Maxime Crochemore
email: maxime.crochemore@kcl.ac.uk

Costas S Iliopoulos
email: c.iliopoulos@kcl.ac.uk

Tomasz Kociumaka
email: kociumaka@mimuw.edu.pl

Marcin Kubica
email: kubica@mimuw.edu.pl

Alessio Langiu
email: alessio.langiu@iamc.cnr.it

Solon P Pissis
email: solon.pissis@kcl.ac.uk

Jakub Radoszewski

Wojciech Rytter
email: rytter@mimuw.edu.pl

Tomasz Waleń
email: walen@mimuw.edu.pl

Order-Preserving Indexing $

Keywords: order-preserving matching, order-preserving indexing, suffix tree

ical Computer Science, 2014) introduced order-preserving pattern matching: for a given text the goal is to find its factors having the same 'shape' as a given pattern. Known results include a linear-time algorithm for this problem (in case of polynomially-bounded alphabet) and a generalization to multiple patterns. We propose an index that enables order-preserving pattern matching queries in time proportional to pattern length. The index can be constructed in O(n log log n) expected time or O(n log n) deterministic time. The index is an incomplete order-preserving suffix tree which may miss a single edge label at each branching node. For most applications such incomplete suffix trees provide the same functional power as the complete ones. We show a number of their applications, including computation of longest common factors, longest previously occurring factors and squares in a string in the order-preserving setting. We also give an O(n √ log n)-time algorithm

Introduction

We consider pattern matching and repetition discovery problems in the order-preserving setting. In the order-preserving pattern matching problem we look for consecutive fragments of a text which have the same relative order of letters as a pattern. This problem was introduced independently by Kim et al. [START_REF] Kim | Order-preserving matching[END_REF] and Kubica et al. [START_REF] Kubica | A linear time algorithm for consecutive permutation pattern matching[END_REF]. Applications of the order-preserving setting include detecting trends in time series, which appear naturally e.g. when considering the stock market or melody matching of two musical scores; see [START_REF] Kim | Order-preserving matching[END_REF].

The study of order-preserving model evolved from the combinatorial study of patterns in permutations. The latter is focused on pattern avoidance, that is, counting the number of permutations not containing a subsequence orderisomorphic to a given pattern. Note that here the subsequences need not to be consecutive. The first results were given by Knuth [START_REF] Knuth | The Art of Computer Programming, Volume I: Fundamental Algorithms[END_REF] (avoidance of 312), Lovász [START_REF] Lovász | Combinatorial problems and exercices[END_REF] (avoidance of 213) and Rotem [START_REF] Rotem | Stack sortable permutations[END_REF] (avoidance of both 231 and 312). Currently this is a very active field of research; a conference on permutation patterns has been held annually since 2003 1 . On the algorithmic side, pattern matching in permutations (as a subsequence) was shown to be NP-complete [START_REF] Bose | Pattern matching for permutations[END_REF]. A number of polynomial-time algorithms for special cases of patterns were developed [START_REF] Albert | Algorithms for pattern involvement in permutations[END_REF][START_REF] Guillemot | Pattern matching for 321-avoiding permutations[END_REF][START_REF] Ibarra | Finding pattern matchings for permutations[END_REF] and very recently an FPT algorithm parameterized by the length of the pattern was proposed by Guillemot and Marx [START_REF] Guillemot | Finding small patterns in permutations in linear time[END_REF]. A survey by Bruner and Lackner [START_REF] Bruner | The computational landscape of permutation patterns[END_REF] lists further algorithmic results related to permutation patterns.

The (consecutive) order-preserving model was first studied by Kim et al. [START_REF] Kim | Order-preserving matching[END_REF] and Kubica et al. [START_REF] Kubica | A linear time algorithm for consecutive permutation pattern matching[END_REF]. In each of these papers an O(n + m log m)time algorithm for pattern matching in this model is presented, where n is the length of the text and m is the length of the pattern. Under a natural assumption that the characters of the pattern can be sorted in linear time, the algorithms can be implemented in O(n + m) time. Several alternative solutions for order-preserving pattern matching problem, including practical implementations, have been proposed recently; see [START_REF] Belazzougui | Single and multiple consecutive permutation motif search[END_REF][START_REF] Cho | A fast algorithm for orderpreserving pattern matching[END_REF][START_REF] Chhabra | Order-preserving matching with filtration[END_REF][START_REF] Faro | Efficient algorithms for the order preserving pattern matching problem[END_REF][START_REF] Hasan | Order preserving pattern matching revisited[END_REF]. An algorithm for order-preserving matching with mismatches was published by Gawrychowski and Uznański [START_REF] Gawrychowski | Order-preserving pattern matching with k mismatches[END_REF]. A multiple-pattern matching algorithm based on the algorithm of Aho and Corasick was developed by Kim et al. [START_REF] Kim | Order-preserving matching[END_REF]. Other studied problems in the order-preserving model include prefix tables [START_REF] Hasan | Order preserving prefix tables[END_REF][START_REF] Hasan | Order preserving pattern matching revisited[END_REF], periods, borders, and covers [START_REF] Hasan | Order preserving pattern matching revisited[END_REF]. Order-preserving matching in the context of ternary order relations was recently studied in [START_REF] Kim | On representations of ternary order relations in numeric strings[END_REF]. Also some combinatorial results concerning order-preserving squares have been obtained [START_REF] Kociumaka | Maximum number of distinct and nonequivalent nonstandard squares in a word[END_REF].

We introduce the problem of indexing for order-preserving pattern matching, in which one needs to preprocess a text to enable fast order-preserving pattern matching queries. In the literature there are a number of results for indexing in a related model of parameterized pattern matching. This model was introduced by Baker [START_REF] Baker | Parameterized pattern matching: Algorithms and applications[END_REF] who proposed an index based on suffix trees with O(n log n)-time construction. The result was later improved by Cole and Hariharan [START_REF] Cole | Faster suffix tree construction with missing suffix links[END_REF] to O(n) construction time. Recently, Lee et al. [START_REF] Lee | On-line construction of parameterized suffix trees for large alphabets[END_REF] presented an online construction algorithm with the same time complexity. What Cole and Hariharan [START_REF] Cole | Faster suffix tree construction with missing suffix links[END_REF] proposed was actually a general scheme for construction of suffix trees for so-called quasi-suffix families with a constant-time character oracle. This result can also be applied in the order-preserving setting. However, the resulting construction algorithm runs in O(n log n/ log log n) time at least for the representation of strings used in our paper (codes as defined in Section 2). Here the character oracle answers queries in O(log n/ log log n) time.

