litorea [47], the complete sequences of the E.
siliculosus and F. vesiculosus plastid genomes presented
here significantly increase the number and diversity of
heterokont plastid genomes available, allowing a more
extensive comparison of these genomes. Our results sup-
port a unique origin for all heterokont plastids, based on
similarity in terms of gene content (Table 1) and on their
forming a strongly supported group in all our phyloge-
netic analyses (Figures 3 and 4). These analyses were,
therefore, consistent with the well established mono-

Maximum likelihood tree constructed from a dataset of 44 concatenated proteins from 20 plastid or cyanobacterial complete genomesFigure 3
Maximum likelihood tree constructed from a dataset of 44 concatenated proteins from 20 plastid or cyanobac-
terial complete genomes. PHYML and Neighbour Joining trees were constructed based on 8,652 amino-acid sites using 
cpREV and JTT matrices, respectively. When above 65% and different, bootstrap values (1000 replicates) are provided for 
PHYML (first value) and NJ (second value) analyses. The thick branches represent ≥ 0.9 posterior probability for Bayesian infer-
ence analysis.
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phyletic origin of the heterokont host cell [10,21,23].
However, despite their common origin, genome compar-
isons revealed specific traits in the evolution of heter-
okont plastids during the diversification of the different
heterokont orders.

All the Xanthophyceae or Phaeophyceae plastid genomes
analyzed to date, including that of F. vesiculosus described
here, contain a tRNA-Leu gene with a single intron
[47,50]. This canonical group I intron is thought to have
been acquired from the ancestral cyanobacterial endo-
symbiont and to have been lost independently in several
lineages of plastids, including the red algae and almost all
their secondary plastid derivatives, except the Xantho-
phyceae/Phaeophyceae lineage [50]. Given the high
sequence similarities found between these plastid tRNA-
Leu genes in V. litorea, F. vesiculosus and E. siliculosus (86
to 93% sequence identity), they are probably derived
from the same ancestral tRNA-Leu gene, containing the
endosymbiotic derived intron. In the E. siliculosus gene, its
loss is likely to be recent because it is still present in the
plastid tRNA-Leu genes of Laminariales species and of two
Ectocarpales, Pylaiella littoralis and Scytosiphon lomentaria
(Figure 2) [50]. This feature is evidence for continued evo-
lution of brown algal plastid genomes within the recently-
derived order Ectocarpales [48,51].

In terms of gene content, the brown algal plastid genomes
seem to be more closely related to those of V. litorea and
of H. akashiwo than to those of diatoms and this is consist-
ent with evolutionary relationships of the nuclear com-
partment [51,52]. Although the structural organisation of
plastid genomes is highly conserved within the brown
algae (additional file 1, Figure S1) and within diatoms
[45], there is evidence of intensive gene rearrangements
having occurred earlier in evolution after the separation of
diatoms from raphidophytes, xanthophytes and phaeo-
phytes. Moreover, more extensive gene losses seem to
have occurred in diatom plastid genomes than in other
heterokonts (Table 1). These genes could have been trans-
ferred to the nucleus or replaced by bacterial counterparts,
functionally-integrated through horizontal gene transfer
as often seen in the diatom nuclear genome [53]. All these
data, together with the topologies of plastid phylogenetic
trees (Figure 3 and 4) support a relatively ancient split
between diatoms and the raphidophyte-phaeophyte
clade, in agreement with the early divergence of the Bacil-
lariophyceae from the other photosynthetic heterokont
lineages in nuclear phylogenies [51,52].

What is the closest relative of the heterokont plastid clade?
A critical step for the transformation of the endosymbiont
into a permanent organelle was the establishment of an
efficient protein targeting and translocation system from

