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Leaf onset in the northern hemisphere triggered by
daytime temperature
Shilong Piao1,2,3, Jianguang Tan3, Anping Chen4, Yongshuo H. Fu3,5, Philippe Ciais6, Qiang Liu3, Ivan A. Janssens5,

Sara Vicca5, Zhenzhong Zeng3, Su-Jong Jeong7, Yue Li3, Ranga B. Myneni8, Shushi Peng3,6, Miaogen Shen1 &

Josep Peñuelas9,10

Recent warming significantly advanced leaf onset in the northern hemisphere. This signal

cannot be accurately reproduced by current models parameterized by daily mean tempera-

ture (Tmean). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the

United States, we show that the interannual anomalies of LUD during 1982–2011 are triggered

by daytime (Tmax) more than by nighttime temperature (Tmin). Furthermore, an increase of

1 �C in Tmax would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more

than the conventional temperature sensitivity estimated from Tmean. The triggering role of

Tmax, rather than the Tmin or Tmean variable, is also supported by analysis of the large-scale

patterns of satellite-derived vegetation green-up in spring in the northern hemisphere

(430�N). Our results suggest a new conceptual framework of leaf onset using daytime

temperature to improve the performance of phenology modules in current Earth system

models.

DOI: 10.1038/ncomms7911 OPEN

1 Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Center for Excellence in Tibetan Earth Science, Chinese Academy of
Sciences, Beijing 100085, China. 2 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China. 3 Sino-
French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. 4 Department of Ecology
and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-1003, USA. 5Department of Biology, University of Antwerp, Universiteitsplein 1,
Wilrijk 2610, Belgium. 6 LSCE, UMR CEA-CNRS, Bat. 709, CE, L’Orme des Merisiers, Gif-sur-Yvette F-91191, France. 7 Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, California 91011, USA. 8Department of Earth and Environment, Boston University, 675 Commonwealth Avenue, Boston,
Massachusetts 02215, USA. 9 CREAF, Cerdanyola del Valles, Barcelona 08193, Spain. 10 CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles,
Barcelona 08193, Spain. Correspondence and requests for materials should be addressed to S.P. (email: slpiao@pku.edu.cn).

NATURE COMMUNICATIONS | 6:6911 | DOI: 10.1038/ncomms7911 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:slpiao@pku.edu.cn
http://www.nature.com/naturecommunications


P
henology, the timing of periodic events in the life cycle of
living organisms, is sensitive to climate1–4. Phenological
changes induced by climate change can alter species

interactions5,6 and ecosystem functioning, resulting in changes
in the carbon, water and energy balances and, hence, climatic
feedbacks7. Data from satellite greenness indices, field
observations, and atmospheric CO2 observations all show a
trend towards an earlier spring green-up for northern vegetation
over recent decades, super-imposed on high interannual
variability1,2,8,9. Spring temperature correlates well with this
trend and with the interannual variability of spring green-up2,8.
Mean temperature is the principal variable used by dynamic
global vegetation models (DGVMs) for calculating leaf onset in
temperature-limited biomes. These models, however, simulate
onset dates that have large systematic errors compared with the
in situ and satellite observations3,10, suggesting limitations in
their equations describing phenology.

In cold and temperate regions, plants generally require the
accumulation of a certain amount of heat to trigger spring leaf
onset. Several studies also outline the need for plants to endure
cold conditions during their dormancy, which defines chilling
requirements11,12. Yet, evidence for a widespread chilling
requirement is thin, and statistical models without chilling can
predict the leaf onset date. Growing degree days (GDDs), the sum
of daily mean temperature (Tmean) above a fixed threshold value,
is a common surrogate for the accumulation of heat needed to
unfold leaves13. Current phenological models that use daily mean
temperature ignore potentially different responses of plants to
daytime and nighttime warming (see,for example, refs 14,15). In
other words, if daytime and nighttime temperatures impact
distinctly the heat requirement of GDD, statistical and conceptual
models of leaf onset must carefully distinguish which temperature

should be used. In addition, global warming is increasing
nighttime temperatures more than daytime temperatures, which
makes the use of mean daily temperature likely impractical for
modelling phenology16.

