Maxime Crochemore
email: [maxime.crochemore@kcl.ac.uk

Costas S Iliopoulos
email: costas.iliopoulos@kcl.ac.uk

Tomasz Kociumaka
email: [kociumaka@mimuw.edu.pl

Ritu Kundu
email: ritu.kundu@kcl.ac.uk

Solon P Pissis
email: solon.pissis]@kcl.ac.uk

Jakub Radoszewski

Wojciech Rytter
email: rytter@mimuw.edu.pl

Tomasz Waleń
email: walen]@mimuw.edu.pl

Longest common extension queries (LCE queries) and runs are ubiquitous in algorithmic stringology. Linear-time algorithms computing runs and preprocessing for constant-time LCE queries have been known for over a decade. However, these algorithms assume a linearlysortable integer alphabet. A recent breakthrough paper by Bannai et. al. (SODA 2015) showed a link between the two notions: all the runs in a string can be computed via a linear number of LCE queries. The first to consider these problems over a general ordered alphabet was Kosolobov (Inf. Process. Lett., 2016), who presented an O(n(log n) 2/3)-time algorithm for answering O(n) LCE queries. This result was improved by Gawrychowski et. al. (accepted to CPM 2016) to O(n log log n) time. In this work we note a special non-crossing property of LCE queries asked in the runs computation. We show that any n such non-crossing queries can be answered on-line in O(nα(n)) time, which yields an O(nα(n))time algorithm for computing runs.

Introduction

Runs (also called maximal repetitions) are a fundamental type of repetitions in a string as they represent the structure of all repetitions in a string in a succinct way. A run is an inclusion-maximal periodic factor of a string in which the shortest period repeats at least twice. A crucial property of runs is that their maximal number in a string of length n is O(n). This fact was already observed by Kolpakov and Kucherov [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF] who conjectured that this number is actually smaller than n, which was known as the runs conjecture. Due to the works of several authors [START_REF] Crochemore | Analysis of maximal repetitions in strings[END_REF][START_REF] Crochemore | Maximal repetitions in strings[END_REF][START_REF] Crochemore | Towards a solution to the "runs" conjecture[END_REF][START_REF] Giraud | Not so many runs in strings[END_REF][START_REF] Puglisi | How many runs can a string contain?[END_REF][START_REF] Rytter | The number of runs in a string: Improved analysis of the linear upper bound[END_REF][START_REF] Rytter | The number of runs in a string[END_REF] more precise bounds on the number of runs have been obtained, and finally in a recent breakthrough paper [START_REF] Bannai | The "runs" theorem[END_REF] Bannai et al. proved the runs conjecture, which has since then become the runs theorem (even more recently in [START_REF] Fischer | Beyond the runs theorem[END_REF] the upper bound of 0.957n was shown for binary strings).

Perhaps more important than the combinatorial bounds is the fact that the set of all runs in a string can be computed efficiently. Namely, in the case of a linearly-sortable alphabet Σ (e.g., Σ = {1, . . . , σ} with σ = n O (1)) a linear-time algorithm based on Lempel-Ziv factorization [START_REF] Kolpakov | Finding maximal repetitions in a word in linear time[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF] was known for a long time. In the recent papers of Bannai et al. [START_REF] Bannai | The "runs" theorem[END_REF][START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF] it is shown that to compute the set of all runs in a string, it suffices to answer O(n) longest common extension (LCE) queries. An LCE query asks, for a pair of suffixes of a string, for the length of their longest common prefix. In the case of σ = n O (1) such queries can be answered on-line in O(1) time after O(n)-time preprocessing that consists of computing the suffix array with its inverse, the LCP table and a data structure for range minimum queries on the LCP table; see e.g. [START_REF] Crochemore | Algorithms on Strings[END_REF]. The algorithms from [START_REF] Bannai | The "runs" theorem[END_REF][START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF] use (explicitly and implicitly, respectively) an intermediate notion of Lyndon tree (see [START_REF] Barcelo | On the action of the symmetric group on the Free Lie Algebra and the partition lattice[END_REF][START_REF] Hohlweg | Lyndon words, permutations and trees[END_REF]) which can, however, also be computed using LCE queries.

