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Abstract—In this paper, we investigate the content delivery
problem in the context of multi-antenna (MIMO) wireless net-
works. The single-antenna users, equipped with some cache
memory, receive requested contents from the server through a
multi-antenna base station. We propose a scheme that carefully
combines the multicast and unicast capabilities offered by MIMO,
as a function of the quality of channel state information at the
transmitter side. Thereby we reveal the complementary roles of
coded caching and MIMO transmission for content delivery.

I. INTRODUCTION

Content delivery is about to take up more than 70% of the
mobile traffic in the near future. To accommodate the traffic
expansion, massive MIMO, using a huge number of antennas
at the base station to create a large number of degrees of
freedom, is a promising solution to increase substantially the
spectral efficiency [1]. If the number of transmit antennas can
scale with the number of users K, then the total transmission
time for all the K requested files does not increase with K
since simultaneous transmission can be done in the parallel
channels created by precoding (e.g. zero forcing). Another
solution is caching, that is, exploiting the on-board memory to
prefetch popular contents at (or close to) the end users of the
network during off-peak hours so that the traffic during peak
hours is significantly reduced. Recently, it has been shown that,
with the so-called coded caching, the minimum number of
total multicast transmissions to satisfy the demand of K users
goes to constant when K →∞ [2]. Instead of sending parallel
streams as in MIMO, the single stream (multicast) transmission
in coded caching conveys information that is simultaneously
useful to a large subset of users. A common perception is that
both massive MIMO and coded caching are potentially scalable
solutions alone with respect to (w.r.t.) the number of users.
However, the scalability relies on some ideal assumptions that
may not hold in real systems as discussed shortly. Therefore, it
is of practical and theoretical interest to address the following
question from the engineering perspective: is it beneficial to
use both technologies?

Before trying to answer the question, we shall first argue that
neither of the solutions is indeed scalable in wireless channels
under some practical assumptions. The scalability of massive
MIMO, w.r.t. the number of users (K →∞), hinges on: 1) the
linearly increasing number of the transmit antennas with respect
to the number of users, and 2) the accuracy of channel state
information at the transmitter’s side (CSIT). The scalability of
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coded caching depends on a non-vanishing multicast rate of the
channel. In this work, we consider the specific model of quasi-
static i.i.d. (independent and identically distributed) Rayleigh
fading downlink channel with a multi-antenna base station
and K single-antenna receivers. The quasi-static assumption
may be justified, e.g., in low mobility scenario or the latency
constrained applications such as the video streaming with
independently coded/decoded chunks. In this particular setting,
we first show that the combination of coded caching and
MIMO multicasting is a scalable solution even when the above
constraints are not satisfied. This is due to the channel hardening
effect by increasing the number of transmit antennas. In this
sense, we answer the above question positively: coded caching
and MIMO complement each other. Then, we propose a scheme
that exploits the spatial multiplexing capability of MIMO in
addition to the channel hardening effect.

To the best of our knowledge, our work appears to be the
first study that quantifies the relative merit between massive
MIMO and coded caching. Among a number of recent works
studying coded caching in wireless channels [3], [4], [5], [6],
[7], the works [5], [6] consider the fading broadcast channel
as the current work. However, these works are conceptually
different because their scope is on the interplay between the
CSI feedback and coded caching. The combination of multicast
and spatial multiplexing in the presence of CSIT error was first
proposed in [8] and then investigated in [9] (and the references
therein).

The rest of the paper is organized as follows. The channel
model is described in Section II. Some basic results on spatial
multiplexing and multicast in MIMO channels are presented in
Section III. We introduce coded caching with MIMO delivery
in Section IV. We propose the simultaneous multiplexing and
multicasting with coded caching in Section V. Numerical results
are shown in Section VI followed by some conclusions in
Section VII. Proof details can be found in the appendix.

Throughout the paper, we use the following notational
conventions. X,VVV,MMM are used to denote random scalars,
vectors, matrices, while x,vvv,MMM are used to denote deterministic
scalars, vectors, matrices. Logarithms are in base 2. The
Euclidean norm of a vector and a matrix is denoted by ‖vvv‖ and
‖MMM‖, respectively. The transpose and conjugated transpose of
MMM are MMM T and MMMH, respectively. The dot-equality a

.
= Kb

means limK→∞
log a
logK = b, while the dot-inequality is defined

similarly. The asymptotic notations O, o,Ω,Θ are w.r.t. to K,
unless explicitly stated.



