
HAL Id: hal-01806293
https://hal.science/hal-01806293

Submitted on 1 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Order-Preserving Indexing
Maxime Crochemore, S Iliopoulos, Tomasz Kociumaka, Marcin Kubica,

Alessio Langiu, Solon Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz
Walen

To cite this version:
Maxime Crochemore, S Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu, et al.. Order-
Preserving Indexing. Theoretical Computer Science, 2016. �hal-01806293�

https://hal.science/hal-01806293
https://hal.archives-ouvertes.fr

Order-Preserving IndexingI

Maxime Crochemorea, Costas S. Iliopoulosa, Tomasz Kociumakab, Marcin
Kubicab, Alessio Langiuc, Solon P. Pissisa, Jakub Radoszewskib, Wojciech

Rytterb, Tomasz Waleńb

aDepartment of Informatics, King’s College London,
Strand, London, WC2R 2LS, United Kingdom

bFaculty of Mathematics, Informatics and Mechanics, University of Warsaw,
Stefana Banacha 2, 02-097 Warsaw, Poland

cInstitute for Coastal Marine Environment of the National Research Council
(IAMC-CNR), Unit of Capo Granitola, Via del Faro no. 3, 91021 Granitola, TP, Italy

Abstract

Kubica et al. (Information Processing Letters, 2013) and Kim et al. (Theoret-
ical Computer Science, 2014) introduced order-preserving pattern matching:
for a given text the goal is to find its factors having the same ‘shape’ as a
given pattern. Known results include a linear-time algorithm for this prob-
lem (in case of polynomially-bounded alphabet) and a generalization to mul-
tiple patterns. We propose an index that enables order-preserving pattern
matching queries in time proportional to pattern length. The index can be
constructed in O(n log log n) expected time or O(n log n) deterministic time.
The index is an incomplete order-preserving suffix tree which may miss a
single edge label at each branching node. For most applications such incom-
plete suffix trees provide the same functional power as the complete ones.
We show a number of their applications, including computation of longest
common factors, longest previously occurring factors and squares in a string
in the order-preserving setting. We also give an O(n

√
log n)-time algorithm

IA preliminary version of this paper appeared in the Proceedings of the String Pro-
cessing and Information Retrieval Symposium 2013 (SPIRE 2013), pp. 84–95, 2013.

Email addresses: maxime.crochemore@kcl.ac.uk (Maxime Crochemore),
c.iliopoulos@kcl.ac.uk (Costas S. Iliopoulos), kociumaka@mimuw.edu.pl (Tomasz
Kociumaka), kubica@mimuw.edu.pl (Marcin Kubica), alessio.langiu@iamc.cnr.it
(Alessio Langiu), solon.pissis@kcl.ac.uk (Solon P. Pissis), jrad@mimuw.edu.pl
(Jakub Radoszewski), rytter@mimuw.edu.pl (Wojciech Rytter), walen@mimuw.edu.pl
(Tomasz Waleń)

Preprint submitted to Theoretical Computer Science June 29, 2015

constructing complete order-preserving suffix trees.

Keywords: order-preserving matching, order-preserving indexing, suffix
tree

1. Introduction

We consider pattern matching and repetition discovery problems in the
order-preserving setting. In the order-preserving pattern matching problem
we look for consecutive fragments of a text which have the same relative
order of letters as a pattern. This problem was introduced independently
by Kim et al. [1] and Kubica et al. [2]. Applications of the order-preserving
setting include detecting trends in time series, which appear naturally e.g.
when considering the stock market or melody matching of two musical scores;
see [1].

The study of order-preserving model evolved from the combinatorial study
of patterns in permutations. The latter is focused on pattern avoidance, that
is, counting the number of permutations not containing a subsequence order-
isomorphic to a given pattern. Note that here the subsequences need not
to be consecutive. The first results were given by Knuth [3] (avoidance of
312), Lovász [4] (avoidance of 213) and Rotem [5] (avoidance of both 231
and 312). Currently this is a very active field of research; a conference on
permutation patterns has been held annually since 20031. On the algorith-
mic side, pattern matching in permutations (as a subsequence) was shown
to be NP-complete [6]. A number of polynomial-time algorithms for special
cases of patterns were developed [7, 8, 9] and very recently an FPT algorithm
parameterized by the length of the pattern was proposed by Guillemot and
Marx [10]. A survey by Bruner and Lackner [11] lists further algorithmic
results related to permutation patterns.

The (consecutive) order-preserving model was first studied by Kim et
al. [1] and Kubica et al. [2]. In each of these papers an O(n + m logm)-
time algorithm for pattern matching in this model is presented, where n is
the length of the text and m is the length of the pattern. Under a natural
assumption that the characters of the pattern can be sorted in linear time,
the algorithms can be implemented in O(n + m) time. Several alternative

1http://www.etsu.edu/cas/math/pp2014/history.aspx

2

solutions for order-preserving pattern matching problem, including practi-
cal implementations, have been proposed recently; see [12, 13, 14, 15, 16].
An algorithm for order-preserving matching with mismatches was published
by Gawrychowski and Uznański [17]. A multiple-pattern matching algo-
rithm based on the algorithm of Aho and Corasick was developed by Kim et
al. [1]. Other studied problems in the order-preserving model include prefix
tables [18, 16], periods, borders, and covers [16]. Order-preserving matching
in the context of ternary order relations was recently studied in [19]. Also
some combinatorial results concerning order-preserving squares have been
obtained [20].

We introduce the problem of indexing for order-preserving pattern match-
ing, in which one needs to preprocess a text to enable fast order-preserving
pattern matching queries. In the literature there are a number of results for
indexing in a related model of parameterized pattern matching. This model
was introduced by Baker [21] who proposed an index based on suffix trees
with O(n log n)-time construction. The result was later improved by Cole and
Hariharan [22] to O(n) construction time. Recently, Lee et al. [23] presented
an online construction algorithm with the same time complexity. What Cole
and Hariharan [22] proposed was actually a general scheme for construction
of suffix trees for so-called quasi-suffix families with a constant-time character
oracle. This result can also be applied in the order-preserving setting. How-
ever, the resulting construction algorithm runs in O(n log n/ log log n) time
at least for the representation of strings used in our paper (codes as defined
in Section 2). Here the character oracle answers queries in O(log n/ log log n)
time.

Our results. We introduce an index for order-preserving pattern matching
that given a pattern of length m over an integer alphabet Σ polynomially
bounded in m, in O(m) time determines whether the pattern occurs in the
text. The index has linear size and can be constructed in O(n log log n)
expected time (or O(n log n) deterministic time). The index is based on
incomplete order-preserving suffix trees (incomplete op-suffix-trees, in short).
We also show a number of other applications of these trees, including efficient
computation of: longest common factors of a number of strings (using an
op-suffix-tree of multiple strings), longest previous factors in a string and
squares in this model. We also introduce (complete) order-preserving suffix
trees (op-suffix-trees) and show how they can be constructed using their
incomplete counterpart in O(n

√
log n) time. We provide randomized (Las

3

Vegas) algorithms for the word-RAM model with Ω(log n) word size.

