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Abstract. The Longest Previous Factor array gives, for each position
i in a string y, the length of the longest factor (substring) of y that
occurs both at i and to the left of i in y. The Longest Previous Factor
array is central in many text compression techniques as well as in the
most efficient algorithms for detecting motifs and repetitions occurring
in a text. Computing the Longest Previous Factor array requires usually
the Suffix Array and the Longest Common Prefix array. We give the
first time-space optimal algorithm that computes the Longest Previous
Factor array, given the Suffix Array and the Longest Common Prefix
arrays. We also give the first linear-time algorithm that computes the
permutation that applied to the Longest Common Prefix array produces
the Longest Previous Factor array.

Keywords: longest previous factor, suffix array, longest common prefix,
Ziv-Lempel factorization, text compression, string repetitions.

1 Introduction

The Longest Previous Factor array gives, for each position i in a string
y, the length of the longest factor (substring) of y the occurs both at
i and to the left of i in y. For example, for the string y = abbaba, the
Longest Previous Factor corresponding to position 3 is 2 because ab is
the longest factor at position 3 that appears before (at position 0). The
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Longest Previous Factor array is central in many text compression tech-
niques as well as in the most efficient algorithms for detecting motifs and
repetitions occurring in a text. The problem of computing the Longest
Previous Factor array may be regarded as an extension of the Ziv-Lempel
factorization (LZ77) of a string as defined in [21].

The LZ77 factorization is used in several adaptive compression meth-
ods which encode carefully re-occurrences of phrases by pointers or inte-
gers (see [19, 20]). It yields more powerful compressors than the factor-
ization in [22] (called LZ78) where a phrase is an extension by a single
letter of a previous phrase. But the LZ77 factorization is more difficult
to compute. One remarkable application of the Longest Previous Factor
array is that the LZ77 factorization can be easily computed from it (see
[4]). This implies a linear-time solution for LZ77 factorization on integer
alphabets. Previous solutions, using a Suffix Tree [18] or a Suffix Automa-
ton [2] of the string, not only run in time O(n log |A|) (n is the length of
the string and |A| is the size of the alphabet) but also the data structures
they use are more space-expensive than the Suffix Array which is used
for computing the Longest Previous Factor array.

A slight variant of string parsing, whose relation with the LZ77 fac-
torization is analyzed in [1], plays an important role in String Algorithms.
The intuitive reason is that, when processing a string on-line, the work
done on an element of the factorization can usually be skipped because it
was done already on one of its previous occurrences. A typical application
of this idea resides in algorithms to compute repetitions in strings (see
[2, 16, 15]). For example, the algorithm in [15] reports all maximal repeti-
tions (called runs) occurring in a string of length n in O(n log |A|) time.
It runs in linear time if a Suffix Array is used instead of a Suffix Tree
[4]. Indeed, this seems to be the only technique that leads to linear-time
algorithms, independently of the alphabet size, for this type of question.

The Suffix Arrays provide an ideal data structure to solve many ques-
tions requiring an index on all the factors of a string. Introduced by
Manber and Myers [17], the structure can be built in linear-time by dif-
ferent methods [11, 13, 14, 9] for sorting the suffixes of the string, possibly
adding the method of [12] to compute the Longest Common Prefix array.
The result holds if the string is drawn from an integer alphabet, that is,
if the alphabet of the string can be sorted in linear time (otherwise the
Ω(n log n) lower bound for sorting applies).

The notion of Longest Previous Factor has been introduced in [4],
however an array with the same definition appears already in [8], as part of
the concept of a Quasi Suffix Array (their π array is the Longest Previous
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Factor). In [8], the authors presented a direct computation running in
O(n log n) average time. A naive computation of the Longest Previous
Factor array, either on the string itself or on its Suffix Array, as done
by the algorithm LPF-naive in Section 5, leads to quadratic effective
running time on many inputs.

The first linear-time algorithm for computing the Longest Previous
Factor array appears in [4] where the application to computing the LZ77
factorization (in linear time) is given as well. An improved version, run-
ning on-line on the Suffix Array of the string and requiring only O(

√
n)

extra memory space, is shown in [6].

In this article we intensively use the Suffix Array of the string to
be processed, and we consider only linear-time solutions. A graphical
representation of the Suffix Array structure helps understand the design
of the algorithms.