Let T LCE (n) denote the time required to answer on-line n LCE queries in a string. In a very recent line of research, Kosolobov [START_REF] Kosolobov | Computing runs on a general alphabet[END_REF] showed that, for a general ordered alphabet, T LCE (n) = O(n(log n) 2/3), which immediately leads to O(n(log n) 2/3)-time computation of the set of runs in a string. In [START_REF] Gawrychowski | Faster longest common extension queries in strings over general alphabets[END_REF] a faster, O(n log log n)-time algorithm for answering n LCE queries has been presented which automatically leads to O(n log log n)-time computation of runs.

Runs have found a number of algorithmic applications. Knowing the set of runs in a string of length n one can compute in O(n) time all the local periods and the number of all squares, and also in O(n + T LCE (n)) time all distinct squares provided that the suffix array of the string is known [START_REF] Crochemore | Extracting powers and periods in a word from its runs structure[END_REF]. Runs were also used in a recent contribution on efficient answering of internal pattern matching queries and their applications [START_REF] Kociumaka | Internal pattern matching queries in a text and applications[END_REF].

Our Results

We observe that the computation of a Lyndon tree of a string and furthermore the computation of all the runs in a string can be reduced to answering O(n) LCE queries that are non-crossing, i.e., no two queries LCE(i, j) and LCE(i , j) are asked with i < i < j < j or i < i < j < j. Let T ncLCE (n) denote the time required to answer n such queries on-line in a string of length n over a general ordered alphabet. We show that T ncLCE (n) = O(nα(n)), where α(n) is the inverse Ackermann function. As a consequence, we obtain O(nα(n))time algorithms for computing the Lyndon tree, the set of all runs, the local periods and the number of all squares in a string over a general ordered alphabet.

Our solution relies on a trade-off between two approaches. The results of [START_REF] Gawrychowski | Faster longest common extension queries in strings over general alphabets[END_REF] let us efficiently compute the LCEs if they are short, while LCE queries with similar arguments and a large answer yield structural properties of the string, which we discover and exploit to answer further such queries.

Our approach for answering non-crossing LCE queries is described in three sections: in Section 3 we give an overview of the data structure, in Section 4 we present the details of the implementation, and in Section 5 we analyse the complexity of answering the queries. The applications including runs computation are detailed in Section 6. The appendix contains some supporting examples.

Preliminaries

Strings Let Σ be a finite ordered alphabet of size σ. A string w of length |w| = n is a sequence of letters w [START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF] . . . w[n] from Σ. By w[i, j] we denote the factor of w being a string of the form w Lyndon Words and Trees By ≺=≺ 0 we denote the order on Σ and by ≺ 1 we denote the reverse order on Σ. We extend each of the orders ≺ r for r ∈ {0, 1} to a lexicographical order on strings over Σ. A string w is called an r-Lyndon word if w ≺ r u for every non-empty proper suffix u of w. The standard factorization of an r-Lyndon word w is a pair (u, v) of r-Lyndon words such that w = uv and v is the longest proper suffix of w that is an r-Lyndon word.

[i] . . . w[j]. A factor w[i, j] is called proper if w[i, j] = w. A factor is called a prefix if i = 1 and a suffix if j = n. We say that p is a period of w if w[i] = w[i + p] for all i = 1, . . . , n -p. If p is a period of w, the prefix w[1, p] is
The r-Lyndon tree of an r-Lyndon word w, denoted as LTree r (w), is a rooted full binary tree defined recursively on w[1, n] as follows:

-LTree r (w[i, i]) consists of a single node labeled with [i, i] -if j -i > 1 and (u, v) is the standard factorization of w[i, j], then the root of LTree r (w) is labeled by [i, j],
has left child LTree r (u) and right child LTree r (v).

See Fig. 5 for an example. We can also define the r-Lyndon tree of an arbitrary string. Let $ 0 , $ 1 be special characters smaller than and greater than all the letters from Σ, respectively. We then define LTree r (w) as LTree r ($ r w); note that $ r w is an r-Lyndon word.