II. CHANNEL MODEL

In this paper, we consider a multi-antenna downlink channel
where a base station with nt transmit antennas communicates
with K single-antenna users. The channel HHH ∈ CK×nt is
assumed to be a quasi-static fading channel, i.e., remain
unchanged during the transmission of a whole coded block.
For tractability, we assume that the channel is independent
and symmetric across users with i.i.d. Rayleigh fading, i.e.,
HHHk ∼ CN (0, IIInt), k = 1, . . . ,K, with HHH = [HHH1 · · · HHHK ]T.
Receiver k at time t has the observation

Yk[t] = HHHT

k xxx[t] + Zk[t], t = 1, 2, . . . , n, (1)

where xxxt ∈ Cnt×1 is the input vector at time t, with the
average power constraint 1

n

∑n
t=1 ‖xxxt‖2 ≤ P ; the additive

noise process {Zk[t]} is assumed to be spatially and temporally
white with normalized variance, i.e., Zk[t] ∼ CN (0, 1), k =
1, . . . ,K. Since the additive noise power is normalized, the
transmit power P is identified with the total signal-to-noise
ratio (SNR) throughout the paper.

In practice, the channel state information (CSI) is not per-
fectly known at the transmitter, typically due to limited resource
for uplink channel training in TDD (time division duplex) or
limited channel feedback bandwidth in FDD (frequency division
duplex). A common model for the imperfect CSIT, modeling
the MMSE channel estimation, is

HHH = ĤHH + H̃HH (2)

where ĤHH and H̃HH are the mutually uncorrelated estimate and
estimation error, of variance 1−σ2 and σ2, respectively. Since
we assume Rayleigh fading, ĤHH and H̃HH are independent and
circularly symmetric Gaussian distributed. We assume that CSI
is perfect at the receivers.

III. MIMO: SPATIAL MULTIPLEXING VS. MULTICASTING

In the following, we review the two different uses of MIMO
in a downlink channel.

A. Spatial multiplexing

The goal is to create K parallel channels to individual users
in such a way that they can communicate with the base station
simultaneously with an acceptable rate. Spatial multiplexing
relies on precoding: steer the signal to the desirable direction
according to the available CSIT. The transmitted signal is

XXX =

K∑
k=1

WWWkXk, (3)

where Xk is the private signal for user k and WWWk is the
precoder for user k of unit norm. Here, we omit the time index
for simplicity. By focusing on the zero-forcing (ZF) precoder
due to its simplicity for K ≤ nt, we let {WWWk} to satisfy

ĤHH
T

lWWWk = 0, ∀ l 6= k. (4)

We use i.i.d. Gaussian signaling for tractability, i.e., {Xk} are
i.i.d. ∼ CN (0, Pk). The received signal at user k is

Yk = GkXk +
∑
l 6=k

G̃k,lXl + Zk (5)

where

Gk := HHHT

kWWWk ∼ CN (0, 1), (6)

G̃k,l := H̃HH
T

kWWWl ∼ CN (0, σ2). (7)

Note that the above equivalent channel coefficients are not
independent between each other. The signal-to-interference-
plus-noise ratio (SINR) at receiver k is

SINRk(HHH) :=
|Gk|2Pk

1 +
∑
l 6=k |G̃k,l|2Pl

. (8)

For any realization HHH = HHH , we obtain the rate

Rk(HHH) = log (1 + SINRk(HHH)) (9)

which is achievable with suitable rate adaptation and capacty-
achieving channel code. Then, the long-term average throughput
of the user k is

R̄k := E [log (1 + SINRk(HHH))] . (10)

One of the important operating points is the symmetric rate
with uniform power allocation Pk = P/K =: p,∀k, given by

R̄sym = R̄k, ∀k. (11)

Lemma 1. In the large K regime, let the per-user power p :=
P
K = Θ(Kη) for some η ≥ −1, and σ2 = Θ(min{p−1, 1}) =
Θ(min{K−η, 1}). Then, the symmetric rate has the following
polynomial behavior

R̄sym
.
= K(−1+η+)− . (12)

where A+ := max {A, 0} and A− := min {A, 0}.

Proof. See Appendix A.

Note that in the above lemma, for simplicity, only the
polynomial behavior w.r.t. K is shown. For example, the
polynomial behavior of log(K) is Θ(1). A more refined
analysis is done in Appendix A. We remark that, due to the
CSIT error that is inversely proportional to the per-user power,
the per-user rate is not vanishing only when η ≥ 1, i.e., P ≥̇K2.

B. MIMO Multicasting

The goal of multicasting is to convey a common message at
the maximum rate so that every user can decode. In this case,
the message is coded in XXX = XXX0. Using Gaussian signaling,
i.e., XXX0 ∼ CN (0,QQQ0), then the common rate is

R0(HHH) = max
QQQ0:tr(QQQ0)≤P

min
k∈{1...K}

log(1 + hhhT

kQQQ0hhh
∗
k). (13)

For simplicity, we assume isotropic signaling, i.e., XXX0 ∼
CN (0, Pnt

III), we have R0(HHH) = log

(
1 + P

nt
mink{‖hhhk‖2}

)
.

