
HAL Id: hal-01806295
https://hal.science/hal-01806295

Submitted on 1 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing the Burrows–Wheeler Transform in Place
and in Small Space

Maxime Crochemore, Roberto Grossi, Juha Kärkkäinen, Gad Landau

To cite this version:
Maxime Crochemore, Roberto Grossi, Juha Kärkkäinen, Gad Landau. Computing the Burrows–
Wheeler Transform in Place and in Small Space. Journal of Discrete Algorithms, 2015. �hal-01806295�

https://hal.science/hal-01806295
https://hal.archives-ouvertes.fr

Computing the Burrows–Wheeler Transform in Place

and in Small Space✩

Maxime Crochemore

King’s College London, UK

Roberto Grossi

Dipartimento di Informatica, Università di Pisa, Italy

Juha Kärkkäinen

Department of Computer Science, University of Helsinki, Finland

Gad M. Landau

Department of Computer Science, University of Haifa, Israel, and Department of

Computer Science and Engineering, NYU-Poly, Brooklyn NY, USA

Abstract

We introduce the problem of computing the Burrows–Wheeler Transform
(BWT) using small additional space. Our in-place algorithm does not need
the explicit storage for the suffix sort array and the output array, as typically
required in previous work. It relies on the combinatorial properties of the
BWT, and runs in O(n2) time in the comparison model using O(1) extra
memory cells, apart from the array of n cells storing the n characters of the
input text. We then discuss the time-space trade-off when O(k · σk) extra

✩A preliminary version of the results in this paper appeared in [6]. The work of the
second author has been supported in part by the Italian Ministry of Education, University,
and Research (MIUR) under PRIN 2012C4E3KT project. The work of the third author
has been supported by the Academy of Finland grant 118653 (ALGODAN). The work
of the fourth author has been partially supported by the National Science Foundation
Award 0904246, Israel Science Foundation grant 347/09, Yahoo, Grant No. 2008217 from
the United States-Israel Binational Science Foundation (BSF) and DFG.

Email addresses: Maxime.Crochemore@kcl.ac.uk (Maxime Crochemore),
grossi@di.unipi.it (Roberto Grossi), Juha.Karkkainen@cs.helsinki.fi (Juha
Kärkkäinen), landau@cs.haifa.ac.il (Gad M. Landau)

Preprint submitted to Elsevier January 12, 2015

memory cells are allowed with σk distinct characters, providing an O((n2/k+
n) log k)-time algorithm to obtain (and invert) the BWT. For example in real
systems where the alphabet size is a constant, for any arbitrarily small ǫ > 0,
the BWT of a text of n bytes can be computed in O(nǫ−1 log n) time using
just ǫn extra bytes.

Keywords: Burrows-Wheeler transform, in-place algorithms, string
algorithms, suffix sorting

1. Introduction

The Burrows–Wheeler Transform [4] (known as BWT) of a text string is
at the heart of the bzip2 family of text compressors, and finds also applica-
tions in text indexing and sequence processing. Consider an input text string
T ≡ T [0 . . n−1] and the set of its suffixes Ti ≡ T [i . . n−1] (0 ≤ i < n) under
the lexicographic order, where T [n− 1] is an endmarker character $ smaller
than any other character in T . The alphabet Σ from which the characters in
T are drawn can be unbounded.

A classical way to define the BWT uses the n circular shifts of the text
T = mississippi$ as shown in the first column of Table 1. We perform
a lexicographic sort of these shifts, as shown in the second column: if we
mark the last character from each of the circular shifts in this order, we
obtain a sequence L of n characters that is called the BWT of T . Its relation
with suffix sort is well known, as illustrated in the third column: the rth
character in L is T [j− 1] if and only if Tj is the rth suffix in the sort (except
the borderline case j = 0, for which we take T [n− 1] as character).

As it can be seen in the example of Table 1, the BWT produces a text of
the same length as the input text T . The transform is reversible since it is
a one-to-one function when the input text is terminated by an endmarker $.
Thus, not only we can recover T from L alone, but typically L is more
compressible than T itself using 0th-order compressors [21]. There are now
efficient methods that convert T to L and vice versa, taking O(n log n) time
for unbounded alphabets in the worst case [1].1 The BWT is also a key
element of some compressed text indexing implementations due to the small

1As is standard in many string algorithms, we assume that any two characters in Σ
can only be compared and this takes O(1) time. Hence, comparing characterwise any two
suffixes may require O(n) time in the worst case.

2

cyclic shifts sorted cyclic shifts suffixes

L i Ti

mississippi$ $mississipp i 11 $

$mississippi i$mississip p 10 i$

i$mississipp ippi$missis s 7 ippi$

pi$mississip issippi$mis s 4 issippi$

ppi$mississi ississippi$ m 1 ississippi$

ippi$mississ mississippi $ 0 mississippi$

sippi$missis pi$mississi p 9 pi$

ssippi$missi ppi$mississ i 8 ppi$

issippi$miss sippi$missi s 6 sippi$

sissippi$mis sissippi$mi s 3 sissippi$

ssissippi$mi ssippi$miss i 5 ssippi$

ississippi$m ssissippi$m i 2 ssissippi$

Table 1: BWT L for the text T = mississippi$ and its relation with suffix sort.

amount of space it requires: some examples are the solution by Ferragina and
Manzini [8] or that by Grossi et al. [10], where the transform is associated
with the techniques of wavelet trees and of succinct data structures using
rank-select queries on binary sequences [22].