Here, using vegetation green-up date (VGD) diagnosed from
satellite observations and in situ observations of leaf unfolding
dates (LUDs) in Europe and the United States, we demonstrate
that the interannual anomalies of the timing of leaf onset are
triggered by daytime more than nighttime temperature across the
northern hemisphere.

Results
Evidence from in situ observation. We first compared daytime
versus nighttime temperature accumulation for predicting in situ
observations of LUD in Europe and the United States over the
past 30 years (1982–2011). Twenty-four plant species from 2,400
phenology sites in Europe and lilac (Syringa L.) shrubs from 35
phenology sites in the United States were selected from the
European Pan European Phenological Database (hereafter EU)
and the USA National Phenology Network (hereafter US)
(Supplementary Fig. 1; see Methods), respectively. Temperature
data included monthly averaged daily maximum (Tmax) and
minimum temperature (Tmin) with a spatial resolution of 0.5�
obtained from the Tyndall Centre Climate Research Unit
(CRU TS 3.20; see Methods). Both precipitation and cloudiness
were included in the partial-correlation analyses, while other
variables such as soil moisture and soil temperature were not
included, since temperature co-varies with these variables.

Many lines of evidence show that spring LUD is strongly
correlated with temperature of the preceding months
(preseason)8. Here we define the length of the preseason for
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Figure 1 | Responses of in situ-observed LUDs to Tmax and Tmin in Europe and the United States during 1982–2011. The frequency distributions of the

length (in months) of Tmax preseason in (a) Europe and (d) the United States are shown. The Tmax preseason is defined as the period with the highest

negative partial correlation between LUD and averaged Tmax for the months preceding LUD. Frequency distributions of the highest partial-correlation

coefficients between LUDs and preseason Tmax in (b) Europe and (e) the United States after controlling for corresponding Tmin, cloudiness and precipitation.

Frequency distributions of partial-correlation coefficients between LUD and Tmin in (c) Europe and (f) the United States during the same preseason as in a

after controlling for corresponding Tmax, cloudiness and precipitation. Note that LUDs of multiple species in Europe and only lilacs (Syringa L.) in the United

States were analysed. The mean values of partial-correlation coefficients across all phenological stations, the percentages of significantly negative partial

correlations and the percentages of significantly positive partial correlations (in parentheses) are provided in b,c,e and f.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7911

2 NATURE COMMUNICATIONS | 6:6911 | DOI: 10.1038/ncomms7911 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Tmax by Lmax (and by Lmin for Tmin). The value of Lmax is
calculated for each site as the period before LUD for which the
partial-correlation coefficient between LUD and Tmax is
maximized in absolute value (controlling for the effects of Tmin,
precipitation and cloudiness; note that the correlation is negative;
see Methods) (Supplementary Fig. 2). Lmax ranges from 0 to 3
months across most of the species–site–year combinations for
both the phenology data sets (68% for EU and 83% for US;
Fig. 1a,d). For the EU network, the partial interannual correlation
between LUD and Tmax averaged during Lmax is negative and
significant (Po0.05) at 33% of the species–site combinations. By
contrast the significantly negative partial interannual correlation
between LUD and Lmax-averaged Tmin occurs at o8% of the
species–site combinations, as limited as the significantly positive
counterpart (Fig. 1b,c). Similarly, the partial interannual
correlations between LUD and Lmax-averaged Tmax were found
significantly negative at 54% of the US lilac sites (n¼ 35)
compared with only 14% if Lmax-averaged Tmin is used (Fig. 1e,f).
Similar results were also found with Lmin-averaged variables
(Supplementary Fig. 3; see Methods). This observation suggests a
predominant role of Tmax rather than Tmin in controlling the
interannual variations of LUD in both EU and the US
phenological in situ data.

To further test the robustness of the results shown in Fig. 1, we
performed the same analyses with climate data of weekly and
biweekly resolution (see Methods). All analyses produced similar
results as shown in Fig. 1 (Supplementary Figs 4–6), confirming
the stronger relationship of LUD with daytime temperature
rather than with nighttime temperature, which was not affected
by the temporal resolution of the climate data sets. Furthermore,
we also extended the analyses to include winter temperature as a
predictor to account for chilling effects (see Methods). Here
winter temperature was defined as the average Tmean during the
period from the onset of the preceding dormancy (the time at
which daily mean temperature falls below 0 �C, or the default date
of 1 November in the year preceding LUD) to the beginning of
the Tmax preseason. Including winter temperature did not alter
the conclusion that Tmax is a stronger predictor of LUD than Tmin

(Supplementary Fig. 7).