We improve on the previous results and show that the computation
of the Longest Previous Factor array of a string from its Suffix Array
can be implemented to run in linear time with only a constant amount of
additional memory space. Thus, the method is time-space optimal.

The next section introduces the necessary material for the design of
Longest Previous Factor computations. An algorithm similar to the one
of [4] is described in Section 3. Section 4 shows how the computation can
be done on-line on the Suffix Array and Section 5 describes the time-
space optimal algorithm for constructing the Longest Previous Factor
array. Finally, the Longest Previous Factor array can be obtained as a
permutation of the Longest Common Prefix array and we give in Section 6
a linear-time algorithm for that. Alternatively, this an be viewed as a
sorting network transforming the Longest Common Prefix array into the
Longest Previous Factor array. We conclude by discussing a couple of
important research directions.

2 Basic definitions

We consider a string y of length n over an alphabet A. The ith letter of y is
denoted by y[i] and y[i . . j] = y[i]y[i+1] · · · y[j]. If, for a string x and two
positions i and j in y we have x = y[i . . j], then we say that x occurs at
position i in y. We index y’s letters from 0 to n−1, that is, y = y[0 . . n−1].
The suffix of y that starts at position i is sufi(y) = y[i . . n−1]. The length
of y is denoted by |y| = n.

In the LZ77 factorization, a string y is decomposed into factors, called
phrases, u0, u1, . . . , uk, such that
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(i) y = u0u1 · · · uk,
(ii) u0 = y[0] and,

(iii) for i ≥ 1, ui is either a new letter or, otherwise, the longest prefix
of uiui+1 · · · uk occurring both at position |u0u1 · · · ui−1| and before it
(that is, to its left) in y; see Example 1.

The Longest Previous Factor array is defined by LPF[0] = 0 and, for
1 ≤ i ≤ n− 1, by

LPF[i] = max{k | y[i . . i+ k − 1] = y[j . . j + k− 1], for some 0 ≤ j < i} .

Given the LPF array, the LZ77 factorization is easily computed by the
following algorithm (see [4]):

LZ77(y, LPF)

1 u0 ← y[0]
2 k ← 0
3 while ((ℓ← |u0u1 · · · uk|) < n) do
4 uk+1 ← y[ℓ . . ℓ+max{1, LPF[ℓ]} − 1]
5 k ← k + 1
6 return u0, u1, . . . , uk

Example 1. For the string y = abaabababbabbb, the LZ77 factorization
is

y = a.b.a.aba.bab.babb.b .

The LPF array corresponding to y is given in the third row of Table 1;
the other two arrays, prev and next, will be defined in Section 3.

position i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[i] a b a a b a b a b b a b b b

LPF[i] 0 0 1 3 2 4 3 2 1 4 3 2 2 1
prev[i] −1 −1 1 2 3 4 5 1 7 8 9 10 9 12
next[i] 1 14 7 7 7 7 7 14 14 14 12 12 14 14

Table 1. The LPF, prev, and next arrays for the string y = abaabababbabbb.

The Suffix Array of the string y is a data structure used for indexing
its content. It comprises two arrays that we denote SA and LCP (from
Longest Common Prefix) and that are defined as follows.
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The array SA stores the list of positions of y associated with the sorted
list of its suffixes in increasing lexicographic order. That is, the array is
such that

sufSA[0](y) < sufSA[1](y) < · · · < sufSA[n−1](y) .

Thus, SA is indexed by the ranks of the suffixes in their sorted list.
The second array, LCP, is also indexed by the ranks of suffixes and

stores the longest common prefixes between consecutive suffixes in the
sorted list. Let lcp(i, j) be the longest common prefix of sufi(y) and sufj(y),
for two positions i and j of y. Then, LCP[0] = 0 and, for 0 < r < n, we
have

LCP[r] = |lcp(SA[r − 1],SA[r])|.
We shall use sometimes the array ISA, the inverse of SA, that provides

the rank of a position.

Example 2. For our running example y = abaabababbabbb, the SA and
LCP arrays are shown in Table 2.

rank SA[r] sufSA[r](y) LCP[r] LPF[SA[r]]
0 2 aabababbabbb 0 1
1 0 abaabababbabbb 1 0
2 3 abababbabbb 3 3
3 5 ababbabbb 4 4
4 7 abbabbb 2 2
5 10 abbb 3 3
6 13 b 0 1
7 1 baabababbabbb 1 0
8 4 bababbabbb 2 2
9 6 babbabbb 3 3

10 9 babbb 4 4
11 12 bb 1 2
12 8 bbabbb 2 1
13 11 bbb 2 2

Table 2. The SA and LCP arrays for the string y = abaabababbabbb. The last column
gives the lpf array indexed by ranks of suffixes instead of positions.