Structure of the paper. In Section 2 we introduce codes which transform
a string into a sequence of integer pairs so that order-isomorphism of strings
is equivalent to equality of their codes. In Section 3 we give a formal defini-
tion of a complete and an incomplete op-suffix-tree and describe their basic
properties. In Sections 4 and 5 we show an O(n log log n) construction of an
incomplete op-suffix-tree. The former section contains an algorithmic tool-
box that is also used in further parts of the paper. Applications of our data
structure are presented in Section 6. In Section 7 we obtain a construction
of complete op-suffix-trees.

2. Order-Preserving Code

Let w = w1 . . . wn be a string of length n over an integer alphabet Σ. We
assume that Σ is polynomially bounded in terms of n, i.e. Σ = {1, . . . , nc}
for an integer constant c. The length of w is denoted by n = |w|. By w[i..j]
we denote the factor wi . . . wj. For prefixes and suffixes of w we use a shorter
notation w[..i] = w[1..i] and w[i..] = w[i..n], respectively.

We define α(w) and β(w) as the rightmost occurrence of the predecessor
of wn and the rightmost occurrence of the successor of wn among letters of
w[..n− 1]. In particular, if wn occurs in w[..n− 1], then α(w) and β(w) both
point to the rightmost occurrence of wn in w[..n− 1]. More formally:

α(w) is the largest j < n such that wj = max{wk : k < n, wk ≤ wn},

if there is no such j, then α(w) = 0. Similarly, we define:

β(w) is the largest j < n such that wj = min{wk : k < n, wk ≥ wn},

and β(w) = 0 if no such j exists. See Figure 1 for an example.
Two simple properties of α and β are listed in the observation below.

Observation 1. Let w be a string of length n. Then:

(a) For any k ∈ {1, . . . , n− 1} we have

wk ≤ wn ⇐⇒ α(w) 6= 0 ∧ wk ≤ wα(w)

and symmetrically

wk ≥ wn ⇐⇒ β(w) 6= 0 ∧ wk ≥ wβ(w).

4

5

2

7

5

1

4
5

2

7

5

1

5

Figure 1: To the left: w = 5 2 7 5 1 4. Here w6 = 4 does not occur in w[..5]. We have
α(w) = 2 since w2 = 2 the largest letter in w[..5] that is smaller than w6. Similarly,
β(w) = 4 since w4 = 5 is the rightmost occurrence of the smallest letter in w[..5] that is
larger than w6. To the right: w = 5 2 7 5 1 5. Here w6 = 5 occurs earlier in w. Therefore
α(w) = β(w) = 4 both indicate the position of the rightmost such occurrence.

(b) If wn = wk for some k < n, then α(w) = β(w) = max{k < n : wk = wn}.
Conversely, if α(w) = β(w) 6= 0, then wn = wα(w) = wβ(w).

Two strings x and y of the same length are called order-isomorphic, writ-
ten x ≈ y, if the relative order of letters is the same in both strings. More
formally, x ≈ y if

∀1≤i,j≤|x| xi ≤ xj ⇐⇒ yi ≤ yj.

Example 2. 5 2 7 5 1 4 9 4 5 ≈ 6 4 7 6 3 5 8 5 6, see Figure 2.

5

2

7

5

1

4

9

4
5

6

4

7
6

3

5

8

5
6

Figure 2: Example of two order-isomorphic strings. Their codes are equal to
(0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 4) (3, 0) (6, 6) (4, 4).

The relation between α and β and order-isomorphism is shown in the
following lemma (see also [2, 13]).

Lemma 3. Let x and y be two strings of length n such that x[1..n − 1] ≈
y[1..n− 1]. Denote i = α(x) and j = β(x). If i 6= j, then

x ≈ y ⇐⇒ yi < yn < yj.

Otherwise,
x ≈ y ⇐⇒ yi = yn = yj.

5

We omit conditions involving yi or yj when i = 0 or j = 0, respectively.

Proof. (⇒) Suppose that x ≈ y. By definition, for any k, 1 ≤ k ≤ n, the
order between yk and yn is the same as between xk and xn. Thus, it suffices
to prove xi < xn < xj and xi = xn = xj in the respective cases.

Definitions of α(x) and β(x) yield xi ≤ xn ≤ xj. Moreover, Observa-
tion 1(b) gives xi = xn = xj if i = j, and xi 6= xn 6= xj otherwise. In the
latter case we conclude that xi < xn < xj.

(⇐) We shall prove that for any indices k, ` (1 ≤ k < ` ≤ n) the relative
order between xk and x` is the same as between yk and y`. If ` 6= n this
follows from x[..n − 1] ≈ y[..n − 1]. Hence, we may assume ` = n. We
consider two cases.

If i = j, we have xn = xi from Observation 1(b). Combined with our
assumptions—yi = yn and x[..n − 1] ≈ y[..n − 1]—this allows to conclude
the claimed equivalence. Namely, the relative order between xk and xn is the
same as between xk and xi, which in turn is the same as between yk and yi
(since i, k < n) and consequently between yk and yn.

Now, we may assume i 6= j, which by Observation 1(b) implies xk 6= xn.
If xk > xn, then j 6= 0 and xk ≥ xj by Observation 1(a). Thus, yk ≥ yj, and
consequently yk ≥ yj > yn. Analogously, if xk < xn, then i 6= 0, xk ≤ xi, and
therefore yk ≤ yi < yn.

We introduce codes of strings in a similar way as in [2]:

LastCode(w) = (α(w), β(w))

and

Code(w) = (LastCode(w[..1]), LastCode(w[..2]), . . . , LastCode(w[..|w|])).

Using codes one can obtain an equivalent characterization of order-
isomorphism:

Lemma 4. Let x and y be two strings of length n. Then

(a) x ≈ y ⇐⇒ x[..n− 1] ≈ y[..n− 1] ∧ LastCode(x) = LastCode(y).

(b) x ≈ y ⇐⇒ Code(x) = Code(y).

6

Proof. (a) To prove (⇒) it is enough to observe that α and β depend only
on the relative order of letters in the underlying string. For (⇐), it suffices
to show that

xk ≤ xn ⇐⇒ yk ≤ yn and xk ≥ xn ⇐⇒ yk ≥ yn.

As x and y are symmetric, it suffices to argue that xk ≤ xn =⇒ yk ≤ yn
and xk ≥ xn =⇒ yk ≥ yn. If xk ≤ xn, then by Observation 1(a) xk ≤ xα(x).
Due to x[..n− 1] ≈ y[..n− 1], we have yk ≤ yα(x) = yα(y). We conclude that
indeed yk ≤ yn, again by Observation 1(a). The other implication is obtained
through a symmetric argument using β instead of α.

Part (b) follows from part (a) by induction.

The codes of strings can be computed efficiently. Applying Lemma 1 from [2]
to strings over polynomially-bounded alphabet we obtain:

Lemma 5. For a string w of length n, Code(w) can be computed in O(n)
time.

3. Order-Preserving Suffix Trees

Let us define the following family of sequences:

SufCodes(w) = {Code(w[1..])#, Code(w[2..])#, . . . , Code(w[|w|..])#};

see Figure 3. The (complete) order-preserving suffix tree of w (op-suffix-tree
in short), denoted opSufTree(w), is a compacted trie of all the sequences in
SufCodes(w).