LCE Queries For two strings u and v, by lcp(u, v) we denote the length of their longest common prefix. Let w be a string of length n. An LCE query LCE(i, j)

computes lcp(w[i, n], w[j, n]
). An -limited LCE query Limited-LCE ≤ (i, j) computes min(LCE(i, j),). Such queries can be answered efficiently as follows; see Lemma 6.3 in [START_REF] Gawrychowski | Faster longest common extension queries in strings over general alphabets[END_REF].

Lemma 1 ([11]

). A sequence of q queries Limited-LCE ≤ p (i p , j p) can be answered on-line in O((n+ q p=1 log p)α(n)) time over a general ordered alphabet. The following observation shows a relation between LCE queries and periods in a string that we use in our data structure; for an illustration see Fig. 1. Non-Crossing Pairs For a positive integer n, we define the set of pairs

Observation 2. Assume that the factors w[a, d A -1] and w[b, d B -1] have the same string period, but neither w[a, d A] nor w[b, d B] has this string period. Then LCE(a, b) = min(d A -a, d B -b) if d A -a = d B -b, d A -a + LCE(d A , d B) otherwise.
P n = {(a, b) ∈ Z 2 : 1 ≤ a ≤ b ≤ n}. Pairs (a, b) and (a , b) are called crossing if a < a < b < b or a < a < b < b. A subset S ⊆ P n is called non-crossing if it does not contain crossing pairs.
A graph G is called outerplanar if it can be drawn on a plane without crossings in such a way that all vertices belong to the unbounded face. An outerplanar graph on n vertices has less than 2n edges (at most 2n -3 for n ≥ 2). Fact 3. A non-crossing set of pairs S ⊆ P n has less than 3n elements.

Proof. We associate S \ {(a, a) : 1 ≤ a ≤ n} with a plane graph on vertices {1, . . . , n} drawn on a circle in this order, and edges represented as straight-line segments. The non-crossing property of pairs implies that these segments do not intersect. Thus, the graph drawing is outerplanar, and therefore the number of edges is less than 2n. Accounting for the pairs of the form (a, a), we get the claimed upper bound.

For a set of pairs S = {(a i , b i) : 1 ≤ i ≤ k} and a positive integer t, by S/t we denote the set {(ai t , bi t) : 1 ≤ i ≤ k}. Observation 4. If S is non-crossing, then S/t is also non-crossing.

High-Level Description of the Data Structure

We say that a sequence of LCE(a, b) queries, for a ≤ b, is non-crossing if the underlying collection of pairs (a, b) is non-crossing. In this section, we give an overview of our data structure, which answers a sequence of q non-crossing LCE queries on-line in O(q + n • α(n)) total time.

The data structure is composed of log n levels. Function LCE (i) (a, b) corresponds to the level i and returns LCE(a, b). In the computation it may make calls to LCE (i+1) (a, b). However, we make sure that the total number of such calls is bounded. Each original LCE(a, b) query is first asked at the level 0.

The implementation of LCE

(i) (a, b) consists of two phases. If LCE(a, b) ≥ 3 • 2 i ,
then this LCE (i) query is called relevant; otherwise it is called short. In the first phase, we check the type of the query via a Limited-LCE ≤3•2 i (a, b) query. This lets us immediately answer short queries. In the second phase, we know that the query is relevant, and we try to deduce the answer based on data gathered while processing similar queries or to learn some information useful for answering future similar queries by asking LCE (i+1) queries.

We shall say that

LCE (i) queries for (a, b) and (a , b) are similar if a 2 i = a 2 i and b 2 i = b 2 i .
Each equivalence class of this relation is processed by an independent component, called a block-pair, identified by a pair of blocks (A, B), which are intervals of the form [x • 2 i + 1, (x + 1) • 2 i] containing indices a and b, respectively. If a relevant LCE (i) (a, b) query satisfies a ∈ A and b ∈ B for some block-pair (A, B), we say that the block-pair is responsible for the query or that the query concerns the block-pair. As we show in Section 5, the pairs of interval right endpoints of block-pairs at each level are non-crossing (whereas LCE (i) queries that will be asked for i ≥ 1 are non necessarily non-crossing).