It is natural to define the LPF array indexed on positions in the string
and the SA and LCP arrays indexes on ranks rather than positions. We
show in the last column of Table 2 the LPF array indexed also by rank,
that is, LPF[SA[·]]. This duality, of indexing by position or by rank, will
appear a number of times throughout the paper.
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The computation of the Suffix Array can be done in time O(n log n) in
the comparison model [17] (see [3, 7, 10]). If the string is over an alphabet
of integers in the range [0, nc] for some constant c, then the Suffix Array
can be built in time O(n) [11, 13, 14, 9] (see also [3]). An elegant algorithm
for building the LCP array in linear time is given in [12].

2.1 Graphic representation

The Suffix Array of the string y has a nice graphic representation that
helps understand the algorithms computing the LPF array.

Figure 1 shows the Suffix Array representation for the string y =
abaabababbabbb. The abscissa axis refers to ranks of suffixes and the
ordinate axis refers to their positions. The sorted list of suffixes is plotted
by their positions, and consecutive ranks are linked by an edge whose
label is the associated LCP value.
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Fig. 1. Graph of the permutation of positions of abaabababbabbb (Example 2) in the
lexicographic order of the corresponding suffixes. Labels of edges are Longest Common
Prefix lengths between consecutive suffixes.

3 Computing LPF using SA and LCP

The LCP array satisfies the following simple property, a consequence of
the lexicographic ordering of suffixes in the SA: the length of the lcp value
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between two positions at ranks r and t, r < t, that is, |lcp(SA[r],SA[t])|
is the minimal value in LCP[r + 1 . . t].

For a rank r, let us define prev[r] as the largest rank s < r, for which
SA[s] < SA[r], if it exists, and as −1 otherwise. Let us also define the dual
notion, next[r], as the smallest rank t > r for which SA[t] < SA[r], if it
exists, and as n otherwise. The two arrays prev and next for our running
example are shown in Table 1.

The above property of the LCP array implies that to compute LPF[SA[r]]
there is no need to look at ranks smaller than prev[r] or greater than
next[r], that is,

LPF[SA[r]] = max{ |lcp(SA[r],SA[prev[r]])|, |lcp(SA[r],SA[next[r]])| } ,

where undefined LCP values are assumed to be 0. In particular, if a po-
sition i is a “peak” at rank r in the graphic representation of the Suffix
Array (SA[r] = i) we get

LPF[i] = max{LCP[r], LCP[r + 1]}.

Also, the minimum of the two values is the length of the lcp between
positions at ranks r−1 and r+1, if defined, that is, |LCP(SA[r−1],SA[r+
1])|. This gives the idea underlying the algorithm LPF-simple, which is
similar to the one of [4].

LPF-simple(SA, LCP, n)

1 LCP-store← LCP

2 LCP[n]← 0
3 ISA← inverse SA

4 for r ← 0 to n− 1 do

5 prev[r]← r − 1
6 next[r]← r + 1
7 for i← n− 1 downto 0 do

8 r← ISA[i]
9 LPF[i]← max{LCP[r], LCP[next[r]]}

10 LCP[next[r]]← min{LCP[r], LCP[next[r]]}
11 if prev[r] ≥ 0 then

12 next[prev[r]]← next[r]
13 if next[r] < n then

14 prev[next[r]]← prev[r]
15 return LPF
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The algorithm computes the two arrays prev and next at the same
time as computing the LPF array. Steps 9 and 10 implement the earlier
discussion and it is enough to explain why the prev and next arrays are
correctly computed. The initialization in steps 4-6 gives the correct values
for the peaks only. However, in the for cycle at step 7, the peaks are
considered in decreasing order of their height (that is, position) and hence
the updates in steps 11-14 will provide the correct values.

For instance, the algorithm starts with the highest peak in the graph.
The LPF value can already be computed for this position. In Figure 1, the
highest peak has position 13 and rank 6, that is, SA[6] = 13. Neighboring
positions are lower and therefore prev[6] = 5 and next[6] = 7 are correct.
Using the above formula for LPF, we have LPF[13] = max{0, 1} = 1. Once
this value is set, we remove the node from the graph by adding an edge
between its neighbors, 10 and 1, labeled by the minimum of the two LCP

values, min{0, 1} = 0. The values next[5] = 7 and prev[7] = 5 are also set,
the former being already the correct value (due to the peak position 10
at rank 5).