Evidence from satellite observation. In situ phenology obser-
vations cover only a small fraction of world’s vegetation types,
geographic ranges and climate gradients. To evaluate the
generality of the in situ-observed asymmetric temperature effects
on leaf onset in Europe and parts of the US, we further analysed
the effects of daytime and nighttime temperature changes on
satellite-derived VGD in the terrestrial northern hemisphere (4
30�N) over the past 30 years (1982–2011; see Methods). VGD at
0.5� 0.5� resolution was estimated from time series of the
NDVI3g data set (1982–2011) developed by the Global Inventory
Modeling and Mapping Studies (GIMMS) group (see Methods).
Note the reported VGD here is the average value from four
different VGD algorithms: Spline Midpoint, Hants Maximum,
Polyfit Maximum and Timesat SG (Savitzky–Golay; see
Methods). Similar to the in situ-observation results, satellite-
derived Lmax ranged between 0 and 3 months across 76% of the
study area (Fig. 2a,b), also in agreement with earlier findings17.
Statistically significant (Po0.05) negative partial correlations
between VGD and Lmax-averaged Tmax were found in 42% of the
study area (Fig. 2c). In contrast, over the same preseason only
11% of the study area showed significantly negative partial
correlations between VGD and preseason averaged Tmin, mostly
in temperate dry regions (Fig. 2d). Even when using the Tmin

preseason, the negative partial correlation between Tmin and VGD
remained less prevailing (13% of the study area exhibited

significantly negative correlation coefficients, Supplementary
Fig. 8b) than that between Tmax and VGD (32% of the study
area; Supplementary Fig. 8a).

In addition, we tested the robustness of the satellite-derived
results using the four different satellite-derived VGD algorithms
instead of the mean VGD from all algorithms (Supplementary
Fig. 9), using different climatic data sets that had different time
resolutions (Supplementary Figs 10–12) and taking chilling
effects into account (Supplementary Fig. 13). All the tests
returned similar results. In particular, we analysed data from
individual meteorological stations (Supplementary Fig. 14)
thereby avoiding any potential bias of spatial extrapolation like
in the gridded climatic data sets. Examining the relationship
between VGD and weekly, biweekly or monthly Tmax and Tmin at
the locations of the 2,510 meteorological stations with 415 years
of climatic data available for 1982–2011 (see Methods), we
confirmed the statistically significant and negative partial
correlations between VGD and Tmax in the preceding 0–3
months at B43% of the stations, against only 14–16% of the
stations between VGD and Tmin for the same period
(Supplementary Fig. 14). In addition, to determine whether the
temporal binning of the GIMMS NDVI3g could bias the results,
we performed the same analysis using VGD estimated from
MODIS NDVI (2000–2010; Supplementary Fig. 15). For
comparison, results from GIMMS NDVI3g during the same
period (2000–2010) were also presented in Supplementary
Fig. 15. The significantly negative correlation between VGD
and preseason Tmax was still unambiguously more prevailing
(22% of area for GIMMS and 24% for MODIS) than that between
VGD and Tmin for the same period (8% of area for GIMMS and
12% for MODIS) although the results were not as apparent as
that in Fig. 2 due to the shorter period in the MODIS NDVI time
series (Supplementary Fig. 15).

Temperature sensitivity of spring phenology. The stronger
relationship between LUD (VGD) and Tmax compared with Tmin

suggests that Tmax is a better indicator of spring phenology. We
therefore calculated the sensitivity (linear regression slope) of
both in situ-observed LUD and satellite-derived VGD to pre-
season Tmax (SVTmax) using multiple linear regressions in which
LUD (VGD) is regressed against Tmax, Tmin, precipitation and
cloudiness (see Methods). On average, an increase of 1 �C in Tmax

would advance LUD by 4.7 days in Europe and 4.3 days in the
United States (Fig. 3d,e) during 1982–2011. As for VGD, an
increase in Tmax of 1 �C was associated with a 3-day earlier VGD
in the northern hemisphere during 1982–2011 (95% confidence
interval: � 12.0 days �C� 1B9.1days �C� 1). The highest Tmax

