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Three new simple O(n log n) time algorithms related to repeating factors are presented in the paper. The first two algorithms employ only a basic textual data structure called the Dictionary of Basic Factors. Despite their simplicity these algorithms not only detect existence of powers but also find all primitively rooted cubes (as well as higher powers) and all cubic runs. Our third O(n log n) time algorithm computes all runs and is probably the simplest known efficient algorithm for this problem. It uses additionally the Longest Common Extension function, however, due to relaxed running time constraints, a simple O(n log n) time implementation can be used. At the cost of logarithmic factor (in time complexity) we have novel algorithmic solutions for several classical string problems which are much simpler than (usually quite sophisticated) linear time algorithms.

Introduction

In this paper, we present algorithms finding various types of repetitions in a string: powers (e.g. squares or cubes), cubic runs and runs. Finding repetitions is a fundamental problem in text processing and has numerous applications. Examples of such applications, an explanation of the motivation and related topics can be found in the survey [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF].

Various problems related to finding repetitions in a string have already been studied. For the problem of finding all distinct squares, a linear time algorithms are known [START_REF] Gusfield | Linear time algorithms for finding and representing all the tandem repeats in a string[END_REF][START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF]. It is also known, that the maximal number of distinct squares in a string is linear [START_REF] Fraenkel | How many squares can a string contain?[END_REF].

Multiple approaches to searching for squares in a string can be found in the literature, however most of the existing algorithms are rather complex. The first approach, is to check if a string is square-free. O(n log n) time algorithms for this problem have been presented in [START_REF] Main | Linear time recognition of squarefree strings[END_REF][START_REF] Rabin | Discovering repetitions in strings[END_REF] (the latter one is randomized). The optimal O(n) time algorithms are described in [START_REF] Crochemore | Transducers and repetitions[END_REF][START_REF] Main | Linear time recognition of squarefree strings[END_REF].

Another approach is to find all occurrences of primitively rooted squares in a string. A number of O(n log n) time algorithms reporting all such occurrences can be found in [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF][START_REF] Kosaraju | Computation of squares in a string (preliminary version)[END_REF][START_REF] Main | An O(n log n) algorithm for finding all repetitions in a string[END_REF][START_REF] Slisenko | Detection of periodicities and string matching in real time[END_REF][START_REF] Stoye | Simple and flexible detection of contiguous repeats using a suffix tree[END_REF]. Due to the lower bound shown in [START_REF] Crochemore | Bounds on powers in strings[END_REF] these algorithms are optimal.

Yet another approach is to report all occurrences of squares in a string. If we denote the number of such occurrences by z, then both O(n log n+z) time algorithms [START_REF] Landau | An algorithm for approximate tandem repeats[END_REF][START_REF] Main | An O(n log n) algorithm for finding all repetitions in a string[END_REF][START_REF] Stoye | Simple and flexible detection of contiguous repeats using a suffix tree[END_REF] and O(n + z) time algorithms [START_REF] Gusfield | Linear time algorithms for finding and representing all the tandem repeats in a string[END_REF][START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF] are known for this problem.

Finally, there are recent results related to on-line square detection (that is, when letters of u are given one by one), improving the time complexity from O(n log 2 n) [START_REF] Leung | An efficient online algorithm for square detection[END_REF] to O(n log n) [START_REF] Jansson | Online and dynamic recognition of squarefree strings[END_REF] and O(n) [START_REF] Chen | An optimal algorithm for online square detection[END_REF].

Let u be a string of length n over a bounded alphabet. In Section 3 a very simple O(n log n) time algorithm checking whether u contains any kth string power is presented. The algorithm reports all occurrences of primitively rooted kth powers for any k ≥ 3, in particular, primitively rooted cubes. As a by-product we obtain an alternative, algorithmic proof of the fact [START_REF] Crochemore | Bounds on powers in strings[END_REF] that the maximal number of such occurrences is O(n log n). The output of the algorithm is later on used to list all cubic runs in u, within the same time complexity.