Our results. We introduce an index for order-preserving pattern matching that given a pattern of length m over an integer alphabet Σ polynomially bounded in m, in O(m) time determines whether the pattern occurs in the text. The index has linear size and can be constructed in O(n log log n) expected time (or O(n log n) deterministic time). The index is based on incomplete order-preserving suffix trees (incomplete op-suffix-trees, in short). We also show a number of other applications of these trees, including efficient computation of: longest common factors of a number of strings (using an op-suffix-tree of multiple strings), longest previous factors in a string and squares in this model. We also introduce (complete) order-preserving suffix trees (op-suffix-trees) and show how they can be constructed using their incomplete counterpart in O(n √ log n) time. We provide randomized (Las Vegas) algorithms for the word-RAM model with Ω(log n) word size.

Structure of the paper. In Section 2 we introduce codes which transform a string into a sequence of integer pairs so that order-isomorphism of strings is equivalent to equality of their codes. In Section 3 we give a formal definition of a complete and an incomplete op-suffix-tree and describe their basic properties. In Sections 4 and 5 we show an O(n log log n) construction of an incomplete op-suffix-tree. The former section contains an algorithmic toolbox that is also used in further parts of the paper. Applications of our data structure are presented in Section 6. In Section 7 we obtain a construction of complete op-suffix-trees.

Order-Preserving Code

Let w = w 1 . . . w n be a string of length n over an integer alphabet Σ. We assume that Σ is polynomially bounded in terms of n, i.e. Σ = {1, . . . , n c } for an integer constant c. The length of w is denoted by n = |w|. By w[i..j] we denote the factor w i . . . w j . For prefixes and suffixes of w we use a shorter notation w[.

.i] = w[1..i] and w[i..] = w[i..n], respectively.
We define α(w) and β(w) as the rightmost occurrence of the predecessor of w n and the rightmost occurrence of the successor of w n among letters of w[..n -1]. In particular, if w n occurs in w[..n -1], then α(w) and β(w) both point to the rightmost occurrence of w n in w[..n -1]. More formally: α(w) is the largest j < n such that w j = max{w k : k < n, w k ≤ w n }, if there is no such j, then α(w) = 0. Similarly, we define:

β(w) is the largest j < n such that w j = min{w k : k < n, w k ≥ w n },
and β(w) = 0 if no such j exists. See Figure 1 for an example.

Two simple properties of α and β are listed in the observation below.

Observation 1. Let w be a string of length n. Then:

(a) For any k ∈ {1, . . . , n -1} we have

w k ≤ w n ⇐⇒ α(w) = 0 ∧ w k ≤ w α(w)
and symmetrically (b) If

w k ≥ w n ⇐⇒ β(w) = 0 ∧ w k ≥ w β(w) .
w n = w k for some k < n, then α(w) = β(w) = max{k < n : w k = w n }. Conversely, if α(w) = β(w) = 0, then w n = w α(w) = w β(w) .
Two strings x and y of the same length are called order-isomorphic, written x ≈ y, if the relative order of letters is the same in both strings. More formally, x ≈ y if ∀ 1≤i,j≤|x| x i ≤ x j ⇐⇒ y i ≤ y j .

Example 2. 5 2 7 5 1 4 9 4 5 ≈ 6 4 7 6 3 5 8 5 6, see Figure 2. Their codes are equal to (0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 4) (3, 0) [START_REF] Bose | Pattern matching for permutations[END_REF][START_REF] Bose | Pattern matching for permutations[END_REF] [START_REF] Lovász | Combinatorial problems and exercices[END_REF][START_REF] Lovász | Combinatorial problems and exercices[END_REF].

The relation between α and β and order-isomorphism is shown in the following lemma (see also [START_REF] Kubica | A linear time algorithm for consecutive permutation pattern matching[END_REF][START_REF] Cho | A fast algorithm for orderpreserving pattern matching[END_REF]). Lemma 3. Let x and y be two strings of length

n such that x[1..n -1] ≈ y[1..n -1]. Denote i = α(x) and j = β(x). If i = j, then x ≈ y ⇐⇒ y i < y n < y j .

Otherwise,

x ≈ y ⇐⇒ y i = y n = y j .

We omit conditions involving y i or y j when i = 0 or j = 0, respectively.

Proof. (⇒) Suppose that x ≈ y. By definition, for any k, 1 ≤ k ≤ n, the order between y k and y n is the same as between x k and x n . Thus, it suffices to prove x i < x n < x j and x i = x n = x j in the respective cases. Definitions of α(x) and β(x) yield x i ≤ x n ≤ x j . Moreover, Observation 1(b) gives x i = x n = x j if i = j, and x i = x n = x j otherwise. In the latter case we conclude that x i < x n < x j .

(⇐) We shall prove that for any indices k, (1 ≤ k < ≤ n) the relative order between x k and x is the same as between y k and y . If = n this follows from x[..n -1] ≈ y[..n -1]. Hence, we may assume = n. We consider two cases.

If i = j, we have x n = x i from Observation 1(b). Combined with our assumptions-y i = y n and x[..n -1] ≈ y[..n -1]-this allows to conclude the claimed equivalence. Namely, the relative order between x k and x n is the same as between x k and x i , which in turn is the same as between y k and y i (since i, k < n) and consequently between y k and y n . Now, we may assume i = j, which by Observation 1(b) implies x k = x n . If x k > x n , then j = 0 and x k ≥ x j by Observation 1(a). Thus, y k ≥ y j , and consequently y k ≥ y j > y n . Analogously, if x k < x n , then i = 0, x k ≤ x i , and therefore y k ≤ y i < y n .

