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Abstract. Classical Bayesian atmospheric inversions process

atmospheric observations and prior emissions, the two being

connected by an observation operator picturing mainly the at-

mospheric transport. These inversions rely on prescribed er-

rors in the observations, the prior emissions and the observa-

tion operator. When data pieces are sparse, inversion results

are very sensitive to the prescribed error distributions, which

are not accurately known. The classical Bayesian framework

experiences difficulties in quantifying the impact of mis-

specified error distributions on the optimized fluxes. In order

to cope with this issue, we rely on recent research results to

enhance the classical Bayesian inversion framework through

a marginalization on a large set of plausible errors that can

be prescribed in the system. The marginalization consists

in computing inversions for all possible error distributions

weighted by the probability of occurrence of the error distri-

butions. The posterior distribution of the fluxes calculated by

the marginalization is not explicitly describable. As a conse-

quence, we carry out a Monte Carlo sampling based on an

approximation of the probability of occurrence of the error

distributions. This approximation is deduced from the well-

tested method of the maximum likelihood estimation. Thus,

the marginalized inversion relies on an automatic objectified

diagnosis of the error statistics, without any prior knowledge

about the matrices. It robustly accounts for the uncertainties

on the error distributions, contrary to what is classically done

with frozen expert-knowledge error statistics. Some expert

knowledge is still used in the method for the choice of an

emission aggregation pattern and of a sampling protocol in

order to reduce the computation cost. The relevance and the

robustness of the method is tested on a case study: the in-

version of methane surface fluxes at the mesoscale with vir-

tual observations on a realistic network in Eurasia. Observing

system simulation experiments are carried out with different

transport patterns, flux distributions and total prior amounts

of emitted methane. The method proves to consistently re-

produce the known “truth” in most cases, with satisfactory

tolerance intervals. Additionally, the method explicitly pro-

vides influence scores and posterior correlation matrices. An

in-depth interpretation of the inversion results is then possi-

ble. The more objective quantification of the influence of the

observations on the fluxes proposed here allows us to evalu-

ate the impact of the observation network on the characteri-

zation of the surface fluxes. The explicit correlations between

emission aggregates reveal the mis-separated regions, hence

the typical temporal and spatial scales the inversion can anal-

yse. These scales are consistent with the chosen aggregation

patterns.

1 Introduction

Characterizing the global biogeochemical cycles of green-

house gases requires a reliable understanding of the ex-

changes at the surface–atmosphere interface. The description

of these exchanges must encompass the absolute amounts

of gas released to and removed from the atmosphere at the

surface interface, the spatial distribution and the temporal

variability of the fluxes, and the determination of the un-

derlying physical processes of emissions and sinks. Such

an integral depiction is still missing for most greenhouse

gases (Ciais et al., 2013). One of the possible approaches to
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inquire into the surface fluxes is the analysis of the atmo-

spheric signal. The drivers of the spatial and temporal vari-

ability of the atmospheric composition are atmospheric trans-

port, chemistry and surface fluxes. Therefore, monitoring the

atmospheric composition and using a representation of the

atmospheric transport and chemistry with global circulation

models (GCMs) or chemistry-transport models (CTMs) can

help in inferring information on the fluxes (Bousquet et al.,

2006; Bergamaschi et al., 2010). This approach, called at-

mospheric inversion, suffers from two practical issues in its

implementation. First, the atmospheric composition is still

laconically documented, though the number of global mon-

itoring projects with extensive surface observation networks

and satellite platforms has been increasing in the last decades

(e.g. Dlugokencky et al., 1994, 2009). Indeed, the satellite

platforms have a global coverage but the observed atmo-

spheric composition is integrated over the vertical column,

while the surface sites can provide continuous observations

but only at fixed point locations. Second, the atmosphere be-

haves as an integrator and the air masses are mixed ambiva-

lently through the transport (Enting et al., 1993). Thus, the in-

verse problem of tracking back the fluxes from the variability

of the atmospheric composition cannot be solved univocally.

The Bayesian formalism allows for statistical analyses of the

atmospheric signal, so that one can identify confidence inter-

vals of fluxes compatible with the atmospheric composition

(Tarantola, 1987).

