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Abstract May it be for environmental or economic reasons, mass reduction has become one of the main goals of
mechanical conceptions. Short fiber Thermoplastics composites is an interesting possibility since they present a good
compromise between relatively easy process and mechanical properties. The aim of this work is to estimate and
model the viscoelastic behavior at small strain of PC Lexan/Glass fiber composites.To meet this goal, a full field
homogenization method based on solving the boundary problem through FFT is used. Virtual DMA experiments are
used to build the master curve of the composite. They are later used to identify a macroscopic model for transverse
isotropic short fiber composites. Finally, a meta-model is built to estimate the behavior of the composite at any given
fiber volume ratio.

Keywords Composites · short fiber · viscoelasticity · Full field homogenization · DMA

Introduction

This study is devoted to the overall response of short fibers thermoplastic composites. The mechanical properties
(stiffness and strength) of these composites are lower than those reinforced with continuous fibers. For example a
30% short carbon fiber filled PEEK (PolyEtherEtherKetone) has a Young modulus of 20.9 GPa (Solvay, 2016), while
a unidirectional long carbon fiber / PEEK composite’s modulus is around 140 GPa in the fiber direction (CYTEC,
2016). However they have the great advantage of being formed by injection molding, thus allowing very short cycle
times which are mandatory in industries involving large volume (like the automotive industry). For mass reduction,
the chemical industry focuses on this kind of composite to design some structural part. The complex mechanical be-
havior of these materials then requires the development of predictive constitutive model to capture their mechanical
properties under realistic solicitations.

The literature shows that a great range of high-end matrices are usually studied: amorphous PC (Polycarbonate)
(Haskell et al 1983, Chrysostomou and Hashemi 1996), PSU (Polysulfone) (Wenz et al 1990, Demir 2013), or semi-
crystalline PEEK (Polyetheretherketone)(Crevel, Jeremy 2014,Garcia-Gonzalez et al 2015). The polycarbonate (PC)
present the advantage of being already widely used in the industry. The polysulfone(PSU) composites are less used
except for research purposes on amorphous thermoplastics composites. PEEK matrices are spreading fast across the
composite industry thanks to their good mechanical, thermal (Solvay, 2016) and bio-compatible properties (Morrison
C. et al, 1995). Theses matrices are reinforced, either by short carbon fibers (e.g. Friedrich, K et al 1986, Garcia-
Gonzalez et al 2015, Anuar et al 2008, Brody and Ward 1971) or short glass fibers (e.g. Demir 2013, Brody and Ward
1971). Thermoplastic polymers exhibit a time dependence which can be modeled in the framework of viscoelasticity or
elasto viscoplasticity (Maurel-Pantel et al 2015a, Arrieta et al 2014, Diani et al 2006, Endo and de Carvalho Pereira
2016, Panoskaltsis et al 2007). During the past twenty years, a lot of work have been done to model the macroscopic
behavior of composite materials with a time dependent behavior. All these works can be separated in two classes:

In the first one, the authors build a so-called phenomenological model by identifying the macroscopic behavior to fit
some "well chosen" experiments (Garcia-Gonzalez et al, 2015). In the case of short fibers, the specimens are obtained
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by injection molding and the topography of their microstructure can be obtained through micro-tomography (Chrysos-
tomou and Hashemi 1996, Advani and Tucker 1987 Shen et al 2004, Friedrich, K et al 1986). These micro-tomographies
exhibit the complexity of the microstructure and taking their complexity, and their effect on the macroscopic behavior
to fit the composite law would be too demanding in terms of experiments to be used in an industrial process.

In the second one, the macroscopic behavior is given by homogenization methods (Bornert, 2006). These meth-
ods integrate directly the effects of the microstructure parameters and the constitutive law of each constituent in
the estimated law of the composite. This can be achieved in an analytical way in the case of mean field methods
(Kammoun et al 2015, Despringre et al 2016) or given as a result of numerical simulations in the case of full field
methods (Moulinec and Suquet 1994, Moulinec and Suquet 1998, Dirrenberger et al 2014). In the case of linear vis-
coelasticity, by using the correspondence principle, (Lévesque et al 2007, Ricaud and Masson 2009), authors find some
estimates in closed form for the macroscopic laws of isotropic composites with microstructures following the Hashin
Shtrikman lower bound. For more complex microstructures, the estimate given by this principle are no longer given
in closed form and need some numerical calculations (see Masson and Zaoui 1999, Rougier et al 1993 in the case of
polycrystals). Another limitation of mean field methods is in the complexity of the constituents laws like the nonlinear
behavior exhibited by polymer matrices (Lahellec and Suquet 2013, Brassart et al 2012). Full field methods can handle
all this complexity but they only give the response of the composite to the particular loading path used in the modeling.