We introduce codes of strings in a similar way as in [START_REF] Kubica | A linear time algorithm for consecutive permutation pattern matching[END_REF]: Using codes one can obtain an equivalent characterization of orderisomorphism: Lemma 4. Let x and y be two strings of length n.

LastCode(w) = (α(w), β(w))
Then (a) x ≈ y ⇐⇒ x[..n -1] ≈ y[..n -1] ∧ LastCode(x) = LastCode(y). (b) x ≈ y ⇐⇒ Code(x) = Code(y).
Proof. (a) To prove (⇒) it is enough to observe that α and β depend only on the relative order of letters in the underlying string. For (⇐), it suffices to show that

x k ≤ x n ⇐⇒ y k ≤ y n and x k ≥ x n ⇐⇒ y k ≥ y n .
As x and y are symmetric, it suffices to argue that

x k ≤ x n =⇒ y k ≤ y n and x k ≥ x n =⇒ y k ≥ y n . If x k ≤ x n , then by Observation 1(a) x k ≤ x α(x) . Due to x[..n -1] ≈ y[..n -1],
we have y k ≤ y α(x) = y α(y) . We conclude that indeed y k ≤ y n , again by Observation 1(a). The other implication is obtained through a symmetric argument using β instead of α.

Part (b) follows from part (a) by induction.

The codes of strings can be computed efficiently. Applying Lemma 1 from [START_REF] Kubica | A linear time algorithm for consecutive permutation pattern matching[END_REF] to strings over polynomially-bounded alphabet we obtain:

Lemma 5. For a string w of length n, Code(w) can be computed in O(n) time.

Order-Preserving Suffix Trees

Let us define the following family of sequences:

SufCodes(w) = {Code(w[1..])#, Code(w[2..])#, . . . , Code(w[|w|..])#};
see Figure 3. The (complete) order-preserving suffix tree of w (op-suffix-tree in short), denoted opSufTree(w), is a compacted trie of all the sequences in SufCodes(w).

(0,0) (1,0) (2,0) (3,3) (2,2) (4,0) (6,6) (1,1) # (0,0) (1,0) (2,2) (1,1) (3,0) (5,5) (0,4) # (0,0) (1,1) (0,2) (2,0) (4,4) (0,3) # (0,0) (0,1) (1,0) (3,3) (0,2) # (0,0) (1,0) (2,2) (0,1) # (0,0) (1,1) (0,2) # (0,0) (0,1) # (0,0) #
suffixes of w: SufCodes(w): The nodes of opSufTree(w) with at least two children are called branching nodes. Together with the leaves they form explicit nodes of the tree. All the remaining nodes (dissolved in the compacted trie) are called implicit. By nodes of opSufTree(w) we mean both explicit and implicit nodes. For a node v, its explicit descendant (denoted as FirstDown(v)) is the top-most explicit node in the subtree of v (if v is explicit, then FirstDown(v) = v). The locus of v is defined as FirstDown(v) together with the distance between v and FirstDown(v). The locus of a node corresponding to x is denoted as Locus(x). Note that two factors share the locus precisely whenever they are order-isomorphic.

(0, 0) (1,1) (2, 0) 3 # 6 (1, 0) (2,2) (1, 1) 2 (0,1) 5 (2, 0) 1 (0,1)
(1, 0) Only the explicit nodes of opSufTree(w) are stored. The tree contains O(n) leaves. Hence, its size is O(n). The leaf corresponding to Code(w[i..])# is labeled with the number i. Each branching node stores its depth and one of the occurrences of the corresponding factor. Each edge stores the code of only its first character. The codes of all the remaining characters of any edge can be obtained using a character oracle that can efficiently provide the code LastCode(w[i..j]) for any i < j.

4 # 7 # 8 (0, 0) (1, 1) (0, 2) (2, 0) (4, 4) (0, 3) # # (1, 0) (2, 2) (1, 1) (3, 0) (5, 5) (0, 4) # (0, 1) # (2, 0) (3, 3) (2, 2) (4, 0) (6, 6) (1, 1) # (0, 1) (1, 0) (3, 3) (0, 2) # #
Each explicit node v stores a suffix link, SufLink (v), that may lead to an implicit or an explicit node (see an example in Figure 4). The suffix link is defined as:

SufLink (Locus(x)) = Locus(DelFirst(x)),
where DelFirst(x) results in removing the first character of x. Note that, contrary to its name, the suffix link does not literally point to the suffix of a node's label; see Figure 5. However, the definition is valid due to the following easy observation. We also introduce an incomplete order-preserving suffix tree of w, denoted T (w), in which the character oracle is not available and each explicit node v can have one outgoing edge that does not store its first character (incomplete edge). This edge is located on the longest path leading from v to a leaf.

Algorithmic Toolbox

We use a predecessor data structure to compute the LastCodes of a sequence changing in a queue-like manner. Dynamic predecessor queries are answered using y-fast trees that were introduced by Willard [24]: Lemma 7 ([START_REF] Willard | Log-logarithmic worst-case range queries are possible in space Θ(N)[END_REF]). Let N be an integer such that ω = Ω(log N), where ω is the machine word-size. There exists a data structure that uses O(|X|) space to maintain a set X of key-value pairs with keys from {1, . . . , N } and supports the following operations in O(log log N) expected time:

• find(k): find the value associated with k, if any,

• predecessor(k): return the pair (k , v) ∈ X with the largest k ≤ k,

• successor(x): return the pair (k , v) ∈ X with the smallest k ≥ k,

• remove(k): remove the pair with key k,

• insert(k, v): insert (k, v) to X removing the pair with key k, if any.

Lemma 8 (Weak Character Oracle). An initially empty string x over an alphabet Σ can be maintained in a data structure D(x) of size O(|x|) so that the following operations are supported in O(log log |Σ|) expected time:

• compute LastCode(xa) for a given letter a ∈ Σ;

• append a single letter a ∈ Σ to x;

• remove the first letter from x (DelFirst(x)).

If x is empty, the third operation is not allowed.

Proof. We apply Lemma 7 as follows. The keys are the symbols present in x while the values associated with them are the locations of their last occurrences represented as time-stamps (that is, the ordinal numbers of the push operations used to append them). Then the LastCode() query is answered using one predecessor and one successor query.

