

On the density of Lyndon roots in factors

Maxime Crochemore, Robert Mercas

▶ To cite this version:

Maxime Crochemore, Robert Mercas. On the density of Lyndon roots in factors. Theoretical Computer Science, 2016, 656 part B, pp.234-240. hal-01806282

HAL Id: hal-01806282 https://hal.science/hal-01806282

Submitted on 1 Jun2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the density of Lyndon roots in factors

Maxime Crochemore^{*} Ro

Robert Mercaş[†]

December 19, 2015

1 Introduction

The concept of a run coined by Iliopoulos et al. [11] when analysing repetitions in Fibonacci words, has been introduced to represent in a succinct manner all occurrences of repetitions in a word. It is known that there are only $\mathcal{O}(n)$ many of them in a word of length n from Kolpakov and Kucherov [12] who proved it in a non-constructive manner. The first explicit bound was later on provided by Rytter [15]. Several improvements on the upper bound can be found in [16, 4, 14, 5, 8]. Kolpakov and Kucherov conjectured that this number is in fact smaller than n, which has been proved by Bannai et al. [1, 2]. Recently, Holub [10] and Fischer et al. [9] gave a tighter upper bound reaching 22n/23.

In this note we provide a proof of the result, slightly different than the short and elegant proof in [2]. Then we provide a relation between the border-free root conjugates of a square and the critical positions [13, Chapter 8] occurring in it. Finally, counting runs extends naturally to the question of their highest density, that is, to the question of the type of factors in which there is a large accumulation of runs. This is treated in the last section.

> 0 1 2 3 4 5 6 7 8 9 10 11 12 a b a a b a b b a b a b b

Figure 1: Dotted lines show the 8 runs in abaababbababb. For example, [7..11] is the run of period 2 and length 5 associated with factor babab.

Formally, a *run* in a word w is an interval $[i \dots j]$ of positions, $0 \le i < j < |w|$, for which both the associated factor $w[i \dots j]$ is periodic (i.e. its smallest period p satisfies $p \le (j - i + 1)/2$), and the periodicity cannot be extended to the right nor to the left: $w[i - 1 \dots j]$ and $w[i \dots j + 1]$ have larger periods when these words are defined (see Figure 1).

^{*}King's College London and Université Paris-Est. Maxime.Crochemore@kcl.ac.uk

[†]Kiel University and King's College London. robertmercas@gmail.com

2 Fewer runs than length

We consider an ordering < on the word alphabet and the corresponding lexicographic ordering denoted < as well. We also consider the lexicographic ordering $\tilde{<}$, called the reverse ordering, inferred by the inverse alphabet ordering $<^{-1}$. The main element in the proof of the theorem is to assign to each run its greatest suffix according to one of the two orderings.

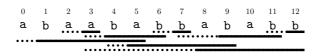


Figure 2: Plain lines show the 8 greatest proper suffixes assigned to runs of abaababbabbb from Figure 1 in the proof of the theorem. Note that no two suffixes start at the same position.

Theorem 1 The number of runs in a word of length n is less than n.

Proof. Let w be a word of length n. Let $[i \, . \, . \, j]$ $(0 \leq i < j < n)$ be a run of smallest period p in w. If j + 1 < n and w[j + 1] > w[j - p + 1] we assign to the run the position k for which $w[k \, . \, . \, j]$ is the greatest proper suffix of $w[i \, . \, . \, j]$. Else, k is the position of the greatest proper suffix of $w[i \, . \, . \, j]$ according to $\tilde{<}$.

Note that if k > i then k > 0, and that $w[k \dots j]$ contains a full period of the run factor, i.e. $j - k + 1 \ge p$. Also note that $w[k \dots k + p - 1]$ is a greatest conjugate of the period root $w[i \dots i + p - 1]$ according to one of the two orderings. Therefore, it is border-free, known property of Lyndon words.

We claim that each position k > 0 on w is the starting position of at most one greatest proper suffix of a run factor. Let us consider two distinct runs [i ... j]and $[\overline{i} ... \overline{j}]$ of respective periods p and q, and which are called respectively the p-run and the q-run. Assume $p \neq q$ since the runs cannot be distinct and have the same period. For the sake of contradiction, we assume that their greatest suffixes share the same starting position k.

First case, $j = \overline{j}$, which implies $w[k \dots j] = w[k \dots \overline{j}]$. Assume for example that p < q. Then, $w[k \dots k + q - 1]$ has period p and thus is not border-free, which is a contradiction.

Second case, assume without loss of generality that $j < \overline{j}$ and that both suffixes are the greatest in their runs according to the same ordering, say <. Let d = w[j+1], the letter following the *p*-run. By definition we have w[j-p+1] < dand then $w[i \dots j - p + 1] < w[i \dots j - p]d$. But since $w[i + p \dots j]d$ is a factor of the *q*-run this contradicts the maximality of $w[k \dots \overline{j} - 1]$.