The algorithm LPF-simple runs in linear time but requires the extra
arrays prev, next and ISA in addition to its input and output. Since the
LCP array is modified during the algorithm, it can be stored (step 1) in
case it is needed later.

Figure 2 illustrates several steps of the algorithm when the input is
our running example abaabababbabbb.

Proposition 1. The algorithm LPF-simple computes the LPF array of
a string of length n from its Suffix Array in linear time and space. It
requires 3n+O(1) integer cells in addition to its input and output.

3.1 An alternative algorithm

The array next can alternatively be pre-computed by the following pro-
cedure Next whose linear-time behavior is an interesting exercise left to
the reader. Only the code in black is needed for the computation of next.

When all code (black and gray) is used, the procedure computes also
the array LPF> (defined in [4]) that is similar with LPF but accounts for
larger ranks only. It is defined, for r = 0, . . . , n− 1, by

LPF>[r] = |lcp(SA[r],SA[next[r]])|.
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Fig. 2. Illustration of the run of the algorithm LPF-simple on the string
abaabababbabbb (see Figure 1) after processing positions 13, 12, 11, 10. Gray positions
and gray edges are no longer considered. The next step is to process position 9 at rank
10. According to the weights of edges pending from 9, we have LPF[9] = max{4, 1} = 4.
Positions 6 and 8 will be linked, through the prev and next arrays on their ranks, with
an edge of weight min{4, 1} = 1, which is indeed LPF[8].

Next(SA, LCP,n)

1 next[n− 1]← n
2 LPF>[n− 1]← 0
3 for r ← n− 2 downto 0 do

4 t← r + 1
5 ℓ← LCP[t]
6 while t < n and SA[t] > SA[r] do
7 ℓ← min{ℓ, LPF>[t]}
8 t← next[t]
9 next[r]← t

10 LPF>[r]← ℓ
11 return next, LPF>

The computation of the dual prev array is done symmetrically. Also,
the array LPF< is symmetrically defined and computed. When both arrays
LPF< and LPF> are available, the computation of the LPF array is done
using the following equality:

LPF[i] = max{LPF>[r], LPF<[r]}.
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4 On-line computation

Techniques of the previous sections to compute the LPF array are simple
but space consuming. In this section and the next one we address this
issue. We show that a computation on-line on the Suffix Array using a
stack reduces the memory space to only O(

√
n) for a string of length n.

This algorithm is similar with the one of [6] with some differences in view
of our time-space optimal algorithm in the next section.

The design of the on-line computation still relies on the property used
for the algorithm of Section 2 and related to “peaks” (see lines 6-8 below).
It relies additionally on another straightforward property that we describe
now. Assume that a position SA[r] at rank r satisfies LCP[r] ≥ LCP[r+1].
Then, no position after it in the list can provide a larger LCP value and
therefore we get LPF[SA[r]] = LCP[r]. This is implemented in lines 10-11
of the algorithm LPF-on-line.

Note that lines 15 to 18 may be removed from the algorithm LPF-on-line

if the Suffix Array can be extended to rank n and initialised to SA[n] = −1
and LCP[n] = 0. But we prefer the present design that is compatible with
the algorithm of the next section.

LPF-on-line(SA, LCP, n)

1 EmptyStack(S)
2 for r ← 0 to n− 1 do

3 r-lcp← LCP[r]
4 while not Empty(S) do
5 (t, t-lcp)← Top(S)
6 if SA[r] < SA[t] then
7 LPF[SA[t]]← max{t-lcp, r-lcp}
8 r-lcp← min{t-lcp, r-lcp}
9 Pop(S)

10 elseif (SA[r] > SA[t]) and (r-lcp ≤ t-lcp) then
11 LPF[SA[t]]← t-lcp
12 Pop(S)
13 else break
14 Push(S, (r, r-lcp))
15 while not Empty(S) do
16 (t, t-lcp)← Top(S)
17 LPF[SA[t]]← t-lcp
18 Pop(S)
19 return LPF
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The extra memory space used by the algorithm LPF-on-line to com-
pute the LPF array of a string is occupied by the stack and a constant
number of integer variables. To evaluate the total size required by the
algorithm it is then important to determine the maximal size of the stack
for a string of length n. It is proved in [6] that this quantity is O(

√
n).