Maximum likelihood trees constructed from two datasets of concatenated proteins from 13 completed plastid genomes of red algal and chromist speciesFigure 4
Maximum likelihood trees constructed from two datasets of concatenated proteins from 13 completed plastid 
genomes of red algal and chromist species. A) The full dataset of 83 proteins (16,738 amino-acid sites), and B) the 33 
slow-evolving proteins dataset (8,404 amino-acid sites) were used for PHYML and Neighbour Joining analyses, using cpREV and 
JTT matrices, respectively. When above 65% and different, bootstrap values (1000 replicates) are provided for PHYML (first 
value) and NJ (second value) analyses. The thick branches represent ≥ 0.9 posterior probability for Bayesian inference analysis.
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the nucleus to the plastid [1,4]. The canonical Tic/Toc pro-
tein import complex of secondary plastids was inherited
from the first red-algal endosymbiont, with components
of both eukaryotic and eubacterial origin [1,54,55]. Both
brown algal plastid genomes have a gene (Escp124 in Ecto-
carpus and ORF76 in Fucus) that shares similarity with the
Tic20-like genes in xanthophyte, haptophyte and red algal
plastid genomes. There are no homologues of this gene in
raphidophyte, diatom and cryptophyte plastid genomes
(Table 1). This plastid-encoded Tic20 gene (also called
ycf60) encodes a small membrane protein and is thought
to be endosymbiont-derived with a cyanobacterial origin
[1,54,55]. Interestingly, the highest similarity scores of
brown algal and xanthophyte plastid ORFs were found
with a homologous protein encoded in the nucleus of sev-
eral apicomplexan species, including Toxoplasma and Plas-
modium. In T. gondii, this Tic20-like protein has been
shown to be essential for protein import into the apico-
plast [56] and is therefore likely to be linked to apicoplast
evolution [4]. Escp124 and ORF76 protein sequences are
also predicted to have five transmembrane regions, sug-
gesting a putative location in the plastid membrane. It is
now widely accepted that alveolates and heterokonts are
derived from a common host cell ancestor. Escp124 and
ORF76 could be footprints of a common photosynthetic
ancestor of heterokonts and apicomplexans. This hypoth-
esis is in agreement with several recently published stud-
ies suggesting that contemporary alveolates are derived
from a photosynthetic ancestor. These studies include the
characterization of a photosynthetic alveolate closely
related to apicomplexan parasites [57], the identification

of plastid-derived genes in a non-photosynthetic alveolate
[58] and the identification of remnant algal-related genes
in ciliates [59].

Is the monophyly of chromist plastids still in doubt?
All the phylogenetic analyses carried out in this study sug-
gest that the red algal ancestor of chromist plastids was
more closely related to the more recently evolved red algae
(Florideophyceae and Bangiophyceae) than to Cyanidi-
ales, confirming the report by Sanchez-Puerta et al. [33].
It is worth mentioning that Cyanidiales are extremophile
unicellular red algae and have been shown to be the earli-
est diverging red algal group. They emerge very distinctly
from the other multi-cellular red algal taxa in nuclear phy-
logenies [29]. Within the chromist plastid clade, most
plastid phylogenies have hitherto featured a clade group-
ing haptophyte and heterokont plastids [29,30] and the
relationship between haptophyte and cryptophyte plas-
tids was never strongly recovered in previous studies
[31,33-35]. These conflicting results have been discussed
in the light of taxon- or data-sampling limitations [31,34].
Our results do not support a preferential link between het-
erokont and haptophyte plastids, neither in terms of gene
content (Table 1) nor phylogenetic relationship. Moreo-
ver, these phylogenetic analyses strongly support the
monophyly of haptophyte and cryptophyte plastids (Fig-
ure 4). In general, addition of taxa has been shown to
reduce support for previously robust clades, whereas the
addition of more positions has been shown to increase
support regardless of the topology [60]. Indeed this topol-
ogy has high confidence, especially when the dataset of
genes was increased or slowly-evolving proteins were
selected. Moreover, whatever the datasets used, with or
without fast-evolving proteins, AU tests significantly
rejected topologies separating haptophyte and crypto-
phyte plastids. The monophyly of haptophyte and crypto-
phyte plastids is in complete agreement with recent
nuclear phylogenies that support a common origin of
their host cells [18,19] and with a previous study that
identified a unique, laterally transferred bacterial gene in
plastid genomes from these two groups [27].