Let us define the SNR at user k as

SNR
(0)
k (HHH) :=

P

nt
‖HHHk‖2. (14)



Then, the long-term multicast thoughput is

R̄0 = E
[
log

(
1 + min

k

{
SNR

(0)
k

})]
. (15)

Lemma 2. When nt = 1, mink
{

SNR
(0)
k

}
is exponentially dis-

tributed with mean P
K . When nt scales at least logarithmically

with K, i.e. nt = Ω(log(K)),

lim
K→∞

Pr

(
min
k

‖HHHk‖2

nt
∈ [1− ε0, 1 + ε]

)
= 1 (16)

with ε0 ' 0.8414 and any arbitrarily small ε > 0.

Proof. See Appendix B.

This lemma says that the multicasting rate, dominated by
the worst user, improves with a sufficiently large number
of antennas thanks to channel hardening effect. That is, the
fluctuation between K users’ channels vanishes and approaches
to a constant in the regime of a large K. The following lemma
characterizes the contrasted behaviors for a fixed or increasing
number of transmit antennas.

Lemma 3. In the large K regime, let the per-user power
p := P

K = Θ(Kη) for some η. Then, the multicast rate scales
with K as

R̄0
.
=

{
Kη− , if nt = O(1),

K(η+1)− , if nt = Ω(log(K)).
(17)

Proof. See Appendix C.

Again, we focus on the polynomial scaling. We see that
with a fixed number of transmit antennas, the multicast rate is
vanishing unless the total transmit power is increasing with K
such that P ≥̇K (or η > 0). For an increasing nt = Ω(log(K)),
the multicasting rate grows under a relaxed condition η > −1.
If nt grows even faster with K as nt = Ω(K), then we can
show that a constant transmit power is enough to guarantee
the non-vanishing multicast rate.

IV. CODED CACHING WITH MIMO DELIVERY

A. Coded caching

Let us consider the scenario with a content server with
N equally popular files of F bits. Each user has a cache of
size MF bits, where M denotes the cache size measured in
files. Further, each user can prefetch their cache during off-
peak hours, prior to the actual request. Then, using coded
caching [2], [10] under error-free channel, the number of
multicast transmissions needed to satisfy K distinct demands
from K users, denoted as T (N,M,K) is

(
1− M

N

)
1

1/K+M/N , centralized caching(
1− M

N

) 1−
(

1−M
N

)K
M/N , decentralized caching

(18)

where we assume that K ≤ N ; T is normalized by F , the
number of bits to transmit is T (N,M,K)F . In the following,
we focus on centralized coded caching, the behavior for
decentralized caching is essentially the same as it can be readily

shown by doing the same exercise. Since T only depends on the
normalized memory m := M

N , we use the notation T (m,K)
whenever confusion is not likely. The following lemma is
straightforward from the (18).

Lemma 4. In the large K regime, let m = Θ(K−µ) for some
µ > 0. Then, we have

T (m,K)
.
= Kmin{µ,1}. (19)

B. Equivalent content delivery rate

Let us assume that the channel between the content server
and the K users is the MIMO channel described in the previous
section. We define the equivalent content delivery rate as the
number of total demanded information bits (including those
already in the cache) that can be delivered per unit of time
in average. For instance, when M = N , then the equivalent
content delivery rate is∞, since each user can have any content
instantly. We consider the following cases:
• Spatial multiplexing: sending only private streams to serve

different users in parallel. In this case, we try to exploit the
multiplexing gain offered by the MIMO channel. To satisfy
the demand of user k, i.e., complete the F demanded bits,
we need to send (1−m)F bits, which takes (1−m)F/R̄k
unit of time in average. It follows that the equivalent sum
content delivery rate of the system is simply

Runi-c =
K R̄sym(K,P, σ2)

1−m
bits/second/Hz (20)

where we write R̄sym as a function of (K,P, σ2).
• Coded caching: sending only common coded streams to

serve all users simultaneously. In this case, we try to exploit
the global caching gain offered by the Maddah-Ali Niesen
scheme. To satisfy the demand of K users, i.e., complete in
total KF demanded bits, we need to send T (m,K)F bits,
which takes T (m,K)F/R̄0 unit of time. It means that the
sum content delivery rate of the system is simply

Rmul-c =
KR̄0(K,P )

T (m,K)
bits/second/Hz (21)

where we write R̄0 as a function of (K,P ).
The asymptotic behaviors of Runi-c and Rmul-c are provided

in the Appendix D. From (12), (17), and the definitions in (20)
and (21), the following proposition follows readily.

Proposition 1. In the large K regime, let m = Θ(K−µ) for
some µ > 0, and the per-user power p := P

K = Θ(Kη) for
some η. Then, we have

Runi-c
.
= Kmin{η,1}+ , (22)

Rmul-c
.
= K(η+1)−+(1−µ)+ . (23)

As a result, Rmul-c≥̇Runi-c if and only if η ≤ (1− µ)+.

Intuitively, coded caching is beneficial when the per-user
power does not scale too fast as compared to the scaling of
the memory.