From the aforementioned literature, the papers [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF][START_REF] Main | An O(n log n) algorithm for finding all repetitions in a string[END_REF] deal also with powers of arbitrary (integer) exponent, however the techniques used there (e.g., suffix trees, Hopcroft's factor partitioning) are much more sophisticated than the techniques applied in this paper. The O(n log n) time algorithm for a single square detection from [START_REF] Main | Linear time recognition of squarefree strings[END_REF] is in some sense similar to the algorithm presented in this paper. However it is less versatile than ours: we see no simple modification adapting it to detect all occurrences of primitively rooted higher powers.

In Section 4, we present an application of the algorithm finding all occurrences of primitively rooted cubes to find all cubic runs. This algorithm also runs in O(n log n) time and it does not use any additional advanced techniques.

Finally, in Section 5, we give an algorithm reporting all runs in a string, in O(n log n) time. It is significantly simpler than all known O(n log n) time algorithms present implicitly in [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF][START_REF] Main | An O(n log n) algorithm for finding all repetitions in a string[END_REF] and than the optimal O(n) time algorithm [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF]. The only non-trivial technique used in our algorithm is the Longest Common Extension function. It can be either implemented as described in [START_REF] Crochemore | Efficient algorithms for two extensions of LPF table: The power of suffix arrays[END_REF][START_REF] Ilie | Practical algorithms for the longest common extension problem[END_REF] -very efficiently, but using quite sophisticated machinery, or less efficiently, but in a much simpler way, what is sufficient to obtain O(n log n) time complexity.

Preliminaries

We consider words (strings) over a bounded alphabet Σ, u ∈ Σ * . The empty word is denoted by ε. The positions in u are numbered from 1 to |u|. For u = u 1 u 2 . . . u n , by u[i . . j] we denote a factor of u equal to u i . . . u j (in particular u

[i] = u[i . . i]). Words u[1 . . i] are called prefixes of u, words u[i .
. n] suffixes of u, whereas words that are both a prefix and a suffix of u are called borders of u.

We say that a positive integer p is a period of the word u = u 1 . . . u n if u i = u i+p holds for all i, 1 ≤ i ≤ np. Periods and borders correspond to each other, i.e. u has a period p if and only if it has a border of length np, see e.g. [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF].

A run (also called a maximal repetition) in a string u is such an interval [i . . j], that:

-the shortest period p of the associated factor u[i . . j] satisfies 2p ≤ ji + 1, -the interval can be extended neither to the left nor to the right, without violating the above property, that is,

u[i -1] = u[i + p -1] and u[j -p + 1] = u[j + 1],
provided that the respective characters exist.

A cubic run is a run [i . . j] for which the shortest period p satisfies 3p ≤ ji + 1. We identify a run (or a cubic run) with a corresponding triple (i, j, p).

If w k = u (k is a positive integer) then we say that u is the kth power of the word w. A square (cube) is the 2nd (3rd) power of some nonempty word. 

Dictionary of Basic Factors

Dictionary of Basic

[i . . i + 2 t -1] ≤ u[j . . j + 2 t -1] if and only if N ame t [i] ≤ N ame t [j]
. DBF has a variety of known applications in the field of text and sequence algorithms, see e.g. [START_REF] Crochemore | Usefulness of the Karp-Miller-Rosenberg algorithm in parallel computations on strings and arrays[END_REF].

DBF(u) requires O(n log n) space and can be constructed in O(n log n) time [START_REF] Crochemore | Jewels of Stringology[END_REF]. N ame 0 [ ] contains information about consecutive characters of u. So, N ame 0 [ ] can be computed in O(n) time, by sorting all the letters appearing in u and mapping characters of u to numbers from 1 on. Having computed

N ame t [ ], one can easily compute N ame t+1 [ ] in O(n) time. Factor u[i . . i + 2 t+1 -1] is a concatenation of factors u[i . . i + 2 t -1] and u[i + 2 t . . i + 2 t+1 -1].
Hence, it can be represented by a pair (N ame t [i], N ame t [i + 2 t ]). Then, all such pairs can be sorted lexicographically (in O(n) time) and mapped onto their ranks, that is integers from 1 on. Figure 1 shows the DBF for an example string. Using DBF, one can compare factors of arbitrary length, as given in the following Lemma, see [START_REF] Crochemore | Jewels of Stringology[END_REF]. Proof. Let u[i . . j] and u[i ′ . . j ′ ] be the two factors that should be compared. We can assume, that ji = j ′i ′ , since otherwise they have different lengths, cannot be equal and can be compared by trimming the longer factor.