The implementation of a block-pair, summarized in the lemma below, is given in Section 4.

Lemma 5. Consider a sequence of relevant LCE (i) queries concerning a blockpair (A, B). The block-pair can answer these queries on-line in worst-case constant time plus the time to answer at most four LCE (i+1) (a, b) queries, such that each either corresponds to the currently processed LCE (i) query or satisfies a < b ≤ a + 2 i+1 .

Structural conditions stated in Lemma 5 let us characterize the set of queries passed to the next level. The complexity analysis in Section 5 relies on this characterization.

Block-Pair Implementation

Our aim in this section is to prove Lemma 5. Information stored by a block-pair changes through the course of the algorithm, and the implementation of the query algorithm depends on what is currently stored. We distinguish four states of a block pair (A, B) at level i. Fig. 2 illustrates two of the states.

state(A, B) description initial

No auxiliary data is stored.

visited(a 0 , b 0 , L) a 0 ∈ A, b 0 ∈ B, L = LCE(a 0 , b 0) ≥ 3 • 2 i . full(d A , d B) ∃ p∈[1,2 i+1] : w[max A, d A -1]

Initial State

In this state, we simply forward the query to the level i + 1, return the obtained LCE(a, b) value, and change the state to visited(a, b, LCE(a, b)).

Algorithm 1: Initial-LCE (i) (A,B) (a, b) Require: LCE (i) (a, b) concerns (A, B), whose state is initial L ← LCE (i+1) (a, b);
higher level call transform (A, B) to state visited(a, b, L); return L;

Visited State

In state visited(a 0 , b 0 , L), we can immediately determine LCE(a, b) if (a, b) is a shift of (a 0 , b 0). Otherwise, we apply Lemma 6 to move to state full. Proof. We shall first prove that LCE(a, a + q) ≥ 3

• 2 i -(b -b) where q = (b -b) -(a -a). First, observe that a + q = a + (b -b), and thus LCE(a + q, b) = LCE(a + (b -b), b + (b -b)) ≥ 3 • 2 i -(b -b) because LCE (i) (a , b) is relevant. Since LCE (i) (a, b) is also relevant, we have LCE(a, b) ≥ 3 • 2 i ≥ 3 • 2 i - (b -b). Combining these two inequalities, we immediately get LCE(a, a + q) ≥ min(LCE(a, b), LCE(a + q, b)) ≥ 3 • 2 i -(b -b), as claimed.
If q > 0, we have q = p, and thus LCE(a, a+p)

≥ 3•2 i -(b-b). Since the two LCE (i) queries are similar, we have 3•2 i -(b-b) ≥ 2 i+1
, so LCE(a, a+p) ≥ 2 i+1 . See Fig. 3 for an illustration of this case.

Otherwise, q = -p, and we have LCE(a, a -p) ≥ 3

• 2 i -(b -b), which implies LCE(a + p, a) ≥ 3 • 2 i -(b -b) + q = 3 • 2 i -(a -a).
Again, the fact that the queries are similar yields 3

• 2 i -(a -a) ≥ 2 i+1 , and consequently LCE(a, a + p) ≥ 2 i+1 . a a p = q ≥ 2 i+1 b -b b b LCE(a , b) ≥ 3 • 2 i LCE(a, b) ≥ 3 • 2 i
Fig. 3. Illustration of Lemma 6: case q > 0. We assume that LCE(a+q, b) ≤ LCE(a, b).

The marked fragments correspond to LCE(a, a + q) = LCE(a + q, b).

In the query algorithm, we first check if a-a 0 = b-b 0 . If so, let us denote the common value by ∆. Note that |∆| ≤ 2 i , LCE(a, b) ≥ 3 • 2 i , and LCE(a 0 , b 0) ≥ 3 • 2 i . This clearly yields LCE(a, b) = LCE(a 0 , b 0) + ∆, which lets us compute the result in constant time. implies that these queries satisfy the condition of Lemma 5. The answer to the initial LCE (i) (a, b) query is computed by the routine for state full, which we give below.