One of the prominent applications of the BWT is for software dealing
with Next Generation Sequencing, where millions of short strings, called
reads, are mapped onto a reference genome. Typical and popular software
of this type are Bowtie [19], BWA [18] and SOAP2 [16]. Here it is crucial
that the genome is indexed in a compact manner to get reasonable running
time. Space issues for computing the BWT are thus relevant: frequently the
input data is so large that the input text T stays in main memory while any
additional data structure of similar size cannot fit in the rest of the main
memory [14].

All the previous work for computing the BWT of T relies on the fact
that (a) we need first to store the suffix sorting of T (also known as suffix
array [20]), thus occupying n memory cells for storing integers, and (b) we
need to output the BWT in another array storing n characters. Motivated
by these observations, we want to study the case in which (a) and (b) are
avoided, thus saving on the space occupied by them.

In this paper, our goal is to obtain the BWT by directly permuting T
and using just O(1) memory cells, i.e., we aim at an in-place algorithm for

3

computing the BWT. We consider the model in which the text T is stored
as an array of n entries, where each entry stores exactly one character of T .
Note that storing an integer usually takes more space than a character, so we
assume that only the characters of T can be kept in the array T . Moreover, T
is not read-only but it can be modified at any time, and just O(1) additional
memory cells (besides T) can be kept for storing auxiliary information.2

Note that our model represents some realistic situations in which one has
to handle large text collections, or large genomic sequences, without relying
on extra memory for (a) and (b). Hence it is crucial to maximize the amount
of data that can fit into main memory: not storing explicitly (a) and (b)
permits to save space, which is typically regarded as taking more than half
of the total space required. For instance, DNA sequences are stored by using
2 bits per character and machine integers take 64 bits. Here we just need 2n
bits to store the (genomic) text and save the 64n bits used for storing the
intermediate suffix sorting in (a) and the 2n bits for storing the output of
BWT in another array in (b): this means that during the BWT construction,
we can fit almost 33 times more text using the same main memory size, thus
eliminating the usage of the slower external memory for this time-consuming
task in these cases.

From the combinatorial point of view, the in-place BWT is an interest-
ing question to solve on strings. There are space saving approaches storing
the suffix sorting in compressed form [13, 24, 14, 27] or only partially at a
time [15], but none of them provides an in-place algorithm. In-place selection
and sorting does not seem to help either [7, 9, 12, 23, 28]. It is well known
that in-place sorting requires the same comparison cost of Θ(n log n) as in
standard sorting. But for the BWT, we only know its comparison cost of
Θ(n log n) for the standard construction. As far as we know, no result is
known for the in-place construction of BWT: a naive solution is not that
simple, even if it results in exponential time. Indeed, any movement of a
character T [j] to another position inside T at least changes the content of
its suffixes Ti for 0 ≤ i ≤ j, making the algorithmic flavor of this problem
different from that of in-place sorting n elements.

The above discussion suggests that a careful orchestration of the move-

2In C code, we would declare T as unsigned char T[n] and use this storage plus O(1)
local variables of constant size. A more formal model would say that each memory cells
hosts a character from Σ and so an integer of log n bits requires log|Σ| n cells. We prefer
to keep it simpler and say that an extra cell can contain an integer.

4

ment of the characters inside T is needed to avoid losing the content of some
suffixes before they contribute to the BWT. Our idea is to define a sequence
of transformations B0, B1, . . . , Bn, where B0 is the input text T and Bn is
the final BWT of T . For 1 ≤ ℓ ≤ n, we have that Bℓ is the BWT of the
last ℓ characters in T and is computed from Bℓ−1 (re)using just O(1) extra
memory cells. We think that this sequence of transformations could be of
independent interest for the community of string algorithms, and some of the
combinatorial properties that we use can be found in [3, 14, 17, 29].

In this paper we propose an O(n2)-time approach that builds the above
sequence of transformations using four integer variables and one character
variable, taking O(n) time per transformation in the worst case. The re-
sulting in-place algorithm is simple and can be easily encoded in few lines
of C code or similar programming languages. However we do not claim any
practicality of our solution due to its quadratic worst-case cost. Our con-
tribution is that it could lay out the path towards faster methods for the
space-efficient computation of the BWT: any method to compute Bk from
Bk−1 in t(n) time (re)using s(n) space, would lead to a construction of the
BWT in O(n · t(n)) time using O(1 + s(n)) space. To this end, it is worth
noting that the inputs for BWT are typically large and a fast algorithm that
is in-place or uses very low additional memory, would be relevant in practice.