In this paper, we deal with the behavior of a thermoplastic matrix reinforced by short glass fiber (5 µm of ra-
dius and 50 µm length). The objective is to obtain an estimate of the macroscopic behavior of the composite by using
an homogenization method. The main problem of such a material is that the microstructure can be really complex,
and, to our knowledge there are not so many homogenization methods available to describe such a microstructure.
Previous papers usually use the Mori Tanaka estimates (Kammoun et al 2015, Despringre et al 2016) but, as we will
see in the section 2.2.3 of this paper, it may give too compliant estimates. To handle this, we use a full field method
based on Fast Fourier Transforms (Moulinec and Suquet 1994, Moulinec and Suquet 1998) which has the advantage
of being meshless (unlike the finite elements methods) thus evading meshing problems (or tremendous amount of
calculation time to avoid the latter). This method is used to simulate a set of numerical experiments (virtual dy-
namic mechanical analysis) and to fit a macroscopic law for the composite. The effective composite behavior model is
proposed in the viscoelasticity and incompressibility framework. That’s why the investigated material is a PC Lexan
matrix studied with experiments in small strain at 150◦C. In first approximation the composite is reinforced by short
perfectly aligned glass fibers with different volume ratios ranging from 10% to 30%.

This new method to estimate the behavior of composite materials is based on three sequential steps:

1. In a first step, the PC Lexan matrix behavior is identified on experimental data obtained with injection molding
samples. We performed DMA frequency scans, single cantilever bending , at 15 temperatures, from 50◦C to 190◦C,
at each temperature, 10 frequencies are scanned, from 0.1 to 10 Hz. This results are used in order to build the
master curve which is used to model the viscoelastic behavior of the material.

2. In a second step, the effective viscoelastic behavior of composite is identified using virtual DMA tests. The
numerical tests are run on representative volume elements of the composite, characterized by different fiber volume
ratios, with a full field homogenization method. This is controlled by Python scripting which runs FFT full field
computations at different frequencies. Generalized maxwell models with 1, 2 or 3 branches are then used to fit
these virtual measurements. This is made through Mathematica using an evolutionary optimization algorithm
(Wolfram, 2015).

3. At the last step, a meta model is proposed and validated on prediction of the viscoelastic behavior for any fiber
volume ratio within the studied domain (10% < cf < 30%).

In this first study, we used a single spring dashpot maxwell model as matrix behavior. This allows a simple
validation of the method and also permits a clear evaluation of the reinforcement effect on the composite behavior.
The paper is composed of three sections which are based on the latter enumeration.

1 Matrix behavior

1.1 Dynamic Mechanical Analysis

To characterize polymers a common way is to use dynamic mechanical analysis. This method consists in applying
sinusoidal loads to material samples, and measuring the lag between strain and stress. By scanning though frequencies,
and/or temperature, it is possible to highlight the viscoelastic behavior of the material. When compared to a classic
tensile test, this test gives information, such as transition temperatures, and behavior at different strain rates. For
isotropic material, at each temperature (or frequency) a DMA tensile test will give two independent parameters: the
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storage Young modulus (which is often noted E′) representing the stored elastic energy, The loss young modulus (E′′)
used to quantize the energy lost by viscosity. When performing a DMA, a sinusoidal strain is imposed as:

ε11(t) = ε0sin(t ω2π ), (1)

where ε11 if the strain in the tensile direction, ε0 the amplitude of the strain load, and ω is the angular frequency of
that load. As a consequence of this imposed strain, comes a lagged sinusoidal stress which can be expressed through:

σ11(t) = σ0sin(t ω2π + φ), (2)

in which the stress amplitude σ0 and the phase lag φ are measured. The storage and loss modulus, E′ and E′′

respectively, are defined by:
E′ = σ0

ε0
cosφ and E′′ = σ0

ε0
sinφ. (3)

1.2 Matrix characterization

As stated in the introduction, we want to model the polycarbonate at 150◦C. Unfortunately, obtaining a large range
of frequencies is impossible with our experimental devices, as showed in Fig. 1. We are thus forced to use the Time
Temperature Superposition (TTS) method (Li 2000, Maurel-Pantel et al 2015a) to reconstruct a large enough scan.
The TTS method uses the equation (4) (Andrews and Tobolsky, 1951) to build the master curve of the material,
expressing the storage and loss moduli as a function of an equivalent angular frequency ω∗ calculated with the so
called WLF equation:

ω∗ = aT × ω = 10

(
−C1(T−Tref )
C2+(T−Tref )

)
× ω (4)

In this study, the matrix behavior law was obtained through several DMA frequency scans which were used to build
the master curve (15 temperatures, from 50 to 190◦C, each time isothermically scaning through 10 frequencies, from
0.1 to 10 Hz). The results of all these experiments are displayed in Fig 1. Each curve is an isothermal scan through
the 10 frequencies. Using the aT variables, it is possible to shift the curves and reconstruct the full master curve, as
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Fig. 1 Experimental DMA results: isothermal frequency scans on pure PC Lexan, from 50◦C to 190◦C

shown on Fig. 2.