Algorithm 2: Visited-LCE (i) (A,B) (a, b) Require: LCE (i) (a, b) concerns (A, B), whose state is visited(a 0 , b 0 , L) if a -a 0 = b -b 0 then return L + a -a 0 ; else p ← |(a -a 0) -(b -b 0)|; a ← max A; b ← max B; d A ← a + p + LCE (i+1) (a , a + p); higher level call d B ← b + p + LCE (i+1) (b , b + p); higher level call transform (A, B) to state full(d A , d B); return Full-LCE (i) (A,B) (a

Full States

In state full + we can answer every relevant query in constant time. In state full we can either answer the query in constant time or make the final query at level i + 1 to transform the state to full + ; see the following lemma.

Algorithm 3: Full-LCE (i) (A,B) (a, b) Require: LCE (i) (a, b) concerns (A, B), whose state is full(d A , d B) or full + (d A , d B , L) if d A -a = d B -b then return min(d A -a, d B -b); else if (A, B) is in state full(d A , d B) then L ← LCE (i+1) (a, b) -(d A -a); higher level call transform (A, B) to state full + (d A , d B , L); return d A -a + L ;
4.4 Proof of Lemma 5 Lemma 5. Consider a sequence of relevant LCE (i) queries concerning a blockpair (A, B). The block-pair can answer these queries on-line in worst-case constant time plus the time to answer at most four LCE (i+1) (a, b) queries, such that each either corresponds to the currently processed LCE (i) query or satisfies a < b ≤ a + 2 i+1 .

Proof. Algorithms 1 to 3 answer queries concerning the block-pair (A, B), and use constant time. The level i + 1 call is only made when the state changes. The original query is forwarded during a shift from state initial to visited and from state full to full + , while during a shift from visited to full two LCE queries are asked, both with arguments at distance p ≤ 2 i+1 , as claimed.

Consequently, Fact 3 proves that the number of block-pairs responsible for a query at level i -1 is bounded by 3n 2 i-1 . Each of them yields at most 4 queries at level i. This leads straight to the following bound. Observation 9. |S i | ≤ 24n 2 i for i ≥ 1. If we stored the block-pairs using a hash table, we could retrieve the internal data of the block-pair responsible for (a, b) in randomised constant time. However, in the case of non-crossing LCE queries we can make this time worst-case.

Recall from Fact 3 that for a set S ⊆ P n of non-crossing pairs we can identify S \ {(a, a) : 1 ≤ a ≤ n} with an outerplanar graph on vertices {1, . . . , n}. We say that a simple undirected graph has arboricity at most c if it can be partitioned into c forests. Outerplanar graphs have arboricity at most 2 (see [START_REF] Nash-Williams | Decompositions of finite graphs into forests[END_REF]) which lets us use the following theorem to store S \ {(a, a) : 1 ≤ a ≤ n}. Membership queries for pairs (a, a) are trivial to support using an array.

Theorem 10 ([4]

). Consider a graph of arboricity c with vertices given in advance and edges revealed on-line. One can support adjacency queries, asking to return the edge between two given vertices or nil if it does not exist, in worst-case O(c) time, with edge insertions processed in amortized constant time.

The following corollary shows, by Fact 8, that indeed the block-pairs at each level can be retrieved in worst-case constant time.

Corollary 11. Consider a set S ⊆ P n of non-crossing pairs arriving on-line. One can support membership queries (asking if (a, b) ∈ S and, if so, to return data associated with this pair) in worst-case constant time with insertions processed in amortized constant time.

Theorem 12. In a string of length n, a sequence of q non-crossing LCE queries can be answered in total time O(q + n • α(n)).

Proof. For i > 0, an LCE (i) query, excluding the LCE (i+1) queries called, requires O(i•α(n)) time for answering a Limited-LCE ≤3•2 i query by Lemma 1 plus O(1) additional time by Lemma 5. For i = 0 we may compute Limited-LCE ≤3 naïvely in constant time, so the running time is constant.