Our second tool is the dynamic weighted ancestor data structure proposed by Kopelowitz and Lewenstein [START_REF] Kopelowitz | Dynamic weighted ancestors[END_REF] and originally motivated by problems related to ordinary suffix trees. A weighted tree is a rooted tree with integer weight assigned to each node, such that a monotonicity condition is satisfied: the weight of a node is strictly greater than the weight of its parent.

Lemma 9 ([25]

). Let N be an integer such that ω = Ω(log N), where ω is the machine word-size. There exists a data structure which maintains a weighted tree T with weights {1, . . . , N } in O(|T |) space and supports the following operations in O(log log N) expected time:

• given a node v and a weight g find the highest ancestor of v with weight at least g,

• insert a leaf with weight g and v as a parent,

• insert a node with weight g by subdividing the edge joining v with its parent.

The weights of inserted nodes must meet the monotonicity condition.

Constructing Incomplete Order-Preserving Suffix Tree

We design a version of Ukkonen's algorithm [START_REF] Ukkonen | On-line construction of suffix trees[END_REF] in which suffix links are computed using weighted ancestor queries; see Figure 6. The weights of explicit nodes represent their depths. In this case for a node u, by WeightedAnc(u, d) we denote its (explicit or implicit) ancestor at depth d. Note that such a node can be found with a weighted ancestor query of Lemma 9, which actually returns FirstDown(WeightedAnc(u, d)).

Our algorithm works online. While reading the string w it maintains:

• the incomplete op-suffix-tree T (w) for w without endmarkers (#);

• the longest suffix x of w such that Code(x) corresponds to a non-leaf node of T (w), together with the data structure D(x); x is called the active suffix;

• the node (explicit or implicit) Locus(x), called the active node.

In the algorithm all implicit nodes are represented in a canonical form: the explicit descendant (FirstDown) and the distance to this descendant (depth difference). Each explicit node stores a dynamic hash table (see [START_REF] Cole | Faster suffix tree construction with missing suffix links[END_REF][START_REF] Dietzfelbinger | Dynamic perfect hashing: Upper and lower bounds[END_REF]) of its explicit children, indexed by the labels of the respective edges. The explicit child corresponding to the incomplete edge is stored outside of the hash table.

Description of one iteration of the algorithm. In one iteration w is extended by one character, say a. We traverse the so-called active path in T (w):

1. We search for the longest suffix x of x such that Locus(x a) appears in the tree.

2. For each longer suffix x of x we create a branch leading to a new leaf node corresponding to x a.

3. The active path is found by jumping along suffix links, starting at the active node.

4. The suffix links of the newly created explicit nodes are computed using weighted ancestor queries; see Figure 6. This part differs substantially from Ukkonen's original algorithm.

5. The end-point of the active path becomes the parent of the new active node, and x a is the new active suffix.

To compute the last symbol of Code(xa) we use the Weak Character Oracle (Lemma 8).

In the algorithm we use two auxiliary subroutines.

v u FirstDown(v) v v u u WeightedAnc(u , |v| -1) S u fL in k (v) S u fL in k (u)
Figure 6: Computation of SufLink (v). Here u is explicit.

Function Transition(v, (p, q)). This function checks if v has an (explicit or implicit) child v such that the edge from v to v represents the code (p, q). It returns the node v or nil if such a node does not exist. In the implementation we check, using hash tables, if any of the labeled edges outgoing from v starts with the code (p, q). For the (at most one for v) incomplete edge we can test whether the starting letter of its code equals (p, q) by verifying the inequalities from Lemma 3 for the corresponding factor of the text w.

Function Branch(v, (p, q), i). This function creates an edge from v with the code (p, q). The newly created leaf is labeled with i. If v was implicit, then it is made explicit at this point. The edge leading to its already existing child remains incomplete. This procedure also adds a SufLink from the leaf number i -1 to the new leaf number i.

The whole structure of the algorithm is presented in the following Algorithm 1.

In the pseudocode above we perform O(n) operations in total. This follows from the fact that each step of the while-loop creates a new edge in the tree. The operations involving x and the operations on the data structure for weighted ancestor queries are performed in O(log log n) expected time each. All the remaining operations require constant time only. Hence, we obtain the following result.

Theorem 11. The incomplete op-suffix-tree T (w) for a string w of length n can be computed in O(n log log n) expected time.

Note that an incomplete op-suffix-tree can be constructed in O(n log n) worst-case time. It suffices to use balanced binary search trees to answer dynamic predecessor queries (which are also used in the data structure for weighted level ancestor queries) and to store the children of each node of the suffix tree.

Applications of Order-Preserving Incomplete Suffix Trees

Indexing Problem

The most common application of suffix trees is pattern matching with time complexity independent of the text length.

Theorem 12. Assume that we have T (w) for a string w of length n. Given a pattern x of length m, one can check if w contains a factor order-isomorphic to x in O(m) time and report all occurrences of such factors in O(m + Occ) time, where Occ is the number of occurrences reported.

Proof. First, we compute the code of the pattern. This takes O(m) time due to Lemma 5. To answer a query, we traverse down T (w) using the successive symbols of the code. At each step we use the function Transition(v, (p, q)).

This enables to find the locus of x in O(m) time. Afterwards all the occurrences of factors that are order-isomorphic to x can be listed in the usual way by inspecting all leaves in the subtree of Locus(x).

Remark 13. The O(m) query time requires the letters in the pattern x to be sortable in O(m) time. In general, sorting can be performed in O(m √ log log m) expected time [START_REF] Han | Integer sorting in O(n √ log log n) expected time and linear space[END_REF] or in O(m log log m) time deterministically [START_REF] Han | Deterministic sorting in O(n log log n) time and linear space[END_REF] since we assume that Σ consists of integers fitting into machine words.