The results of the aT values at each temperature is displayed on Fig. 3. These results were then used to fit C1
and C2 as in equation (4). They were identified at a reference temperature of 150◦C as C1 = 180 and C2 = 900. The
black line on Fig. 3 represent this fit. The master curve was then calculated at an equivalent temperature of 150◦C,
temperature at which the Polycarbonate is an incompressible material. In all the following, the angular frequency was
transformed into a frequency with the usual relation ω = 2πf .
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Fig. 2 TTS method illustrated, on the left are displayed the result of a temperature scan DMA, on the right are the aT shifted
results which then consitutes the master curve
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Fig. 3 Experimental value of aT obtained with the TTS method and the corresponding best fit to identify the WLF law parameters
(C1 and C2), from 50◦C to 190◦C

To model these master curve, under the isotropy and incompressibility hypotheses, we use a Maxwell model (or
single spring dashpot) for which the deviatoric constitutive behavior is given by:

ε̇εεd = (σ̇σσ)d

2µ + σσσd

2η , (5)

with superscript d denoting the deviatoric part of the different tensors, µ the shear modulus, which is linked to the
Young modulus E by E = 3µ in the case of incompressible and isotropic solids, and η the viscous modulus. In Fig. 4,
we show the experimental master curve found using the previously described method (circle and cross markers) and
the Maxwell model (continuous and dashed lines), with E = 1770MPa and η = 31.9MPa.

While being aware that this is a rough modeling, we decided to use it for this first study as it permit the run of a
first set of calculations with a viscoelastic matrix quantitatively similar to a real polycarbonate. Having such a simple
behavior makes the method building and debugging much easier. Furthermore, it is important to note that this does
not affect the quality of the proposed methodology. For future studies, thanks to a modular model architecture, the
matrix behavior will be complexified by using behavior laws based either on a generalized maxwell model with several
relaxation times or on the V.E.N.U (ViscoElastic Network Unit,see (Maurel-Pantel et al, 2015b) model.
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Fig. 5 Short fiber RVE used in our computations

2 Composite effective behavior

In this section, we model the composite effective behavior with a generalized Maxwell model (in the framework of
incompressible, transversely isotropic materials) fitted on virtual DMA testings run on a numerical RVEs (Repre-
sentative Volume Element) like the one presented in figure 5. Theses RVEs are composed of a polycarbonate matrix
with the constitutive law given by equation (5) with the material parameters identified in section 1 reinforced by
short aligned glass fibers (Ef = 70GPa and νf = 0.33) with cf varying from 10% to 30% (cf being the fiber volume
fraction). These Virtual DMA experiments were ran at frequencies ranging from 0.01 Hz to 1000 Hz.

2.1 Generalized Maxwell model

The model identified on the virtual experiment results is defined by a generalized Maxwell model which is constructed
with several parallel spring dashpots as related in figure 6. For this part, let i2, III and IIIT be respectively the second,
fourth order and transverse isotropic fourth order identities, defined as (let ⊗ be the tensorial product defined as
(u⊗ v)ij = uivj and (u⊗ v)ijkl = uijvkl):

(i2)ij = δij ,

Iijkl = δikδjl + δilδjk
2 ,

(IT )ijkl = Iijkl + ninjnknl − (ni(i2)jknl + nk(i2)linj) ,
(6)

with nnn the direction of the fibers. Having an incompressible matrix, filled with far stiffer short fibers, we assumed
that the composite is also incompressible. For transversely isotropic linear elastic solids, the fourth order tensor of
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Fig. 6 Generalized maxwell model

elastic moduli belongs to a three dimensional vectorial space and can be given as: (Bornert, 2006)

LLL = 3
2αLK

KKE + δLKKKT + γLKKKL, (7)

with KKKT , KKKL and KKKE three projectors given by:

KKKT = IIIT − JJJT , KKKL = KKK −KKKT −KKKE , JJJ = 1
3 i2 ⊗ i2, KKK = III − JJJ, (8)

and
KKKE = 1

6 (2nnn⊗nnn− iT)⊗ (2nnn⊗nnn− iT), JJJT = 1
2 iT ⊗ iT, iT = i2 −nnn⊗nnn. (9)

In expression (7), αL, δL and γL denote the tensile modulus in the fiber direction, the longitudinal and transverse
shear moduli, respectively.