Our theoretical study has also an impact on the practical algorithm de-
sign. A natural question is what we get if we allow for some extra space. We
prove that using O(k · σk) additional space for any given parameter k ≤ n,
where σk ≤ min{|Σ|, k} is the maximum number of distinct characters found
among k consecutive positions in T , we can compute the BWT (and its in-
verse) of a text of n characters in O((n2/k+n) log k) time in the comparison
model. We observe that σk is practically a constant in many applications.
The practical implications of this trade-off in space versus time can be appre-
ciated by observing that, for any arbitrarily small ǫ > 0, we can obtain the
BWT of a text of n bytes in O(nǫ−1 log n) time using just ǫn extra bytes for a
constant-size alphabet. This is useful when the text occupies a great part of
the available main memory, and only ǫn free cells are available. This avoids
using external-memory algorithms, which are clearly slower as I/O access
takes several orders of magnitudes more time than main memory access.

The paper is organized as follows. We describe how to perform the in-
place BWT in Section 2. We then discuss how to invert the BWT, so as to
obtain the original text T , in Section 3. We illustrate the trade-off between
space and time in Section 4. Finally, we draw some conclusions in Section 5.

5

2. In-Place BWT

Given the input text T = T [0 . . n − 1] where T [n − 1] = $, moving a
single character inside T can change the content of many suffixes. The idea
to circumvent this difficulty without using storage for the suffix sort is to
proceed by induction from right to left in T , while maintaining the BWT of
the current suffix Ts, denoted by BWT(Ts). We assume 0 ≤ s ≤ n− 3, since
the last two suffixes of T are equal to their respective BWT.

To compute BWT(Ts), suppose that BWT(Ts+1) has been already com-
puted and stored in the last positions of T , i.e. T [s+1 . . n−1]. Consider the
current character c = T [s]: if we look at the content of T [s . . n − 1], we no
longer find Ts, but the character c followed by the permutation BWT(Ts+1)
of Ts+1. Nevertheless, we still have enough information as we will show in
the proof of Theorem 1 that the position of $ inside BWT(Ts+1) is related
to the rank of Ts+1 among the suffixes Ts+1, . . . , Tn−1 in lexicographic order.
We exploit this fact in the following steps (see Figure 1).

aa αα b bb′ b′β β γγ cc $$

BWT(Ts)BWT(Ts+1)

ss pp rr

Figure 1: An illustration of Steps 1–4 of the in-place construction of the BWT.

1. Find the position p of the $ in T [s+ 1 . . n− 1]: note that p− s is the
(local) rank of the suffix Ts+1 that originally was starting at position
s+ 1.

2. Find the rank r of the suffix Ts (originally in position s). Using char-
acter c, scan T [s+1 . . n− 1] and compute the sum of two counts: how
many characters are strictly smaller than c, and how many occurrences
of c appear in T [s+ 1 . . p] (and add s as an offset to obtain r).

3. Store c into T [p] (thus replacing the $).

4. Insert the character $ in T [r] by shifting T [s + 1 . . r] by one position
to the left, so as to occupy positions s, . . . , r − 1 of T .

The C code reported in Fig. 2 implements Steps 1–4, where END_MARKER
denotes $. For example, consider T = mississippi$ and s = 4, where we

6

void inplaceBWT(unsigned char T[], int n){

int i, p, r, s;

unsigned char c;

for (s = n-3; s >= 0; s--){

c = T[s];

/* steps 1 and 2 */

r = s;

for (i = s+1; T[i] != END_MARKER; i++)

if (T[i] <= c) r++;

p = i;

while (i < n)

if (T[i++] < c) r++;

/* step 3 */

T[p] = c;

/* step 4 */

for (i = s; i < r; i++)

T[i] = T[i+1];

T[r] = END_MARKER;

}

}

Figure 2: In-place construction of BWT.

use capital letters to denote the BWT partially built on the last positions of
T . Suppose that we have already computed the BWT for the last 7 characters
in T , namely, we have missiIPSPIS$. We then have p = 11 and, since there
is one character ($) smaller than c = i, and two characters that are equal
to c and occur before position p, we have r = s + 3 = 7. This means that
we have to replace $ by c and shift IPS by one position left so as to insert $
in position r. The next configuration is missIPS$PISI, which ends with the
BWT of Ts.

Theorem 1. Given a text T of n characters, we can compute its Burrows–
Wheeler Transform (BWT) in O(n2) time in the comparison model using
O(1) additional memory cells.

7

Proof : We prove first the correctness. Let T be the input text and T ′ be
its modification at a generic iteration s, where 0 ≤ s ≤ n − 3. Note that
T ′[0 . . s] = T [0 . . s] while T ′[s + 1 . . n − 1] = BWT(T [s + 1 . . n − 1]). By
induction, the position p of $ in T ′[s + 1 . . n − 1] indicates the rank p − s
of Ts+1 among the suffixes in {Ts+1, Ts+2, . . . , Tn−1} in lexicographic order.
The base case for Tn−2 and Tn−1 is trivially satisfied. Hence, we show how
to preserve this property for 0 ≤ s ≤ n− 3.