V. SIMULTANEOUS MULTIPLEXING AND MULTICASTING

So far, we have shown that MIMO can either be used for
spatial multiplexing (i.e. unicast), or for multicast combined
with coded caching. The former performs better at high
SNR and with precise CSIT, whereas the latter is preferable
otherwise. Then, it is natural to combine both the benefits
of spatial multiplexing and channel hardening of MIMO
transmission. This can be achieved with rate splitting as
described as follows. We consider the transmission of signal
carrying both common information interested by all the users
and a set of private information intended exclusively for each
user. Given the common signal XXX0 dedicated to every user and
the private signal Xk to user k, ∀k, the transmitted signal is

XXX = XXX0 +

K∑
k=1

WWWkXk, (24)

where XXX0,Xk, and WWWk, k = 1, . . . ,K, are defined as before,
except for the new total power constraint

∑K
k=0 Pk ≤ P .

Obviously, this general setting includes the two extreme cases
P0 = 0 for spatial multiplexing and P0 = P for multicast. The
received signal at user k is

Yk = HHHT

kXXX0 + GkXk +
∑
l 6=k

G̃k,lXl + Zk (25)

where Gk and G̃k,l are defined as in (6) and (7).
Each receiver is interested in decoding the common message

and its own private message. We consider successive decoding
so that each user decodes the common message first and then
the private message. Therefore, the private messages are seen
as interference to the common message with SINR,

SINR
(0)
k (HHH) :=

P0

nt
‖HHHk‖2

1 + |Gk|2Pk +
∑
l 6=k |G̃k,l|2Pl

, (26)

at receiver k, whereas the private messages are decoded as
before after removing the decoded common message, with
the same SINR as defined in (8). Then, it follows that the
equivalent content delivery rate is

Rmix =
KR̄sym(K,P − P0, σ

2)

1−m
+
KR̄mix

0 (K,P, P0)

T (m,K)
(27)

where

R̄mix
0 (K,P, P0) := E

[
log
(
1 + min

k
{SINR

(0)
k }
)]

(28)

and we assume symmetric private power allocation. Let
Rmix

uni-c :=
KR̄sym(K,P−P0,σ

2)
1−m and Rmix

mul-c :=
KR̄mix

0 (K,P,P0)
T (m,K) .

The splitting of common power P0 and private power P−P0

is to be optimized to achieve a maximum delivery rate Rmix.
If we are only interested in the polynomial behavior of Rmix
w.r.t. K, then we can easily verify that the exponent is the
same as that of max{Rmix

mul-c, R
mix
uni-c}. To see this, we remark

that 2 max{Rmix
mul-c, R

mix
uni-c} ≥ R∗mix ≥ max{Rmix

mul-c, R
mix
uni-c}, both

bounds have the same exponent of K. As we shall show in
the next section, the performance gain of the simultaneous
transmission is considerable with finite K.

Proposition 2. In the large K regime, let the CSIT error
scale as σ2 = Θ

(
K

P−P0

)
, and the total power scale as P =

Θ(Kη+1). Then, to achieve the optimal scaling of Rmix, the
total power of private signal is

P − P0 =

Θ(1), if η ∈
[
−1, 1

1−m

]
,

Θ(Kη+1), if η ∈
(

1
1−m ,∞

) (29)

where m := M/N .

Proof. See Appendix E.

VI. NUMERICAL RESULTS

We show an example to illustrate the equivalent sum
content delivery rate and optimal power splitting with finite
(M,N,K,P, σ2). The setting is N = 2000,K = nt = 100,
and σ2 = (P/K)−1 for different cases of per-user total power
P/K, namely, 10 dB, 20 dB and 30 dB. First, in Figure 1,
we plot the equivalent sum content delivery rate of mixed
transmission, i.e., simultaneous multiplexing and multicasting,
as a function of common signal power fraction P0/P in
different cases of per-user total power P/K and cache memory
size M . In general, for a fixed P/K, the sum rate increases
with M , and for a fixed M , the sum rate achieves its maximum
at P0/P close to 1, especially when P/K is not large. This
behavior is predicted in the Proposition 2. In this figure, we
also show the optimal operating points computed by numerical
gradient descent method, which agree with the sum rate curves.

Next, in Figure 2, we compare the equivalent sum rate of
mixed transmission under optimal power splitting with spatial
multiplexing and coded multicasting alone as a function of
cache memory M in different cases of P/K. We observe that
optimal mixed transmission is always optimal in general. For
example, we can achieve more than 150% gain by combining
both schemes w.r.t. either one when M is about 140 and
P/K = 20 dB. When M is small, spatial multiplexing is
better than coded multicasting. On the other hand, when M
is large, coded multicasting is better and is optimal when M
is larger than a certain ratio of the library, namely, 10%, 22%
and 90% for P/K = 10, 20, 30 dB, respectively.