Each branch k of the generalized Maxwell model is defined by an elastic moduli tensor LLLk and a viscous moduli
tensor LLLkv and implies a viscous strain εεεkv . To evaluate the total deviatoric stress given by this model, we need to add up
all the stresses from each branch, which can be written as (let ":" be the double contracted product (A : B)ij = AijklBkl
or A : B = AikBik :

σd =
N∑
k=1

(σk)d and (σk)d = LLLk : (εεεd − εεεkv), (10)

the evolution of each internal variable εkv is given by

(σk)d = LLLkv : ε̇kv , (11)

with, in the two precedent equations:

LLLk = 3
2α

k
LKKKE + δkLKKKT + γkLKKKL and LLLkv = 3

2α
k
ηKKKE + δkηKKKT + γkηKKKL, (12)

with αkL, δkL, γkL the elastic moduli and αkη , δkη and γkη the viscous one. ε̇kv can be eliminated with equations (10) and
(11) to obtain the final stress-strain relation of the single branch k, which can be related to relation (5) for transversely
isotropic behavior:

ε̇d = Lk−1 : (σ̇k)d + Lkv
−1 : (σk)d (13)

In each branch k, using a laplace-Carson transform given by, for a time dependent function f(t):

f̂(p) =
∫ +∞

0
e−ptf(t)dt, with the nice feature that ˆ̇f(p) = pf̂(p), (14)
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gives the following expression of the constitutive law (13) in the frequency space:

(σ̂k)d = L̂LL
k

ve(p) : ε̂d, with L̂LL
k

ve(p) = p
(
(LLLk)−1p+ (LLLkv)−1)−1

. (15)

For a generalized Maxwell model containing N branches (16), the stress-strain relation in Laplace space is then given
by:

(σ̂)d = L̂LLve(p) : ε̂d, with L̂LLve(p) =
N∑
k=1

L̂LL
k

ve(p) (16)

and:

L̂LLve(p) =
N∑
k=1

(
α̂ve(p)KKKE + δ̂ve(p)KKKL + γ̂ve(p)KKKT

)
with


α̂ve(p) = 2αkηα

k
Lp

3(αk
L

+αkηp)

δ̂ve(p) = δkηδ
k
Lp

δk
L

+δkηp

γ̂ve(p) = γkηγ
k
Lp

γk
L

+γkηp

. (17)

The complex tensor moduli is given by:
LLL∗ve(ω) = L̂LLve(iω),

which give for each direction the storage and loss moduli which are respectively the real and imaginary part of each
complex moduli α∗ve(ω), δ∗ve(ω) and γ∗ve(ω) defined by:

α∗ve(ω) = α′ve(ω) + iα”ve(ω) =
N∑
k=1

(
2αkηαkLiω

3(αkL + αkηiω)

)

δ∗ve(ω) = δ′ve(ω) + iδ”ve(ω) =
N∑
k=1

(
δkηδ

k
Liω

δkL + δkη iω

)

γ∗ve(ω) = γ′ve(ω) + iγ”ve(ω) =
N∑
k=1

(
γkηγ

k
Liω

γkL + γkη iω

)
(18)

2.2 Numerical experiments

2.2.1 Loading conditions

To identify all the material parameters displayed in expression (18), we need to numerically simulate DMA along
three different loading directions. These directions were chosen parallel to VE , VT and VL which are respectively
eigenvectors of KKKE , KKKT , and KKKL.VE = − 1

2 (e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3
VT = 1

2 (e1 ⊗ e1 − e2 ⊗ e2) + e2 ⊗ e1 + e1 ⊗ e2
VL = e3 ⊗ (e1 + e2) + (e1 + e2)⊗ e3

(19)

The numerical values of the storage and loss part of the α modulus, for a given angular frequency ω, is computed
in the following way:

1. The applied strain is:

E(t) = ε0VE ∗ sin(ωt), (20)

with ε0 chosen as 0.05.
2. The macroscopic stress projection Σ : VE is then calculated.

Σ(t) : VE = σ0sin(ωt+ φ) (21)
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3. Following (3), we find the storage and loss moduli for α by 1

α′ne = 3
2
σ0

ε0
cosφ and α′′ne = 3

2
σ0

ε0
sinφ. (22)

For the δ and γ moduli, computations are done in the exact same way by replacing VE by VT and VL, respectively,
and by replacing equation (22) by:

θ′ne = σ0

ε0
cosφ and θ′′ne = σ0

ε0
sinφ, (23)

with θ being replaced by δ or γ.

2.2.2 RVE representativity analysis

To numerically estimate the composite response to the DMA loading, we used a full field homogenization code based
on an FFT method (see Moulinec and Suquet, 1994, 1998). Contrary to the mean field homogenization methods (e.g.
Mori-Tanaka method, see Appendix A), this code solves exactly (up to the numerical errors) the boundary value
problem. From this, we get the estimation of the response of the RVE when subjected to a given loading path (either
a macroscopic stress or strain). To avoid numerical inconsistencies, different effects have to be checked:

– As stated in section 1, a DMA test consists in measuring the lag between an imposed sinusoidal strain, and its
resulting stress. A too small number of periods might be an issue and thus, this needs to be checked.