1 2 4 4 2 5 5 1
2 4 4 2 5 5 1
4 4 2 5 5 1
4 2 5 5 1
2 5 5 1
5 5 1
5 1
1

(0,0) (1,0) (2,0) (3,3) (2,2) (4,0) (6,6) (1,1) #
(0,0) (1,0) (2,2) (1,1) (3,0) (5,5) (0,4) #
(0,0) (1,1) (0,2) (2,0) (4,4) (0,3) #
(0,0) (0,1) (1,0) (3,3) (0,2) #
(0,0) (1,0) (2,2) (0,1) #
(0,0) (1,1) (0,2) #
(0,0) (0,1) #
(0,0) #

suffixes of w: SufCodes(w):

Figure 3: SufCodes(w) for w = 1 2 4 4 2 5 5 1.

7

The nodes of opSufTree(w) with at least two children are called branching
nodes. Together with the leaves they form explicit nodes of the tree. All the
remaining nodes (dissolved in the compacted trie) are called implicit. By
nodes of opSufTree(w) we mean both explicit and implicit nodes. For a node
v, its explicit descendant (denoted as FirstDown(v)) is the top-most explicit
node in the subtree of v (if v is explicit, then FirstDown(v) = v). The
locus of v is defined as FirstDown(v) together with the distance between v
and FirstDown(v). The locus of a node corresponding to x is denoted as
Locus(x). Note that two factors share the locus precisely whenever they are
order-isomorphic.

(0, 0)

(1,1)

(2, 0)

3

#

6

(1, 0)

(2,2)

(1, 1)

2

(0,1)

5

(2, 0)

1

(0,1)

(1, 0)

4

#
7

#
8

(0, 0)

(1, 1)

(0, 2)

(2, 0)

(4, 4)

(0, 3)

#

#

(1, 0)

(2, 2)

(1, 1)

(3, 0)

(5, 5)

(0, 4)

#

(0, 1)

#

(2, 0)

(3, 3)

(2, 2)

(4, 0)

(6, 6)

(1, 1)

#

(0, 1)

(1, 0)

(3, 3)

(0, 2)

#

#

#

Figure 4: The uncompacted trie of SufCodes(w) for w = 1 2 4 4 2 5 5 1 (to the left) and
its compacted version, the complete op-suffix-tree of w (to the right). The dotted arrows
(left figure) show suffix links for branching nodes. One of them leads to an implicit node:
Locus(2 5 5) = Locus(2 4 4) Locus(2 5) = Locus(2 4). This is because 2 5 5 1 6≈ 2 4 4 2
but 2 5 5 ≈ 2 4 4 and 5 5 1 ≈ 4 4 2. Boldface labels in the right figure are present also in the
incomplete op-suffix-tree.

Only the explicit nodes of opSufTree(w) are stored. The tree contains
O(n) leaves. Hence, its size is O(n). The leaf corresponding to Code(w[i..])#
is labeled with the number i. Each branching node stores its depth and one
of the occurrences of the corresponding factor. Each edge stores the code of
only its first character. The codes of all the remaining characters of any edge
can be obtained using a character oracle that can efficiently provide the code
LastCode(w[i..j]) for any i < j.

Each explicit node v stores a suffix link, SufLink(v), that may lead to an

8

implicit or an explicit node (see an example in Figure 4). The suffix link is
defined as:

SufLink(Locus(x)) = Locus(DelFirst(x)),

where DelFirst(x) results in removing the first character of x. Note that,
contrary to its name, the suffix link does not literally point to the suffix
of a node’s label; see Figure 5. However, the definition is valid due to the
following easy observation.

root

p

leaves

v

v′

SufLink

Figure 5: Let γ be the text spelled out on a path from the root to v in the uncompacted
op-suffix trie of w. Similarly, let γ′ be the text on a path to v′ = SufLink(v). Observe that
not necessarily γ′ is a suffix of γ, but γ′ = Code(DelFirst(x)), where x = w[p..p + k − 1]
and p is the label on any leaf in the subtree rooted in v and k = |γ|.

Observation 6.
Code(x)=Code(y) =⇒ Code(DelFirst(x))=Code(DelFirst(y)).

We also introduce an incomplete order-preserving suffix tree of w, denoted
T (w), in which the character oracle is not available and each explicit node v
can have one outgoing edge that does not store its first character (incomplete
edge). This edge is located on the longest path leading from v to a leaf.

4. Algorithmic Toolbox

We use a predecessor data structure to compute the LastCodes of a se-
quence changing in a queue-like manner. Dynamic predecessor queries are
answered using y-fast trees that were introduced by Willard [24]:

Lemma 7 ([24]). Let N be an integer such that ω = Ω(logN), where ω is the
machine word-size. There exists a data structure that uses O(|X|) space to
maintain a set X of key-value pairs with keys from {1, . . . , N} and supports
the following operations in O(log logN) expected time:

9

• find(k): find the value associated with k, if any,

• predecessor(k): return the pair (k′, v) ∈ X with the largest k′ ≤ k,

• successor(x): return the pair (k′, v) ∈ X with the smallest k′ ≥ k,

• remove(k): remove the pair with key k,

• insert(k, v): insert (k, v) to X removing the pair with key k, if any.

Lemma 8 (Weak Character Oracle). An initially empty string x over an
alphabet Σ can be maintained in a data structure D(x) of size O(|x|) so that
the following operations are supported in O(log log |Σ|) expected time:

• compute LastCode(xa) for a given letter a ∈ Σ;

• append a single letter a ∈ Σ to x;

• remove the first letter from x (DelFirst(x)).

If x is empty, the third operation is not allowed.

Proof. We apply Lemma 7 as follows. The keys are the symbols present in
x while the values associated with them are the locations of their last occur-
rences represented as time-stamps (that is, the ordinal numbers of the push
operations used to append them). Then the LastCode() query is answered
using one predecessor and one successor query.

Our second tool is the dynamic weighted ancestor data structure proposed
by Kopelowitz and Lewenstein [25] and originally motivated by problems
related to ordinary suffix trees. A weighted tree is a rooted tree with integer
weight assigned to each node, such that a monotonicity condition is satisfied:
the weight of a node is strictly greater than the weight of its parent.

Lemma 9 ([25]). Let N be an integer such that ω = Ω(logN), where ω is the
machine word-size. There exists a data structure which maintains a weighted
tree T with weights {1, . . . , N} in O(|T |) space and supports the following
operations in O(log logN) expected time:

• given a node v and a weight g find the highest ancestor of v with weight
at least g,

• insert a leaf with weight g and v as a parent,

10

• insert a node with weight g by subdividing the edge joining v with its
parent.

The weights of inserted nodes must meet the monotonicity condition.

5. Constructing Incomplete Order-Preserving Suffix Tree

We design a version of Ukkonen’s algorithm [26] in which suffix links
are computed using weighted ancestor queries; see Figure 6. The weights
of explicit nodes represent their depths. In this case for a node u, by
WeightedAnc(u, d) we denote its (explicit or implicit) ancestor at depth
d. Note that such a node can be found with a weighted ancestor query
of Lemma 9, which actually returns FirstDown(WeightedAnc(u, d)).