Order-Preserving Suffix Tree of Multiple Strings

In many applications instead of a suffix tree of a single text one uses a joint suffix tree of several strings. In the standard setting such a generalized suffix tree of (w (i)) k i=1 is often defined as the suffix tree of w (1) $ 1 w (2) $ 2 . . . w (k) , where $ i are distinct endmarkers. In the order-preserving setting, however, such a black-box reduction fails since the construction algorithm would use codes of the delimiters $ i instead of the delimiters themselves. Nevertheless, we can adapt the algorithm presented in the previous section to construct T (w (1) , . . . , w (k)), the incomplete generalized op-suffix-tree of (w (i)) k i=1 . Before we discuss the necessary adjustments, let us formally define the tree T (w (1) , . . . , w (k)). Let # 1 , . . . , # k be distinct symbols which do not occur in Code(x) for any string x. We define SufCodes(w (1) , . . . , w

(k)) = {Code(w (i) [j..])# i : 1 ≤ i ≤ k, 1 ≤ j ≤ |w (i) |}.
The generalized order-preserving suffix tree opSufTree(w (1) , . . . , w (k)) is a compacted trie of all suffixes in SufCodes(w (1) , . . . , w (k)). The auxiliary data stored in explicit nodes is the same as in the order-preserving suffix tree of a single string. The leaf corresponding to Code(w (i) [j..])# i is labeled with a pair (i, j). The value i is sometimes referred to as the color of the leaf.

In the generalized incomplete order-preserving suffix tree T (w (1) , . . . , w (k)) each explicit node v may have one outgoing edge that does not store its first character. This is the edge leading towards the leaf with lexicographically smallest label (i, j) among all the leaves in the subtree of v.

Theorem 14. The incomplete generalized op-suffix-tree T (w (1) , . . . , w (k)) of a collection of strings (w (i)) k i=1 of total length n can be constructed in O(n log log n) expected time.

Proof. It suffices to run Algorithm 1 sequentially for all strings w (i) with two minor modifications:

• in the first step T is initialized as the tree consisting of the root only but later the result of the previous steps is used,

• a different end-marker # i is appended for each string.

The number of iterations of the while-loop when processing w (i) is bounded by |w (i) |, and each iteration takes O(log log n) expected time. Thus, in total the running time is O(n log log n) as announced.

One of the motivating applications of suffix trees in the standard setting was finding the longest common factor of two strings. An analogue of this problem in the order-preserving setting is especially important since it provides a way to find common trends in time series. In a generalization of this problem, given an integer d and k strings w (1) , . . . , w (k) , we need to find a longest string that is order-isomorphic to a factor of at least d out of k strings w (1) , . . . , w (k) . An efficient solution to this problem can be obtained using the generalized op-suffix-tree.

Theorem 15. The longest order-preserving factors common to at least d out of k given strings w (1) , . . . , w (k) of total length n can be computed in O(n) time for all values d = 2, . . . , k, provided that T (w (1) , . . . , w (k)) is given.

Proof. A factor common to d strings corresponds to a node in the generalized op-suffix-tree with leaves of at least d distinct colors in the subtree. Given T (w (1) , . . . , w (k)), these numbers can be computed for all explicit nodes in O(n) time using a result of Hui [START_REF] Hui | Color set size problem with application to string matching[END_REF].

In the most natural case of k = d = 2, with strings of lengths n 1 ≤ n 2 , one can actually obtain an algorithm using O(n 2 log log n 1) time and O(n 1) space. This is achieved using a standard technique of partitioning the longer string into fragments of length up to 2n 1 with overlaps of n 1 characters. The longest common order-preserving factor must occur in one of the fragments.

Longest Previous Order-Preserving Factors

Given a string w of length n, we introduce the longest previous orderpreserving factor (op-LPF) table defined as follows. For any position i in w, op-LPF[i] specifies the length of the longest factor u of w starting at position i such that a factor order-isomorphic to u occurs earlier in w. Formally,

op-LPF[i] = max{ : w[i..i + -1] ≈ w[j..j + -1]
for some j < i}; see Figure 7. Several algorithms solving this problem in linear time in the standard setting are known [START_REF] Rodeh | Linear algorithm for data compression via string matching[END_REF][START_REF] Crochemore | Computing the longest previous factor[END_REF].

The op-LPF table can be computed during the construction of T (w) with Algorithm 1. Every time we perform a Branch(v, (p, q), j) operation to insert a new leaf, then LPF [j] becomes the depth of the node v (which is equal to |x| in the algorithm). Here we use the fact that the leaves are added to the tree in the order of increasing labels. Therefore, when adding the leaf number j, all the suffixes longer than the j-th suffix are already present in the tree and we can compute the answer for j. Actually, one could apply the same approach to compute the standard LPF table using Ukkonen's algorithm.

While this approach has several advantages, it is likely that Algorithm 1 is not optimal and faster solutions do not need to be based on the framework due to Ukkonen. Thus, below we provide a black-box solution using the (incomplete) op-suffix tree as the starting point.

The problem of computing LPF table can actually be defined for arbitrary rooted trees with a linear order of the leaves: for each leaf L we are to find a leaf L < L such that LCA(L, L), i.e. the lowest common ancestor of the two, is as high as possible. The actual value LPF [L] is then the (weighted) depth of LCA(L, L).

The classic linear-time solution is as follows. We arrange leaves in the order of the depth-first traversal of the tree: L 1 , . . . , L n . Then, we observe that the nodes LCA(L 1 , L k), . . . , LCA(L k-1 , L k) have non-decreasing depths while the nodes LCA(L k+1 , L k), . . . , LCA(L n , L k) have non-increasing depths. To exploit this property, for each k we compute To conclude we need to recall that LCA queries in a tree can be answered in O(1) time after O(n)-time preprocessing [START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF][START_REF] Bender | The LCA problem revisited[END_REF].

p k = max{k < k : L k < L k } and s k = min{k > k : L k < L k }. Then LPF [L k] is the depth of either LCA(L k , L p k) or LCA(L k , L s k),
Theorem 16. Let w be a string of length n. Having T (w), one can compute the op-LPF table of w in O(n) time.