sensitivities of VGD were observed in Europe, northern Siberia
and northwestern Canada, where they exceeded � 10 days �C� 1

in some regions (Fig. 3a). Estimates of the Tmax sensitivity of
VGD were robust across the different satellite-derived VGD
algorithms used (Supplementary Fig. 16). We note that the
satellite-derived Tmax sensitivity is not fully consistent with that
derived from in situ observations at the same geographical
locations (satellite pixel containing the site) in Europe (� 8 ±7
versus � 5±9 days �C� 1) and in the United States (� 3±3
versus � 4±6 days �C� 1). This small discrepancy between
satellite and in situ-observation sensitivities may be due to their
different temporal and spatial footprint. Compared with discrete,
in situ data, GIMMS NDVI3g satellite observations provide more
homogeneous phenological records over 8 by 8 km areas (including
different species and sometimes different land cover types)4.

Discussion
Our results show that both in situ-observed and satellite-derived
spring leaf onset is more closely associated with the inter-annual
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variation of Tmax than with Tmin. Three potential mechanisms
may account for these results. First, plants in temperate and
boreal regions need a critical level of forcing temperature (for
example, GDD) to trigger spring phenology13. Only temperatures
above this specific threshold (commonly set at 0 or 5 �C) count in
GDD formation11,18. Before the onset of green-up, Tmin is more
likely to be below the threshold temperature than Tmax and thus
contribute less to fulfil the GDD requirement for green-up. This
hypothesis is supported by the multi-year averaged values of Tmax

and Tmin during Lmax for VGD (Supplementary Fig. 17a,b).
Averaged Tmax was generally 45 �C, while averaged Tmin

remained below 0 �C in many areas of the northern
hemisphere. Hence, daytime rather than nighttime warming in
spring fulfills more efficiently the GDD requirement that triggers
leaf onset. Second, photoperiod may also co-regulate spring
phenology19. For example, the synchronicity of the daily cycles of
light and temperature in spring makes daytime temperature an
important determinant of Arabidopsis phenology20. The
combined effects of photoperiod and daytime temperature in
early spring could, hence, contribute to the stronger relationship
with Tmax. Third, since most plant photosynthesis occurs during
the daytime but is suspended during the nighttime, daytime
temperature rather than nighttime temperature would be more
responsible for plant carbon fixation and energy capture and thus
produces a stronger effect on the onset of green-up.

In temperate dry regions, by contrast, a weak negative or even a
positive interannual correlation between Tmax and VGD is
observed, which may be related to spring phenology being

delayed by Tmax regulated water stress. It has been suggested that
spring phenology of temperate grasslands is co-determined by
soil water availability and temperature21. Daytime warming is
observed to reduce soil water content by enhancing
evaporation14, which may partly or totally offset its advancing
effect on VGD. On the other hand, significant negative
correlations between Tmin and VGD are observed in temperate
dry regions (Fig. 2d), which could be partly attributed to
decreased frost risk at higher nighttime temperature. It is also
noted that in those areas the preseason average Tmin is at 0 �C or
above (Supplementary Fig. 17c) and thus Tmin could contribute to
fulfil the heat requirement for spring green-up. In addition,
changes in plant community structure and composition in
response to rising Tmin

22 may also help explain this positive
response of satellite-derived VGD to Tmin variations, which need
to be further tested.

Daily mean temperature (Tmean) is currently used as the driver
of spring phenology in models. Considering the unequal
contribution of Tmax versus Tmin to spring leaf onset, models
based on Tmean that includes an ineffective or less effective
component of Tmin may give questionable performance in
analysing the responses of spring phenology to temperature
changes, considering the recent faster warming rate at night than
at daytime. For example, in Europe and in the United States, we
found that the correlation between LUD and Tmean was weaker
than that between LUD and Tmax at 455% of the species–site
combinations, although both the correlations were significant
for comparable percentages of species–site combinations
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(Supplementary Fig. 18). Similarly, VGD in northern hemisphere
also shows a weaker correlation with Tmean than with Tmax in 65%
of the study area, suggesting that Tmax outperforms Tmean as a
predictor of spring leaf onset variation. Furthermore, the absolute
value of the LUD sensitivity to Tmean, (see,for example, refs 3,23),
was smaller than its sensitivity to Tmax in both Europe (� 3.2
versus � 4.7 days �C� 1) and the United States (� 3.8 versus
� 4.3 days �C� 1; Fig. 3d,e). The higher LUD sensitivity to Tmax