For most values of n there are plenty of strings for which the stack
reaches its maximal size. But if n is of the form k(k + 1)/2, that is, if it
is the sum of the first k positive integers, then there is a unique string
on the alphabet {a, b} (with a < b) giving the maximal size stack. This
word is aabab2 · · · abk−1 and the maximal stack size is k.

The maximal stack sizes for strings of lengths 4 to 22 are given in
Table 3.

length n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

max-stack-size 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6

Table 3. Maximum stack size for various string lengths.

Proposition 2. The algorithm LPF-on-line computes the LPF array
of a string of length n from its Suffix Array in linear time and O(

√
n)

space. It requires less than 2
√
2n + O(1) integer cells in addition to its

input and output.

5 Time-space optimal algorithm

In this section we show that the computation of the LPF array of a string
can be implemented with only constant memory space in addition to the
SA, LCP, and LPF arrays. The underlying property used for this purpose is
theO(

√
n) stack size reported in the previous section. The property allows

an implementation of the stack inside the LPF array for a sufficiently large
part of the string. The rest of the computation for the remaining positions
is done in a more time-expensive manner but for a small part of the string.
This preserves the linear running time of the whole computation.
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LPF-optimal(SA, LCP, n)

1 ⊲ it is assumed that n ≥ 8

2 K ← ⌊n− 2
√
2n⌋

3 ⊲ next three procedures share the same LPF array
4 LPF-on-line(SA, LCP,K)
5 LPF-naive(SA, LCP,K, n)
6 LPF-anchored(SA, LCP,K, n)
7 return LPF

It is rather clear that only constant extra memory space is required
to implement the strategy retained by the algorithm LPF-optimal. The
choice of the parameter K is a result of the previous section and is done
to let enough space in the LPF array to implement the stack used by the
algorithm LPF-on-line.

Although not done here, the choice of the parameter K can be dy-
namic and done during the algorithm LPF-on-line as n−2k−1, where k
is the size of the stack just before executing line 15. This certainly reduces
the actual running time but does not improve its asymptotic evaluation.

In the algorithm LPF-optimal, the stack of the procedure LPF-on-line
is implemented in the LPF array. Access to the array is done via the SA ar-
ray. Doing so, the stack is treated like a continuous space LPF[SA[K . . n−
1]]. Elements are stored sequentially so that the elementary stack opera-
tions (empty, top, push, pop) are all executed in constant time. Therefore,
the running time of the first step is O(n) (indeed O(K)) as for the algo-
rithm LPF-on-line.

Example 3. Table 4 shows the content of the LPF array at two stages of
the run of the procedure LPF-on-line on Example 2: (i) immediately
after processing rank 5 and (ii) at the end of the first step.

rank r 0 1 2 3 4 5 6 7 8 9 10 11 12 13

(i) LPF[SA[r]] 1 3 4 5 3 4 2 1 0
(ii) LPF[SA[r]] 1 0 3 4 2 3 1 8 2 7 0

Table 4. The content of the LPF table during the procedure LPF-on-line.

The row (i) shows that LPF values of positions 2, 3, 5 at respective
ranks 0, 2, 3 have already been computed. The part LPF[SA[8 . . 13]] of
the array stores the content of the stack: ((1, 0), (4, 2), (5, 3)).
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The row (ii) shows that values have already been computed for positions
at ranks 0 to 6. The content of the stack is ((7, 0), (8, 2)). On this example,
K could have been set dynamically to 5.

5.1 Naive computation

The second step of the algorithm LPF-optimal processes the Suffix Ar-
ray from rank K. For each rank r, the values prev[r], next[r] and the
corresponding LCP values are computed starting from r and going back-
ward and forward, respectively. The code is given below for the sake of
completeness.

LPF-naive(SA, LCP,K, n)

1 LCP[n]← 0
2 for r ← K to n− 1 do

3 left ← LCP[r]
4 s← r − 1
5 while s ≥ K and SA[s] > SA[r] do
6 left ← min{left , LCP[s]}
7 s← s− 1
8 if s = K − 1 then

9 left ← 0
10 t← r + 1
11 right ← LCP[t]
12 while t < n and SA[t] > SA[r] do
13 t← t+ 1
14 right ← min{right , LCP[t]}
15 LPF[SA[r]]← max{left , right}
16 return LPF

The process takes O(n−K) time per rank, and hence the total running
time of the step is O((n−K)2), which is O(n) since K = n− 2

√
2n.