Order-Preserving Squares

A string uv is called an order-preserving square (an op-square, in short) if u ≈ v. The length of the op-square is |uv|. An op-square represents a repetition of a pattern in a time series. Using (incomplete) op-suffix-trees we can obtain efficient algorithms for finding and reporting op-squares. We show how to modify an O(n log n)-time square-detecting algorithm by Gusfield and Stoye [START_REF] Stoye | Simple and flexible detection of contiguous repeats using a suffix tree[END_REF] to check, for each length k, if a given string w contains an op-square of length 2k.

Note that in the standard setting the analogous problem can be solved in O(n) time [START_REF] Gusfield | Linear time algorithms for finding and representing all the tandem repeats in a string[END_REF]. This approach, however, is based on an older O(n log n)time algorithm of Main and Lorentz [START_REF] Main | An O(n log n) algorithm for finding all repetitions in a string[END_REF]. The key property exploited by this solution is that if w[i..i+2k -1] and w[j..j +2k -1] are (regular) squares such that i ≤ j ≤ i + k, then w[p..p + 2k -1] is a square for every p ∈ {i, . . . , j}. In the order-preserving setting this is no longer true. Branching regular squares. We say that a substring w

[i..i + 2k -1] is a branching square if w[i..i + k -1] = w[i + k..i + 2k -1] and w[i + 2k] = w[i].
The algorithm of Gusfield and Stoye [START_REF] Stoye | Simple and flexible detection of contiguous repeats using a suffix tree[END_REF] uses the suffix tree of a text w, |w| = n, to find all branching squares in w in O(n log n) time. A branching square of length 2k (i.e., w[i..i + 2k -1]) is detected as a pair of leaves with labels that differ by k (i.e., i and i + k) whose lowest common ancestor is at depth k (and corresponds to w[i..i + k -1]).

Non-extendible and non-shiftable op-squares. We say that an opsquare w

[i..i + 2k -1] is non-extendible if either i + 2k -1 = n or w[i..i + k] ≈ w[i + k..i + 2k].
A non-shiftable op-square is defined similarly but with the condition:

w[i + 1..i + k] ≈ w[i + k + 1..i + 2k].
Both notions are generalizations of branching regular squares to the orderpreserving setting. It turns out that when we apply the algorithm from [START_REF] Stoye | Simple and flexible detection of contiguous repeats using a suffix tree[END_REF] to the op-suffix-tree of w, we find all non-extendible op-squares in w (i.e., not necessarily all non-shiftable op-squares); see the following lemma.

Lemma 18. Let w be a string. Then w[i..i + 2k -1] is a non-extendible op-square if and only if the LCA of leaves labeled with i and i

+ k in T (w) is Locus(w[i..i + k -1]). Proof. (⇒) If w[i..i + 2k -1] is a non-extendible op-square, then the longest common prefix of Code(w[i..i + k]) and Code(w[i + k..i + 2k]) is exactly Code(w[i..i + k -1]
). This yields that indeed Locus(w[i..i + k -1]) is the lowest common ancestor of the leaves labeled i and i + k.

(⇐) If the leaves labeled with i and i + k have their lowest common ancestor at a node at depth exactly k, then

Code(w[i..i + k -1]) = Code(w[i + k..i + 2k -1]) but Code(w[i..i + k]) = Code(w[i + k..i + 2k]). Hence, indeed w[i..i + 2k -1] is a non-extendible op-square.
Now, it suffices to prove the following property.

Lemma 19. If w contains an op-square of a given length, then it contains a non-extendible op-square of the same length.

Proof. Let w[i..i + 2k -1] be the rightmost op-square of length 2k in w. If i + 2k -1 = n, then it is already a non-extendible op-square. Otherwise, it is a non-shiftable op-square:

w[i + 1..i + k] ≈ w[i + k + 1..i + 2k]. Hence, w[i..i + k] ≈ w[i + k..i + 2k]
and consequently w[i..i + 2k -1] is a non-extendible op-square.

Consequently, we obtain an efficient algorithm for detecting an op-square of a given length. Note that the algorithm does not require to query the character oracle. It only processes the skeleton of the suffix tree.

Theorem 20. For a string w of length n, after O(n log n)-time preprocessing one can check if w contains an op-square of a given length in O(1) time.

The algorithm of Gusfield and Stoye can also compute all the occurrences of regular squares in a string in additional time proportional to the number of reported occurrences. For this, it starts at every branching square w[i..i + 2k -1] and shifts it to the left position-by-position as long as it forms a square, i.e. as long as w[i -j] = w[i + k -j], j = 1, 2, . . .

A generalization of this algorithm to op-squares requires efficient testing if an op-square can be shifted to the left. This could be done using the character oracle for the reversed text. However, there is a more efficient solution.

Theorem 21. All occurrences of order-preserving squares in a string w of length n can be computed in O(n log n + Occ) time, where Occ is the total number of occurrences of op-squares.

Proof. We use the fact that the string w[i..i + 2k -1] is an op-square if and only if the LCA node of the leaves of T (w) with labels i and i + k has depth at least k.

Recall that after O(n) preprocessing, LCA of nodes in a tree can be computed in O(1) time [START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF][START_REF] Bender | The LCA problem revisited[END_REF]. Using LCA-queries we can keep shifting an non-extendible op-square to the left. We stop either when the tested substring is not an op-square or when we encounter another non-extendible op-square. The latter situation is possible since non-extendible op-squares can still be shiftable. We obtain an algorithm with required complexity.

Constructing Complete Order-Preserving Suffix Tree

In this section we present efficient construction algorithms for a complete op-suffix-tree in two variants. In the first variant we use the codes from Section 2 and obtain O(n log n log log n) construction time. Later, we choose another code to express order-isomorphism to obtain O(n √ log n)-time construction of an op-suffix-tree that uses this code.

In the first variant we apply the following result by Babenko et al. [START_REF] Babenko | Wavelet trees meet suffix trees[END_REF], a data structure for range rank and range selection queries. Lemma 22 ([38]). An array A [1..n] of integers (fitting machine words) can be preprocessed in O(n √ log n) time so that one can answer the following queries in O(log n log log n) time: 1. Given indices i, j, k (with i ≤ j) count the number of elements in A[i..j] smaller than A[k].