First note that the character c = T [s] goes in position p, since it precedes
Ts+1 inside T . Next, we have to find the new position r for Ts, so that r−(s−
1) is its rank among the suffixes in S = {Ts, Ts+1, . . . , Tn−1} in lexicographic
order. First count how many characters smaller than c occur in T ′[p . . n−1]:
there are as many suffixes in S that are smaller than Ts since their first
character is smaller than c. To this quantity, add the number of occurrences
of c in T ′[s+1 . . p− 1]: these suffixes are also smaller since they start with c
but have rank smaller than p, i.e. the rank of Ts+1. In this way, we discover
how many suffixes are smaller than Ts in S: inserting $ in the corresponding
location r of T ′, by shifting the characters in T ′[s + 1 . . r] to the left, which
thus occupy positions s, . . . , r− 1 (see Figure 1), we maintain the induction.
Hence, T ′[0 . . s − 1] = T [0 . . s − 1] and T ′[s . . n − 1] = BWT(T [s . . n − 1]).
When s = 0, we obtain the BWT of T .

As for the complexity, note that each of the n−2 iterations requires O(n)
time, since it can be implemented by O(1) scans of T ′[s . . n− 1]. This gives
a total cost of O(n2). We use four integer variables (i, p, r, s) and one
character variable (c) in the C code shown in Fig. 2, and thus we need O(1)
memory cells for the local variables.

3. Inverting the BWT

Reversing the permutation performed by the in-place BWT is called in-
verting the BWT. Initially we have the BWT of the original input text T ,
denoted BWT(T). We want to invert the latter by permuting its charac-
ters. Thus we reverse the approach described in Section 2. We maintain the
invariant that there is a pointer L to a certain position in the input buffer
storing BWT(T) so that, at any time, (a) the prefix of the buffer to the left
of L stores the prefix of T obtained so far by the inverting process and (b) the
remaining suffix of the buffer (pointed by L till the end of the input buffer)
stores the portion of the BWT still to be inverted. For the sake of notation,

8

we identify L with the entire suffix of the input buffer that still has to be
inverted.

Under this invariant, which is initially true by setting L to the beginning
of the input buffer for BWT(T), we proceed as follows. We find the position
p of $ in L, and then select the pth character in the alphabet order in the
multiset given by the characters of L. Stability is needed, since equal char-
acters should be considered in the order of their appearance in L, as detailed
below.

1. Find the position p of the $ in L, and increment p (since array indexing
starts from 0).

2. Let select be a selection algorithm that works on read-only input,
i.e., it does not move elements around while finding the pth smallest
element. Using select on L, select the pth character c in the multiset
of the characters of L or, equivalently, the pth character in the sorted
list of chracters of L.

3. Let q denote the position inside L of the fth occurrence of c, which
we hit in a stable fashion when finding c in L. Here f is the difference
between p and the number of characters c′ of L such that c′ < c.

4. Replace the occurrence of c at position q by $, and remove the old
occurrence of $ by shifting to the right the first p characters of L.

5. At this point, the first position in L is free: store the character c in
it, and shorten L by one character at the beginning (i.e. advance the
pointer L by one position towards the end of the input buffer).

The C code in Fig. 3 implements Steps 1–5 above, where END_MARKER

denotes $. Note that it is a bit longer than the code for the in-place BWT in
Fig. 2. As it can be seen below, the original text is reconstructed from left
to right as a prefix of increasing length (indicated with small letters).

IPSSM$PISSII → mIPSS$PISSII → miIPSSPISSI$ → misIPSSPIS$I →
missIPS$PISI → missiIPSPIS$ → missisIPSPI$ → mississIP$PI →
mississiIPP$ → mississipIP$ → mississippI$ → mississippi$

The proof of correctness proceeds along the same lines as in the proof of
Theorem 1, since we are reversing the procedure described there. As for the
complexity, each of the n− 2 iterations is dominated by the cost of select.

9

void inplaceIBWT(unsigned char L[], int n){

int f, i, p, q, count;

unsigned char c;

/* step 1 */

p = 0;

while(L[p] != END_MARKER)

p++;

p++;

while (n > 2){

/* step 2 */

c = select(L, p);

count = 0;

for (i = 0; i < n; i++){

if (L[i] < c) count++;

}

/* step 3 */

f = p - count;

q = -1;

while (f > 0){

q++;

if (L[q] == c) f--;

}

/* step 4 */

L[q] = END_MARKER;

for (i = p-1; i > 0; i--){

L[i] = L[i-1];

}

/* step 5 */

L[0] = c;

L++; n--;

/* step 1 */

if (p-1 > q)

p = q+1; /* also the new END_MARKER has been shifted */

else

p = q;

}

}

Figure 3: Reverting the permutation of the inverse BWT.

10

Let ts(n) be the time complexity in the comparison model and ss(n) be
the space complexity required by select. Using the result in [23], we have
ts(n) = O(n1+ǫ) in the worst case for any fixed small constant ǫ > 0 with
ss(n) = O(1), and we have ts(n) = O(n1+ǫ) = O(n log log n) on the average
(which meets the randomized lower bound in [5]), with ss(n) = O(1).

We can state the complexity in general terms.

Theorem 2. Let ts(n) be the time complexity in the comparison model and
ss(n) be the space complexity required by select. Given the BWT of a text
T of n characters, we can recover T by permuting the BWT (also known as
inverse BWT) in O(n·ts(n)) time in the comparison model using O(1+ss(n))
additional memory cells.

We give some examples of the bounds that can be attained with Theo-
rem 2.