Bayesian inversions have been extensively used at the

global scale, providing insights on the greenhouse gas bud-

gets (e.g. Gurney et al., 2002; Kirschke et al., 2013; Berga-

maschi et al., 2013). However, non-compatible discrepancies

in the results appear between the possible configurations of

atmospheric inversion systems (Peylin et al., 2013). The var-

ious configurations include the choice of the atmospheric

transport, its spatial and temporal resolutions, the meteoro-

logical driving fields, the type and density of the observa-

tions, etc. In the Bayesian formalism, some assumptions also

have to be made on the transport model error statistics, on the

errors made when comparing a discretized model to observa-

tions (Geels et al., 2007) and on the confidence we have on

the prior maps and time profiles of emissions (Enting, 2002).

All these choices are based on technical considerations and

on the expert perception of the problem to solve. Compar-

ing results based on different choices that are physically ad-

equate, but subjective, is difficult, especially to track incon-

sistencies, which enlarge the range of flux estimates.

In the following, we focus on the development of an en-

hanced Bayesian method that objectifies the assumptions on

the statistics of the errors and that takes the unavoidable un-

certainties generated by our lack of knowledge on these er-

ror statistics into account. In this approach, the confidence

ranges of the optimized surface fluxes are computed by a

Monte Carlo marginalization on all the possible error statis-

tics, which is more general than the usual Bayesian approach

deducing posterior uncertainties from a single error statistic

combination only. The weight function for the marginaliza-

tion is inferred from an already-tested maximum likelihood

approach (e.g. Dee, 1995; Michalak et al., 2005), process-

ing the pieces of information carried by the differences be-

tween the measurements and the prior simulated concentra-

tions. The potential and consistency of the method is tested

through observing system simulation experiments (OSSEs)

on a realistic configuration of atmospheric inversion.

The case study is the quantification of methane fluxes

in the Siberian Lowlands with a network of surface ob-

servation sites that have been operated for a few years by

the Japanese National Institute for Environmental Studies

(Sasakawa et al., 2010) and the German Max Planck Institute

(Winderlich et al., 2010). The characterization of the region

is challenging, with co-located massive methane emissions

from anthropogenic activity (oil and gas extraction) and from

wetlands in summer. Moreover, the wetland emissions have

a very high temporal variability (due to their sensitivity to

the water table depth and to the temperature; e.g. Macdonald

et al., 1998; Hargreaves and Fowler, 1998). Their quantifi-

cation is then difficult. In order to catch the influence of the

sampling bias due to non-regularly distributed observation

sites and non-continuous measurements, we produce virtual

observations from a known “truth” at locations where real

observations are carried out and at dates when the logistical

issues do not prevent the acquisition of measurements. We

then check the capability of our method to reproduce con-

sistent flux variability and distribution with seven degraded

inversion configurations (perturbed transport, flat flux distri-

butions, etc.).

In Sect. 2, we describe the theoretical framework of our

method of marginalization. The enhancements on the gen-

eral theoretical framework need a cautious definition of the

problem to be implementable in terms of computational costs

and memory limits. In Sect. 3, guidelines for a suitable defi-

nition of the problem are developed. The whole structure of

the method is summarized in Sect. 4.1. In Sect. 4, we present

the particular set-up of the OSSE carried out for proving the

robustness of the method. The specific Siberian configuration

we test our method on is detailed in Sect. 5. The OSSEs are

evaluated along defined objective statistical scores in Sect. 6.

2 Marginalized Bayesian inversion

We first describe the motivations for using a marginalized

inversion in Sect. 2.1. In Sect. 2.2, we describe the marginal-

ization itself and the Monte Carlo approach chosen in order

to compute it.
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2.1 Context and motivation for the marginalization