Our algorithm works online. While reading the string w it maintains:

• the incomplete op-suffix-tree T (w) for w without endmarkers (#);

• the longest suffix x of w such that Code(x) corresponds to a non-leaf
node of T (w), together with the data structure D(x); x is called the
active suffix;

• the node (explicit or implicit) Locus(x), called the active node.

In the algorithm all implicit nodes are represented in a canonical form: the
explicit descendant (FirstDown) and the distance to this descendant (depth
difference). Each explicit node stores a dynamic hash table (see [22, 27])
of its explicit children, indexed by the labels of the respective edges. The
explicit child corresponding to the incomplete edge is stored outside of the
hash table.

Description of one iteration of the algorithm. In one iteration w is
extended by one character, say a. We traverse the so-called active path in
T (w):

1. We search for the longest suffix x′ of x such that Locus(x′a) appears in
the tree.

2. For each longer suffix x′′ of x we create a branch leading to a new leaf
node corresponding to x′′a.

3. The active path is found by jumping along suffix links, starting at the
active node.

11

4. The suffix links of the newly created explicit nodes are computed using
weighted ancestor queries; see Figure 6. This part differs substantially
from Ukkonen’s original algorithm.

5. The end-point of the active path becomes the parent of the new active
node, and x′a is the new active suffix.

To compute the last symbol of Code(xa) we use the Weak Character Oracle
(Lemma 8).

In the algorithm we use two auxiliary subroutines.

v

u

FirstDown(v)

vv′

uu′

WeightedAnc(u′, |v| − 1)

SufLin
k(v)

SufLin
k(u)

Figure 6: Computation of SufLink(v). Here u is explicit.

Function Transition(v, (p, q)). This function checks if v has an (explicit or
implicit) child v′ such that the edge from v to v′ represents the code (p, q). It
returns the node v′ or nil if such a node does not exist. In the implementation
we check, using hash tables, if any of the labeled edges outgoing from v starts
with the code (p, q). For the (at most one for v) incomplete edge we can test
whether the starting letter of its code equals (p, q) by verifying the inequalities
from Lemma 3 for the corresponding factor of the text w.

Function Branch(v, (p, q), i). This function creates an edge from v with the
code (p, q). The newly created leaf is labeled with i. If v was implicit, then
it is made explicit at this point. The edge leading to its already existing
child remains incomplete. This procedure also adds a SufLink from the leaf
number i− 1 to the new leaf number i.

The whole structure of the algorithm is presented in the following Algo-
rithm 1.

12

Algorithm 1: Construct incomplete op-suffix-tree T (w)

Initialize T as a tree consisting of a single node: root ;

v := root ; x := empty string;

for i := 1 to n+ 1 do

if i ≤ n then lc := LastCode(x · wi) else lc := #;

beyondRoot := false;

while Transition(v, lc) = nil do

u := FirstDown(v); { the first explicit node below v, including v }
Branch(v, lc, i− |x|);
if v 6= root then

x := DelFirst(x);

if i ≤ n then lc := LastCode(x · wi);
{ Computation of suffix link; see Figure 6: }
u′ := SufLink(u); { u′ can be an implicit node }
v′ := WeightedAnc(u′, |x| − 1); { weighted ancestor query }
SufLink(v) := v′; v := v′;

else
beyondRoot := true;

end

end

if not beyondRoot then
v := Transition(v, lc);

if i ≤ n then x := x · wi;
end

end

return T ;

Remark 10 (Why incomplete?). At first glance it might be unclear why in-
complete edges appear. Consider the situation when we jump to an implicit
node v′ = SufLink(v) and we later branch in this node. The node v′ becomes
explicit and the existing edge from this node to some node z becomes an
incomplete edge. Despite incompleteness of the edge (v′, z) the forthcoming
equality tests between the (known) last code letter of the active string and
the first (unknown) code letter of the label of this edge can be done quickly
due to Lemma 3.

13

In the pseudocode above we perform O(n) operations in total. This follows
from the fact that each step of the while-loop creates a new edge in the
tree. The operations involving x and the operations on the data structure
for weighted ancestor queries are performed in O(log log n) expected time
each. All the remaining operations require constant time only. Hence, we
obtain the following result.

Theorem 11. The incomplete op-suffix-tree T (w) for a string w of length n
can be computed in O(n log log n) expected time.

Note that an incomplete op-suffix-tree can be constructed in O(n log n)
worst-case time. It suffices to use balanced binary search trees to answer
dynamic predecessor queries (which are also used in the data structure for
weighted level ancestor queries) and to store the children of each node of the
suffix tree.

6. Applications of Order-Preserving Incomplete Suffix Trees

6.1. Indexing Problem

The most common application of suffix trees is pattern matching with
time complexity independent of the text length.

Theorem 12. Assume that we have T (w) for a string w of length n. Given a
pattern x of length m, one can check if w contains a factor order-isomorphic
to x in O(m) time and report all occurrences of such factors in O(m+ Occ)
time, where Occ is the number of occurrences reported.

Proof. First, we compute the code of the pattern. This takes O(m) time due
to Lemma 5. To answer a query, we traverse down T (w) using the successive
symbols of the code. At each step we use the function Transition(v, (p, q)).

This enables to find the locus of x in O(m) time. Afterwards all the
occurrences of factors that are order-isomorphic to x can be listed in the
usual way by inspecting all leaves in the subtree of Locus(x).

Remark 13. The O(m) query time requires the letters in the pattern x to be
sortable inO(m) time. In general, sorting can be performed inO(m

√
log logm)

expected time [28] or in O(m log logm) time deterministically [29] since we
assume that Σ consists of integers fitting into machine words.

14

6.2. Order-Preserving Suffix Tree of Multiple Strings

In many applications instead of a suffix tree of a single text one uses a
joint suffix tree of several strings. In the standard setting such a generalized
suffix tree of (w(i))ki=1 is often defined as the suffix tree of w(1)$1w

(2)$2 . . . w
(k),

where $i are distinct endmarkers. In the order-preserving setting, however,
such a black-box reduction fails since the construction algorithm would use
codes of the delimiters $i instead of the delimiters themselves. Nevertheless,
we can adapt the algorithm presented in the previous section to construct
T (w(1), . . . , w(k)), the incomplete generalized op-suffix-tree of (w(i))ki=1.

Before we discuss the necessary adjustments, let us formally define the
tree T (w(1), . . . , w(k)). Let #1, . . . ,#k be distinct symbols which do not occur
in Code(x) for any string x. We define

SufCodes(w(1), . . . , w(k)) = {Code(w(i)[j..])#i : 1 ≤ i ≤ k, 1 ≤ j ≤ |w(i)|}.

The generalized order-preserving suffix tree opSufTree(w(1), . . . , w(k)) is a
compacted trie of all suffixes in SufCodes(w(1), . . . , w(k)). The auxiliary data
stored in explicit nodes is the same as in the order-preserving suffix tree of
a single string. The leaf corresponding to Code(w(i)[j..])#i is labeled with a
pair (i, j). The value i is sometimes referred to as the color of the leaf.

In the generalized incomplete order-preserving suffix tree T (w(1), . . . , w(k))
each explicit node v may have one outgoing edge that does not store its first
character. This is the edge leading towards the leaf with lexicographically
smallest label (i, j) among all the leaves in the subtree of v.