Horizontal gene transfers into plastid genomes happened
only rarely after the establishment of the endosymbiont
within the host cell. The major events which can affect the
structure of the organelle genome are gene transfer to the
nucleus and/or gene loss. Indeed, red algal plastid
genomes possess more than 230 protein-coding genes
while those derived from a red-algal endosymbiont
encode less than 150, of which more than half are shared
by all the genomes (Table 1). An exceptional case is the
drastic reduction of plastid minicircular genomes of peri-
dinean dinoflagellates [41]. In other plastid genomes
derived from a red algal endosymbiont, the remaining
pool of genes is the result of losses that have occurred

Likelihood AU and SH tests of four alternative tree topolo-gies, using the two different datasetsFigure 5
Likelihood AU and SH tests of four alternative tree 
topologies, using the two different datasets. In tree 
topologies, the abbreviations used are: He, Heterokont plas-
tids; Ha, Haptophyte plastids; Cr, Cryptophyte plastids; FB, 
Florideophyte+Bangiophyte plastids; Cy, Cyanidiales plastids. 
In the table, the best tree is indicated by a star. Boldface type 
corresponds to P < 0.05.
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independently in the different lineages and of retention
that could constitute interesting fingerprints of ancestral
plastid gene contents. A comparison of gene content did
not reveal any particular relationships between heter-
okonts and cryptophytes/haptophytes and therefore did
not provide support for a common history. For the phylo-
genetic analyses, whereas the use of the complete dataset
supported a different red-algal origin for heterokont plas-
tids (Figure 4A), monophyly of all chromist plastids was
recovered when the most conservative data was used in
the phylogenetic reconstruction (Figure 4B), as previously
observed [33,36]. Other studies have also shown the dis-
ruption of the monophyly of chromist plastids
[31,33,35]. Our dataset and taxa sampling are not suffi-
cient to completely refute or confirm the polyphyly of chr-
omist plastids, given that the monophyletic topology does
not significantly exclude the polyphyletic one when using
the slow-evolving proteins (Figure 5). The slowly evolving
proteins may reflect more ancient divergences, but the
exclusion of fast-evolving proteins decreases the number
of analysed amino-acid positions by a factor of two and
the issue of dataset size is critical in plastid multi-gene
phylogenetic studies [34]. In the context of the chromal-
veolate hypothesis, the major separation between crypto-
phyte/haptophyte and heterokont/alveolate host cells is
more likely to have occurred very early after the secondary
endosymbiosis. An alternative origin of heterokont/alveo-
late plastids has recently been proposed, with laterally
transferred red-algal derived plastids from the hapto-
phyte/cryptophyte clade into the heterokont/alveolate
lineage [5,61]. The monophyly of all chromist plastids is
also consistent with this tertiary endosymbiosis hypothe-
sis, if the heterokont plastids were captured before the
divergence between the haptophyte and cryptophyte host
lineages. It is however clear that plastid phylogenies alone
will not resolve these currently discussed questions about
vertical or lateral inheritance of red-algal derived plastids
[16,17].

It has been shown that plastid metabolism could also
involve a significant number of nuclear-encoded proteins
recruited from diverse origins, such as laterally transferred
genes from Chlamydiae [62] or green algae [63-65]. Phyl-
ogenies based on nuclear-encoded plastid-targeted pro-
teins could then trace and reflect complex evolutionary
pathways, whereas phylogenies based on complete sets of
plastid-encoded genes should better reflect the evolution
of the organelle since its engulfment by the host cell. As
illustrated by the high resolution of the heterokont plastid
clade, additional plastid genomes from haptophytes,
cryptophytes and dinoflagellates, but certainly also from
other evolved red algae will be required to fully resolve
chromist plastid phylogenies and, subsequently, test the
different hypotheses concerning red-algal derived plastid
origin(s).

Conclusion
In conclusion, this study of two novel plastid genomes
belonging to brown algal species has shown the impor-
tance of increased taxon sampling when analysing phylo-
genetic relationships based on large datasets. As expected,
the phylogenetic analyses showed that heterokont plas-
tids are monophyletic, although very diverse in terms of
gene arrangement. There is also evidence that some heter-
okont (phaeophyte and xanthophyte) plastids have
retained finger-prints indicating a common ancestory
with alveolate plastids. Moreover, monophyly of hapto-
phyte and cryptophytes plastids was strongly recovered
whatever the dataset or the method used, in complete
agreement with large-scale nuclear phylogenies.