2.1.1 Bayesian inversion framework

The surface–atmosphere fluxes, through transport, cause a

variability in the atmospheric mixing ratios of the species

we are interested in. The atmospheric inversion relies on the

processing of the atmospheric variability in order to infer the

surface–atmosphere fluxes. Since the atmosphere is diffusive

and irreversibly mixes air masses from different origins, it

is physically impossible to infer univocal information on the

fluxes from the integrated atmospheric signal alone (Taran-

tola, 1987; Enting, 2002). We then pursue a thorough charac-

terization of the pdf (probability density function) of the state

of the system x (e.g. the spatial and temporal distribution of

the surface fluxes, but also background concentrations and

baselines in some cases), assuming some prior knowledge on

the system and having some observations of the atmospheric

physical variables related to our problem. That is to say, we

want to calculate the pdf p(x|yo
−H(xb),xb) for all possi-

ble states x; yo is a vector gathering all the available observa-

tions, xb is the background vector including the prior knowl-

edge on the state of the system and H is the observation op-

erator converting the information in the state vector to the

observation space. Typically, H embraces the atmospheric

transport and the discretization of the physical problem. In

the scope of applications of the atmospheric inversions, the

observation vector yo gathers measurements of dry air mole

fraction. As for the observation operator, it is computed with

a model which simulates mixing ratios. As we are interested

in trace gases, we will consider that the dry air mole frac-

tions can be treated as mixing ratios. In all the following, we

also consider that H is linear; hence, H is represented by its

Jacobian matrix H andH(xb)=Hxb. This approximation is

valid for all non-reactive atmospheric species at scales large

enough, so that the treatment of the local-scale turbulence by

the model does not generate numerical non-linearity. When

the atmospheric chemistry must be taken into account (for

instance with methane), either the window of inversion must

be short compared with the typical lifetime in the atmosphere

for the linear assumption to be valid, or the concentration

fields of the reactant species (e.g. OH radicals for methane)

must be accurately known.

In general, the characterization of the pdf is built within

the Bayesian formalism with the assumption that all the in-

volved pdfs are normal distributions (Enting et al., 1993).

The pdfs are then explicitly described through their mode

and their matrix of covariance. In this case, the pdf p(x|yo
−

Hxb,xb)∝N (xa,Pa) is defined by its mode, xa, the pos-

terior state, and its matrix of covariance, Pa. In addition to

the linear assumption, we also consider that the uncertain-

ties are unbiased. That is to say, p(x− xb)∝N (0,B) and

p(yo
−Hxt)∝N (0,R) where xt is the true state of the sys-

tem. The uncertainty matrix B (resp. R) encompasses the un-

certainties on the background xb (resp. on the measurements

and on the model, including representation errors, i.e. the er-

rors made when approximating the real world by a numerical

gridded model). Under these assumptions, we can explicitly

write the posterior vector and the posterior matrix of covari-

ance:

p(x|yo
−Hxb,xb)∝N (xa,Pa) :

{
xa
= xb

+K(yo
−Hxb)

Pa
= B−KHB

,

(1)

with K= BHT(R+HBHT)−1 the Kalman gain matrix.

2.1.2 Ambivalent uncertainty set-up

Atmospheric inversion is straightforward (apart from techni-

cal issues in the numerical implementation of the theory) as

long as the uncertainty matrices R and B are defined.

Some of their components can be calculated unambigu-

ously, such as measurement errors in matrix R. Other errors

are derived, in most cases, following expert knowledge on,

e.g. the behaviour of the atmospheric transport and of the sur-

face fluxes. This expert knowledge is acquired, for example,

through extensive studies on the sensitivity of the transport

model to its parametrization and forcing inputs (e.g. Denning

et al., 1999; Ahmadov et al., 2007; Lauvaux et al., 2009; Lo-

catelli et al., 2013), or by comparing prior fluxes to measured

local fluxes (e.g. Chevallier et al., 2006). Some studies also

rely on pure physical considerations (e.g. Bergamaschi et al.,

2005, 2010).

However, the complex and unpredictable structure of the

uncertainties is hard to reproduce accurately from the expert

knowledge alone and an ill-designed couple of uncertainty

matrices (R,B) can have a dramatic impact on the inversion

results (e.g. Berchet et al., 2013; Cressot et al., 2014). The

discrepancies between the possible configurations of inver-

sion can also reveal some biases, η, in the models: in that case

p(yo
−Hxt)∝N (η,R) instead of p(yo

−Hxt)∝N (0,R),
which would require a different handling of Eq. (1). For ex-

ample, the horizontal wind fields can be biased or the vertical

mixing in the planetary boundary layer systematically erro-

neous. That makes it difficult to compare simulated concen-

trations in the boundary layer to measurements (e.g. Peylin

et al., 2002; Dee, 2005; Geels et al., 2007; Williams et al.,

2014; Lauvaux and Davis, 2014). Biases can have critical

impacts on inversion results and must be inquired into inde-

pendently (e.g. Bocquet, 2011). Nevertheless, for our study,

we decide to neglect the biases in the inversion. We discuss

in Sect. 6.3 the potential impacts of biases that are not signif-

icant in our specific application. We then focus only on the

mis-specification of the uncertainty matrices R and B.