Text a b b a a b b a b b a N ame 0 [ ] 1 2 2 1 1 2 2 1 2 2 1 (1, 2) (2, 2) (2, 1) (1, 1) (1, 2) (2, 2) (2, 1) (1, 2) (2, 2) (2, 1) N ame 1 [ ] 2 4 3 1 2 4 3 2 4 3 (2, 3) (4, 1) (3, 2) (1, 4) (2, 3) (4, 2) (3, 4) (2, 3) N ame 2 [ ] 2 5 3 1 2 6 4 2 (2, 2) (5, 6) (3, 4) (1, 2) N ame 3 [ ] 2 4 3 1
Let t be such an integer, that 2 t ≤ ji < 2 t+1 . Then, it is enough to compare u

[i . . i + 2 t -1] with u[i ′ . . i ′ + 2 t -1], and u[j -2 t + 1 . . j] with u[j ′ -2 t + 1 . . j ′ ]. This however can be done by comparing N ame t [i] with N ame t [i ′ ], and N ame t [j -2 t + 1] with N ame t [j ′ -2 t + 1]. ⊓ ⊔
Later on, we show, that the memory complexity of the presented algorithm can be reduced to O(n), although it uses DBF(u). To do this, we cannot store all the arrays N ame t [ ]. Instead, we should store just a fixed number (e.g. one) of such arrays, and design the algorithm in such a way, that are used in the ascending order of t. Then, new arrays can be computed when needed, replacing previously used arrays. Still, it is possible to compare factors in O(1) time, provided that the ratio between the length of the compared factors and 2 t is bounded, as expressed by the following Lemma.

Lemma 2. Let t be a fixed number between 0 and ⌊log n⌋, and let N ame t [ ] be one of the arrays constituting DBF(u). It is possible to compare factors of u of length l, using just N ame t [ ], in constant time, provided that: l ≥ 2 t and l 2 t = O(1). Proof. The proof is similar to the proof of the previous Lemma. The compared factors can be covered using O(1) factors of length 2 t . Hence, it is enough to compare O(1) pairs of elements of N ame t [ ].

⊓ ⊔

Detecting String Powers

Let u be a word of length n. The following algorithm tests if u contains a kth power, for k ≥ 2. It exploits DBF(u) and two other auxiliary data-structures, denoted by POWERS and P rev. POWERS is a list on which the result is accumulated. Each occurrence of a power of the form (u[pos . . pos+root-1]) k (i.e. kth power of a factor of length root, starting at position pos) is represented by a pair (root, pos). The output of the algorithm is a list of pairs denoting kth powers. We allow the same power to be inserted multiple times -at the end the list is sorted and the repetitions are removed.

P rev [1 . . n] is an array of positions in the text, such that P rev[N ame t [j]] is the most recent occurrence of u[j . . j + 2 t -1] preceding j, or -1 if there is none.

For all values of t, the algorithm scans the text, and for each position j it checks (in constant time) if factors of u of length 2 t , starting at P rev[N ame t [j]] and j generate a power. Examples of how the algorithm works can be found in Fig. 2 Table 1. For the Thue-Morse word of length 32 the algorithm reports the following squares (pairs (root, pos)): t = 0: (1, 2), (2, 3), [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Crochemore | Bounds on powers in strings[END_REF], [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF], [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Crochemore | Efficient algorithms for two extensions of LPF table: The power of suffix arrays[END_REF], [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Crochemore | Usefulness of the Karp-Miller-Rosenberg algorithm in parallel computations on strings and arrays[END_REF], [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Gusfield | Linear time algorithms for finding and representing all the tandem repeats in a string[END_REF], [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Ilie | Practical algorithms for the longest common extension problem[END_REF], [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF], [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Kosaraju | Computation of squares in a string (preliminary version)[END_REF], [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Main | An O(n log n) algorithm for finding all repetitions in a string[END_REF], [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Rabin | Discovering repetitions in strings[END_REF], [START_REF]Combinatorial Algorithms on Words[END_REF][START_REF] Stoye | Simple and flexible detection of contiguous repeats using a suffix tree[END_REF], [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF]27), (1, 30); t = 1: (4, 5), [START_REF] Chen | An optimal algorithm for online square detection[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF], [START_REF] Chen | An optimal algorithm for online square detection[END_REF][START_REF] Jansson | Online and dynamic recognition of squarefree strings[END_REF], [START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF][START_REF] Leung | An efficient online algorithm for square detection[END_REF]; t = 2: (8, 9). In particular, the algorithm reports all squares in the Thue-Morse words.