5.2 Completing the computation

The first two steps of the algorithm LPF-optimal process independently
two segments of the Suffix Array. The last step consists in joining their
results, which requires updating some LPF values. Indeed, for a rank r,
r < K, next[r] can be in [K,n − 1], which implies that the computation
of LPF[SA[r]] might not be achieved. The same phenomenon happens for
a rank in the second part, whose associated prev rank is smaller than K.
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The next algorithm updates all LPF values and completes the whole
computation. It assumes that the LPF calculation has been done indepen-
dently on parts LPF[SA[0 . . K − 1]] and LPF[SA[K . . n− 1]] of the array,
which is realised by the first two steps on the algorithm LPF-optimal.

LPF-anchored(SA, LCP,K, n)

1 s← K − 1
2 t← K
3 ℓ← LCP[K]
4 while (s ≥ 0) and (t < n) do
5 ⊲ invariant: ℓ = min LCP[s+ 1, . . . , r]
6 if SA[s] < SA[t] then
7 LPF[SA[t]]← max{LPF[SA[t]], ℓ}
8 t← t+ 1
9 ℓ← min{ℓ, LCP[t]}

10 else LPF[SA[s]]← max{LPF[SA[s]], ℓ}
11 ℓ← min{ℓ, LCP[s]}
12 s← s− 1
13 return LPF

The running time of this last step LPF-anchored is obviously linear,
O(n), as are the other steps of the algorithm LPF-optimal.

The first conclusion of the section is the following statement.

Theorem 1. The Longest Previous Factor array of a string of length n
on an integer alphabet can be built from the read-write Suffix Array and
Longest Common Prefix array in time O(n) (independently of the alphabet
size) with a constant amount of extra memory space.

The algorithm LPF-optimal uses the Suffix Array of the input string
in a read-only manner but does not use the LPF array in a write-only man-
ner. If this last condition is to be satisfied, the question remains of whether
there exists a linear-time LPF array construction running with constant
extra space. We get this feature if the algorithm LPF-anchored is ap-
plied recursively by dividing the Suffix Array into two equal parts. The
running time becomes O(n log n) in the model of computation allowing
priority writes.

Proposition 3. The Longest Previous Factor array of a string of length
n on an integer alphabet can be built from its read-only Suffix Array and
Longest Common Prefix array in time O(n log n) (independently of the
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alphabet size) with a constant amount of extra memory space and with a
write-only output.

Despite the use of the output as auxiliary storage in the ultimate
linear-time algorithm, the series of algorithms described in the article
provide a large range of efficient solutions that meet many practical needs.

6 Computing LPF by permuting LCP

It has been noticed in [4] that the content of the LPF array is the same
as that of the LCP array up to some permutation. Then the following
questions arise:

– Can this permutation be computed efficiently?
– Does it depend on the string, its Suffix Array or maybe just its Longest

Common Prefix array?

It turns out that, for fixed SA and LCP arrays, it does not depend on the
actual string. It is possible to construct such a sorting network, whose
shape depends only on the Suffix Array, that transforms the LCP array
into the LPF array. This observation leads to the algorithm LPF-by-permuting-LCP,
producing LPF by permuting the elements of LCP.

In the algorithm LPF-by-permuting-LCP below we assume that
the array next has been pre-computed by the procedure Next from Sec-
tion 3.1 (in which the gray instructions, related to LPF>, are removed, as
well as the parameter LCP).

The array next has been defined as the next rank with a smaller suf-
fix. It helps defining another array, nextPos, that behaves similarly but
positions instead of ranks. More precisely, it computes, for each position
i, the next closest position nextPos[i] in the Suffix Array that is smaller
than i, that is,

nextPos[SA[r]] = SA[min{t | t > r and SA[t] < SA[r]}] = SA[next[r]] .

Equivalently, if we set the position i = SA[r], then

nextPos[i] = SA[next[ISA[i]]] .