2.1.3 Possible uncertainty handling

In order to address the uncertainty issue in atmospheric in-

versions, efforts are carried out towards objectifying the way

the error statistics are chosen (e.g. Schwinger and Elbern,

www.geosci-model-dev.net/8/1525/2015/ Geosci. Model Dev., 8, 1525–1546, 2015
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Figure 1. Distribution of one component of the Monte Carlo pos-

terior ensemble. The histogram displays the raw posterior distribu-

tion. The dark hatched part of the histogram depicts the proportion

of the ensemble within the tolerance interval TI68, [xlow,xhigh
] (as

defined in Sect. 2.2). The red curve represents the normal distribu-

tion with the same mode and tolerance interval; the green one stands

for a normal distribution with the same mode and the same standard

deviation; the black one is the posterior distribution computed with

the maximum likelihood couple of uncertainty matrices, presenting

under-estimated skewness compared with the Monte Carlo distribu-

tion.

2010; Winiarek et al., 2012; Berchet et al., 2013). These ef-

forts focus on specific algebraic properties of the uncertainty

matrices (e.g. Desroziers and Ivanov, 2001; Desroziers et al.,

2005) or more generally on understanding the likelihood of

the prior innovation vector, yo
−Hxb, as a function of the

uncertainty matrices (Dee, 1995). Under Gaussian assump-

tions, the likelihood of the innovation vector can be written

p(yo
−Hxb

|R,B,xb)=
e−

1
2
(yo
−Hxb)T(R+HBHT)−1(yo

−Hxb)√
(2π)d |R+HBHT

|

,

(2)

with d the dimension of the observation space and | · | the

determinant operator.

In the likelihood framework, the couple of uncertainty ma-

trices (R,B) that maximizes Eq. (2) is considered as optimal

and will be hereafter referred to as the maximum likelihood.

This maximum likelihood optimally balances the observation

and prior state error variances and covariances according to

the prior innovation vector yo
−Hxb (Chapnik et al., 2004).

A direct algorithm computing the maximum likelihood (ap-

plied to atmospheric inversion in, e.g. Winiarek et al., 2012;

Berchet et al., 2013) is then supposed to provide a good ap-

proximation of the couple of optimal matrices (Rmax,Bmax)

which can be used forward in the inversion (Eq. 1). In or-

der to dampen the computation cost of the maximum likeli-

hood estimation, most studies just maximize the likelihood

on hyperparameters (e.g. correlation lengths), describing the

couple of matrices (R,B) in a more simple way.

Though general, the estimation of the innovation vector

maximum likelihood relies on strong assumptions, it can suf-

fer from strong numerical errors and it is not necessarily uni-

vocal. More explicitly, as showed in previous works, the pdf

of the uncertainty matrices p(R,B) behaves as a χ2 distri-

bution with d degrees of freedom, d being the dimension of

the observation space. Thus, the likelihood is highly dom-

inated by the mode of p(R,B), co-located with the maxi-

mum likelihood. However, the peaked likelihood argument

may be too rough in some cases. As the number of observa-

tions decreases compared to the number of state dimensions,

this optimal case becomes less univocal. In the frameworks

where observations are too scarce, the maximum likelihood

may lead to flawed results. To assess the validity of the peak

assumption, estimations of the Hessian matrix of the likeli-

hood at its maximum have been used (e.g. Michalak et al.,

2005; Wu et al., 2013). Hessian matrices give the magnitude

of the uncertainties on the computation of the uncertainty

matrices. Nevertheless, to our knowledge, no atmospheric in-

version accounts for the impact of the Hessian matrix of the

likelihood on the inversion results.