Third case, $j \neq \bar{j}$ and the suffixes are greatest according to different orderings. Assume without loss of generality that p < q and the suffix of the *p*-run factor is greatest according to <. Since q > 1 we have both $w[k + q - 1] > \tilde{w}[k]$ and w[k + q - 1] = w[k - 1], then w[k - 1] < w[k]. We cannot have p > 1because this implies w[k - 1] > w[k]. And we cannot have either p = 1 because this implies w[k - 1] = w[k]. Therefore we get again a contradiction. This ends the proof of the claim and shows that the number of runs is no more than the number n-1 of potential values for k, as stated.

3 Lyndon roots

The proof of Theorem 1 by Bannai et al. [2] relies on the notion of a Lyndon root. Recall that, for a fixed ordering on the alphabet, a Lyndon word is a primitive word that is not larger than any of its conjugates (rotations). Equivalently, it is smaller than all its proper suffixes. The root of a run [i ... j] of period p in w is the factor w[i ... i + p - 1]. Henceforth, the Lyndon root of a run is the Lyndon conjugate of its root. Therefore, since a run has length at least twice as long as its root, the first occurrence of its Lyndon root is followed by its first letter. This notion of Lyndon root is the basis of the proof of the 0.5n upper bound on the number of cubic runs given in [6]. Recall that a run is said to be cubic if its length is at least three times larger than its period.

Lyndon roots considered in [2] are defined according to the two orderings < and $\tilde{<}$. However, these Lyndon roots can be defined as smallest or greatest conjugates of the run root according to only one ordering.

The proof of Theorem 1 is inspired by the proof in [2] but does not use explicitly the notion of Lyndon roots. The link between the two proofs is as follows: when the suffix w[k ... j] is greatest according to < in the run factor, then its prefix of period length, w[k ... k + p - 1], is a Lyndon word according to \leq . As a consequence, the assignment of positions to runs is almost the same whatever greatest suffixes or Lyndon roots are considered.

The use of Lyndon roots leaves more flexibility to assign positions to runs. Indeed, a run factor may contain several occurrences of the run Lyndon root. Furthermore, any two consecutive occurrences of this root do not overlap and are adjacent. The multiplicity of these occurrences can be transposed to greatest suffixes by considering their borders. Doing so, what is essential in the proof of Theorem 1 is that the suffixes and borders so defined are at least as long as the period of the run. Consequently, consecutive such marked positions can be assigned to the same run. As a consequence, since every cubic run is associated to at least two positions, this yields the following corollaries.

Corollary 2 If a word of length n contains c cubic runs, it contains less than n - c runs.

Corollary 3 A word of length n contains less than 0.5n cubic runs.

The last statement is proved in [6] employing the notion of Critical position, which is discussed in the next section.

4 Critical positions

The consideration of the two above orderings appears in the simple proof of the Critical Factorisation Theorem [7] (for another proof see [13, Chapter 8]).

Let us recall that the local period at position |u| in uv is the length of the shortest non-empty word z for which z^2 is a repetition centred at position |u|. Equivalently, in simpler words, z is the shortest non-empty word that satisfies both conditions: either z is a suffix of u or u is a suffix of z, and either z is a prefix of v or v is a prefix of z. Note that vu satisfies the conditions but is not necessarily the shortest word to do it. The Critical Factorisation Theorem states that a word x of period p admits a factorisation x = uv whose local period at position |u| is p. Such a factorisation uv of x is called a critical factorisation and the position |u| on x a critical position.

When considering the starting positions of greatest suffixes defined above according to \leq and to $\tilde{\leq}$, the shorter of the two is known to provide a critical position following [7]. Thus, it does not come as a surprise to us that the simple proof of Theorem 1 relies on alphabet orderings. Nevertheless, as the initial question does not involve any ordering on the alphabet, we could expect a proof using, for example, only the notion of critical positions. The next lemma may be a step on this way.

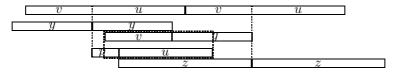


Figure 3: If uv is a border-free factor of $(vu)^2$, then at least one of its local period words y or z have length |uv|. Otherwise, the common part in the dash-box has length equal to the sum of its periods p and q generating a contradiction.

Lemma 4 Let $x^2 = (vu)^2$ be a square whose root conjugate uv is border-free. Then, at least |v| or |vuv| are critical positions on x^2 .

Proof. Let y be the local period word at position |v| on x^2 . Since uv is borderfree, v is a proper suffix of y. Similarly, for the local period word z at position |vuv|, the border-freeness of uv implies that u is a proper prefix of z. The situation is displayed in Figure 3.

For the sake of contradiction we assume the conclusion does not hold, i.e., both y and z are shorter than uv (note that they cannot be longer than uv).

Let |p| be the induced period of pu and |q| the induced period of vq. The overlap between the two words p and q admits period lengths |p| and |q| and has length |pu| - (|uv| - |vq|) = |p| + |q|. Thus, by the Periodicity Lemma, p and q are powers of the same word r. But then r is a nonempty prefix of u and a suffix of v contradicting the border-freeness of uv.