Corollary 1. Given the BWT of a text T of n characters, we can recover T
by inverting the BWT in O(n2+ǫ) time in the worst case, or O(n2 log log n)
time on the average, in the comparison model using O(1) additional memory
cells.

Using slightly more additional space than a constant—literally speaking,
the algorithm is no more in-place—and the result in [28], where ts(n) =
O(n(log n)2) and ss(n) = O(log n), we derive the following.

Corollary 2. Given the BWT of a text T of n characters, we can recover T
by inverting the BWT in O((n log n)2) time in the comparison model using
O(log n) additional memory cells.

Finally, for the special case in which the alphabet of the distinct char-
acters in T is of constant size (as in DNA and ASCII texts), we obtain an
improved bound since select can be immediately implemented by a simple
scheme that employs O(|Σ|) = O(1) counters.

Corollary 3. Given the BWT of a text T of n characters drawn from a
constant-size alphabet, we can recover T by inverting the BWT in O(n2)
time in the comparison model using O(1) additional memory cells.

11

4. Practical Trade-Off between Space and Time

The inplace algorithms described so far have the drawback of requiring
Ω(n2) time, which make them unfeasible for long texts. A natural ques-
tion is how much the latter bound can be improved using extra space. For
example, using the dynamic wavelet tree data structure [26] in additional
O(n + |Σ| log n) bits of space, we can maintain the BWT through insertion
and deletion operations of individual symbols, supporting rank and select
operations, with a cost of O(log n/ log log n) time per operation. Using the
latter data structure, our algorithms in Sections 2 and 3 would give a bound
of O(n log n) time with additional O(n+ |Σ| log n) bits of space besides that
needed for storing the n characters of the input text T .3 However the re-
sulting solution is not very practical as the data structure in [26] is quite
sophisticated. We show next how to smoothly adapt our algorithms in Sec-
tions 2 and 3 to a situation where extra memory is allowed, producing some
trade-off solutions that are amenable for implementation with a flexible pa-
rameter k for the additional space.

Theorem 3. Given a text T of n characters, we can compute its Burrows–
Wheeler Transform (BWT) and its inverse in O((n2/k+n) log k) time in the
comparison model using O(k · σk) additional space, where σk ≤ min{|Σ|, k}
is the maximum number of distinct characters found among k consecutive
positions in T .

To appreciate the bound in Theorem 3 from a practical point of view,
consider the situation in which the text T occupies a great part of the avail-
able memory, and the remaining free cells are a constant fraction of the text
size. Our algorithm takes O(n log n) time by fixing k to be a suitable frac-
tion of n. This avoids to use external-memory algorithms, which are clearly
slower as I/O access takes several order of magnitudes with respect to main
memory access. In general, if the available memory size is M , we obtain the
following result by setting k = Θ(M − n).

Corollary 4. Let M be the number of available cells in main memory. Given
a text T of n < M characters over a constant alphabet, we can compute its

3This theoretical solution has been suggested by Rossano Venturini (private communi-
cation).

12

Burrows–Wheeler Transform (BWT) and its inverse in O((n2

M−n
+ n) log n)

time in the comparison model using ≤ M total memory cells including those
containing T . When M ≥ (1+ ǫ)n for a constant ǫ > 0, this gives O(n log n)
time using just ǫn additional cells.

The idea to prove Theorem 3 is to have n/k batches. Each batch simulates
k consecutive iterations in the external for loop on s in Figure 2, taking
O((n+ k) log k) time and using O(k · σk) space as follows.

Base case. Let s1 be the largest multiple of k that is smaller than n. We
can compute BWT(T [s1 . . n − 1]) and store it in T [s1 . . n − 1] in O(k log k)
time and O(k) additional space by observing that |T [s1 . . n− 1]| < k.

Inductive case. Suppose that BWT(T [s1 . . n−1]) has been already stored
in T [s1 . . n − 1], where s1 > 0 is now a generic multiple of k. Letting s0 =
s1 − k, we want to show how to store BWT(T [s0 . . n− 1]) in T [s0 . . n− 1] in
O((n+ k) log k) time using O(k · σk) additional space.

Since we have one base case and ≤ n/k inductive cases, the final cost will
be O(k log k+(n/k) · (n+k) log k) = O((n2/k+n) log k) time using O(k ·σk)
additional space, as stated in Theorem 3.

4.1. Inductive case.

We can abstract the problem for a string X (i.e. T [s0 . . n− 1]) of length
m, where the characters in X[k . .m − 1] are already permuted according
to their BWT, and the characters in X[0 . . k − 1] are still in their original
order. We want to compute BWT(X) in O((m+k) log k) time using O(k ·σk)
additional space.

Let Z denote X[k . .m − 1] where the $ character is virtually removed
from its position, say j. Hence Z is of length m − k − 1 and the pair 〈$, j〉
is a breakpoint for Z. In general, a breakpoint is a pair 〈c, j〉 such that c
is virtually occupying position j of Z: if two or more breakpoints claim the
same position j, there should be a relative order among them.