In addition, even when the pdf p(R,B) is intensely peaked

at its maximum, the inferred inversion results from Eq. (1)

with a direct maximum likelihood algorithm would erro-

neously under-estimate uncertainties on the result (see Fig. 1

and, e.g. Berchet et al., 2013). Indeed, at the maximum like-

lihood, all the pieces of information in the system are consid-

ered perfectly usable by the inversion, which then gives too

optimistic posterior uncertainties in this case.

2.2 Marginalization of the inversion

2.2.1 Theoretical formulation

Here, we compute the pdf p(x|yo
−Hxb,xb) by a marginal-

ization on the uncertainty matrices to comprehensively ac-

count for the uncertainties in the characterization of the un-

certainties and to quantify the impact of ill-specified uncer-

tainty matrices. In statistics, marginalizing a pdf p(x) con-

sists in rewriting it as a sum of conditional probabilities

p(x|z) weighted by p(z).

Thus, the complete pdf p(x|yo
−Hxb,xb) classically de-

scribed by Eq. (1) is separated into a sum of the contribu-

tion of each possible couple of covariance matrices (R,B)

weighted by the probability of occurrence of the couple

(R,B):

Geosci. Model Dev., 8, 1525–1546, 2015 www.geosci-model-dev.net/8/1525/2015/
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p(x|yo
−Hxb,xb)

=

∫
(R,B)

p(x|yo
−Hxb,xb,R,B)

×p(R,B|yo
−Hxb,xb) d(R,B)

∝

∫
(R,B)

N (x̃a, P̃a)

×p(R,B|yo
−Hxb,xb) d(R,B). (3)

In Eq. (3), (̃.) depicts a dependency to the couple (R,B). The

complete pdf p(x|yo
−Hxb,xb) then has the shape of an in-

finite sum of weighted normal distributions. This infinite sum

could be described as a multi-variate T-distribution (Bocquet,

2011).

The general expression of Eq. (3) encompasses the clas-

sical case with only one couple of matrices (R,B) which

considers p(R,B|yo
−Hxb,xb) as a Dirac-like distribution

(centred at the maximum likelihood or at any expert-based

couple of uncertainty matrices). More generally, p(R,B|yo
−

Hxb,xb) is not so well known as discussed in Sect. 2.1.3

above.

2.2.2 Monte Carlo sampling

Hereafter, a direct Monte Carlo characterization of Eq. (3) is

carried out to deduce p(x|yo
−Hxb,xb).

The Monte Carlo ensemble is to be defined along the

pdf p(R,B), but the exact distribution of the error statis-

tics is intricate. In all the following, we then approximate

the pdf p(R,B) by a multi-variate χ2 distribution with d (the

number of observations) degrees of freedom, centred at the

maximum likelihood of the prior innovation vector (follow-

ing Dee, 1995). The Monte Carlo marginalization is conse-

quently a direct extension of the maximum likelihood estima-

tion now classically used in the atmospheric inversion frame-

work.

The maximum likelihood can be estimated first by a quasi-

Newtonian descent method. However, descent methods have

high computation costs and thus require a reduced number

of hyperparameters (variances, correlation lengths, etc.) to

describe the full uncertainty matrices. From here, we decide

to reduce the distribution of the matrices (R,B) to the sub-

space of the diagonal positive matrices. Using a subspace of

the possible error statistics can dampen the generality of the

method. In particular, error correlations will be excluded with

diagonal uncertainty matrices. Correlations can be used in

some frameworks to detect the biases in the system (Berchet

et al., 2013). But, more importantly, correlations of observa-

tion or background errors can indicate redundant pieces of

information in the inversion system. For instance, an inver-

sion computed with no observation correlation tries to use

too much information and is expected to give too optimistic

a reduction of uncertainties on the fluxes. Nevertheless, in

Sect. 3, we reduce the observation and state spaces in order to

numerically compute the Monte Carlo marginalization. The

reduction of the observation and state spaces indirectly de-

picts correlations in the full-resolution system. In this con-

figuration, the correlation issue is then attenuated and the di-

agonal assumption is valid.