Example. Consider the square baba of period 2. The occurrence of its border-free factor **ab** induces the two critical positions 1 and 3. On the contrary, the first occurrence of its border-free factor **ba** induces only one critical position, namely 2, while the local period at 0 has length 1 < 2.

In the square **abaaba** of period 3, the occurrence of the border-free factor **aab** produces the critical position 2. However, its position 5 is not critical since the local period 2 is smaller than the whole period of the square.

5 Lyndon roots density

In this section we consider a generalisation of the problem of counting the maximal number of runs in a word. In particular, we are interested in the following problem concerning first occurrences of Lyndon roots within a run factor. Let us call the interval corresponding to the first such occurrence the Lroot associated with the run. Then, we are dealing with the following conjecture:

Conjecture 1 ([3]) For any two positions i and j on a word x, $0 \le i \le j < |x|$, the maximal number of run Lroots included in the interval [i ... j] is not more than the interval length j - i + 1.

0 10 11 14 a a b а b b b а а а b b b

Figure 4: Lines show the 6 run Lroots inside the interval [4..9] corresponding to the factor aababb.

Let us consider the word $x = (ab)^k a(ab)^k b(ab)^k b$ and the interval of positions $[2k \dots 4k + 1]$ corresponding to the factor $a(ab)^k b$. The number of Lroots corresponding to this interval is exactly the length 2(k+1) of the interval. Figure 4 shows the situation when k = 2. This example gives a lower bound on the maximal number of Lroots contained in an interval of positions.

Proposition 5 The number of Lroots contained in an interval of positions on a word, can be as large as the length of the interval.

In addition to the conjecture, we believe that factors associated with intervals of length at least 4 containing the maximal number of Lroots are of the form $a(ab)^+b$ for two different letters a and b. It can be checked that the maximal number of Lroots is respectively 1 and 3 for intervals of lengths 1 and 3 with factors a and aab, but is only 1 for intervals of length 2. All these factors are Lyndon words for the ordering a < b. This is due to the fact that such factors contain overlapping Lyndon roots making the whole factor a Lyndon word itself.

Remark 6 In order to obtain an upper bound on the number of Lroots inside an interval of positions, it is enough to restrict ourselves to counting the maximal number of Lroots within an interval corresponding to some Lyndon word.

Indeed, each Lroot corresponds to a Lyndon word. Since we want an interval that contains the maximal such number, all the positions of this interval are covered by some Lyndon word. However, since the overlap between every two Lyndon words produces a Lyndon word, and since every word can be expressed as a concatenation of Lyndon words, our claim follows.

We show that the number of Lroots inside an interval corresponding to a Lyndon word is bounded by 1.5 times the length of the interval. For this we make use of the result from [2] stating that each position of a word is the starting position of at most one specific root associated with the run. The root is chosen according to some order defined by the letter following the run. We denote such a root relative to the order as the Oroot of the run. Formally:

Definition 1 Let r be a run of period p_r of the word w and let r_L be the Lroot associated with r. If r ends at the last position of w, or if the letter at the position following r is smaller than the letter p_r positions before it, then the Oroot is the interval corresponding to the first occurrence of a Lyndon root that is not a prefix of r. Otherwise, the Oroot is the interval corresponding to the letter val corresponding to the letter r_r positions before r.

Observe that since a run is at least as long as twice its minimal period, this ensures the existence of both its Lroot as well as its Oroot. To see that the Oroot is never a prefix of the run factor it is associated with, observe from its above definition that in the second case this is actually the interval corresponding to the length p_r prefix of the maximal proper suffix of the run, which is different from the run itself (being proper).

Henceforth we fix an interval $[i \dots j]$ with its corresponding Lyndon word w of length ℓ . Furthermore, we denote by $r_{\rm L} = [i_{\rm L} \dots j_{\rm L}]$ the Lroot of the run $r = [i_r \dots j_r]$ and by $r_{\rm O} = [i_{\rm O} \dots j_{\rm O}]$ its Oroot. For r, we denote by $p_{\rm r}$ the (smallest) period of the run. Please note that $|r_{\rm L}| = |r_{\rm O}| = p_r$, while both must start and end within the run r.

We make the following remarks based on the already known properties of Lroots and Oroots.

Remark 7 The Lroot and the Oroot associated with a run r start within the first p_r and $p_r + 1$, respectively, positions of the run, and both have length p_r .

As a direct consequence of the definition of the Oroot we have the following:

Remark 8 If the Oroot of a run r is a Lyndon word, then the Oroot and the corresponding Lroot represent the same factor and, either $i_O = i_L$, or the run r starts at position i_L and $i_L + p_r = i_O$.

In conclusion we have the following:

Remark 9 To bound the number of Lroots inside the interval [i ... j] corresponding to the word w, it is enough to consider all runs starting within the interval corresponding to a factor $w_{\rm p}w$, where $|w_{\rm p}| < |w|$.