The number of LCE (0) queries is q, while the number of LCE (i) queries for i ≥ 1 is O(n 2 i) by Observation 9. The total running time is therefore

O q + n • α(n) • ∞ i=1 i 2 i = O(q + n • α(n)).

Computing Runs

Bannai et al. [START_REF] Bannai | The "runs" theorem[END_REF][START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF] presented an algorithm for computing all the runs in a string of length n that works in time proportional to answering O(n) LCE queries on the string or on its reverse. As main tool they used Lyndon trees. We note here that the LCE queries asked by their algorithm can be divided into a constant number

 called a string period of w. By an interval [, r] we mean the set of integers { , . . . , r}. If w is a string of length n, then an interval [a, b] is called a run in w if 1 ≤ a < b ≤ n, the shortest period p of w[a, b] satisfies 2p ≤ b -a + 1 and none of the factors w[a -1, b] and w[a, b + 1] (if it exists) has the period p. An example of a run is shown in Fig. 4.

Fig. 1 .

 1 Fig. 1. In this example figure dA -a = 14, dB -b = 18, and p = 4. We have LCE(a, b) = 14 and LCE(a , b) = 8 + LCE(dA, dB).

Fig. 2 .

 2 Fig. 2. Block-pair (A, B) in states visited(a0, b0, L) and full + (dA, dB, L).

Lemma 6 .

 6 Let LCE (i) (a, b), LCE (i) (a , b) be similar and relevant queries and let p = |(b -b) -(a -a)|. If p = 0 and b ≤ b, then LCE(a, a + p) ≥ 2 i+1 , i.e., p is a (not necessarily shortest) period of the factor w[a, a + 2 i+1 + p -1].

 , b); recursive call on state full Otherwise, our aim is to change the state of the block-pair to full. Lemma 6 lets us deduce that LCE(ā, ā+p) ≥ 2 i+1 for some ā ∈ {a, a 0 } and (by symmetry) LCE(b, b + p) ≥ 2 i+1 for some b ∈ {b, b 0 }, where p = |(a -a 0) -(b -b 0)| (ā and b depend on the relative order of b, b 0 and a, a 0 , respectively). Let a = max A and b = max B. We have LCE(a , a + p) ≥ 2 i and LCE(b , b + p) ≥ 2 i because a -2 i < ā ≤ a and b -2 i < b ≤ b . Such a situation allows for a move to state full. The exact values of d A and d B are computed using a higher level call, which lets us determine LCE(a , a + p) and LCE(b , b + p). Note that p ≤ 2 i+1

Lemma 7 .

 7 Consider a relevant LCE (i) (a, b) query concerning a block-pair (A, B)in state full(d A , d B) or full + (d A , d B , L). Then LCE(a, b) = min(d A -a, d B -b) if d A -a = d B -b, d A -a + LCE(d A , d B) otherwise.Proof. Let a 0 = max A, b 0 = max B and let p be the witness period of the state of (A, B).Let us define ∆ = max(a 0 -a, b 0 -b), a = a + ∆, and b = b + ∆. Observe that ∆ ≤ 2 i , a 0 ≤ a ≤ a 0 + 2 i , and b 0 ≤ b ≤ b 0 + 2 i . The fact that the query is relevant yields LCE(a, b) ≥ 3•2 i ≥ p+∆, so LCE(a, b) = ∆+LCE(a , b) and LCE(a , b) ≥ p. Moreover, d A ≥ p + 2 i + a 0 and d B ≥ p + 2 i + b 0 implies that fragments w[a , d A -1] and w[b , d B -1] have length at least p, and thus they are right-maximal with period p. Consequently, the fragments w[a , d A -1] and w[b , d B -1] have the same string period of length p. This lets us apply Observation 2, which gives LCE(a , b) = min(d A -a , d B -b) if d A -a = d B -b , d A -a + LCE(d A , d B) otherwise. Since a = a + ∆, b = b + ∆, and LCE(a, b) = ∆ + LCE(a , b), this is clearly equivalent to the claimed formula for LCE(a, b).