Our goal is to compute the k + 1 breakpoints for Z so that (a) their
characters are those in X[0 . . k − 1] plus $, and (b) flattening Z and these
breakpoints correctly produces BWT(X) as follows. Given Z and an ordered
list of k + 1 breakpoints B = 〈c0, j0〉, . . . , 〈ck, jk〉, where 0 ≤ j0 ≤ · · · ≤ jk ≤
|Z|, flattening Z and B produces a string with the characters of Z suitably
shifted to the left to make room for the characters in the breakpoints of B as
follows. We scan Z starting with j = 0: if j = jr for the breakpoint 〈cr, jr〉
at the beginning of B, we output cr and remove 〈cr, jr〉 from B; else (j 6= jr),

13

we output Z[j] and increase j. (If cr = $, we do not really output it, but
we retain its position jr for the next batch.) The computation ends when Z
has been completely scanned and the list B has been emptied. The required
time is O(m log k) and the computation can be performed using O(k · σk)
additional space.

For this we need the following auxiliary data structures for string Z, which
require O(k · σk) additional space. (Note that Z and X require just O(1)
space as they originate from T .)

1. Static array C of σk ≤ k entries, where α1 < · · · < ασk
are the distinct

characters in X[0 . . k− 1]: entry C[i] is the number of positions j in Z
such that Z[j] < αi

2. Static rank data structure R1 on Z supporting queries that, for an
integer j′ and a character αi, report how many positions j satisfy Z[j] =
αi and j ≤ j′.

3. Dynamic list B of breakpoints, initially containing only the pair 〈$, j〉.

4. Dynamic rank data structure R2 on B supporting queries that, for a
character αi, report how many breakpoints 〈c, l〉 to the left of 〈$, j〉 in
B satisfy c = αi.

As it is clear, we want to populate the list B by simulating the algorithm
described in Section 2. Namely, we want to find the breakpoint of character
X[s′] for s′ = k − 1, k − 2, . . . , 0 in Z.

Consider the breakpoint 〈$, j〉, which exists in B by construction. Let
αi = X[s′], and r′ = r0 + r1 + r2 be sum of three quantities: the number r0
of positions j′ in Z such that Z[j′] < αi, the number r1 of positions j′ in Z
such that Z[j′] = αi and j′ ≤ j, and the number r2 of breakpoints 〈c, l〉 that
are to the left of 〈$, j〉 in B and have c = αi. Note that we can compute r0
using entry C[i] in point 1, r1 using the data structure R1 in point 2, and r2
using the data structures B and R2 in points 3–4.

Fact 1. The value of r′ is the rank of X[s′ . .m−1] among X[s′+1 . .m−1],
X[s′ + 2 . .m− 1], . . . , X[m− 1 . .m− 1] in lexicographic order.

Proof : It follows from the fact that X ≡ T [s0 . . n−1] and X[s′+d . .m−1] ≡
Ts+d, where s = s0 + s′ and d ≥ 0.

14

After computing r′, we replace the breakpoint 〈$, j〉 by 〈c, j〉, and create
a new breakpoint 〈$, r′〉 to be inserted in B, updating the data structures in
points 3–4 accordingly.

Lemma 1. The static array C can be stored in O(k · σk) space and built in
O(m log k) time.

Proof : We scan X[0 . . k− 1] and find the distinct characters α1 < · · · < ασk
.

We then perform a scan of Z to store in C[1] the number of positions j such
that Z[j] < α1 and, for i > 1, to store in C[i] the number of positions j such
that αi−1 ≤ Z[j] < αi. We then store in C its prefix sums, thus giving the
wanted C. Time is O(m log σk) since during the scan we perform a binary
search among the σk characters. Space is O(σk) by definition of C.

Lemma 2. The static data structure R1 can be stored in O(k ·σk) space and
built in O(m log σk) time, so that each query requires O(log σk +m/k) time.

Proof : We store R1 as a collection of σk arrays Ri
1, for 1 ≤ i ≤ σk. Entry

Ri
1[h], for 0 ≤ h ≤ k, stores the number of occurrences of character αi in

the hth segment of m/k consecutive positions in Z: namely, Ri
1[0] = 0 and,

for h ≥ 1, Ri
1[h] stores the number of positions j such that Z[j] = αi and

(m/k) · (h− 1) ≤ j ≤ max{m− 1, (m/k)h− 1}. After initializing the entries
in all the arrays to zero, their correct value can be set with a single scan of Z
in O(m log σk) time.4 After that, we perform a post-processing and store in
each Ri

1 its prefix sums: in this way, Ri
1[h] stores the number of positions j

such that Z[j] = αi and 0 ≤ j ≤ max{m−1, (m/k)h−1}. For a query with a
character c′ and an integer j′, it takes O(log σk) time to establish that c′ = αi

for a certain i, and O(1) time to find the largest h such that (m/k)h < j′.
The correct answer for the query is then given by the sum of the content of
Ri

1[h] and the number of αi’s found in Z[(m/k)h . . j′] by its direct inspection.
Scanning the latter takes O(m/k) time by definition of Ri

1.

Lemma 3. The dynamic list B and the dynamic data structure R2 can be
stored in O(k) space and built in O(k log k) time, so that each query and each
update requires O(log k) time.

4If k ·σk = w(n log σk), it is a standard trick to allocate O(k ·σk) memory and initialize
only what is needed in in O(m log σk) time [2].