For the rest of this work let us fix the factor preceding a Lyndon word w as $w_{\rm p}$, while the one following it by $w_{\rm s}$, such that the interval corresponding to $w_{\rm p}ww_{\rm s}$ is the shortest interval that contains all runs with their Lroots in [i ... j].

Now we start looking at the relative positions of the Oroot and Lroot corresponding to the same run.

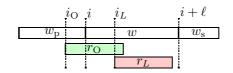


Figure 5: $r_{\rm O}$ starts before the Lyndon word w

Lemma 10 Fix an Lroot occurring within an interval w = [i ... i + l - 1] of a word. If the Oroot corresponding to the same run starts outside w, then either:

- 1. the Lroot ends at position $i+\ell-1$, and the Oroot starts at position $i+\ell$, or
- 2. the Lroot starts at position i, and the Oroot starts before position i.

Proof. Following Remark 6, without loss of generality assume that w_p starts at position 0 and has length i, while $w = [i \dots i + \ell - 1]$ is a Lyndon word. As stated in the hypothesis, $i \leq i_L$ and $|r_L| \leq \ell$.

First let us assume that $i_{\rm O} \ge i + \ell$, hence the Oroot starts after the end of the Lyndon word w. The result follows immediately from Remark 8.

For the second statement, consider Figure 5 where $i_{\rm O} < i \leq i_{\rm L}$. Assume towards a contradiction that $i < i_{\rm L}$. Since $i_{\rm O} < i$ and $r_{\rm L}$ corresponds to an interval on w, it must be that the corresponding run starts before or on position $i_{\rm O}$ and it ends after or on position $i + \ell - 1$. However, since w is a Lyndon word, it must be that for any word x such that yx is a suffix of w, where y is the factor corresponding to $r_{\rm L}$, we have w < yx. But in this case, unless y is a prefix of w, we get a contradiction with the fact that r_L is a Lyndon root. In the former case, however, we get a contradiction with the definition of $r_{\rm L}$ since $i < i_{\rm L} (r_{\rm L}$ is the interval corresponding to the first occurrence of a Lyndon root of the run), and the conclusion follows in this case as well.

As a consequence of the above lemma, the number of Lroots is bounded by 2ℓ . This is because the Oroots all start inside an interval of length $|w_{\rm p}| + |w| + 1 \leq 2\ell$, and no two share the same starting position [2]. In the following we reduce this bound to 1.5ℓ . The next lemma shows that the situation in Lemma 10.1 is met by at most one Oroot.

Lemma 11 For any word and any interval [i ... j] on it, there exists at most one run that has its Oroot starting after position j while its Lroot corresponds to an interval inside [i ... j].

Proof. According to Lemma 10.1, it must be the case that $i_0 = j + 1$, while $i_L = j - p_r + 1$, for any appropriate run r. However, having more than one Oroot starting at position j + 1 with the factor corresponding to its Lroot as a suffix of the Lyndon word, would then imply that the larger of Lroots that corresponds to a Lyndon word is bordered, which is a contradiction.

Now we are dealing with Oroots corresponding to Lemma 10.2.

Proposition 12 For a given word, any interval of length ℓ of positions on the word contains at most $3\ell/2$ Lroots.

Proof. Let us denote once more our interval by $w = [i ... i + \ell - 1]$ and the interval preceding it by w_p . We know from the definition that an Lroot is the first Lyndon root of a run, and therefore the letter ending every Lroot must be greater than its first letter, while the one on the position right after the end of the Lroot must be the same as the first letter of the Lroot.

Since for any Oroot starting in the interval associated with $w_{\rm p}$, the Lroot corresponding to it in w starts at position i, we note that these can be bounded by the number of length two factors in w that have the letter on the first position larger than the letter on position i, while the second one identical. If the second letter of such a factor is smaller than the letter on position i, than this situation would make it impossible for a Lroot to start on position i and end before this position (this is because an Lroot is the first Lyndon root occurrence of a run).

Since this number is obviously bounded by $\frac{\ell}{2}$, while the whole length of $w_{\rm p}$ is bounded by $\ell - 1$, (by considering the symmetric situation) we conclude that there are less than $\frac{\ell-1}{2}$ runs that start in $w_{\rm p}$ such that their corresponding Oroots start before position *i*, while their Lroots start at position *i* (the Lroots correspond to prefixes of *w*). Hence, combining this with the fact that within *w* we have at most ℓ Oroots starting there, see [2], and since according to Lemma 11 there is at most one Oroot starting after position *j* that has the Lroot in *w*, we get an upper bound for our problem.

The bound given in the above proposition is not really tight. On this point let us complete the conjecture:

Conjecture 2 For a given word, any interval of length $\ell > 0$ of positions on the word contains at most ℓ Lroots, and the maximum number is obtained only when the factor corresponding to the interval is of the form $a(ab)^{\frac{\ell-2}{2}}b$, where, $\ell > 3$, and the letters a and b satisfy a < b.