(SVTmax) than to Tmean (SVTmean) obtained from in situ
observations is also corroborated by satellite observations in
60% of the study area, with spatial variation in the magnitude of
the positive differences between SVTmax and SVTmean (Fig. 3c).
A larger SVTmax than SVTmean is found for the area north of
50�N compared with south of 50�N (Fig. 3c). The largest positive
differences between SVTmax and SVTmean were observed in
Eastern Europe and north-central Siberia, where SVTmax was one
to two times larger than SVTmean. On the other hand, regions
where SVTmax is similar or even lower than SVTmean are
temperate dry ecosystems, where Tmin rather than Tmax is
controlling the interannual variation of VGD as shown in Fig. 2.

The findings suggest that spring phenology GDD models
parameterized by daily mean temperature can be problematic in
current vegetation models. To directly translate our findings into
spring phenology predictions, we estimated and compared the
changes of VGD under future climate and CO2 scenarios using

Tmean-based (as used in current vegetation models) and Tmax-
based (proposed by this study) GDD models (see Methods). The
scenarios include 24 climate models and three radiative forcing
trajectories, RCP2.6, RCP4.5 and RCP8.5 (IPCC 2013). We found
significant difference between Tmax- and Tmean-based phenology
predictions. The advance of VGD caused by warming was larger
in the Tmean-based prediction than in the Tmax-based one for 85%
of the northern hemisphere across all the climate scenarios (Fig. 4
and Supplementary Fig. 19). This is because in all the climate
models analysed, the projected increase of Tmin, and hence of
Tmean, is faster than that of Tmax (IPCC 2013). This result suggests
that Tmean-based GDD models may overestimate changes in leaf
onset, highlighting the need to incorporate the asymmetric
phenology effects of daytime and nighttime temperature changes
in earth system models.

In summary, our results provide information that can be used
to improve the performance of current phenological module in
DGVMs. The statistical analyses presented in this study, however,
require more information for the accumulation of triggering
energy and acclimation mechanisms. In this study, most of the
preseason nighttime temperature does not contribute to the
accumulation of a critical heat amount required for triggering
spring phenology in the mid and high latitudes of the northern
hemisphere. The heat requirement for spring green-up calculated
based on daily mean temperature becomes problematic when one
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wants to predict future phenology changes based on past heat
requirement, given the asymmetric warming rates between
daytime and nighttime. While here we used maximum daytime
and minimum nighttime temperature, which are not the same as
the average daytime and nighttime temperature, our work
suggests that temperature accumulation for spring green-up
calculated at finer temporal resolutions, such as hourly or every
3 h, may be more appropriate. In addition, the impact of
temperature on spring phenology has been found to be non-
linear24, which further adds to the difficulty in using a statistical
relationship established between current temperature and
phenology to predict phenology under future climate scenarios.
The non-linear impacts have been noticed and incorporated in
early model development, such as the Spring Indices phenological
models25. Finally, it should be noted that while daily weather can
be a very random event, some synoptic-scale unusually warm
daily events may also be critical in determining the timing of
spring phenology25,26. The underlying mechanism through

daytime and nighttime temperature affects spring phenology
remains poorly understood in temperate and boreal ecosystems.
Well-designed manipulation experiments therefore are needed to
improve our understanding of the interaction between spring leaf
unfolding phenology and daytime temperature, and ultimately
result in more accurate simulations of spring phenology and
better understanding of global carbon balance and ecosystem
feedbacks to the ongoing climate change.

Methods
In situ-observation data set. We used in situ observations of LUD from two
independent phenology data sets. One is the Pan European Phenological Database
(PEP725; http://www.pep725.eu/ ), which is an open-access database with long-
term plant phenological observations from 19,608 sites and 78 species across
25 European countries. This data set has been widely used for studying the
relationships between spring phenology and climatic changes, especially global
warming8,27. To exclude potential biases caused by outliers and inadequate degrees
of freedom, we removed species–site compositions with the dates of LUD later than
June (180 DOY: day of the year) and focused on the sites with 415 years records
over the period 1982–2011. In total, 2,400 phenological sites and 24 plant species
from PEP725 were used in this study. We also used in situ phenology observations
from the USA National Phenology Network (USA–NPN; https://www.usanpn.org/
results/data)28, and only shrubs of the Lilac genus had sufficient station records for
LUD. Similarly, after excluding the data with the dates of LUD later than June (180
DOY) or with 415 years of records for 1982–2011, we analysed Lilac LUD data
from 35 phenological sites in the United States. The distribution of selected
phenological stations is shown in Supplementary Fig. S1. It should be noted that
the first leafing date from USA–NPN was regarded as an equivalent of LUD here
since USA–NPN does not include the exact phenological event of LUD as those
defined in PEP725.