Initially, the LPF array is a copy of the LCP array permuted according to
the SA array. The algorithm permutes the elements of the array to get
the correct LPF array. This involves a modification of the “peaks” idea
used previously. If we look again at Figure 1, the highest peak (position
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13) has the two adjacent edges labeled 0 and 1. The higher of the two
values becomes LPF[13] whereas the smaller one is the length of the lcp

between suffixes at ranks 5 and 7. Another way to do this is by permuting
the labels 0 and 1 such that each goes to the right place, that is, 1 is on
the edge to the left of 13 (and will remain there as the correct LPF value)
and 0 goes on the edge to the left of 1, as the new LCP value.

LPF-by-permuting-LCP(SA, LCP, n)

1 SA[n]← −1
2 π ← SA

3 for r ← 0 to n− 1 do

4 LPF[SA[r]]← LCP[r]
5 nextPos[SA[r]]← SA[next[r]]
6 for i← n− 1 downto 0 do

7 if (nextPos[i] ≥ 0) and (LPF[i] < LPF[nextPos[i]]) then
8 Exchange(LPF[i], LPF[nextPos[i]])
9 π ← π ◦ (LPF[i], LPF[nextPos[i]])

10 return LPF, π

Note that the algorithm LPF-by-permuting-LCP computes also
explicitly the permutation π to transform the LCP array into the LPF

array, that is, the permutation that satisfies LPF[π[i]] = LCP[i].

The final permutation is obtained by composing the SA (which is a
permutation) with the transpositions produced in step 8. For our example,
this process is shown in Figure 3. The actual final permutation is

(

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 2 3 5 7 10 1 13 4 6 9 8 12 11

)

.

LPF

1 3 4 2 3 0 1 2 3 4 1 2 2

1 1 0 3 2 4 3 2 2 4 3 2 1 0

LCP

3 2 4 3 2 4 3 20 0 1 2 11

0

Fig. 3. The permutation of LCP that gives LPF, as computed by the algorithm
LPF-by-permuting-LCP.
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The algorithm LPF-by-permuting-LCP uses only one integer ar-
ray in addition to its input and output since the next array it uses is
substituted for the nextPos array. We proved the following result:

Theorem 2. The algorithm LPF-by-permuting-LCP computes the LPF
array of a string of length n from its Suffix Array in linear time and space.
It requires n+O(1) integer cells in addition to its input and output.

Note that the elements of LPF are exchanged (lines 7–9) only if they
are not in increasing order. Which elements are compared, depends on
values in nextPos, and this in turn depends only on the Suffix Array.
So, for a given Suffix Array, one can construct a sorting network imple-
menting lines 6–9 of the algorithm LPF-by-permuting-LCP. Hence,
the following proposition holds:

Proposition 4. For a given Suffix Array of a string, there exists a sort-
ing network processing a sequence of n numbers in such a way that it
transforms the LCP array into the LPF array. Moreover, the shape of the
sorting network depends only on the Suffix Array, but not on its LCP

array nor on the actual string.

7 Conclusion

A number of interesting problems remain open. First, it is easy to compute
the LZ77 factorization using the LPF array. However, no way of doing
the opposite computation is known. The LZ77 factorization contains less
information and therefore, it may not be of great use in constructing the
LPF array.

Second, our algorithm LPF-optimal is time-space optimal assuming
the SA and LCP arrays are used for computing the LPF array. It is of
great interest to find fast algorithms that compute the LPF array without
such information or, more generally, without using any string indexes.
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computation revisited, in: J. Fiala, J. Kratochv́ıl, and M. Miller, eds., Proc. of

IWOCA 2009, Lecture Notes in Comput. Sci. 5874, Springer, Heidelberg, 2009,
158–169.

6. M. Crochemore, L. Ilie, and W. F. Smyth. A simple algorithm for computing the
Lempel-Ziv factorization. In J. A. Storer and M. W. Marcellin, editors, 18th Data

Compression Conference, pages 482–488. IEEE Computer Society, Los Alamitos,
CA, 2008.

7. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Publishing,
Hong-Kong, 2002. 310 pages.

8. F. Franek, J. Holub, W. F. Smyth, and X. Xiao. Computing quasi suffix arrays.
Journal of Automata, Languages and Combinatorics, 8(4):593–606, 2003.

9. G. Nong, S. Zhang, and W. H. Chan. Linear Time Suffix Array Construction Using
D-Critical Substrings, In G. Kucherov and E. Ukkonen, editors, Combinatorial

Pattern Matching, volume 5577 of Lecture Notes in Computer Science, pages 54–
67. Springer, 2009.

10. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge, UK, 1997. 534
pages.
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