In the analysis of the algorithm we use some combinatorics of primitive words. The primitive root of a word u is the shortest word w, such that w k = u for some positive integer k. We call a word u primitive if it equals its primitive root, otherwise it is called non-primitive. Primitive words admit a so-called synchronizing property, as given in the following Lemma, see [START_REF] Crochemore | Algorithms on Strings[END_REF].

Lemma 3 (Synchronizing property of primitive words).

A nonempty word is primitive if and only if it occurs as a factor in its square only as a prefix and a suffix. Proof. Obviously, all positions reported by the algorithm represent kth powers. Thus we only need to show that no non-primitively-rooted powers are reported.

Consider lines 7-12 of the algorithm, for some t and j. Assume that pos = 0. To conclude the proof of the theorem, it suffices to show that the word w def = u[pos . . j -1] is always primitive.

Assume to the contrary, that w = v m , for some v and m ≥ 2. Let z = u[j . . j + 2 t -1] = u[pos . . j + 2 t -1]. There are two cases (see Fig. 3): a) Let us assume, that |w| ≥ 2 t . Then z is a prefix of of w and |v| is a period of z. b) Let us assume, that |w| < 2 t . Then w is a prefix of z and u[j . . j + 2 t -|w| -1] is a border of z.

In both cases z appears also at position j-|v|. Hence, P rev[N ame t [j]] ≥ j-|v| > pos, this contradiction concludes the proof.

⊓ ⊔

The following two theorems conclude that the algorithm correctly checks if the word contains any kth power (i.e., whether the word is kth-power-free or not), and also reports (among others) all kth powers of specific type, depending on the value of parameter k (2 or ≥ 3). Proof. Let v 2 be any shortest square occurring in u at position i. Note that v must be primitive. Let s be such an integer, that 2 s ≤ |v| < 2 s+1 . Consider the step of the algorithm in which t = s, j = i + |v|. We show that the algorithm reports the square v 2 in this step, i.e., pos = i. Obviously pos ≥ i, hence it suffices to show that this value cannot be greater than i. If this was the case, the factor w def = u[j . . j + 2 t -1] would occur in u at positions i, pos and j, thus forming an overlap, see Fig. 4. However, an overlap of a string of length 2 t corresponds to a square in u with primitive root shorter than 2 t , what contradicts the fact that v 2 is the shortest square in u.

⊓ ⊔ Theorem 6. For a given k ≥ 3, the DetectPowers algorithm finds all occurrences of primitively rooted kth powers in u.

Proof. Assume that there is an occurrence of v k , for v primitive, which starts at position i in u. Let integer s be defined as 2 s-1 < |v| ≤ 2 s . Let us consider the step of the algorithm in which t = s, j = i + |v|. We show that in this step pos = i, this concludes that the considered power is reported by the algorithm. Let us note that pos ≥ i, since 2 t < 2|v|, and therefore:

u[i . . i + 2 t -1] = u[j . . j + 2 t -1] def = w,
see Fig. 5a. We prove the inequality pos ≤ i by contradiction. Assume that i < pos < j. Then the prefix of w of length |v|, that is the word v, would occur in u at positions: i, pos and j (see Fig. 5.b). This is not possible, however, due to the synchronizing property of primitive words (Lemma 3).