– The boundary value problem includes time derivatives which are discretized by using a Euler implicit scheme,
whose time step needs to be checked.

– The spatial resolution: The numerically generated RVE are discretized in voxels and the influence of the number
of voxels needs to be checked.

– Representativity of the RVE, which in this case depends on the number of fibers.

These different sensibility studies are done for the computation of αne for four different frequencies. Only four points
were used because of the massive amount of calculation time involved in the calculation of the response of a 6003

voxel RVE. The calculation time is directly related to the number of voxel; ergo, it increases to the third power of
the RVE side.

Number of loading cycles

Having a viscoelastic behavior implies that we need to ensure that it is stabilized when measuring stress and strain.
Considering that the first cycles might be different from the stabilized ones, a convergence study was made, from 5
to 20 loading cycles (one cycle being a complete sinus). The phase lag and material parameters are measured only on
the 5 last cycles in every cases (see fig 7 for an illustration). Results are shown in Fig. 8. It seems that the number

N loading cycles

Last 5 cycles

Stabilisation phase

Fig. 7 Illustration of the convergence study on loading cycles, N cycles are processed, from 5 to 20, and in every cases the last 5
cycles are treated (to avoid the stabilisation phase)

of oscillations has no real effect on the final result of the DMA, and 5 cycles are enough to accurately represent the
behavior. Since the calculation time is only increasing linearly with the number of oscillation, it was decided to use
15 cycles to ensure that the result converged.

1 underscript ne stands for Numerical Experiments



Effective viscoelastic behavior of short fibers composites using virtual DMA experiments. 9
M
o
d
u
li
(M
P
a)

0 2 4 6

1000

2000

3000

4000

5000

6000

αne' 5 cycles

αne' 10 cycles

αne' 15 cycles

αne' 20 cycles

αne" 5 cycles

αne" 10 cycles

αne" 15 cycles

αne" 20 cycles

Frequency (Hz)

Fig. 8 Evolution of numerical DMA results on α′ne and α”ne moduli for four different numbers of cycle (only the 5 last cycles
were processed each time to identify α′ne and α”ne) at four different frequencies

M
o
d
u
li
(M
P
a)

0 2 4 6 8

1000

2000

3000

4000

5000

6000

αve' 25 points

αve' 50 points

αve' 100 points

αve' 200 points

αve' 400 points

αve" 25 points

αve" 50 points

α" 100 points

αve" 200 points

αve" 400 points

Frequency (Hz)
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Time steps in one oscillation

Modeling the behavior of materials through FFT implies using time derivatives in the resolution of the boundady
problem. To check whether there are enough time steps to have an accurate results, different cases were tested: from
50 points per oscillation to 600 points per oscillation (see Fig. 9). At high frequencies, it seems that even at 50 points
per oscillation, the estimated behavior is correct. But as shown in Fig. 9 there is a large dispersion at low frequencies.
This means that the point requiring the highest number of time steps will be the first. This is why on Fig. 10 we
concentrate on the first frequency. The error rapidly converges under 2% going from 50 time steps to 100. Then the
convergence is slow. The calculations were finally made with 500 steps since the relative error seems to be stabilized
under 0.5% at this point.
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Resolution of the RVE

In order to validate the representativity of the numerically generated microstructure, a first study (with a 50 fibers
RVE) was conducted on the voxel resolution, with RVE sizes going from 503 voxels to 6003. In Figure 11, results of
the different calculations were plotted for four frequencies and five resolutions. The maximum dispersion is at the first
point. This dispersion is probably induced by the contrast between the very stiff behavior of the fibers and the quasi
fluid-like behavior of the matrix at low frequencies. This implies that a larger resolution is required for this case, and
so that, it was used to determine the proper RVE size. Figure 12 focuses on this point and gives the relative error
(calculated by assuming that the best point, for a 6003 RVE is the exact result). Both the storage and loss moduli
have a convergent behavior. A relative error under 10% was determined. Therefore, we chose to use 2003 voxels RVEs.
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Fig. 11 Numerical DMA results on α′ne and α”ne moduli for different resolutions of numerically generated RVE at four frequencies
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Fig. 13 Effect of the number of fiber (a.k.a zoom) in the RVE

Number of fibers

To validate the representativity of the RVE, we will check that the potential RVE contains enough fibers to be
representative (while keeping the same radius in pixel for the fiber). This can be seen as the optical zoom in a picture
(see Fig. 13). We need to see how many fibers need to be taken into consideration to accurately represent the behavior
of the material. An indicator of the representativity is the dispersion of the results over ten calculations with different
generated RVEs. Ten RVEs are generated for each zoom case, and mean value and dispersion are compared. The
results of the convergence tests are plotted in figures 14 and 15 respectively for the storage and loss moduli. The
maximum error (compared to the mean value) in RVEs depends on the frequency at which the error is calculated.
Having 200 fibers reduces dispersion a lot. Therefore, for the rest of this paper, all the results will feature 200 fibers
RVEs.