Finally, to depict the optimal power splitting, we plot the
optimal common power fraction P0/P , as a function of cache
memory M in Figure 3 for different values of P/K. As M
increases, the figure suggests us to allocate to the common
signal more power, and even all the power when M is larger
than a certain fraction of the library as named above.

VII. CONCLUSION

In this paper, we have shown that multiple-antenna trans-
mission is complementary to coded caching to provide a
scalable solution for content delivery with a large number
of users. Coded caching relieves some practical constraints
on MIMO downlink such as linearly increasing number of
transmit antennas and accurate channel state information at
the transmitter. We have also shown that multiplexing and
multicasting can be combined to improve the equivalent
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Fig. 2. The equivalent sum content delivery rate of optimal mixed transmission, spatial multiplexing and coded multicasting with user cache as a function of

cache memory M for N = 2000, K = 100, σ2 =
(

P
K

)−1
.

M

0 100 200 300 400 500 600 700 800 900 1000

O
p
ti
m

a
l 
p
o
w

e
r 

s
p
lit

ti
n
g
 P

0
/P

0.4

0.5

0.6

0.7

0.8

0.9

1

P/K = 10 dB

P/K = 20 dB

P/K = 30 dB

Fig. 3. The optimal power splitting, interpreted by the common power fraction
P0/P , as a function of cache memory M for N = 2000, K = 100, P/K =

10, 20, 30 dB, σ2 =
(

P
K

)−1
.

content delivery rate. On-going works include establishing
upper bounds on the delivery rate and considering spatially
correlated users.
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APPENDIX

A. Proof of Lemma 1

To prove Lemma 1, we provide a more refined asymptotic
analysis as follows

R̄sym =


Θ(1/K), if η ∈ [−1, 0],

Θ(Kη−1), if η ∈ (0, 1],

(η − 1) log(K) +O(1), if η ∈ (1,∞),

(30)



with high probability (w.h.p.).
1) Non-increasing per-user power regime η ∈ [−1, 0]: In

this regime, P = Θ(Kη+1), and p = Θ(Kη) is vanishing or
fixed. The CSIT error is σ2 = Θ(1). In consistence with (30),
we shall show the detailed scaling{

R̄sym = Θ( 1
K ), if η = −1,

(η + 1)Θ( log(K)
K ) ≥ R̄sym ≥ Θ( 1

K ), if η ∈ (−1, 0].
(31)

From the fact that x
1+x ≤ ln(1 + x) ≤ x for x > −1, we have

E
[

SINRk

1 + SINRk

]
≤
R̄sym

ln(2)
≤ E [SINRk] . (32)

First, SINRk

1+SINRk
= |Gk|2

p−1+|Gk|2+
∑

l 6=k |G̃k,l|2
and from the

Jensen’s inequality for the log function

logE
[

SINRk

1 + SINRk

]
≥ E

[
log

(
SINRk

1 + SINRk

)]
(33)

= E
[
log
(
|Gk|2

)]
− E

log

1

p
+ |Gk|2 +

∑
l 6=k

|G̃k,l|2


(34)

≥ E[log
(
|Gk|2)

]
− log

1

p
+ E

[
|Gk|2

]
+ E

∑
l 6=k

|G̃k,l|2
 .

(35)

Since |Gk|2 is exponentially distributed with mean 1, ln(|Gk|2)
follows the generalized extreme value distribution of location
0, scale −1 and shape 0, denoted as GEV(0,−1, 0). Thus
E
[
log(|Gk|2)

]
= − ψ

ln(2) where ψ ' 0.577 is the Euler’s

constant. Moreover, E
[∑

l 6=k |G̃k,l|2
]

= (K − 1)σ2. Then

E
[

SINRk

1 + SINRk

]
≥ 2−ψ/ ln(2)

p−1 + 1 + (K − 1)σ2
= Θ(1/K) (36)

since p−1 = Θ(K−η) is dominated by 1+(K−1)σ2 = Θ(K).
Next, we focus on the upper bound E [SINRk]. If η = −1,

it is simply

E [SINRk] ≤ E
[
|Gk|2p

]
= pE

[
|Gk|2

]
= Θ(1/K). (37)

If η ∈ (−1, 0], for any δ, we can write that

E [SINRk] ≤ E

(
1

p−1 +
∑
l 6=k |G̃k,l|2

)
w.h.p. (38)

by considering the event |Gk|2 < Kδ occurring
w.h.p., and choosing δ close to 0. Denote WWW−k :=
[WWW1 . . .WWWk−1WWWk+1 . . .WWWK ]T ∈ C(K−1)×nt (nt ≥ K), then

1

σ2

∑
l 6=k

|G̃k,l|2 =
1

σ2
‖H̃HHkWWW−k‖2 =

1

σ2
H̃HH

H

kWWWH

−kWWW−kH̃HHk

=
1

σ2
H̃HH

H

kUUUΛΛΛUUUHH̃HHk = JJJH

kΛΛΛJJJk =

K−1∑
i=1

λi|Jk,i|2

where ΛΛΛ = diag(λ1 . . . λK−1) with
∑
i λi = K − 1 and JJJk is

identically distributed to H̃HHk/σ. Given {λi}, 1
σ2

∑
l 6=k |G̃k,l|2

is the sum of K−1 independent exponential random variables,
each of mean λi, i = 1, . . . ,K − 1. From (38), we can derive