⊓ ⊔

Remark. It is easy to see that the stronger claim (from Theorem 6) does not hold in the case of k = 2 (Theorem 5). That is, not all primitively rooted squares are detected by the algorithm. Among others, the squares for which the primitive root admits a very long border, e.g., ((ab) m a) 2 , may not be reported.

Finally, let us consider the complexity of the algorithm DetectPowers.

Theorem 7. The time complexity of the DetectPowers algorithm is O(n log n). Moreover, for k = O(1) the algorithm can be modified to require only O(n) space and still satisfy the properties from Theorems 4-6.

Proof. The analysis of the time complexity is straightforward -the outer loop of the algorithm makes O(log n) iterations and in each iteration the inner loop runs in O(n) time.

The space complexity of the presented implementation is also O(n log n) due to the space requirements of the DBF, however it can be reduced to O(n) if only two consecutive rows of the table N ame are stored in the memory.

This causes a difficulty only in the kth-power-test in line 8, since the value of root can be arbitrary. However, along with the proofs of Theorems 5 and 6, we can immediately return f alse in the test if the parameter root is not in the interval [2 t , 2 t+1 ) (for squares) or the interval (2 t-1 , 2 t ] (for higher powers), and still the output of the algorithm will fulfill the requirements.

Thus the predicate reduces to testing equality of words of length (k -1)

• root = c•2 t-1 , where 1 ≤ c = O(1) for k = O(1), thus can be performed using only N ame t-1 [ ] in constant time (Lemma 2).
⊓ ⊔

Application of the DetectPowers Algorithm for Cubic Runs

In this section we show how to use the output of the DetectPowers algorithm to compute, in a simple manner, all cubic runs in a string u of length n in O(n log n) time. Cubic runs [START_REF] Crochemore | On the maximal number of cubic runs in a string[END_REF] are special type of runs in which the period is at least 3 times shorter than the run, hence they characterize strong periodic properties of a word. Let L be the output of the DetectPowers algorithm for u and k = 3. It is a sorted list of pairs with repetitions removed. Moreover, without the loss of generality, we can assume, that it is sorted in ascending lexicographical order of pairs. Let us define a special sublist of L as a maximal continuous subsequence of L of the form (per, i), (per, i + 1), . . . , (per, i + s). Note, that such a sublist corresponds to a cubic run (i, i + s + 3 • per -1, per).

Example 8. For the following list of pairs (root, pos): L = (2, 3), [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF], [START_REF] Apostolico | Optimal off-line detection of repetitions in a string[END_REF][START_REF] Crochemore | Transducers and repetitions[END_REF], [START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF][START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF], [START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF][START_REF] Crochemore | On the maximal number of cubic runs in a string[END_REF], (4, 28), (4, 29), (4, 30), (4, 31), [START_REF] Crochemore | Transducers and repetitions[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF] the corresponding cubic runs are:

(3, 10, 2), [START_REF] Crochemore | Repetitions in strings: Algorithms and combinatorics[END_REF][START_REF] Landau | An algorithm for approximate tandem repeats[END_REF][START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF], (28, 42, 4), [START_REF] Kolpakov | On maximal repetitions in words[END_REF]32,[START_REF] Crochemore | Transducers and repetitions[END_REF].

Thus we obtain:

Restriction 9. There is a bijection between special sublists of L and cubic runs.

The following algorithm scans the list of cubes and glues together its special sublists into cubic runs, utilizing Observation 9. Due to Theorems 4 and 6, the list L contains all occurrences of all primitively rooted cubes in the word u. In the for-all-loop (lines 6-12) the algorithm glues together cubes forming special sublists of L, thus forming the same cubic run. Hence, the output of the algorithm comprises exactly all the cubic runs in u.

⊓ ⊔

Detecting Runs

In this section we describe a different, however still very simple algorithm which reports all (ordinary) runs in a string u of length n in O(n log n) time. In the following pseudocode, in the for-loop we consider candidates for runs with period per. Verification of existence of runs is performed using the longest common prefix (lcpref in short) and the longest common suffix (lcsuf in short) queries, also called longest common extension queries (see also Fig. 6). Here, lcpref The obtained list of candidates RUNS may contain the same run listed several times and additionally with periods being multiples of its shortest period. Therefore, in the end (lines 11-14) we remove such repetitions, leaving at most one triple (i, j, per) for given i, j, with the smallest corresponding value of period per. if prev = (i, j) then RUNS.delete((i, j, per)); else prev ← (i, j) 15: return RUNS

The following theorem shows correctness of the DetectRuns algorithm, i.e., that it computes exactly all distinct runs in a string.