2.2.3 Results

Effect of the volume ratio

Figs. 16 and 17 show the evolution of the DMAs for αne and δne, respectively, when the fiber volume ratio goes from
0% to 30%. The case of γne was omitted here since it presented very similar results to δne. increasing the fibers volume
ratio in the RVE naturally increase the moduli while the main relaxation time seems to be decreasing. One could also
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Fig. 14 Mean value and standard deviation (obtained with a set of ten different RVEs) of the α′ne modulus for 50 and 200 fibers
and for four frequencies.

M
o
d
u
li
(M
P
a)

2.56 40.96 655.36

1000

2000

200 fibers

50 fibers

Frequency (Hz)

Fig. 15 Mean value and standard deviation (obtained with a set of ten different RVEs) of the α′′ne modulus for 50 and 200 fibers
and for four frequencies.



Effective viscoelastic behavior of short fibers composites using virtual DMA experiments. 13
M
o
d
u
li
(M
P
a)

0.1 1 10 100 1000

2000

4000

6000

8000

Pure Matrix

10%Glass fiber

20%Glass fiber

30%Glass fiber

Frequency(Hz)

�"

�'

Fig. 16 Numerical DMA results: evolution of α′ne and α′′ne moduli with fiber volume ratio change

notate that with the addition of fibers, the modulus tends to remain different from 0 at low frequencies, this might be
caused by the apparition of a really low relaxation time. On the contrary to the αne DMA (see Fig. 16), the δ DMA
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Fig. 17 Numerical DMA results: evolution of the δ′ne and δ′′ne with fiber volume ratio change

seems to be less affected by the fiber volume ratio. The modulus still increases linearly with the volume ratio. But
the relaxation time remains very close to the matrix relaxation time. The overall shear behavior is also significatively
closer to a simple 1 spring dashpot model than the fiber axis behavior.
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Model identification

The identification of the different complex viscoelastic moduli α∗ve, δ∗ve and γ∗ve, defined in equation (18), over the
virtual experimental data was made using Mathematica’s differential evolution algorithm, using the usual least squares
method, the cost function was defined as follow:

Cost =
∑

θ∈{α,δ,γ}

Nf∑
j=1

(
θ′ve (ωj)− θ′ne (ωj)

θ′ne (ωj)

)2

+
(
θ′′ve (ωj)− θ′′ne (ωj)

θ′′ne (ωj)

)2

, (24)

in which θ represents the three different moduli, and Nf = 18 the number of studied frequencies varying from 10−2

to 103 Hz.

2.3 Number of spring dashpot needed to accurately represent the behavior

Although the matrix behavior is defined as a single spring dashpot (only one relaxation time), it is interesting to note
that the composite material behavior law cannot be described accurately with only one spring dashpot. Fig. 18 and 19
show the best fit, respectively on storage and loss moduli, with one, two and three branches of spring dashpot models
(and as much relaxation times). The values of the cost function are, C = 9.10 when only one spring dashpot is used,
C = 0.34 when two are used, and finally C = 0.1 when three branches of spring dashpot models define α∗ve. Having
only one spring dashpot model makes the fitting impossible since on a single spring dashpot model, the storage and
loss moduli curves always cross each other at the maximum value of the loss modulus. These figures show that having
two parallel spring dashpot branches gives a far better fitting, but the dissipation peak is still not well fitted, especially
at its maximum. One could finally conclude that for this particular case, having a model based on three spring dashpot
branches is a good way to achieve an accurate representation since this gives a result extremely close to the virtual
experiment result. This setting will be used for the rest of this work. This is not surprising because some authors
have already shown that particular two phases isotropic composites (Matrix described by a single spring dashpot
and spherical inclusions), exhibit three relaxation times for the effective shear modulus and two for the effective bulk
modulus (see Ricaud and Masson, 2009). Although this has not been investigated in this work, one might think that
if the viscoelastic behavior of the matrix was defined by a generalized Maxwell model, the composite macroscopic
behavior should involve even more relaxation times than the matrix.

The three models, were compared with Mori-Tanaka estimates (see Fig. 18. 19). They all give a closer estimation
to CraFT results. The Mori-Tanaka (MT) results are failing on different points:

1. The high frequency modulus, using a MT estimate leads to an error of 17%, with a value of 5180 MPa for MT
and 6192 MPa for the CraFT results.
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2. When looking at low frequencies, the MT estimates falls off to zero at about 0.1 Hz, while craft results never reach
zero on the tested frequency range.