Fig. 4 .Fig. 5 .

 45 Fig. 4. Example of a run w[3, 10] in the string w = ababaabaabbbaa.

 and w[max B, d B -1] have common period p and length at least p + 2 i , but neither w[max A, d A] nor w[max B, d B] has period p.

full + (d A , d B , L) As in full(d A , d B) plus L = LCE(d A , d B).

Supported by Polish budget funds for science in 2013-2017 as a research project under the 'Diamond Grant' program. The author is a Newton International Fellow. Supported by the Polish National Science Center, grant no 2014/13/B/ST6/00770.

Complexity Analysis

Algorithm 4 summarizes the implementation of the LCE (i) (a, b) function. As mentioned in Section 3, we first compute Limited-LCE ≤3•2 i (a, b), which might immediately give us the sought value LCE(a, b). Otherwise the query is relevant, and we refer to the block-pair (A, B) which is responsible for the query. Initial-LCE Proof. We proceed by induction on i. The base case is trivial from the assumption on the input sequence. Lemma 5 proves that

The first component is non-crossing by the inductive hypothesis combined with Observation 4. Pairs of the form (a, a) and (a, a + 1) do not cross any other pair, so adding them to a non-crossing family preserves this property.

of groups, each consisting of non-crossing LCE queries. Roughly speaking, this is based on the obvious fact that intervals in a Lyndon tree form a laminar family, i.e., for every two they are either disjoint or one of them contains the other.

In the first phase, given a string w, the algorithm of [START_REF] Bannai | The "runs" theorem[END_REF][START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF] constructs LTree 0 (w) and LTree 1 (w). For each r ∈ {0, 1}, the construction of LTree r (w) goes from right to left. Before the k-th step (for k = n, . . . , 1), we store on a stack the roots of subtrees of LTree r (w) that correspond to w[k + 1, n]. Hence, the intervals corresponding to the roots on the stack are disjoint and cover the interval Proof. In the k-th step of the algorithm we only ask LCE(i, j) queries for i = k. Suppose towards contradiction that in the course of the algorithm we ask two LCE queries with (i, j) and (i , j) such that i < i < j < j . The latter is asked at step i , and at that moment [i , j -1] is a root of a subtree of LTree r (w). Then the former is asked at step i, and then [i, j -1] is a root of a subtree of LTree r (w). This contradicts the fact that the intervals in LTree r (w) form a laminar family.

In the second phase, for each node [a, b] of each Lyndon tree LTree r (w) we check if there is a run with period p = b -a + 1 that contains w[a, b]. To this end we check how long does the periodicity with period p extend to the right and to the left of w[a, b]. The former obviously reduces to an LCE(a, b + 1) query and the latter to an LCE query in the reverse of w, which is totally symmetric. As the intervals in LTree r (w) form a laminar family, we arrive at the following. Observation 14. The LCE queries asked when right-extending the periodicity of the intervals from LTree r (w) are non-crossing.

By Observations 13 and 14, Theorem 12 yields the following result and its immediate corollary.

Theorem 15. The Lyndon tree and the set of all runs in a string of length n over a general ordered alphabet can be computed in O(nα(n)) time. Tree-Structured Interpretation of the Algorithm We show on an example an alternative graphical illustration of the behaviour of the query algorithm. To answer an LCE(a, b) query we traverse a sequence of block-pairs that we call here a working sequence (A 0 , B 0), (A 1 , B 1), . . . Note that the blocks form a tree-like structure, which lets us depict them using a binary tree; see Fig. 6. The behaviour of the algorithm depends on the states of the block-pairs. For example, if all the block-pairs are in state initial, their state becomes visited and the sequence of queries is interrupted at the first level i for which the query is short (i.e., LCE(a, b) < 3 • 2 i). On the other hand, if a block-pair (A i , B i) is in state visited(a 0 , b 0 , L), then the query may be answered immediately if a 0 -a = b 0 -b, and otherwise two additional LCE (i+1) queries are triggered and the state of the block-pair becomes full.