Theorem 14. The incomplete generalized op-suffix-tree T (w(1), . . . , w(k)) of
a collection of strings (w(i))ki=1 of total length n can be constructed in
O(n log log n) expected time.

Proof. It suffices to run Algorithm 1 sequentially for all strings w(i) with two
minor modifications:

• in the first step T is initialized as the tree consisting of the root only
but later the result of the previous steps is used,

• a different end-marker #i is appended for each string.

The number of iterations of the while-loop when processing w(i) is bounded
by |w(i)|, and each iteration takes O(log log n) expected time. Thus, in total
the running time is O(n log log n) as announced.

15

One of the motivating applications of suffix trees in the standard setting
was finding the longest common factor of two strings. An analogue of this
problem in the order-preserving setting is especially important since it pro-
vides a way to find common trends in time series. In a generalization of
this problem, given an integer d and k strings w(1), . . . , w(k), we need to find
a longest string that is order-isomorphic to a factor of at least d out of k
strings w(1), . . . , w(k). An efficient solution to this problem can be obtained
using the generalized op-suffix-tree.

Theorem 15. The longest order-preserving factors common to at least d out
of k given strings w(1), . . . , w(k) of total length n can be computed in O(n)
time for all values d = 2, . . . , k, provided that T (w(1), . . . , w(k)) is given.

Proof. A factor common to d strings corresponds to a node in the generalized
op-suffix-tree with leaves of at least d distinct colors in the subtree. Given
T (w(1), . . . , w(k)), these numbers can be computed for all explicit nodes in
O(n) time using a result of Hui [30].

In the most natural case of k = d = 2, with strings of lengths n1 ≤ n2,
one can actually obtain an algorithm using O(n2 log log n1) time and O(n1)
space. This is achieved using a standard technique of partitioning the longer
string into fragments of length up to 2n1 with overlaps of n1 characters. The
longest common order-preserving factor must occur in one of the fragments.

6.3. Longest Previous Order-Preserving Factors

Given a string w of length n, we introduce the longest previous order-
preserving factor (op-LPF) table defined as follows. For any position i in w,
op-LPF[i] specifies the length of the longest factor u of w starting at position
i such that a factor order-isomorphic to u occurs earlier in w. Formally,

op-LPF[i] = max{` : w[i..i+ `− 1] ≈ w[j..j + `− 1] for some j < i};

see Figure 7. Several algorithms solving this problem in linear time in the
standard setting are known [31, 32].

The op-LPF table can be computed during the construction of T (w) with
Algorithm 1. Every time we perform a Branch(v, (p, q), j) operation to insert
a new leaf, then LPF [j] becomes the depth of the node v (which is equal to
|x| in the algorithm). Here we use the fact that the leaves are added to the
tree in the order of increasing labels. Therefore, when adding the leaf number

16

4

6

4

7
6

3

5

8
9

6

Figure 7: The op-LPF table for this string is: [0, 1, 2, 2, 2, 2, 3, 2, 2, 1]. We have op-LPF[6] =
2 because 3 5 ≈ 4 7; see the rectangles in the figure.

j, all the suffixes longer than the j-th suffix are already present in the tree
and we can compute the answer for j. Actually, one could apply the same
approach to compute the standard LPF table using Ukkonen’s algorithm.

While this approach has several advantages, it is likely that Algorithm 1
is not optimal and faster solutions do not need to be based on the framework
due to Ukkonen. Thus, below we provide a black-box solution using the
(incomplete) op-suffix tree as the starting point.

The problem of computing LPF table can actually be defined for arbitrary
rooted trees with a linear order of the leaves: for each leaf L we are to find
a leaf L′ < L such that LCA(L,L′), i.e. the lowest common ancestor of the
two, is as high as possible. The actual value LPF [L] is then the (weighted)
depth of LCA(L,L′).

The classic linear-time solution is as follows. We arrange leaves in the or-
der of the depth-first traversal of the tree: L1, . . . , Ln. Then, we observe that
the nodes LCA(L1, Lk), . . . ,LCA(Lk−1, Lk) have non-decreasing depths while
the nodes LCA(Lk+1, Lk), . . . ,LCA(Ln, Lk) have non-increasing depths. To
exploit this property, for each k we compute pk = max{k′ < k : Lk′ < Lk}
and sk = min{k′ > k : Lk′ < Lk}. Then LPF [Lk] is the depth of either
LCA(Lk, Lpk) or LCA(Lk, Lsk), whichever is larger. The sequences pk and sk
are computed in linear time using a folklore stack-based algorithm. Once pk
and sk are known, two LCA queries suffice to determine the answer LPF [Lk].
To conclude we need to recall that LCA queries in a tree can be answered in
O(1) time after O(n)-time preprocessing [33, 34].

Theorem 16. Let w be a string of length n. Having T (w), one can compute
the op-LPF table of w in O(n) time.

17

6.4. Order-Preserving Squares

A string uv is called an order-preserving square (an op-square, in short)
if u ≈ v. The length of the op-square is |uv|. An op-square represents a
repetition of a pattern in a time series. Using (incomplete) op-suffix-trees we
can obtain efficient algorithms for finding and reporting op-squares. We show
how to modify an O(n log n)-time square-detecting algorithm by Gusfield and
Stoye [35] to check, for each length k, if a given string w contains an op-square
of length 2k.

Note that in the standard setting the analogous problem can be solved
in O(n) time [36]. This approach, however, is based on an older O(n log n)-
time algorithm of Main and Lorentz [37]. The key property exploited by this
solution is that if w[i..i+2k−1] and w[j..j+2k−1] are (regular) squares such
that i ≤ j ≤ i+ k, then w[p..p+ 2k − 1] is a square for every p ∈ {i, . . . , j}.
In the order-preserving setting this is no longer true.

Example 17. For w = 1 2 5 6 3 4, the factors w[1..4] and w[3..6] are op-squares,
but w[2..5] is not because 2 5 6≈ 6 3.

Branching regular squares. We say that a substring w[i..i+ 2k − 1] is a
branching square if w[i..i+ k− 1] = w[i+ k..i+ 2k− 1] and w[i+ 2k] 6= w[i].
The algorithm of Gusfield and Stoye [35] uses the suffix tree of a text w,
|w| = n, to find all branching squares in w in O(n log n) time. A branching
square of length 2k (i.e., w[i..i+ 2k − 1]) is detected as a pair of leaves with
labels that differ by k (i.e., i and i+ k) whose lowest common ancestor is at
depth k (and corresponds to w[i..i+ k − 1]).

Non-extendible and non-shiftable op-squares. We say that an op-
square w[i..i+ 2k − 1] is non-extendible if either i+ 2k − 1 = n or

w[i..i+ k] 6≈ w[i+ k..i+ 2k].

A non-shiftable op-square is defined similarly but with the condition:

w[i+ 1..i+ k] 6≈ w[i+ k + 1..i+ 2k].

Both notions are generalizations of branching regular squares to the order-
preserving setting. It turns out that when we apply the algorithm from [35]
to the op-suffix-tree of w, we find all non-extendible op-squares in w (i.e.,
not necessarily all non-shiftable op-squares); see the following lemma.

18

Lemma 18. Let w be a string. Then w[i..i + 2k − 1] is a non-extendible
op-square if and only if the LCA of leaves labeled with i and i+ k in T (w) is
Locus(w[i..i+ k − 1]).