15

Proof : We handle the list B = 〈c0, j0〉, . . . , 〈cr, jr〉, where 0 ≤ r ≤ k, and the
data structures R2 together. In particular, R2 is the wavelet tree of height
O(log r) built on the sequence c0 · · · cr of characters taken from B. The query
for αi can be performed as a count query of characters αi in c0 · · · cd, where
d ≤ r and cd = $ (e.g. [25]). Each update (insertion, deletion, replacement)
can be handled in O(log r + log k) = O(log k) time [11, 26].

We now have all the ingredients to prove the time and space bounds for
computing the BWT as stated in Theorem 3. By the inductive scheme and
Fact 1, the computation is correctly performed. As for the time bounds, we
use Lemma 1–3. Note that to invert the BWT, we can now implement the
algorithm described in Section 3 in a simpler way, since R1 and R2 support
also the selection of the pth symbol c = αi. Moreover, flattening Z and B
removes the positions j stored in the pairs in B from Z, as this simulates
the shift of some characters of Z to the right. The time and space analysis
is similar to that of computing the BWT.

5. Conclusions

We presented an in-place BWT construction taking O(n2) time in the
comparison model. It would be interesting to improve this bound. Note
that the while loop in our in-place BWT can be avoided using O(|Σ|) space,
where Σ is the alphabet of characters occurring in T . Time can be further
reduced to O(n2/ log|Σ| n) by packing characters but this is still not useful
for large text collections.

We do not know whether a lower bound better than Ω(n log n) holds for
the problem in the comparison model since the space is very constrained.
This is an interesting question to investigate.

On the practical side, our in-place algorithms can be adpated to provide
a trade-off between space and time, when O(k · σk) extra memory cells are
allowed, providing an O((n2/k + n) log k)-time algorithm to obtain (and in-
vert) the BWT. For example in real systems where the alphabet size is a
constant, for any arbitrarily small ǫ > 0, the BWT of a text of n bytes can
be computed in O(nǫ−1 log n) time using just ǫn extra bytes.

Acknowledgments

The second author is grateful to Gianni Franceschini for some prelim-
inary discussions and to Venkatesh Raman for pointing out the results in

16

[23, 28] and Rossano Venturini for his comments and indicating the result in
[3]. We also thank the anonymous reviewers for their careful reading of our
manuscript.

References

[1] Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows–
Wheeler Transform: Data Compression, Suffix Arrays, and Pattern
Matching. Springer, 2008.

[2] Alfred Aho, John Hopcroft, and Jeff D. Ullman. The Design and Anal-
ysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[3] Djamal Belazzougui. Linear time construction of compressed text indices
in compact space. Proc. STOC 2014, pages 148–193, 2014.

[4] Michael Burrows and David J. Wheeler. A block-sorting lossless data
compression algorithm. Research Report 124, Digital SRC, Palo Alto,
CA, USA, May 1994.

[5] Timothy M. Chan. Comparison-based time-space lower bounds for se-
lection. ACM Trans. Algorithms, 6(2):1–16, 2010.

[6] Maxime Crochemore, Roberto Grossi, Juha Kärkkäinen and Gad M.
Landau. A Constant-Space Comparison-Based Algorithm for Comput-
ing the Burrows-Wheeler Transform. Combinatorial Pattern Matching,
24th Annual Symposium (CPM), pages 74–82, 2013.

[7] David J. Dobkin and J. Ian Munro. Optimal time minimal space selec-
tion algorithms. Journal of the ACM, 28(3):454–461, July 1981.

[8] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J.
ACM, 52(4):552–581, 2005.

[9] Gianni Franceschini and S. Muthukrishnan. In-Place Suffix Sorting.
Automata, Languages and Programming, 34th International Colloquium
(ICALP), pages 533–545, 2007.

[10] Roberto Grossi, Ankur Gupta, and Jeffrey S. Vitter. High-order entropy-
compressed text indexes. In ACM-SIAM SODA, pages 841–850, 2003.

17

[11] Roberto Grossi and Giuseppe Ottaviano. The wavelet trie: maintaining
an indexed sequence of strings in compressed space. In ACM PODS,
pages 203–214, 2012.

[12] C. A. R. Hoare. Algorithm 65: Find. Communications of the ACM,
4(7):321–322, July 1961.

[13] Wing-Kai Hon, Tak Wah Lam, Kunihiko Sadakane, Wing-Kin Sung,
and Siu-Ming Yiu. A space and time efficient algorithm for constructing
compressed suffix arrays. Algorithmica, 48(1):23–36, 2007.

[14] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a
time-and-space barrier in constructing full-text indices. SIAM J. Com-
put., 38(6):2162–2178, 2009.

[15] Juha Kärkkäinen. Fast BWT in small space by blockwise suffix sorting.
Theor. Comput. Sci., 387(3):249–257, 2007.

[16] T. W. Lam, Ruiqiang Li, Alan Tam, Simon Wong, Edward Wu, and
S. M. Yiu. High Throughput Short Read Alignment via Bi-directional
BWT. Bioinformatics and Biomedicine, IEEE International Conference
on, 0:31–36, 2009.