3. Finally, when looking particularly at Fig. 19, the MT estimate gives good results on high frequencies, where it is
actually better than a one and two branches model. But, at lower frequencies (i.e. before the peak) it is the worst
model out of the three.

In this section, a model have been developed to avoid going through the whole full field process each time. But,
to extend this model to different cases, for example when the fiber volume ratio varies, it was decided to build a
meta-model.

3 Meta-Modeling the mechanical properties

3.1 Meta model on the fibers volume ratio

To simplify the modeling process, and gain calculation time, we used a so-called meta model. This approach permits
the prediction of different mechanical parameters withing a domain defined by the experimental values used to
build the latter. For example, (Leh, 2013) used a meta-model to accelerate an optimization process on the shape
of composite high pressure vessels, (Ghasemi et al, 2014) built a meta-model to represent the mechanical behavior
of polymeric nanocomposites. In this work, a simple meta model was built to be able to predict the behavior of a
unidirectional short fiber composite material, having as parameter, the fiber volume ratio. The evolution of the six
different mechanical parameters (αL, δL, γL, αη, δη, γη) of each Maxwell branch were studied for three fiber volume
ratio: cf = 0.1, 0.2 and 0.3. A problem was encountered with the first branch, because at lower fiber volume ratio,
the behavior becomes closer and closer from a simple Maxwell model. Because of this, for cf = 0.1 and 0.2 only
two branches were required to fit the macroscopic behavior. Thus, to avoid inconsistencies, it was decided to fit the
meta-model over the sums of all branches and the result of the two larger branches. The values identified as best fit
can be found in appendix B. Fig. 20 shows the different results of the sums on the elastic parameters. The behavior
was assumed linear and the best linear fit is also plotted on this figure. In a second time, a similar approach was
used to explore the evolution of the viscous parameters. It was found that the inverse of the sums had an exponential
behavior and thus, such a fit was used. Fig. 21 displays these results and their best exponential fits. Finally, the
individual parameters of the two main branches (i.e. the ones with the higher elastic modulus) were fitted in a similar
way: linear fit for the elastic parameters, and exponential for the viscous parameter. These results are displayed
respectively in Figs. 22 and 23. Only the first two main branches were used here because the behavior at low volume
ratio is very close to a simple Maxwell model. As a consequence, only two branches are required for the 10% fiber
volume ratio case, and this makes the results on the third branch non consistent. To avoid this inconsistency problem,
the parameters of the third branch are calculated last, using the interpolated results of the first two branches and the
value of the sums. Fig. 24 is a graphical representation of this meta-model. Only one δ1

L, δ
1
η, γ

1
L, γ

1
η set is identified,

because, as shown in Fig 17, the shear behavior remains Maxwell-like.
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Fig. 20 Evolution of the sums of the elastic parameters with the fiber volume ratio variation, the best linear fit is also plotted.
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Fig. 21 Evolution of the inverse sums of the viscous parameters with the fiber volume ratio variation, the best exponential fit is
also plotted.

3.2 Validation of the meta model

The meta-model gives an estimation of a three branches generalized maxwell model for any fiber volume ratio in the
studied domain (in our case cf ∈ [0.1, 0.3]). In order to validate these estimations, two calculations were made under
CraFT and compared to the meta-model. Figs. 25 and 26 show these comparisons for RVEs made respectively of
15% and 25% of glass fiber. The meta-model seems to be able to capture both the change of moduli and the shift in
frequency of the moment when the elastic modulus cross the loss modulus.

4 conclusion

This paper introduces a new method to model the effective linear viscoelastic behavior of composite materials made of
a viscoelastic matrix reinforced by elastic fibers. This new method is based on full field calculations which are allowed
by the use of an FFT based method to solve the homogenization problem. As a first step, this new method was ap-
plied to short aligned fibers composites, with incompressible matrices modeled by a single spring dashpot model (i.e.
Maxwell model). This was used to build a virtual dynamic mechanical analysis data-base on which the behavior of the
composite was identified following a generalized Maxwell scheme. This data-base of virtual experiment also allowed
us to study the influence of the fiber volume ratio on the mechanical parameters. It was found to have an influence on
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the overall stiffness of the composite and its relaxation times. The proposed model was compared to the usual Mori-
Tanaka estimates and we note that it gives a much more accurate estimate for the effective linear viscoelastic behavior.

Finally, this model was used to build a meta-model in order to take into account different fibers volume ratios
and it showed promising results. It managed to capture accurately the microstructural effects induced by the addition
of fibers in the RVE.