Proof. (⇒) If w[i..i+ 2k− 1] is a non-extendible op-square, then the longest
common prefix of Code(w[i..i + k]) and Code(w[i + k..i + 2k]) is exactly
Code(w[i..i + k − 1]). This yields that indeed Locus(w[i..i+ k − 1]) is the
lowest common ancestor of the leaves labeled i and i+ k.

(⇐) If the leaves labeled with i and i + k have their lowest common
ancestor at a node at depth exactly k, then

Code(w[i..i+ k − 1]) = Code(w[i+ k..i+ 2k − 1])

but
Code(w[i..i+ k]) 6= Code(w[i+ k..i+ 2k]).

Hence, indeed w[i..i+ 2k − 1] is a non-extendible op-square.

Now, it suffices to prove the following property.

Lemma 19. If w contains an op-square of a given length, then it contains a
non-extendible op-square of the same length.

Proof. Let w[i..i + 2k − 1] be the rightmost op-square of length 2k in w. If
i + 2k − 1 = n, then it is already a non-extendible op-square. Otherwise, it
is a non-shiftable op-square:

w[i+ 1..i+ k] 6≈ w[i+ k + 1..i+ 2k].

Hence,
w[i..i+ k] 6≈ w[i+ k..i+ 2k]

and consequently w[i..i+ 2k − 1] is a non-extendible op-square.

Consequently, we obtain an efficient algorithm for detecting an op-square
of a given length. Note that the algorithm does not require to query the
character oracle. It only processes the skeleton of the suffix tree.

Theorem 20. For a string w of length n, after O(n log n)-time preprocessing
one can check if w contains an op-square of a given length in O(1) time.

19

The algorithm of Gusfield and Stoye can also compute all the occurrences
of regular squares in a string in additional time proportional to the number
of reported occurrences. For this, it starts at every branching square w[i..i+
2k − 1] and shifts it to the left position-by-position as long as it forms a
square, i.e. as long as w[i− j] = w[i+ k − j], j = 1, 2, . . .

A generalization of this algorithm to op-squares requires efficient testing
if an op-square can be shifted to the left. This could be done using the
character oracle for the reversed text. However, there is a more efficient
solution.

Theorem 21. All occurrences of order-preserving squares in a string w of
length n can be computed in O(n log n + Occ) time, where Occ is the total
number of occurrences of op-squares.

Proof. We use the fact that the string w[i..i+ 2k − 1] is an op-square if and
only if the LCA node of the leaves of T (w) with labels i and i+ k has depth
at least k.

Recall that after O(n) preprocessing, LCA of nodes in a tree can be
computed in O(1) time [33, 34]. Using LCA-queries we can keep shifting
an non-extendible op-square to the left. We stop either when the tested
substring is not an op-square or when we encounter another non-extendible
op-square. The latter situation is possible since non-extendible op-squares
can still be shiftable. We obtain an algorithm with required complexity.

7. Constructing Complete Order-Preserving Suffix Tree

In this section we present efficient construction algorithms for a complete
op-suffix-tree in two variants. In the first variant we use the codes from
Section 2 and obtain O(n logn

log logn
) construction time. Later, we choose another

code to express order-isomorphism to obtain O(n
√

log n)-time construction
of an op-suffix-tree that uses this code.

In the first variant we apply the following result by Babenko et al. [38],
a data structure for range rank and range selection queries.

Lemma 22 ([38]). An array A[1..n] of integers (fitting machine words) can
be preprocessed in O(n

√
log n) time so that one can answer the following

queries in O(logn
log logn

) time:

1. Given indices i, j, k (with i ≤ j) count the number of elements in A[i..j]
smaller than A[k].

20

2. Given indices i ≤ j and an integer k, 1 ≤ k ≤ j − i+ 1, find the index
of the k-th smallest element in A[i..j].

As a consequence, we obtain a data structure for range predecessor and
range successor queries.

Corollary 23. An array A[1..n] of integers in {1, . . . , nO(1)} can be pre-
processed in O(n

√
log n) expected time so that one can answer the following

queries in O(logn
log logn

) expected time:

1. Given indices i ≤ j and an integer v compute the index of the largest
element in A[i..j] not larger than v.

2. Given indices i ≤ j and an integer v compute the index of the smallest
element in A[i..j] not smaller than v.

Proof. We maintain the data structure of Lemma 22 as well as the data
structure for (static) predecessor and successor queries, which maps any value
present in A into an index where it occurs. For this, we may use Lemma 7.
This gives additional O(n log log n) in construction time and O(log log n) for
each query.

In order to answer a predecessor query for v in range [i..j] we proceed as
follows: we find an index k such that A[k] is the successor of v+ 1 in A[1..n]
and ask for a rank of A[k] in A[i..j]. If the result r is non-zero, we return the
r-th smallest element in A[i..j]. Otherwise, v has no predecessor in A[i..j].
The procedure for a successor query is analogous.

Note that data structures with faster query times for range predeces-
sor/successor problem are known [39, 40]. However, the construction times
of these data structures are Ω(n log n).

The character oracle of Lemma 8 is efficient but it allows computation
of LastCodes only for a dynamic string that changes in a queue-like manner.
Now we show a general character oracle that is able to compute the LastCode
for any factor of w.

Lemma 24 (Strong Character Oracle). A string w of length n can be pre-
processed in O(n

√
log n) expected time, so that given indices i ≤ j one can

compute LastCode(w[i..j]) in O(logn
log logn

) expected time.

21

Proof. We construct an array A[1..n] with A[k] = (wk, k) and build the
structure of Corollary 23 over this array. (Actually, we map (a, b) 7→ an + b
so that the values are integers.) In order to answer the α(w[i..j]) query it
suffices to compute the index k1 of the predecessor of (wj, n) in A[i..j − 1].
We have α(w[i..j]) = k1− i+1. The β(w[i..j]) values are computed similarly
using range successor queries in an array B[1..n] with B[k] = (wk,−k).

To obtain a complete op-suffix-tree, we need to put labels on incomplete
edges and to provide a character oracle. Note that, using a character oracle
working in f(n) time, we can fill in the missing labels in O(nf(n)) time.

Corollary 25. The op-suffix-tree of a string of length n can be constructed
in O(n logn

log logn
) expected time.

7.1. Faster Construction with Different Codes

Below we show a slightly faster construction. For this, however, we need a
different encoding of strings that also maps order-isomorphism into equality.
A very similar code was already presented in [1]. For a string w of length n
we define:

prev<(w) = |{k : k < i, wk < wn}|, prev>(w) = |{k : k < i, wk > wn}|.

The counting code of a string w is defined as

LastCode ′(w) = (prev<(w), prev>(w))

and

Code ′(w) = (LastCode ′(w[..1]), LastCode ′(w[..2]), . . . , LastCode ′(w[..|w|])).

Example 26. The counting code of the string 5 2 7 5 1 4 9 4 5 from Figure 2 is
(0, 0) (0, 1) (2, 0) (1, 1) (0, 4) (2, 3) (6, 0) (2, 4) (4, 2).

The following lemma states that Code ′ is also an order-preserving code. A
similar result is present in [1] but we provide a proof for completeness.