Satellite-derived date of onset of green-up. The temporal cycle of NDVI is an
indicator of the seasonal growth of vegetation and can be used for investigating
vegetation phenology over large regions1,29,30. The GIMMS NDVI3g data set
(1982–2011) with a spatial resolution of 1/12� and a 15-day interval has been used
to monitor the phenological cycle of ecosystems2,30. Areas with sparse vegetation,
that is, multi-year NDVIs o0.1, were excluded from the analyses. Using NDVI3g
data sets, we applied four methods (Spline Midpoint, HANTS maximum, Polyfit
maximum and Timesat SG) to estimate the VGD. Detailed information about the
four VGD-deriving algorithms and the uncertainty in VGD estimation from the
15-day interval NDVI data set have been documented by refs 15,30. Follow the
previous study15, we applied a Bayesian constraint in each method to rule out the
influence of snow cover and limit the VGD within the thermal growing season
(5day average temperature 40 �C). The average VGDs of the four algorithms were
used in this study (Supplementary Fig. 20), unless otherwise noted.

Climatic data. Monthly data for Tmax, Tmin, Tmean, precipitation and
cloudiness were obtained from CRU TS 3.20 and are available for a regular 0.5�
latitude/longitude grid for 1982–2011 (ref. 31). Due to the lack of solar-radiation
data in the CRU data set during the study period, we used cloudiness data.
To independently validate the results based on the CRU data set, we also used
0.5� 0.5� latitude/longitude gridded 3-h climatic data applying WATCH Forcing
Data Methodology to ERA-Interim data (WFDEI, 1982–2011)32, a 3-h global
meteorological forcing data set (1982–2008)33 and the station-level global-surface
summary of day product (GSOD) by the National Climatic Data Center. Daily
weather can be a very random event, and the satellite data are of biweekly
resolution, so the climatic data from WFDEI, Sheffield and GSOD were then
rescaled to weekly, biweekly and monthly resolutions. For the GSOD data, we only
considered the 2,510 stations with 415 years of available data for 1982–2011 and
with NDVIs larger than 0.1 for the 0.5� latitude/longitude grids containing the
stations. The data for short-wave radiation was obtained from WFDEI.

Analyses. We used partial-correlation analyses to explore the effects of Tmax and
Tmin on observed LUDs. With this approach, we could exclude the confounding
effects of other climatic variables (precipitation and solar radiation) and of
covariate effects between Tmax and Tmin (ref. 14). Temperature during the
preseason dormancy period is arguably the most dominant factor for spring
phenology12, and current phenology models in most DGVMs are solely based on
temperature. It is therefore the aim of this study to identify the most appropriate
temperature variables for use in phenology models. However, other environmental
drivers in addition to temperature, such as precipitation, can also be involved
in controlling the complex vegetation seasonality. Hence, in exploring the
temperature effect on spring phenology, we have excluded the confounding effects
of precipitation and cloudiness (radiation) in the partial-correlation analyses; while
other variables such as soil moisture and soil temperature were not explicitly
excluded, since temperature also indirectly influence them.
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Figure 4 | The ratios of future VGD changes predicted by a Tmax-based