Methods
Algal material and DNA extraction
E. siliculosus strain Ec32 (CCAP1310/4) was cultivated
under laboratory conditions as previously described [66]
and total DNA was prepared according to the method of
Apt et al. [67].

F. vesiculosus was collected from the field (Ria Formosa
Natural Park, Portugal) and DNA was extracted from iso-
lated plastids. Briefly, 20 g apical tissue free from visible
epiphytes was cleaned by 2 min exposure in bleach (1%
in filtered natural seawater), rinsed and homogenized in
100 mL cold extraction buffer containing 0.05 M MES
(pH 6.1), 0.5 M sorbitol, 1 mM MgCl2, 1 mM MnCl, 0.5
mM K2HPO4, 5 mM EDTA, 1% BSA, 2% PVP, and 2 mM
Na-ascorbate. The homogenate was passed through cot-
ton gauze and 1 μm nylon mesh, centrifuged for 2 min at
2000 × g at 4°C. The supernatant was transferred to new
50 mL tubes and centrifuged at 5000 × g for 5 min. The
pellet containing plastids was gently resuspended in a
total of 10 mL of extraction buffer and re-centrifuged (5
min, 5000 × g, 4°C). The pellet was resuspended in new
extraction buffer and applied to a 30:50% sucrose step
gradient. After centrifugation for 45 min at 5000 × g
(4°C), the plastids were removed from the 30 and 50%
sucrose interface, carefully resuspended in a buffer con-
taining 0.05 M HEPES (pH 7.5), 0.5 M sorbitol, 1 mM
MgCl2, 1 mM MnCl, 0.5 mM K2HPO4. After observation
under the microscope to determine the quality of the plas-
tid preparation, plastids were centrifuged again for 10 min
at 5000 × g. The supernatant was removed and plastids
were stored at -80°C prior to DNA extraction using the
CTAB method [68].

Genome Sequencing, Assembly and Annotation
For E. siliculosus, several scaffolds corresponding to plastid
DNA were detected by similarity to other plastid genomes
in an assembly of shotgun sequenced total genomic DNA
produced by Genoscope http://www.genoscope.cns.fr/
spip/-Ectocarpus-siliculosus-.html. These scaffolds were
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removed from the rest of the sequence data and the
sequence of the circular genome was completed by man-
ual assembly and PCR amplification of gap regions. The
plastid genome was annotated using the GenDB interface
[69], available through the bioinformatics' facilities of the
Marine Genomics Europe Network of Excellence.

For F. vesiculosus, two main strategies were used to obtain
the full genome sequence: 1) Plastid-enriched DNA
(cpDNA) was digested (HindIII), and cloned into pBlue-
script II (SK-) (Stratagene). Positive colonies were ran-
domly picked and those with inserts > 1 Kb after digestion
were end-sequenced. 2) Plastid DNA was used to make
uncloned, adaptor-ligated libraries for a genome-walking
approach using long-distance PCR (GenomeWalker kit,
Clontech, Palo Alto, USA). Gaps in the genome were filled
by PCR, based on predicted gene organization in red-lin-
eage plastids. The F. vesiculosus plastid genome was assem-
bled using CodonCode Aligner (CodonCode Corp.,
USA). Protein coding genes and putative open reading
frames (ORFs) were identified by database comparison
(Blastx, [70]) and online tools (ORF Finder, NCBI).
Ribosomal and tRNA genes were identified using RNAm-
mer http://www.cbs.dtu.dk/services/RNAmmer/[71] and
ARAGORN http://130.235.46.10/ARAGORN/[72],
respectively.

The two plastid sequences are available under the follow-
ing EMBL accession numbers: E. siliculosus (FP102296)
and F. vesiculosus (FM957154). The physical maps of the
circular genome were drawn using GenomeVx (freely
available at wolfe.gen.tcd.ie/GenomeVx/).