Lemma 27. Let x and y be two strings of length n. Then

(a) x ≈ y ⇐⇒ x[..n− 1] ≈ y[..n− 1] ∧ LastCode ′(x) = LastCode ′(y).

(b) x ≈ y ⇐⇒ Code ′(x) = Code ′(y).

22

Proof. (a) To prove the (⇒) implication it is enough to observe that prev<
and prev> depend only on the relative order of letters in the underlying
string. For (⇐) we need to prove that the relative order between xk and xn
is the same as between yk and yn for every k < n.

First, suppose that xk < xn and (for a proof by contradiction) yk ≥ yn.
Since prev<(x) = prev<(y), there must exist an index ` < n such that x` ≥ xn
and y` < yn. This, however, implies xk < x` and yk > y`, a contradiction with
x[..n− 1] ≈ y[..n− 1]. Consequently, yk < yn whenever xk < xn. Applying a
symmetric argument with prev>, we conclude that xk > xn implies yk > yn.
When we exchange the roles of x and y in the previous argument, we obtain
equivalences xk < xn ⇐⇒ yk < yn and xk > xn ⇐⇒ yk > yn. This implies
xk = xn ⇐⇒ yk = yn which concludes the proof that x ≈ y.

Part (b) follows from part (a) by induction.

The main advantage of the counting codes is the existence of an effi-
cient offline character oracle, which can answer q queries about factors of
a text in O((n + q)

√
log n) time. To design the oracle we use a geometric

approach: the computation of LastCode ′ corresponds to counting points in
certain rectangles in the plane.

The orthogonal range counting problem is defined as follows. We are
given n points in the plane and we are to count the number of points in
axis-aligned rectangles given as queries. An efficient solution to this problem
was given by Chan and Pǎtraşcu.

Lemma 28 (Corollary 2.3 in [41]). Given n points and n axis-aligned rect-
angles in the plane we can count the number of points inside each rectangle
in O(n

√
log n) total time.

Lemma 29 (Offline Character Oracle). Let w be a string length n. In
O((n + q)

√
log n) total time one can answer q queries asking to compute

LastCode ′(w[i..j]) for given indices i ≤ j.

Proof. Let us represent pairs (i, wi) as points in the plane. Then we have
LastCode ′(w[i..j]) = (a, b), where a is the number of points that lie within
the rectangle A = [i, j − 1]× (−∞, wj) and b is the number of points in the
rectangle B = [i, j − 1]× (wj,∞); see Figure 8.

By Lemma 28, we can count the number of points in these rectangles in
O((n+ q)

√
log n) total time.

23

i

wi

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6 B

A

Figure 8: Geometric illustration of the sequence w = 5 4 6 5 2 6 1 5 6. The elements wi are
represented as points (i, wi). The computation of LastCode ′(w[2..8]) = (3, 2) corresponds
to counting points in rectangles A, B.

Theorem 30. The complete op-suffix-tree of a string of length n using the
counting code can be constructed in O(n

√
log n) expected time.

Proof. The skeleton of the op-suffix-tree for each valid order-preserving code
is the same. Hence, to construct the op-suffix-tree for the counting code, we
compute the skeleton of the suffix tree using the algorithm for incomplete op-
suffix-tree for the code of Section 2 (Theorem 11). Afterwards, we discard the
original labels and use the offline character oracle to insert the first characters
on each edge of the skeleton.

8. Conclusions and Open Problems

We have presented an O(n log log n)-expected-time and O(n log n)-worst-
case-time construction of an incomplete order-preserving suffix tree. We
have also presented an O(n

√
log n)-expected-time construction of a complete

order-preserving suffix tree. We have shown that the data structures can
serve for the purposes of indexing and detecting several types of regularities
in a string in the order-preserving setting.

Our O(n
√

log n)-time construction of a complete op-suffix-tree required
changing the so-called character oracle (that is, the encoding of the strings

24

used to map order-isomorphism into equality). The reason was that comput-
ing the main character oracle considered in this work reduced to range prede-
cessor/successor queries, which can be answered in O(logn

log logn
) time, whereas

computing the other oracle reduces to orthogonal range counting queries,
such that q such queries can be answered in O((n + q)

√
log n) time. How-

ever, due to a very recent work [42] q range predecessor/successor queries can
also be answered in O((n+q)

√
log n) time. Consequently, one can obtain the

better time complexity of constructing the complete op-suffix-tree without
changing the oracle.

A number of open questions arise from our work. The most natural
question refers to the existence of faster construction algorithms of both
data structures or deterministic construction algorithms with the same time
complexities. Another problem is related to order-preserving indexing. Our
index allows for O(m)-time queries, where m is the length of the pattern,
assuming that the alphabet of the pattern is polynomial in m. One can
ask whether there exists an index with equally good construction time and
O(m)-time queries for patterns over larger alphabet, i.e., alphabet that is
polynomial in n. Finally, it would be interesting to know if there is an
o(n log n)-time algorithm for finding the longest order-preserving square in a
string.

Acknowledgements

Tomasz Kociumaka is supported by Polish budget funds for science in
2013–2017 as a research project under the ‘Diamond Grant’ program (Min-
istry of Science and Higher Education, Republic of Poland, grant num-
ber DI2012 01794). Jakub Radoszewski receives financial support of Foun-
dation for Polish Science and is supported by the Polish Ministry of Sci-
ence and Higher Education under the ‘Iuventus Plus’ program in 2015-2016
grant no. 0392/IP3/2015/73. Wojciech Rytter is supported by grant no.
NCN2014/13/B/ST6/00770 of the National Science Centre.

References

[1] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park,
S. J. Puglisi, T. Tokuyama, Order-preserving matching, Theor. Comput.
Sci. 525 (2014) 68–79.

25

[2] M. Kubica, T. Kulczyński, J. Radoszewski, W. Rytter, T. Waleń, A
linear time algorithm for consecutive permutation pattern matching,
Inf. Process. Lett. 113 (12) (2013) 430–433.

[3] D. E. Knuth, The Art of Computer Programming, Volume I: Funda-
mental Algorithms, 3rd Edition, Addison-Wesley, 1997.

[4] L. Lovász, Combinatorial problems and exercices, North-Holland, 1979.

[5] D. Rotem, Stack sortable permutations, Discrete Mathematics 33 (2)
(1981) 185–196.

[6] P. Bose, J. F. Buss, A. Lubiw, Pattern matching for permutations, Inf.
Process. Lett. 65 (5) (1998) 277–283.

[7] M. H. Albert, R. E. L. Aldred, M. D. Atkinson, D. A. Holton, Algorithms
for pattern involvement in permutations, in: P. Eades, T. Takaoka
(Eds.), Algorithms and Computation — ISAAC 2001, Vol. 2223 of
LNCS, Springer Berlin Heidelberg, 2001, pp. 355–366.

[8] S. Guillemot, S. Vialette, Pattern matching for 321-avoiding permu-
tations, in: Y. Dong, D.-Z. Du, O. H. Ibarra (Eds.), Algorithms and
Computation — ISAAC 2009, Vol. 5878 of LNCS, Springer Berlin Hei-
delberg, 2009, pp. 1064–1073.