We end this article with a few more observations regarding the results from [2], when we restrict ourselves to binary words. First we recall a property of Oroots:

Lemma 13 (Bannai et al. [2]) If two different Oroots obtained considering the same order overlap, then their overlap is the shortest of the Oroots.

We observe that we can consider Oroots to be obtained according to a certain order based on the letter that these Oroots start with (thus all Oroots starting with **a** are obtained according to the lexicographical order, while the ones starting with **b** are obtained according to the inverse lexicographical one).

Proposition 14 For a given binary word, any interval of length ℓ of positions on the word contains at most $\frac{\ell-1}{2}$ Oroots obtained according to the same order.

Proof. Without loss of generality we fix an order; let us say lexicographical. Observe first, that for a word to correspond to an Oroot, whenever they are not binary, they must start with a letter **a** and end with a **b** (as previously mentioned). Furthermore, it must be the case that this interval is preceded by a **b** and followed by an **a**, as otherwise it does not correspond to a Lyndon root (there exists another rotation that has an extra **a** in its longest unary prefix).

Finally, observe that considering their relative position, following Lemma 13, two such Oroots are either included one in the other, or they are disjoint.

Now, considering two words corresponding to two Oroots, let us say u and v with u a factor of v, we note that, since their lengths are different, following the initial conditions, they must differ by a length of at least 2, whenever u is not unary (each starts between a **b** and an **a**, and ends between an **a** and a **b**). For the unary case, note that every block of consecutive **a**'s must be in-between two occurrences of **b**. Furthermore, we cannot have two unary words corresponding to Oroots overlapping each other. Thus if the position of the second a is an Oroot in the word $\mathbf{ba}^{\ell}\mathbf{b}$, for $\ell > 0$, it is impossible to have a length less than 3 for any word starting with the first a whose interval corresponds to an Oroot.

Given that for any two distinct adjoining Oroots both their lengths and the number of Oroots they contain add up, the result follows in this case as well.

In order to get the -1, we observe that for any word of length at least 3, for the interval it determines to have the maximum number of Oroots of the same order, according to the previous facts, would imply the word to have the form $(ab)^+$. However, now, the Oroots would correspond to words that are just powers of one another, contradicting their property of being Lyndon words.

Furthermore, denoting by $|w|_u$ the number of all (possibly overlapping) occurrences of u in w, as consequence of the above we have the following:

Corollary 15 Every length ℓ interval associated with a factor w of a binary word completely contains at most $\min\{|w|_{ab}, |w|_{ba}\}$ Oroots that correspond to non-unary factors and are obtained according to the same order.

Corollary 16 The number of Oroots associated with unary runs within every factor of a binary word is at most one extra than the number of unary maximal blocks within the factor (by a maximal block we refer to a unary factor that cannot be extended either to the left or to the right without losing its periodicity).

6 Acknowledgement

We would like to warmly thank Gregory Kucherov, Hideo Bannai, and Bill Smyth for helpful discussions on the subject. The work of Robert Mercaş was supported by the P.R.I.M.E. programme of DAAD with funds provided by the Federal Ministry of Education and Research (BMBF) and the European Union's Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 605728).