[17] T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu. Com-
pressed indexing and local alignment of DNA. Bioinformatics, 24(6):791-
797.

[18] Heng Li and Richard Durbin. Fast and accurate long-read alignment
with Burrows-Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[19] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ul-
trafast and memory-efficient alignment of short DNA sequences to the
human genome. Genome Biology, 10(3):R25, 2009.

[20] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, October
1993.

[21] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. J.
ACM, 48(3):407–430, 2001.

18

[22] J. Ian Munro. Tables. In V. Chandru and V. Vinay, editors, Proc. of
Foundations of Software Technology and Theoretical Computer Science,
16th Conference, Hyderabad, India, December 18-20, 1996, volume 1180
of Lecture Notes in Computer Science, pages 37–42. Springer, 1996.

[23] J. Ian Munro and Venkatesh Raman. Selection from read-only mem-
ory and sorting with minimum data movement. Theoretical Computer
Science, 165(2):311–323, 1996.

[24] Joong Chae Na and Kunsoo Park. Alphabet-independent linear-time
construction of compressed suffix arrays using o(nlogn)-bit working
space. Theor. Comput. Sci., 385(1-3):127–136, 2007.

[25] Gonzalo Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20,
2014.

[26] Gonzalo Navarro and Yakov Nekrich. Optimal Dynamic Sequence Rep-
resentations. In ACM-SIAM SODA, pages 865–876, 2013.

[27] Daisuke Okanohara and Kunihiko Sadakane. A linear-time Burrows-
Wheeler transform using induced sorting. In 16th Symposium on String
Processing and Information Retrieval (SPIRE), volume 5721 of Lecture
Notes in Computer Science, pages 90–101. Springer, 2009.

[28] Venkatesh Raman and Sarnath Ramnath. Improved Upper Bounds for
Time-Space Trade-offs for Selection. Nordic J. Computing, 6(2):162–180,
1999.

[29] Mikael Salson, Thierry Lecroq, Martine Léonard and Laurent Mouchard.
A four-stage algorithm for updating a Burrows–Wheeler Transform.
Theor. Comput. Sci., 410(43):4350–4359, 2009.

19

APPENDIX: REPLY TO REVIEWERS’ COMMENTS

We report the Reviewers’ comments and our responses marked with “***”.

REVIEWER #1

Comments on the revised version of the manuscript. While the

contribution looks good, there are some issues with technical details

that would warrant another revision.

In this revision of the manuscript the authors have made improvements,

in particular added section 4 that describes time/space trade-offs for

building and inverting the BWT with a small amount of extra space. It

is essentially a variant of the algorithm of Hon et al. [11],

optimized for space usage. In particular, the improvements in space

usage come from time/space trade-offs in the rank/select structure over BWT.

There are still some issues:

- The time bounds with \epsilon n bytes of extra space mentioned in the

abstract and in sections 1, 4.1, and 5 assume a constant alphabet. This

should be mentioned. There is also some confusion with s and k in

section 5.

*** done ***

- Section 4.1: The initial discussion of breakpoints is a bit

misleading, as it gives an impression that $ is going to be inserted

back to position j. This is rectified only on the next page.

*** done ***

- Section 4.1, paragraph 2: The length of Z is m-k-1.

*** done ***

- Section 4.1, paragraph 3: There may be a breakpoint at position |Z|,

if the lexicographically largest suffix starts in X[0,k-1].

*** done ***

20

- Section 4.1, bullet 1: Is array C based on Z[j] \le \alpha_i or Z[j] <

\alpha_i?

*** done, it is Z[j] < \alpha_i ***

- Section 4.1, lemmas 1 and 2: If the structure is built in O(n log k)

time, the overall time complexity becomes O(n^2/k log k) instead of

O(n^2/k + n log k).

*** done, we wrote O((n^2/k + n) log k) ***

- Section 4.1, lemma 2: For large alphabets and large values of k, the

space usage may be larger than the time bound O(n log k).

*** done, added a footnote sayng that it is a standard trick to initialize only what is

REVIEWER #2

The revised paper is stronger; it would still benefit from full

proof-reading, suggestions:

*** sorry for the typos ***

+ p3 line 9: "it is not rare the case when the input data is so large that"

-> frequently the input data is so large that / not infrequently,

... / it is not rare for the input data to be so large that the input

text T stays in main memory while any additional

*** done ***

+ p3 line -4: saving over the space -> saving on the space

*** done ***

+ p4 line -6: even allowing for exponential time -> even if it results

in exponential time

*** done ***

21

+ p5 line -7: This avoids us to use external-memory algorithms, which are

clearly slower as I/O access takes several order of magnitudes with respect

to main memory access. -> This avoids using several order_s_ of

magnitude_ _more time_ / longer

*** done ***

+ p16 line 8: The time and space analysis is similar that of computing

the BWT. -> ... similar to that of ...

*** done ***

+ p16 line 14: but still not useful -> but this is still not useful

*** done ***

REVIEWER #3

The paper looks acceptable now. Minor comments:

Footnote 3 - is this a private communication? or give reference?

*** done, it is a private communication ***

The CPM 2013 paper should be included in the References.

*** done ***

22