E [SINRk] ≤ E

[
1

p−1 + σ2
∑K−1
i=1 λi|Jk,i|2

]
(39)

=
1

K − 1
E

 1

σ2 1
K−1

∑K−1
i=1

(
p−1

(K−1)σ2 + λi|Jk,i|2
)
 (40)

≤ 1

K − 1
E

 1

σ2
∏K−1
i=1

(
p−1

(K−1)σ2 + λi|Jk,i|2
) 1

K−1

 (41)

=
1

(K − 1)σ2
E

K−1∏
i=1

(
1

p−1

(K−1)σ2 + λi|Jk,i|2

) 1
K−1

 (42)

≤ 1

(K − 1)σ2

1

K − 1
E

[
K−1∑
i=1

1
p−1

(K−1)σ2 + λi|Jk,i|2

]
(43)

=
1

(K − 1)σ2
E

[
1

p−1

(K−1)σ2 + λ|Jk|2

]
(44)

where the expectation is over both {λi} and {Jk,i}. In (41)
and (43) we apply the AM-GM inequality and in the last line,
Jk is exponentially distributed with mean 1. Then

E [SINRk | λ] ≤ 1

(K − 1)σ2
EJk

(
1

p−1

(K−1)σ2 + λ|Jk|2

)
(45)

=
1

(K − 1)σ2

exp
(

p−1

(K−1)σ2λ

)
λ

E1

(
p−1

(K − 1)σ2λ

)
(46)

where E1(x) :=
∫∞
x

e−t

t dt is the exponential integral
function with the property 1

2e
−x ln

(
1 + 2

x

)
≤ E1(x) ≤

e−x ln
(
1 + 1

x

)
. Hence in large K regime, E1

(
p−1

(K−1)σ2λ

)
scales as Θ

(
log
(

(K−1)σ2λ
p−1

))
= (η + 1)Θ(log(K)), and

exp
(

p−1

(K−1)σ2λ

)
goes to 1. Thus, we have

E [SINRk | λ] ≤ (η + 1)Θ(log(K)/K) (47)

for all realization of λ. This holds for E [SINRk] in general.
Substituting the bounds (37) and (47) of E [SINRk] and (36)

of E
[

SINRk

1+SINRk

]
to (32), (31) is proved.

2) Increasing per-user power regime η > 0: In this regime,
p = Θ(Kη) for some η > 0, σ2 = Θ(p−1) = Θ(K−η). We
shall show the following scaling, in consistence with (30)

Θ(Kη−1+φ) ≥ R̄sym ≥ Θ(Kη−1), if 1 > η > 0

log log(K) +O(1) ≥ R̄sym ≥ Θ(1), if η = 1

(η − 1 + φ) log(K) +O(1) ≥ R̄sym ≥ (η − 1) log(K)

+O(1), if η > 1

(48)

for any φ > 0.



First we derive the bounds for E [SINRk]. By the same
argument as with E

[
SINRk

1+SINRk

]
, we have

E [SINRk] ≥ 2−ψ/ ln(2)

p−1 + (K − 1)σ2
≥ Θ(Kη−1) (49)

since both p−1 and σ2 scale as Θ(K−η). In addition, the
following is still valid in this regime

E [SINRk | λ]

≤ 1

(K − 1)σ2λ
exp

(
p−1

(K − 1)σ2λ

)
E1

(
p−1

(K − 1)σ2λ

)
.

In the righthand side, when K is large, 1
(K−1)σ2λ scales as

Θ(Kη−1), exp
(

p−1

(K−1)σ2λ

)
goes to 1, and E1

(
p−1

(K−1)σ2λ

)
scales as Θ(log(K)). Consequently, E [SINRk | λ] ≤
Θ(Kη−1 log(K)) ≤ Θ(Kη−1+φ) for any φ > 0. This holds
as an upper bound for E [SINRk] also.

Hence, Θ(Kη−1+φ) ≥ E [SINRk] ≥ Θ(Kη−1) for any φ >
0. For R̄sym, we look at three following cases.
• 0 < η < 1: E [SINRk] vanishes as K is large. Again, we

have the bounds

E
[

SINRk

1 + SINRk

]
≤
R̄sym

ln(2)
≤ E [SINRk] . (50)

where

E
[

SINRk

1 + SINRk

]
≥ 2−ψ/ ln(2)

p−1 + 1 + (K − 1)σ2
= Θ(Kη−1).