References

- H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. A new characterization of maximal repetitions by Lyndon trees. In 26th SODA, pages 562–571, 2015.
- [2] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The "runs" theorem. CoRR, abs/1406.0263v7, 2015.
- [3] M. Crochemore. Repeats in strings. Keynote talk at the 25th CPM, June 2014. Personal communication.
- [4] M. Crochemore and L. Ilie. Maximal repetitions in strings. Journal of Computer and System Sciences, 74(5):796 – 807, 2008.
- [5] M. Crochemore, L. Ilie, and L. Tinta. The "runs" conjecture. *Theoretical Computer Science*, 412(27):2931–2941, 2011.
- [6] M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and T. Waleń. The maximal number of cubic runs in a word. *Journal of Computer and System Sciences*, 78(6):1828–1836, 2012.
- [7] M. Crochemore and D. Perrin. Two-way string-matching. Journal of the ACM, 38(3):651-675, 1991.
- [8] A. Deza and F. Franek. A d-step approach to the maximum number of distinct squares and runs in strings. Discrete Applied Mathematics, 163(3):268-274, 2014.
- [9] J. Fischer, Š. Holub, T. I, and M. Lewenstein. Beyond the runs theorem. In 22nd SPIRE, volume 9309 of LNCS, pages 272–281, 2015.
- [10] S. Holub. Beyond the runs theorem. CoRR, abs/1502.04644v1, 2015.
- [11] C. S. Iliopoulos, D. Moore, and W. F. Smyth. A characterization of the squares in a Fibonacci string. *Theoretical Computer Science*, 172(1–2):281– 291, 1997.
- [12] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In 40th FOCS, pages 596–604, New York, 1999.
- [13] M. Lothaire. Combinatorics on Words. Cambridge University Press, second edition, 1997.
- [14] S. J. Puglisi, J. Simpson, and W. F. Smyth. How many runs can a string contain? *Theoretical Computer Science*, 401(1-3):165–171, 2008.
- [15] W. Rytter. The number of runs in a string: Improved analysis of the linear upper bound. In 23rd STACS, volume 3884 of LNCS, pages 184–195, 2006.
- [16] W. Rytter. The number of runs in a string. Information and Computation, 205(9):1459–1469, 2007.

```
On the density of Lyndon roots in factors
Answers to reviewers.
Reviewer #1
_____
The paper presents several results related to runs, or maximal repetitions
in strings. The contributions are:
1. an alternative proof to [2] that \r(n) < n
2. a note on critical positions (Lemma 4)
3. a bound of 1.5n on the number of Lyndon roots that an interval of
  length n can fully contain.
4. some results for binary strings
The results may not be so surprising but seems to be new and
(at least mostly) correct. I was not able to follow some of
the proofs and some clarifications need to be made before
the paper can be accepted.
Specific comments:
1. Page 2.
  "Note that k > i, then ..." -> "Note that if k > i, then ..."
ANSWER: done.
2. A run is defined to be an interval [i..j], but the underlying
 maximally periodic substring is w[i..j-1]. I don't see any reason
  for this and I think it can cause more confusion than what is gained
  (shorter notation by getting rid of -1 in some places), especially
  in places when you mention the letter right after the run.
  I strongly suggest to modify this definition so that [i..j] coincides
 with the maximally periodic substring w[i..j].
ANSWER: changed as proposed.
3. Proof of Lemma 4.
 I couldn't see why the contradiction to the lemma leads to both y and z
  being shorter than |uv|. (From the definitions of critical position,
  it seems you assume both |y|, |z| \leq |uv|.
 Please give more details.
ANSWER: a note has been added just after the definition of a local period
and another one inside the proof to help the reader.
```

```
4. The paragraph after Proposition 5.
I could not understand why only Lyndon words need to be considered:
"since the overlap between every two Lyndon words is a Lyndon word itself, our claim follows".
Please elaborate.
```

ANSWER: this is due to the fact that when two Lyndon words uv and vw have a non-empty overlap v then uvw is also a Lyndon word. Comment has been rewritten accordingly.

```
5. Definition 1.
```

The definition of Oroot when it does not correspond to a Lyndon word is defined as the length p_r prefix of the maximal proper suffix of r. However, when the maximal proper suffix of r is r itself, the Oroot can start at the beginning of the run which may not be what you want.

ANSWER: this case is not possible as a "proper" suffix of a word is different from the word itself. However, we have added a note right after the definition mentioning this and the fact that the two notions are correctly defined.

```
6. Proof of Lemma 9.
The symbol: \leq_{\ell} is used but not defined.
I was not able to understand the logic of the proof here.
Since yx is a suffix of w and w is a Lyndon word, you should get w < yx.
Please clarify.</pre>
```

ANSWER: That symbol was meant to represent the lexicographical ordering. However, it was not needed so we removed it. Furthermore, we have rewritten the whole proof as the previous version was not clearly written.

```
7. Page 7 first paragraph
"the number of Oroots is bounded by 21."
Oroots should be Lroots?
(Since at most one Oroot can start at any position [2],
the bound of 1 can easly be obtained for Oroots)
```

ANSWER: the referee is correct. We fixed this.

8. Lemma 10.

The statment starts with "For every Lyndon word, ..." but it is implicitly assumed that it is a substring of a longer string and considers runs and Oroots in that string. I suggest to make the statement self contained.

ANSWER: we have rephrased the statement

9. Proof of Proposition 11.

Please elaborate the reason for the following claim: "Since for any Oroot starting in the interval associated with w_{\rm p}, the only Lroots corresponding to them in [i..j] start at position i, we note that these can be bounded by the number of times the first letter of w is preceded by a different symbol in w". How are the Oroots and the number of times the first letter of w is preced by a different symbol related?

ANSWER: we have reworded the proof and gave further details (in particular, we clarified things that were not properly written)

10. Proposition 13.

The statement is a bit ambigious. What is "in" the length \ell interval? The runs or the Oroots? If it is the latter, I suggest it to be worded similarly as in Proposition 11.

Also, it seems the statement of the proposition has some kind of error. Consider the example string in Figure 4, and the interval 4..9 of length 6. There are 3 runs (and Oroots) contained in this interval, all from Oroots of the same order, aa (a), abab (ab), bb (b), which is greater than (6-1)/2 = 2.5.

Please clarify.

ANSWER: we have reworded the statement. For the second part, the statement of the Proposition was based on the assumption in the first paragraph of the proof. We have moved this before the proposition (here we consider any Oroot starting with \$b\$ to correspond to the inverse lexicographical order)

11. Page 8 5th line
 precede -> preceded

ANSWER: changed.