2. Given indices i ≤ j and an integer k, 1 ≤ k ≤ j -i + 1, find the index of the k-th smallest element in A[i..j].

As a consequence, we obtain a data structure for range predecessor and range successor queries. 2. Given indices i ≤ j and an integer v compute the index of the smallest element in A[i..j] not smaller than v.

Proof. We maintain the data structure of Lemma 22 as well as the data structure for (static) predecessor and successor queries, which maps any value present in A into an index where it occurs. For this, we may use Lemma 7. This gives additional O(n log log n) in construction time and O(log log n) for each query.

In order to answer a predecessor query for v in range [i.

.j] we proceed as follows: we find an index k such that A[k] is the successor of v + 1 in A[1..n] and ask for a rank of A[k] in A[i..j]. If the result r is non-zero, we return the r-th smallest element in A[i..j]. Otherwise, v has no predecessor in A[i..j]. The procedure for a successor query is analogous.

Note that data structures with faster query times for range predecessor/successor problem are known [START_REF] Nekrich | Sorted range reporting[END_REF][START_REF] Zhou | Sorted range reporting revisited[END_REF]. However, the construction times of these data structures are Ω(n log n).

The character oracle of Lemma 8 is efficient but it allows computation of LastCodes only for a dynamic string that changes in a queue-like manner. Now we show a general character oracle that is able to compute the LastCode for any factor of w. To obtain a complete op-suffix-tree, we need to put labels on incomplete edges and to provide a character oracle. Note that, using a character oracle working in f (n) time, we can fill in the missing labels in O(nf (n)) time.

Corollary 25. The op-suffix-tree of a string of length n can be constructed in O(n log n log log n) expected time.

Faster Construction with Different Codes

Below we show a slightly faster construction. For this, however, we need a different encoding of strings that also maps order-isomorphism into equality. A very similar code was already presented in [START_REF] Kim | Order-preserving matching[END_REF]. For a string w of length n we define:

prev < (w) = |{k : k < i, w k < w n }|, prev > (w) = |{k : k < i, w k > w n }|.
The counting code of a string w is defined as Example 26. The counting code of the string 5 2 7 5 1 4 9 4 5 from Figure 2

is (0, 0) (0, 1) (2, 0) (1, 1) (0, 4) (2, 3) (6, 0) (2, 4) (4, 2).
The following lemma states that Code is also an order-preserving code. A similar result is present in [START_REF] Kim | Order-preserving matching[END_REF] but we provide a proof for completeness. Proof. (a) To prove the (⇒) implication it is enough to observe that prev < and prev > depend only on the relative order of letters in the underlying string. For (⇐) we need to prove that the relative order between x k and x n is the same as between y k and y n for every k < n.

First, suppose that x k < x n and (for a proof by contradiction) y k ≥ y n . Since prev < (x) = prev < (y), there must exist an index < n such that x ≥ x n and y < y n . This, however, implies x k < x and y k > y , a contradiction with x[..n -1] ≈ y[..n -1]. Consequently, y k < y n whenever x k < x n . Applying a symmetric argument with prev > , we conclude that x k > x n implies y k > y n . When we exchange the roles of x and y in the previous argument, we obtain equivalences x k < x n ⇐⇒ y k < y n and x k > x n ⇐⇒ y k > y n . This implies x k = x n ⇐⇒ y k = y n which concludes the proof that x ≈ y.

Part (b) follows from part (a) by induction.

The main advantage of the counting codes is the existence of an efficient offline character oracle, which can answer q queries about factors of a text in O((n + q) √ log n) time. To design the oracle we use a geometric approach: the computation of LastCode corresponds to counting points in certain rectangles in the plane.

The orthogonal range counting problem is defined as follows. We are given n points in the plane and we are to count the number of points in axis-aligned rectangles given as queries. An efficient solution to this problem was given by Chan and Pǎtraşcu.

Lemma 28 (Corollary 2.3 in [START_REF] Chan | Counting inversions, offline orthogonal range counting, and related problems[END_REF]). Given n points and n axis-aligned rectangles in the plane we can count the number of points inside each rectangle in O(n √ log n) total time.

Lemma 29 (Offline Character Oracle). Let w be a string length n. In O((n + q) √ log n) total time one can answer q queries asking to compute LastCode (w[i..j]) for given indices i ≤ j.

Proof. Let us represent pairs (i, w i) as points in the plane. Then we have LastCode (w[i..j]) = (a, b), where a is the number of points that lie within the rectangle A = [i, j -1] × (-∞, w j) and b is the number of points in the rectangle B = [i, j -1] × (w j , ∞); see Figure 8.

By Lemma 28, we can count the number of points in these rectangles in O((n + q) √ log n) total time. Theorem 30. The complete op-suffix-tree of a string of length n using the counting code can be constructed in O(n √ log n) expected time.

Proof. The skeleton of the op-suffix-tree for each valid order-preserving code is the same. Hence, to construct the op-suffix-tree for the counting code, we compute the skeleton of the suffix tree using the algorithm for incomplete opsuffix-tree for the code of Section 2 (Theorem 11). Afterwards, we discard the original labels and use the offline character oracle to insert the first characters on each edge of the skeleton.

Conclusions and Open Problems

We have presented an O(n log log n)-expected-time and O(n log n)-worstcase-time construction of an incomplete order-preserving suffix tree. We have also presented an O(n √ log n)-expected-time construction of a complete order-preserving suffix tree. We have shown that the data structures can serve for the purposes of indexing and detecting several types of regularities in a string in the order-preserving setting.

Our O(n √ log n)-time construction of a complete op-suffix-tree required changing the so-called character oracle (that is, the encoding of the strings used to map order-isomorphism into equality). The reason was that computing the main character oracle considered in this work reduced to range predecessor/successor queries, which can be answered in O(log n log log n) time, whereas computing the other oracle reduces to orthogonal range counting queries, such that q such queries can be answered in O((n + q) √ log n) time. However, due to a very recent work [START_REF] Babenko | Wavelet trees meet suffix trees[END_REF] q range predecessor/successor queries can also be answered in O((n + q) √ log n) time. Consequently, one can obtain the better time complexity of constructing the complete op-suffix-tree without changing the oracle.