Theorem 11.

(a) Each run (a, b, q) in the word u is inserted to the list RUNS (line 9) at least once. (b) Every triple (a, b, p) inserted to RUNS in line 9 of the algorithm corresponds to a run (a, b, q) in u with q | p.

Proof. (a) Let a + r, for 0 ≤ r < q, be any of the first q positions of the run. Then, by the definition of a run, the following inequalities hold, see Fig. 6:

lcsuf (a + r, a + r + q) = r + 1 lcpref (a + r, a + r + q) ≥ q -r.
Hence, if per = q and pos = a + r then the condition in line 8 of the algorithm is true and the run (a, b, q) is reported. However, this happens for r ≡ -a (mod per), i.e., in the mth step of the while-loop, where m = ⌈a/per⌉. (b) Clearly any triple (a, b, p) inserted into the list RUNS in line 9 of the algorithm corresponds to an interval [a . . b] in u with period (not necessarily shortest) equal to p and repeating at least twice within the interval, i.e., 2p ≤ ba + 1. Moreover, this interval is not extendable to either side without violating this periodicity.

Let q be the shortest period of the factor u[a . . b]. Note that q | p, since otherwise, by Fine & Wilf's Periodicity Lemma [START_REF] Crochemore | Algorithms on Strings[END_REF][START_REF] Crochemore | Jewels of Stringology[END_REF], gcd(p, q) would be a shorter period of this factor. To show that [a . . b] is a run with period q, it suffices to prove that this interval is not extendable to either size with regard to the period q. for a run (a, b, q) and 0 ≤ r < q Assume to the contrary that the interval is extendable to the left (the other case is analogical). Then we have:

u[a -1] = u[a -1 + q] = u[a -1 + q + (p/q -1) • q] = u[a -1 + p]
and consequently [a . . b] would be extendable to the left w.r.t. the period p, a contradiction.

⊓ [START_REF] Crochemore | Efficient algorithms for two extensions of LPF table: The power of suffix arrays[END_REF]. Techniques used in the efficient implementation of these data structures are rather complex. However, without increasing overall time complexity of the algorithm, we can compute the Suffix Array and preprocess RMQ in O(n log n) time. Hence, we can use much simpler machinery. The Suffix Array of u can be computed in O(n log n) time using DBF(u) -all the suffixes are sorted lexicographically and can be compared in O(1) time using DBF(u). Then, the LCP array can be simply computed in O(n) time using the Suffix Array.

Preprocessing of RMQ data-structure in O(n log n) time resembles computation of DBF a lot. The main difference is that instead of computing ranks of factors we compute positions of minimal elements in ranges. Then, we can find a minimum in the given range by covering the given range by two ranges whose size is a power of two, and comparing their minimal elements. Hence, O(1) query time is preserved.

Thus we obtain O(n log n) preprocessing time and O(1) query time for the lcpref and lcsuf queries, what yields the time complexity of the algorithm specified in the following theorem. ⊓ ⊔

Figure 1 .

 1 Figure 1. Example of DBF computation for word abbaabbabba. Factor abba appears three times in this word and is represented in N ame 2 [ ] by 2.

Lemma 1 .

 1 Having precomputed DBF(u), any two factors of u can be compared in O(1) time.

Figure 2 .

 2 Figure 2. The basic factor cacb of rank t = 2 at position j = 13 generates a cube (cacbcab) 3 starting at position pos = 6. The same cube is generated for t = 3 and j = 13, for the basic factor cacbcabc. a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Theorem 4 .

 4 DetectPowers algorithm reports only primitively rooted powers in the word u.

Figure 3 .

 3 Figure 3. Illustration of the proof of Theorem 4; case (a): |z| ≤ |w|, case (b): |z| > |w| .

Figure 4 .