Reviewer #2

The paper presents 3 results: a new, surprisingly simple proof of the runs conjecture, a lemma on critical factorisations, and several observations on the density of Lyndon roots in a word. The results do not look particularly strong and the writing is rather poor. The introduction only mentions the first result, a new proof of the runs conjecture, which takes one page of the paper, but does not say anything the two other results nor it explains why to consider these problems (It is particularly unclear to me what is the purpose of Lemma 4, I have the feeling it was given to fill up the space.) The literature review is terse and needs to be improved before publication.

ANSWER: The first result was proved after 25 years of research and its simple proof does not mean it was easy to discover. Introduction has been rewritten to mention the other contributions. Lemma 4 shows a link with the simple proof of the Critical Factorisation Theorem which took also many years before being discovered. Both proofs use two reverse orderings.

Minor comments: Page 1, line 21: "Fibanacci" -> "Fibonacci"

ANSWER: changed.

Page 2, line 31: "positive position on w" -> "each position k > 0 of w"

ANSWER: changed.

Page 2, line 39: Is the starting position i or k?

ANSWER: changed to starting position k.

Page 3, line 11: "the Lyndon root of a run is a factor of the word associated with the run, factor that..." -> "the Lyndon root of a run is a factor of the run that..." (or at least add an article before the second "factor")

ANSWER: rewritten.

Page 4, line 48: It was surprising to find "We end this work with a generalisation..." in the middle of the paper.

ANSWER: changed to "in this section..."

Page 5, Figure 4: Lwords -> Lroots?

ANSWER: changed.

Page 5: "the maximal number of Lroots that are intervals corresponding to factors of some Lyndon word" -> If I understand it correctly, the Lyndon word itself is a factor of the word x. I would suggest therefore to change the sentence accordingly, for example, "the maximal number of Lroots in some factor of x which is a Lyndon word".

ANSWER: it is true that the maximality is reached only with interval associated

with Lyndon factors. A note has been added just before Prop.5.

Page 5, Definition 1: "the first occurrence of a Lyndon root" \rightarrow "the first occurrence of r_L "? (Otherwise it is not clear which Lyndon root you are talking about). Also note that r_L is defined as a factor and r_0 is defined as an interval, but then they are both used in a similar way.

ANSWER: in fact, both r_L and r_0 are defined as intervals (see first paragraph of Section 5 and Definition 1). Also, "the first occurrence of a Lyndon root that is not a prefix of r" is quite clear from the context and this should not by any means be confused with r_L that represents exactly the FIRST occurrence of a Lyndon root. Furthermore, the notion of r_L is defined only after Definition 1, thus its use would not be possible.

Page 5, line 46: j, j_r, j_O are never used in the text. I would suggest to introduce the starting positions of the factors w, Lroot, Oroot only (and their lengths). Moreover, instead of saying "an interval [i..j] with its corresponding Lyndon word w of length 1" I would suggest to say "a Lyndon word w = x[i..i+l-1]", because it is unclear what "corresponding" means (and maybe to define it in the paragraph following Proposition 5).

ANSWER: the 3 indices that the referee suggest to take out are quite important for the correct definition of the concepts. In particular, at no time should one confuse the notion of an interval with that of a factor, as a factor might correspond to different intervals. These indices were precisely used to assert the fact that the roots are corresponding to intervals. If in general we would refer to factors, then we will have problems as then the same factor will be associated to different runs, which is to be avoided.

Page 6, remark 7: Again, it is unclear what "corresponds" and then "correspond" stand for. Is it "is" and "are equal"?

ANSWER: we have reworded appropriately the remark

Page 6, Remark 8: Give a proper definition of $w_{\rm rm p}\$ and $w_{\rm rm s}$.

ANSWER: we have tried to introduce both $w_{\rm rm p}\$ and $w_{\rm rm s}\$ properly.

Page 6, Lemma 9: "ends at the same position as the Lyndon word while the corresponding Oroot starts at the position immediately after" -> "Lroot ends at position i+1-1, Oroot starts at posiiton i+1."

ANSWER: the respective positions were not introduced in the statement of the lemma in order to avoid confusion and difficulties in reading the text. We tried to reword the statement to make it clear.

Page 6, line 42: "let us consider" -> "W.l.o.g. assume that"

ANSWER: changed

Page 7, Lemma 10: I was confused by the lemma's statement as the first "its" in the lemma refers to Oroot, while the second and the third "its" refers to the Lyndon word. I would suggest to state the lemma for the Lyndon word w and to use w's instead of the last two occurrences of "its".

ANSWER: we have rephrased the statement

Page 7, Proposition 11: I guess "interval" is w again, as you use w and w_{\rm p} later in the proof, but it does not follow from the lemma's statement. Please fix this.

ANSWER: we have changed and rephrased this

Page 8, line 4: "an Oroots" -> "Oroots"

ANSWER: fixed

Page 8, line 5: "the Oroot" - which one?