A number of open questions arise from our work. The most natural question refers to the existence of faster construction algorithms of both data structures or deterministic construction algorithms with the same time complexities. Another problem is related to order-preserving indexing. Our index allows for O(m)-time queries, where m is the length of the pattern, assuming that the alphabet of the pattern is polynomial in m. One can ask whether there exists an index with equally good construction time and O(m)-time queries for patterns over larger alphabet, i.e., alphabet that is polynomial in n. Finally, it would be interesting to know if there is an o(n log n)-time algorithm for finding the longest order-preserving square in a string.

Figure 1 :

 1 Figure 1: To the left: w = 5 2 7 5 1 4. Here w 6 = 4 does not occur in w[..5]. We have α(w) = 2 since w 2 = 2 the largest letter in w[..5] that is smaller than w 6 . Similarly, β(w) = 4 since w 4 = 5 is the rightmost occurrence of the smallest letter in w[..5] that is larger than w 6 . To the right: w = 5 2 7 5 1 5. Here w 6 = 5 occurs earlier in w. Therefore α(w) = β(w) = 4 both indicate the position of the rightmost such occurrence.

Figure 2 :

 2 Figure 2: Example of two order-isomorphic strings.Their codes are equal to (0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 4) (3, 0) (6, 6) (4, 4).

and

 Code(w) = (LastCode(w[..1]), LastCode(w[..2]), . . . , LastCode(w[..|w|])).

Figure 3 :

 3 Figure 3: SufCodes(w) for w = 1 2 4 4 2 5 5 1.

#Figure 4 :

 4 Figure 4: The uncompacted trie of SufCodes(w) for w = 1 2 4 4 2 5 5 1 (to the left) and its compacted version, the complete op-suffix-tree of w (to the right). The dotted arrows (left figure) show suffix links for branching nodes. One of them leads to an implicit node: Locus(2 5 5) = Locus(2 4 4) Locus(2 5) = Locus(2 4). This is because 2 5 5 1 ≈ 2 4 4 2 but 2 5 5 ≈ 2 4 4 and 5 5 1 ≈ 4 4 2. Boldface labels in the right figure are present also in the incomplete op-suffix-tree.

Figure 5 :

 5 Figure 5: Let γ be the text spelled out on a path from the root to v in the uncompacted op-suffix trie of w. Similarly, let γ be the text on a path to v = SufLink (v). Observe that not necessarily γ is a suffix of γ, but γ = Code(DelFirst(x)), where x = w[p..p + k -1] and p is the label on any leaf in the subtree rooted in v and k = |γ|.

Figure 7 :

 7 Figure 7: The op-LPF table for this string is: [0, 1, 2, 2, 2, 2, 3, 2, 2, 1]. We have op-LPF[6] = 2 because 3 5 ≈ 4 7; see the rectangles in the figure.

 whichever is larger. The sequences p k and s k are computed in linear time using a folklore stack-based algorithm. Once p k and s k are known, two LCA queries suffice to determine the answer LPF [L k].

Example 17 .

 17 For w = 1 2 5 6 3 4, the factors w[1..4] and w[3..6] are op-squares, but w[2..5] is not because 2 5 ≈ 6 3.

Corollary 23 .

 23 An array A[1..n] of integers in {1, . . . , n O(1) } can be preprocessed in O(n √ log n) expected time so that one can answer the following queries in O(log n log log n) expected time: 1. Given indices i ≤ j and an integer v compute the index of the largest element in A[i..j] not larger than v.

Lemma 24 (

 24 Strong Character Oracle). A string w of length n can be preprocessed in O(n √ log n) expected time, so that given indices i ≤ j one can compute LastCode(w[i..j]) in O(log n log log n) expected time. Proof. We construct an array A[1..n] with A[k] = (w k , k) and build the structure of Corollary 23 over this array. (Actually, we map (a, b) → an + b so that the values are integers.) In order to answer the α(w[i..j]) query it suffices to compute the index k 1 of the predecessor of (w j , n) in A[i..j -1]. We have α(w[i..j]) = k 1 -i + 1. The β(w[i..j]) values are computed similarly using range successor queries in an array B[1..n] with B[k] = (w k , -k).

LastCode

 (w) = (prev < (w), prev > (w)) and Code (w) = (LastCode (w[..1]), LastCode (w[..2]), . . . , LastCode (w[..|w|])).

Lemma 27 .

 27 Let x and y be two strings of length n. Then (a) x ≈ y ⇐⇒ x[..n -1] ≈ y[..n -1] ∧ LastCode (x) = LastCode (y). (b) x ≈ y ⇐⇒ Code (x) = Code (y).

Figure 8 :

 8 Figure 8: Geometric illustration of the sequence w = 5 4 6 5 2 6 1 5 6. The elements w i are represented as points (i, w i). The computation of LastCode (w[2..8]) = (3, 2) corresponds to counting points in rectangles A, B.

http://www.etsu.edu/cas/math/pp2014/history.aspx

Acknowledgements

Tomasz Kociumaka is supported by Polish budget funds for science in 2013-2017 as a research project under the 'Diamond Grant' program (Ministry of Science and Higher Education, Republic of Poland, grant number DI2012 01794). Jakub Radoszewski receives financial support of Foundation for Polish Science and is supported by the Polish Ministry of Science and Higher Education under the 'Iuventus Plus' program in 2015-2016 grant no. 0392/IP3/2015/73. Wojciech Rytter is supported by grant no. NCN2014/13/B/ST6/00770 of the National Science Centre.

Algorithm 1: Construct incomplete op-suffix-tree T (w)

Initialize T as a tree consisting of a single node: root; v := root; x := empty string; Remark 10 (Why incomplete?). At first glance it might be unclear why incomplete edges appear. Consider the situation when we jump to an implicit node v = SufLink (v) and we later branch in this node. The node v becomes explicit and the existing edge from this node to some node z becomes an incomplete edge. Despite incompleteness of the edge (v , z) the forthcoming equality tests between the (known) last code letter of the active string and the first (unknown) code letter of the label of this edge can be done quickly due to Lemma 3.