Phylogenetic Analyses
For global gene content comparisons, the two brown algal
plastid genomes were analysed together with those of the
xanthophyte V. litorea [47] and the raphidophyte H.
akashiwo [46] plus the 15 algal sequences and the two ref-
erence cyanobacterium genomes analysed by Khan et al.
[31]. The phylogenetic analyses were conducted with a
total of two cyanobacterium and 18 plastid genomes,
including four complete genomes from red algae and nine
from chromist species (see additional file 2, Table S4).
Three concatenated protein datasets were constructed
from these genomes (additional file 2, Table S3). The first
dataset corresponded to the 44 plastid protein-coding
genes shared by all 20 species. In addition, a larger dataset
of 83 proteins was built using all the plastid proteins com-
mon to the 13 red, cryptophyte, haptophyte and heter-
okont algae. A list of gene synonyms used during this
study is provided in additional file 2 (Table S5), together
with complementary gene annotation information. Single
and concatenated protein sequences were aligned using
MUSCLE [73] and each alignment was further optimised
using GBlocks [74]. Datasets for individual genes were

first analysed using maximum likelihood, in order to
eliminate genes derived from horizontal transfer. Only
the rpl36 protein phylogeny suggests a non red-algal ori-
gin for the haptophyte and cryptophyte genes, which
grouped far outside the red algal and heterokont cluster,
as previously reported [27]. This gene was therefore elim-
inated from the full 83-protein dataset. The average dis-
tance was calculated for each protein with Tree-Puzzle
[75]. We excluded 50 "fast-evolving" protein sequences to
produce a dataset of 33 "slowly-evolving" proteins, which
present an average distance under the threshold of 0.6.
This value was chosen in order to conserve at least half of
the analysed positions for the 33-protein dataset.

Phylogenetic analyses of concatenated protein data were
carried out on 8,652, 16,738 and 8,404 amino acids cor-
responding, respectively, to the 44-, 83- and 33-protein
datasets. A Maximum Likelihood (ML) approach was used
to reconstruct phylogenetic trees using PHYML [76] under
both cpREV [77] and JTT [78] amino acid substitution
matrices with 4 gamma-distributed rate categories and
estimated invariable sites. The neighbor-joining (NJ)
method was performed with JTT amino acid substitution
matrix using the Phylip software package [79]. For both
the ML and NJ methods, bootstrap analyses of 1,000 rep-
licates were used to provide confidence estimates for the
phylogenetic tree topologies. Finally, Bayesian inference
(BI) analyses were performed with PhyloBayes 3.1d [80]
using 4 gamma-distributed rate categories. PhyloBayes
was run using the site-heterogeneous CAT model as
described in Lartillot et al. [81] and two independent
chains with a total length up to 25,000 cycles, discarding
the first 25% as burn-in and calculating the posterior con-
sensus tree. Furthermore, a saturation test was performed
on the different datasets to calculate the observed and pre-
dicted homoplasy rates as described in the PhyloBayes
user manual.

To statistically test the topologies of the trees, approxi-
mately unbiased (AU) and Shimodaira-Hasegawa (SH)
analyses were performed on four topologies. These were
selected to reflect the relative positions of haptophyte,
cryptophyte and heterokont plastids and were generated
by rearrangement of ML and NJ trees (if required). Site
likelihoods for each topology were calculated using Tree-
Puzzle on the two different concatenated datasets and the
AU/SH tests were performed using CONSEL 0.1 [82].
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Additional file 1
Additional data and analyses on the plastid genomes of E. siliculosus 
and F. vesiculosus. Tables S1 and S2, general features of the two phae-
ophyte plastid genomes and reversal distance matrix for pairwise compar-
isons between heterokont plastid genomes. Figure S1, MAUVE genome 
comparison between E. siliculosus and F. vesiculosus plastid genomes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-253-S1.PDF]

Additional file 2
Genes and genomes used in the phylogenetic studies. Tables S3 to S5, 
lists of genes, accession numbers of plastid and bacterial genomes and 
complementary information about gene synonyms and about some pro-
tein-encoded genes used in the phylogenetic studies.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-253-S2.PDF]

Additional file 3
Partial multiple alignment of Tic20 and yfc60 protein homologs. Fig-
ure S2 showing partial multiple alignment of Tic20 and yfc60 protein 
homologs from red alga-derived plastid and apicomplexan genomes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-253-S3.PDF]
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