ANSWER: we have fixed the statement and moved the paragraph before the result as this is a general remark.

Page 8, line 5: "thus a is chosen according to the lexicographical order.." - I am not sure what that means

ANSWER: we have further clarified the statement.

Page 8, line 9: "it is precede" -> "it is preceded"

ANSWER: fixed

Page 8, line 11: "it's longest unary prefix" -> "its longest unary prefix".

ANSWER: fixed

Reviewer #3

(1, 5) "Maximal periodicities". I don't think "maximal occurrences of repetitions" means anything.

ANSWER: "maximal occurrences of repetitions" removed.

(1, 21) I don't think having two contradictory definitions of "run" is helpful, even if one is used informally. I think it would be better to stick with the usual definition (your informal version).

ANSWER: second definition removed. We kept the formal definition that makes clear that a run is an occurrence.

(2,2) Why "without loss of generality"?

ANSWER: removed.

(2, diagram) This is confusing. You've said the runs have periodic part w[i..j-1] and j < n, so the periodic part of the run ends at n-2 or earlier. Yet the diagram has the periodic parts ending at n.

ANSWER: we changed the definition of a run so that w[i..j] is the periodic factor, which eliminates the confusion.

(Proof of Theorem 1, 6) Why is w[k..k + p - 1] border-free?

ANSWER: because it is a Lyndon word.

(Proof of Theorem 1, 8) "we claim ..." This is using the informal definition of run.

ANSWER: changed.

(Proof of Theorem 1, 14) "Let d be the letter following ...". Why not say d = w[j]?

ANSWER: done.

```
(Proof of Theorem 1, Third case) I don't understand your proof of this. Here was my attempt:
Without loss of generality suppose j < bar{j}. Since w[k..j - 1] is maximal with respect to > we have w[k] \ge w[k + 1], \ldots, w[j - 1]. Since w[k..j - 1] is maximal with respect to << we have w[k] \ge w[k + 1], \ldots, w[j - 1], ie w[k] \le w[k+1], \ldots, w[j - 1]. This means w[k] = w[k + 1] = \ldots = w[j - 1] and since w[k..j - 1] contains a full period of the p-run we must have p = 1. But then w[k-1] = w[k] since both belong to the p-run which would contradict the maximality of w[k..bar{j} - 1] and w[k..bar{j} - 1] unless i = bar{i} = k - 1. But I don't see why this shouldn't be true. What happens with the word caaabaaab?
```

ANSWER: we revised the wording of the proof.

(3, 12) What is a "root" of the run? Is it the same as its "period root"?

ANSWER: this is made clear.

(4, diagram) There is a u above the p level and below the q level which doesn't seem to be doing anything. In the caption "have" should be "has".

ANSWER: we changed the caption. The figure should be self-explanatory as it details all of the situations. Now together with the rewording in the proof, things should be clear.

(4, Lemma 4 statement) "positions".

ANSWER: done.

(4,3 of proof: "for the sake of contradiction" not "by".

ANSWER: changed.

I don't understand the proof. Say the word begins at the start of the first y factor. Then the dotted box has boundaries 2y - v and y + u + v - (z - u) = 2u + v + y - z. The factor in the box has periods p = y + u - (2y - v) = u + v - y and q = 2u + v + y - z - (y + u) = u + v - z. The length of the factor is 2u+v+y-z-(2y-v) = 2u+2v-y-z = p+q. So the periodicity lemma applies and the factor has period r = gcd(u + v - y, u + v - z). Then r is a prefix of v and a suffix of u which makes it a border of vu, but why should it be a border of uv?

ANSWER: the proof has been rewritten.

(5, Figure 4 caption) "Lroots" not \Lwords".

ANSWER: done

(5, Definition 1) "... then the Oroot of the run is ..." and "Otherwise, the Oroot ...".

ANSWER: done

(6, Lemma 9) I don't understand this. w and w_{\rm p} are not mentioned in the statement of the lemma so I guess they have the same meanings as in Remark 8. Then w_{\rm p} starts at 0 and has length i so corresponds to 0..i - 1. w therefore starts at i and has length 1 and so corresponds to i..i+l-1. We're dealing with an Lroot corresponding to $[i_2..j_2] = r2$. This is a factor of w so $i \le i_2 \le j_2 \le i + 1 - 1$. But you have i2 > i. Also $|r_2| = length$ of the Lroot = j_2-i_2+1 . From the display

above $j_2 - i_2 + 1 \le i+1-1-i_2+1 = i+1-i_2$. So $|r_2| \le i+1-i_2$. But you have $|r_2| \le 1 - i_2$.

ANSWER: $w^ = \ v_{\rm previously} \$ were not introduced in the statement as these were previously explained and a lemma is just a tool. However, we tried to fix the situation by improving our statement. To this end, we also fixed several typos in the proof of the lemma. Now everything should be OK.

(7, Lemma 10) "... one Oroot that has its starting position after its end ..."?! ANSWER: we have rephrased the statement