GDD concept model to that predicted by a Tmean-based GDD concept

model. Both Tmean-based GDD approaches and Tmax-based GDD models

were applied to predict the VGD changes (nVGD) between 1991–2010 and

2081–2100, using 24 climate models and different climate change scenarios

(RCP2.6, RCP4.5 and RCP8.5). For each RCP, the Tmax-based predictions

and the Tmean-based predictions were averaged across all models and the

distributions of their ratio (Tmax-based predictions/Tmean-based predictions)

are shown in (a), (b) and (c). The ratio o1 (blue bar) represents that the

future VGD changes predicted by Tmean-based approaches are larger than

those predicted by Tmax-based approaches and vice versa (red bar). The

percentage of ratios o1 and the percentage of ratios 41 are both provided

in a,b and c.
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Spring phenological changes are highly associated with the temperatures in the
preceding months8. To determine the length of the preseason whose average Tmax

had the largest influence on LUD, we calculated the partial-correlation coefficients
between LUD and mean Tmax during the 0, 1, 2, 3 y k months preceding LUD,
controlling for corresponding average Tmin, accumulated precipitation and
cloudiness (all variables non-detrended). The maximum k corresponded to the
length of the period from the month of mean LUD (1982–2011) to the onset of
preceding dormancy, defined as the month when the multi-year averaged mean
temperature dropped to 0 �C, or November as a default value. The preceding
months with the highest absolute partial-correlation coefficients were then
considered as the Tmax-derived ‘preseason’, in which Tmax had the largest influence
on the timing of green-up. Similarly, by replacing Tmax with Tmin, we also obtained
the Tmin-derived preseason.

To assess the robustness of our results, we also used grided climatic data sets at
different temporal resolutions instead of the CRU monthly climatic data sets. In
addition, to determine if winter chilling affected the responses of LUD to Tmax

and Tmin, we performed the same partial-correlation analysis with Tmax, Tmin,
precipitation, cloudiness and winter temperature as independent variables. Winter
temperature was defined as the average Tmean during the period from the onset of
the preceding dormancy (the time at which daily mean temperature falls below
0 �C, or the default date of 1 November in the year preceding LUD) to the
beginning of the Tmax preseason.

Our results indicated that the interannual variation in LUD was more strongly
associated with changes in Tmax than that in Tmin, so we then only estimated the
sensitivity of LUD to Tmax based on multiple linear regressions with LUD as the
dependent variable and Tmax, Tmin, precipitation and cloudiness as independent
variables (all variables non-detrended). We used the monthly averaged values of
each independent variable during the Tmax-derived preseason. We estimated the
sensitivity of LUD to Tmean based on the same multiple linear regressions but
replacing Tmax and Tmin with Tmean. Accordingly, the monthly averaged values of
each independent variable during the Tmean-derived preseason were used in this
analysis.

The same partial-correlation and sensitivity analyses were applied to satellite-
derived observations, with preseason defined separately. To spatially match satellite
data (1/12� spatial resolution) with climatic data (0.5� spatial resolution), we used
averaged VGDs within each grid of the climatic data set. Besides the same
robustness tests as those in the species–site level analysis (see above), we also
performed additional robustness tests by using VGDs derived from individual
algorithms instead of the multi-method averaged VGD, using station-level climate
data set at different time resolution instead of CRU monthly climatic data sets, as
well as using VGDs derived from MODIS NDVI instead of AVHRR NDVI
estimated VGDs. The partial-correlation coefficients and temperature sensitivities
derived from satellite and in situ observations were further compared with all the
pixels covered by both the data sources.

Future prospects. To directly translate our findings into spring phenology
predictions, we performed phenology prediction tests with Tmean (used in current
DGVMs) and Tmax (proposed by this study) approaches, respectively. First, we
calculated the mean GDD requirement for each pixel over the period of 1991–2010
using both daily Tmax and Tmean from WFDEI climate data sets (Supplementary
Fig. 21). The GDD requirement here is defined as an integration of temperature
above 0 �C from 1 January to the satellite-derived VGD of each year. Second, we
applied these two mean GDD values (GDDTmax, GDDTmean) separately as the
threshold to predict the VGD of each year over two periods, that is, 1991–2010 and
2081–2100, using 24 climate models and three climate scenarios (RCP2.6, RCP4.5
and RCP8.5). For each climate model and RCP scenario, the difference between the
mean VGD of the two periods (mean_VGD2081–2100 minus mean_VGD1991–2010)
was then calculated for both Tmax- and Tmean-based GDD models. Finally, under
each RCP scenario, the mean values of those differences across all climate models
were calculated for each vegetated pixel. For comparison, we calculated the ratio of
VGD changes predicted by GDDTmax to that predicted by GDDTmean. The spatial
distribution of the ratios is shown in Supplementary Fig. 19.
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