 4 Figure 4. Illustration of the proof of Theorem 5. (a) If posi < 2 t then the occurrences of w at positions i and pos overlap. (b) If pos-i ≥ 2 t then the occurrences of w at positions pos and j overlap.

Figure 5 .

 5 Figure 5. Illustration of the proof of Theorem 6

Algorithm 6 :

 6 DetectCubicRuns(u, n) 1: {list all cubic runs in the word u, |u| = n} 2: L ← DetectPowers(u, n, 3) 3: L.append((-1, -1)) 4: CRUNS ← ∅ 5: prev root ← prev pos ← start ← -1 for all (root, pos) ∈ L do 7: if (root, pos) = (prev root, prev pos + 1) then 8: prev pos ← pos 9: else if start ≥ 0 then 10: CRUNS.insert((start, prev pos + 3 • prev root -1, prev root)) 11: start ← prev pos ← pos 12: prev root ← root 13: return CRUNS Theorem 10. The DetectCubicRuns algorithm computes all cubic runs in a string u of length n in O(n log n) time. Proof. Due to Theorem 7, line 2 of the algorithm runs in O(n log n) time. The time complexity of the rest of the algorithm is + n), where |L| denotes the number of elements in the list L. Time complexity of lines 6-13 is clearly O(|L|). Finally, again due to Theorem 7, |L| = O(n log n), which yields O(n log n) total time complexity of the DetectCubicRuns algorithm.

  (a, b) denotes the length of the longest common prefix of suffixes u[a . . n] and u[b . . n], similarly lcsuf (a, b) denotes the length of the longest common suffix of prefixes u[1 . . a] and u[1 . . b].

Figure 6 .

 6 Figure 6. Graphical interpretation of lcsuf (a+r, a+r+q) and lcpref (a+r, a+r+q) for a run (a, b, q) and 0 ≤ r < q

Theorem 12 .

 12 The time complexity of the DetectRuns algorithm is O(n log n).Proof. For a given value of per, the while-loop performs at most n/per steps, each in constant time. The time complexity of the for-loop is therefore (n log n) and this is also the maximum size of the list RUNS.All remaining operations in the algorithm are: lcpref /lcsuf preprocessing which is performed in O(n log n) time, and sorting and removing duplicates from RUNS, both performed in O(|RUNS|) = O(n log n) time. In total, we obtain the aforementioned time complexity of the algorithm.

  Factors is a simple, yet powerful data-structure. It is widely used in this paper. For a word u of length n, the Dictionary of Basic Factors of u (denoted by DBF(u)) consists of a sequence of arrays N ame t [ ], for 0 ≤ t ≤ ⌊log n⌋. Array N ame t [ ] contains information about factors of u of length 2 t -N ame t [i] contains information about word u[i . . i + 2 t -1], for 1 ≤ i ≤ n -2 t + 1. More precisely, value of N ame t [i] is the rank of u[i . . i + 2 t -1] among other factors of length 2 t . Hence, values of elements of all the arrays N ame t [ ] are in the range from 1 to n. The important property of DBF(u), that we exploit, is that u

  and Table1.

	5:	P rev ← (0, 0, . . . , 0)
	6:	for j ← 1 to n -2 t + 1 do
	7:	name ← N ame t [ j ]
	8:	pos ← P rev[ name ]
	9:	root ← j -pos
	10:	if u[pos . .

Algorithm DetectPowers(u, n, k) 1: {detect kth string powers in a word u, |u| = n} 2: N ame ← DBF(u) 3: POWERS ← ∅ 4: for t ← 0 to ⌊log n⌋ do pos + k • root -1] is (really) a kth power {constant time test due to DBF} then 11: POWERS.insert((root, pos)) 12: P rev[ name ] ← j 13: RadixSort(POWERS) with repetitions removed 14: return POWERS

⊔

  Now let us analyze the time complexity of the algorithm. It mostly depends on the time complexity of the lcpref and lcsuf queries. Their efficient implementation involves the Longest Common Prefix (LCP) and Suffix Arrays (SUF) (computed in O(n) time), and Range Minimum Queries (RMQ) (with O(n) preprocessing time and O(1) query time)
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