[9] L. Ibarra, Finding pattern matchings for permutations, Inf. Process.
Lett. 61 (6) (1997) 293–295.

[10] S. Guillemot, D. Marx, Finding small patterns in permutations in linear
time, in: C. Chekuri (Ed.), 25th Annual ACM-SIAM Symposium on
Discrete Algorithms — SODA 2014, SIAM, 2014, pp. 82–101.

[11] M. Bruner, M. Lackner, The computational landscape of permutation
patterns, CoRR abs/1301.0340.

[12] D. Belazzougui, A. Pierrot, M. Raffinot, S. Vialette, Single and multi-
ple consecutive permutation motif search, in: L. Cai, S. Cheng, T. W.
Lam (Eds.), Algorithms and Computation — ISAAC 2013, Vol. 8283 of
LNCS, Springer Berlin Heidelberg, 2013, pp. 66–77.

[13] S. Cho, J. C. Na, K. Park, J. S. Sim, A fast algorithm for order-
preserving pattern matching, Inf. Process. Lett. 115 (2) (2015) 397–402.

26

[14] T. Chhabra, J. Tarhio, Order-preserving matching with filtration, in:
J. Gudmundsson, J. Katajainen (Eds.), Experimental Algorithms —
SEA 2014, Vol. 8504 of LNCS, Springer International Publishing, 2014,
pp. 307–314.

[15] S. Faro, M. O. Külekci, Efficient algorithms for the order preserving
pattern matching problem, CoRR abs/1501.04001.

[16] M. M. Hasan, A. S. M. S. Islam, M. S. Rahman, M. S. Rahman, Order
preserving pattern matching revisited, Pattern Recognition Letters 55
(2015) 15–21.

[17] P. Gawrychowski, P. Uznański, Order-preserving pattern matching with
k mismatches, in: A. S. Kulikov, S. O. Kuznetsov, P. A. Pevzner (Eds.),
Combinatorial Pattern Matching — CPM 2014, Vol. 8486 of LNCS,
Springer International Publishng, 2014, pp. 130–139.

[18] M. M. Hasan, A. S. M. S. Islam, M. S. Rahman, M. S. Rahman, Order
preserving prefix tables, in: E. S. de Moura, M. Crochemore (Eds.),
String Processing and Information Retrieval — SPIRE 2014, Springer
International Publishing, 2014, pp. 111–116.

[19] J. Kim, A. Amir, J. C. Na, K. Park, J. S. Sim, On representations of
ternary order relations in numeric strings, in: C. S. Iliopoulos, A. Langiu
(Eds.), Algorithms for Big Data — IABCD 2014, Vol. 1146 of CEUR
Workshop Proceedings, CEUR-WS.org, 2014, pp. 46–52.

[20] T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, Maximum number
of distinct and nonequivalent nonstandard squares in a word, in: A. M.
Shur, M. V. Volkov (Eds.), Developments in Language Theory — DLT
2014, Vol. 8633 of LNCS, Springer International Publishing, 2014, pp.
215–226.

[21] B. S. Baker, Parameterized pattern matching: Algorithms and applica-
tions, J. Comput. Syst. Sci. 52 (1) (1996) 28–42.

[22] R. Cole, R. Hariharan, Faster suffix tree construction with missing suffix
links, SIAM J. Comput. 33 (1) (2003) 26–42.

[23] T. Lee, J. C. Na, K. Park, On-line construction of parameterized suffix
trees for large alphabets, Inf. Process. Lett. 111 (5) (2011) 201–207.

27

[24] D. E. Willard, Log-logarithmic worst-case range queries are possible in
space Θ(N), Inf. Process. Lett. 17 (2) (1983) 81–84.

[25] T. Kopelowitz, M. Lewenstein, Dynamic weighted ancestors, in:
N. Bansal, K. Pruhs, C. Stein (Eds.), 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms — SODA 2007, SIAM, 2007, pp. 565–574.

[26] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (3)
(1995) 249–260.

[27] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide,
H. Rohnert, R. E. Tarjan, Dynamic perfect hashing: Upper and lower
bounds, SIAM J. Comput. 23 (4) (1994) 738–761.

[28] Y. Han, M. Thorup, Integer sorting in O(n
√

log log n) expected time and
linear space, in: 43rd Symposium on Foundations of Computer Science
— FOCS 2002, IEEE Computer Society, 2002, pp. 135–144.

[29] Y. Han, Deterministic sorting in O(n log log n) time and linear space, J.
Algorithms 50 (1) (2004) 96–105.

[30] L. C. K. Hui, Color set size problem with application to string matching,
in: A. Apostolico, M. Crochemore, Z. Galil, U. Manber (Eds.), Combi-
natorial Pattern Matching — CPM 1992, Vol. 644 of LNCS, Springer
Berlin Heidelberg, 1992, pp. 230–243.

[31] M. Rodeh, V. R. Pratt, S. Even, Linear algorithm for data compression
via string matching, J. ACM 28 (1) (1981) 16–24.

[32] M. Crochemore, L. Ilie, C. S. Iliopoulos, M. Kubica, W. Rytter,
T. Waleń, Computing the longest previous factor, Eur. J. Comb. 34 (1)
(2013) 15–26.

[33] D. Harel, R. E. Tarjan, Fast algorithms for finding nearest common
ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.

[34] M. A. Bender, M. Farach-Colton, The LCA problem revisited, in: G. H.
Gonnet, D. Panario, A. Viola (Eds.), Latin American Symposium on
Theoretical Informatics — LATIN 2000, Vol. 1776 of LNCS, Springer
Berlin Heidelberg, 2000, pp. 88–94.

28

[35] J. Stoye, D. Gusfield, Simple and flexible detection of contiguous repeats
using a suffix tree, Theor. Comput. Sci. 270 (1-2) (2002) 843–856.

[36] D. Gusfield, J. Stoye, Linear time algorithms for finding and representing
all the tandem repeats in a string, J. Comput. Syst. Sci. 69 (4) (2004)
525–546.

[37] M. G. Main, R. J. Lorentz, An O(n log n) algorithm for finding all rep-
etitions in a string, J. Algorithms 5 (3) (1984) 422–432.

[38] M. Babenko, P. Gawrychowski, T. Kociumaka, T. Starikovskaya,
Wavelet trees meet suffix trees, in: P. Indyk (Ed.), 26th Annual ACM-
SIAM Symposium on Discrete Algorithms — SODA 2015, SIAM, 2015,
pp. 572–591.

[39] Y. Nekrich, G. Navarro, Sorted range reporting, in: F. V. Fomin,
P. Kaski (Eds.), Algorithm Theory — SWAT 2012, Vol. 7357 of LNCS,
Springer Berlin Heidelberg, 2012, pp. 271–282.

[40] G. Zhou, Sorted range reporting revisited, CoRR abs/1308.3326.

[41] T. M. Chan, M. Pătraşcu, Counting inversions, offline orthogonal range
counting, and related problems, in: M. Charikar (Ed.), 21st Annual
ACM-SIAM Symposium on Discrete Algorithms — SODA 2010, SIAM,
2010, pp. 161–173.

[42] M. A. Babenko, P. Gawrychowski, T. Kociumaka, T. Starikovskaya,
Wavelet trees meet suffix trees, CoRR abs/1408.6182v4.

29