(51)

Hence Θ(Kη−1+φ) ≥ R̄sym ≥ Θ(Kη−1).
• η = 1: Θ(log(K)) ≥ E [SINRk] ≥ Θ(1), E [SINRk]

scales up with K and log log(K)+O(1) ≥ R̄sym ≥ Θ(1).
• η > 1: E [SINRk] scales up and (η − 1 + φ) log(K) +
O(1) ≥ R̄sym ≥ (η − 1) log(K) +O(1).

Hence (48) is proved. It and (31) constitute the refined scaling
(30) of R̄sym.

B. Proof of Lemma 2

When nt = 1, mink
{

SNR
(0)
k

}
= P mink{‖HHHk‖2}. As

we assume i.i.d. Rayleigh fading channel, mink{‖HHHk‖2} is
the minimum of K independent exponentially distributed
random variables each with mean 1. Then mink{‖HHHk‖2} is also
exponentially distributed with parameter

∑K
1 1 = K. Hence

mink
{

SNR
(0)
k

}
exponentially distributed with mean P/K.

Now we consider nt ≥ (1 + δ) log(K) for any δ ≥ 0. First,
we compute the upper bound for mink

‖HHHk‖2
nt

. Applying the

Chernoff bound to the random variable ‖HHHk‖2
nt

, we can show
that for any ν ≥ 0 and any ε

Pr

(
‖HHHk‖2

nt
≥ 1 + ε

)
≤ e−ν(1+ε)

(
1− ν

nt

)−nt

. (52)

Choosing the value of ν which minimizes the upper bound,
which is ν = nt

ε
1+ε for ε ≥ 0, yeilds

Pr

(
‖HHHk‖2

nt
≥ 1 + ε

)
≤ ent(−ε+log(1+ε)). (53)

This is used to bound the probability Pr
(

mink
‖HHHk‖2
nt
≥ 1 + ε

)
Pr

(
min
k

‖HHHk‖2

nt
≥ 1 + ε

)
≤ eKnt(−ε+log(1+ε)) (54)

This probability vanishes for any ε ≥ 0 such that −ε+ log(1 +
ε) < 0, or equivalently ε > 0. Thus

lim
K→∞

Pr

(
min
k

‖HHHk‖2

nt
≤ 1 + ε

)
= 1 for any ε > 0. (55)

Now we compute the lower bound for mink
‖HHHk‖2
nt

. We apply
the Chernoff bound again to yeild

Pr

(
‖HHHk‖2

nt
≤ 1− ε

)
≤ eν(1+ε)

(
1 +

ν

nt

)−nt

(56)

for any ν ≥ 0 and any ε. Then with the optimal ν = nt
ε

1−ε
for ε ≤ 1, which minimizes the above upper bound, we have

Pr

(
‖HHHk‖2

nt
≤ 1− ε

)
≤ ent(ε+log(1−ε)). (57)

Hence we obtain the bound for Pr
(

mink
‖HHHk‖2
nt
≤ 1− ε

)
Pr

(
min
k

‖HHHk‖2

nt
≤ 1− ε

)
≤ 1− (1− ent(ε+log(1−ε)))K

(58)

< Kent(ε+log(1−ε)). (59)

where for the last line we use the fact that (1−x)K > 1−Kx
for any x ∈ (0, 1) and consider the set {ε : ε+log(1−ε) < −1}.
The infimum of this set is ε0 ' 0.8414. Then

Pr

(
min
k

‖HHHk‖2

nt
≤ 1− ε0

)
< Ke−nt

< Ke−(1+δ) log(K) = K−δ. (60)

This probability vanishes as K grows since δ ≥ 0 by
assumption. Hence we can write that

lim
K→∞

Pr

(
min
k

‖HHHk‖2

nt
≥ 1− ε0

)
= 1. (61)

The (55) and (61) constitute (16) and conclude the proof.

C. Proof of Lemma 3
A more refined asymptotic analysis of R̄0 is as follows

R̄0 =

{
η log(K) +O(1), if nt = 1,

(η + 1) log(K) +O(1), if nt = Ω(log(K)).
(62)

First, when nt = 1, mink
{

SNR
(0)
k

}
is exponentially dis-

tributed with mean P/K from Lemma 2. Then

R̄0 = E
[
log

(
min
k

{
SNR

(0)
k

})]
+O(1) (63)

=
E
[
ln
(

mink
{

SNR
(0)
k

})]
ln(2)

+O(1) (64)

=
ln(P/K)− ψ

ln(2)
+O(1) (65)

= η log(K) +O(1) (66)



where we use the fact that ln

(
mink

{
SNR

(0)
k

}
P/K

)
=

ln
(

mink
{

SNR
(0)
k

})
− ln(P/K) follows the GEV(0,−1, 0)

distribution with mean −ψ, with ψ the Euler’s constant.
Next we consider the case nt = Ω(log(K)). It follows from

(16) in Lemma 2 that

R̄0 ∈ [log(1 + P (1− ε0)), log(1 + P (1 + ε))] w.h.p. (67)

where ε0 ' 0.8414 and ε > 0 can be arbitrarily small. Thus
R̄0 = log(P ) +O(1) = (η + 1) log(K) +O(1).