In this paper, the methodology was applied on an idealized matrix behavior since it was assumed to be incompress-
ible and modeled by a single spring-dashpot Maxwell model (i.e. with only one relaxation time). These assumptions
limit a bit the use of the model but they allowed us to validate the methodology on a very simple case. In future
works, theses assumptions will be removed and this method will be adapted to compressible matrix having several
relaxation times. The meta-model should also be extended to take into account more microstructural parameters as
fiber orientation and fiber length distributions in addition to fiber volume fraction. And finally, it is important to
notice that this meta model can be easily implemented in a FEM code since it’s formulation is a classical generalized
Maxwell model for transversely isotropic material. This implementation could be coupled with another software which
provide an estimate for the microstructural parameters (like MoldFlow which gives estimates for the fiber orientation
in the injection-molded fiber-reinforced thermoplastics).
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A Hashin-Shrikman lower bound

The aim of this appendix is to derive the Hashin-Shtrikman lower bound for the storage and the loss moduli of the composites
described in sections 1 and 2. These composites are made of an isotropic and incompressible Maxwellian matrix reinforced by short
fibers parallel to the n direction. The constitutive behavior of the matrix is given by the following différential equation:

s
2η

+
ṡ

2µ
= ė, (25)

with s the deviatoric part of the stress tensor, e the deviatoric part of the strain tensor, µ the shear modulus and η the viscosity.
Equation (25) can be transform by using the Laplace-Carson tranform (14) which gives the constitutive behavior in the Laplace
domain :

ŝ(p) = Lve(p) : ê(p), with Lve(p) = 2µve(p)K and µve(p) =
pµ

p+ µ/η
(26)

In this expression, the relation between the strain and the stress is linear (with modulus µve(p)) and one’s can derive the Hashin-
Shtrikman lower bound for the macroscopic modulus tensor in the Laplace domain as can be done in Ricaud and Masson 2009.
In the case of matrix, denoted by superscript 2, so that its modulus tensor and concentration are respectively L(2)

ve (p) and c(2),
reinforced by identical aligned ellipsoidal and stiffer fibers (L(1)

ve (p) and c(1)), Ponte Castañeda and Willis 1995 give the following
expression for the Hashin-Shtrikman lower bound:

L̃(HS)
ve (p) = L(2)

ve (p) + c(1)
[(

L(1)
ve (p)− L(2)

ve

)−1
+ c(2)P

]−1

, (27)

in which the microstructural tensor P depend of the shape of the ellipsoidal inclusion and the matrix modulus tensor. When the
matrix is isotropic the P tensor is transversely isotropic and if the matrix is also incompressible it can be writen :

P =
3
2
αPKE + δPKT + γPKL, (28)

with tensors KE , KT and KL already defined in section 1 and scalars αP , δP and γP defined by :

h(x) =
x
(
x
√
x2 − 1− cosh−1(x)

)
(x2 − 1)3/2 and x > 1, (29)

αP =
−2x2h(x)− h(x) + 2x2

2µ (x2 − 1)
, (30)

δP =
2x2 − 3h(x)
8µ (x2 − 1)

, (31)

γP =

(
x2 + 1

)
(3h(x)− 2)

4µ (x2 − 1)
, (32)

in the case of spheroidal inclusion defined by the aspect ratio x = a3
a1

= a3
a2

with ai the half of the length of his principal axes.

In that case, equation (27) shows that L̃(HS)
ve (p) are is transversely isotropic too and can be writen :

L̃(HS)
ve (p) =

3
2
α

(HS)
L (p)KE + δ

(HS)
L (p)KT+ (33)

with the modulus α(HS)
L (p), δ(HS)

L (p) and γ(HS)
L (p) given by equations (27) to (33).

The Harmonic effective complex moduli tensor is then given by:

L̃∗(HS)(ω) = L̃(HS)
ve (iω) = L̃

′(HS)(ω) + iL̃
′′(HS)(ω), (34)

with ω the frequency, i the imaginary unit, L̃′(HS)(ω) the storage moduli tensor and L̃′′(HS)(ω) the loss moduli tensor.

B Meta-model function values

The different identified functions are specific to the exact case of a material consisting in a short glass fiber reinforced PC matrix,
and more specifically when the matrix is supposed to behave like a simple spring dashpot model. Thus these should be used with
caution. They are all related in table 1. Linear functions are written as:

f(c1) = Ax+B (35)

and exponential functions are:
f(c1) = AeBx (36)
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Table 1 Values of the meta-model functions

Fitted parameter A B Type∑3
k=1 α

k
L 286.688 288.28 Linear∑3

k=1 δ
k
L 57.6915 838.23 Linear∑3

k=1 γ
k
L 58.5765 868.917 Linear∑3

k=1
1
αkη

2.61763 0.185807 Exponential∑3
k=1

1
δkη

45.9888 0.0419343 Exponential∑3
k=1

1
γkη

52.7646 0.0402791 Exponential

α1
L 246.058 414.327 Linear
α2
L 20.2855 137.092 Linear

α1
η 99.1838 0.0794279 Exponential
α2
η 12.0168 0.169577 Exponential