D. Asymptotic behaviors of Runi-c and Rmul-c in large K regime

From the scaling of R̄sym and R̄0 given in Lemma 1 and
Lemma 3, respectively, we can have the symptotic behaviors
of Runi-c and Rmul-c when K is large in some regimes of the
total power P as follows.
• Power-limited regime: P = Θ(1), σ2 = Θ(1)

Runi-c = Θ
( 1

1−m
)
, (68)

Rmul-c = Θ

(
1 +Km

1−m

)
. (69)

• Fixed per-user power: P = Θ(K), σ2 = Θ(1)

Runi-c = Θ
( 1

1−m
)
, (70)

Rmul-c =
1 +Km

1−m
log(K) +O(1). (71)

• Increasing per-user power: p = Θ(Kη), σ2 = Θ(K−η)

Runi-c =

{
Θ
(

1
1−mK

η
)
, if η ≤ 1

1
1−m (η − 1)K log(K) +O(1), if η > 1

(72)

Rmul-c =
1 +Km

1−m
(η + 1) log(K) +O(1). (73)

These scalings are straightforward since Runi-c and Rmul-c are
linear functions of R̄sym and R̄0, respectively.

E. Proof of Proposition 2

Recall that P = Θ(Kη+1). Let P − P0 = Θ(Kβ+1) for
some β ≤ η. Then P0 = Θ(Kη+1) and P−P0

K = Θ(Kβ), k =
1, . . . ,K. Then the Proposition 2 can be interpreted as follows.
The value of β which achieve the optimal scaling of Rmix is

β =

−1, if η ∈
[
−1, 1

1−m

]
,

η, if η ∈
(

1
1−m ,∞

)
.

(74)

First, we notice that for a given η, we have no interest of
letting the private power decrease with K, i.e. β < −1. Thus,
we look into the following regimes and can derive the scaling
of Rmix

mul-c and Rmix
uni-c by using the Lemma 2 and establishing

the upper and lower bounds as in the proof of Lemma 1 and
Lemma 3. Details are omitted here for brevity.

1) Non-increasing per-user total power regime η ∈ [−1, 0]:
In this regime −1 ≤ β ≤ η ≤ 0, σ2 = Θ(1). Then as K →∞

Rmix
uni-c = Θ

(
1

1−m

)
, (75)

Rmix
mul-c =

1 +Km

1−m
log(1 +Kη−β) +O(1). (76)

We see that in this regime, the private rate is negligible to the
common rate and has no contribution to the scaling of Rmix.
In addition, the scaling of Rmix

mul-c is decreasing with β. Hence
the optimal value of β is −1.

2) Increasing per-user total power regime η > 0: In this
regime, the total power per user P/K scales up with K. We
consider two sub-regimes in term of per-user private power,
and derive the local optimal rate in each sub-regime as follows.

a) Non-increasing per-user private power regime −1 ≤
β ≤ 0: In this sub-regime, the CSIT error is still σ2 = Θ(1).
The scaling of Rmix

mul-c and Rmix
uni-c is

Rmix
uni-c = Θ

(
1

1−m

)
, (77)

Rmix
mul-c =

1 +Km

1−m
(η − β) log(K) +O(1). (78)

Again, we see that the private rate Rmix
uni-c is dominated and does

not contribute to the scaling of the total sum rate. The scaling
of Rmix

mul-c still decreases with β. Hence the local optimal value
of β in this case is −1 and the local optimal sum rate is

Rmix =
1 +Km

1−m
(η + 1) log(K) +O(1). (79)

b) Increasing per-user private power regime η ≥ β > 0:
In this sub-regime, the estimation error decreases with P−P0

K

as σ2 = Θ(
(
P−P0

K

)−1
) = Θ(K−β). The scaling is

Rmix
uni-c =

{
Θ
(

1
1−mK

β
)
, if 0 < β ≤ 1

1
1−m (β − 1)K log(K) +O(1), if β > 1

(80)

Rmix
mul-c =

1 +Km

1−m
(η − (β − 1)+) log(K) +O(1). (81)

We can see that, provided that m is nonzero and fixed, the
private rate is still dominated by the common rate if 0 < β ≤ 1.
The scaling of Rmix

mul-c is independent of β given that 0 < β ≤ 1
and increasing with β given that 1 < β ≤ η. Hence, the local
optimal β in this case is η and the local optimal sum rate is

Rmix =
1

1−m
[(η − 1)K + (1 +Km)] log(K) +O(1).

(82)

Comparing two local optimal rates (79) and (82), we have
the global optimal β in increasing per-user total power regime
is −1 if 0 < η ≤ 1

1−m and η if η > 1
1−m .

Finally, by summarizing the optimal β in the two regimes
above, we conclude the proof.