At the end, for each diagonal term of the uncertainty ma-

trices (R,B), we prescribe a χ2 distribution with d (i.e. the

dimension of the observation space) degrees of freedom,

rescaled so that its average equals the associated term in the

computed maximum likelihood couple (Rmax,Bmax). That is

to say, for each diagonal element ri,i of the matrix R (equiv-

alently of the matrix B):

p

(
ri,i

ri,imax

× d

)
∝ χ2(d) (4)

as the mean of the χ2 distribution with d degrees of freedom,

χ2(d), is d .

The χ2 distributions are then sampled on a large ensemble

– the Monte Carlo approach stabilizes after tens of thousands

of draws in our case study – to characterize the final output

pdf p(x|yo
−Hxb,xb). Each samples of the ensemble must

take into account the spread ofN (x̃a, P̃a) in Eq. (3). To do so,

we describe the pdf p(x|yo
−Hxb,xb) not from the ensemble

of posterior fluxes
(
x̃a
)
, but from a perturbed ensemble of

(̃x), with each x̃ a random sample of N (x̃a, P̃a).

2.2.3 Processing the Monte Carlo posterior ensemble

In Fig. 1, we draw an example of the distribution of the

Monte Carlo posterior vector ensemble along one component

of the state space. The black curve depicts the posterior dis-

tribution inferred from the maximum likelihood, with under-

estimated spread compared to the Monte Carlo distribution.

On the opposite, as illustrated by the green curve, a normal

distribution with the same mode and the same standard de-

viation gives a misleading flat shape. As for a Gaussian, we

then define the symmetric tolerance interval, so that 68.27%

of the samples are in the range (the hatched portion of the

histogram in Fig. 1). This interval is equivalent to the Gaus-

sian±σ interval, with σ the standard deviation. One must re-

member that the computed tolerance interval does not depict

a normal distribution. A normal distribution with the same

tolerance interval (the red curve in Fig. 1) is still mislead-

ingly flat. In all the following, we will write the tolerance

interval TI68, [xlow,xhigh
].

To summarize (as represented in the block diagram of

Fig. 2), the maximum likelihood is first estimated using a

quasi-Newtonian algorithm, similarly to what has been done

in the literature (e.g. Winiarek et al., 2012; Berchet et al.,

2013). We deduce from this maximum likelihood a plausi-

ble distribution of the uncertainty matrices (R,B). Through

www.geosci-model-dev.net/8/1525/2015/ Geosci. Model Dev., 8, 1525–1546, 2015
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Figure 2. Block diagram of the method. Green boxes represent the raw inputs of the system. The blue ones are intermediary results and red

ones the outputs to be interpreted. The yellow ones depict the algorithms to compute. Details in Sects. 2 and 3. Insights for output analyses

are given in Sect. 4.2.

a Monte Carlo sampling of uncertainty matrices (R,B) along

the deduced distribution, we compute an ensemble of possi-

ble posterior vectors (x̃a
(R,B)). We can then define the tol-

erance intervals TI68 and a posterior covariance matrix filled

by the covariances of the ensembles of state components with

each other.

Posterior covariance matrices are not always easy to com-

pute in the atmospheric inversion framework. Here, the pos-

terior covariance matrix is computed explicitly and objec-

tively. The explicit definition of this matrix can give valu-

able information on the ability of the inversion to separate

co-located emissions and emissions at different periods and

Geosci. Model Dev., 8, 1525–1546, 2015 www.geosci-model-dev.net/8/1525/2015/
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locations. This capacity is used for the evaluation of the

OSSEs in Sects. 4.2 and 6.

3 Informed definition of the problem

The general approach defined in Sect. 2 applies a Monte

Carlo method on tens of thousands of individual inversions

after the completion of a maximum likelihood algorithm.

This procedure requires extensive amounts of memory and

computation power that cannot be afforded in most real

cases. For instance, the explicit computation of H with a

CTM closely depends on the dimension of the state space:

every column of the observation operator needs one model

simulation (Bousquet et al., 1999). Additionally, each step

of the algorithm to compute the maximum likelihood of the

prior innovation vector and each step of the Monte Carlo

method relies on matrix products, matrix determinants and

matrix inverses. At first sight, all these operations are as

many technical issues in high-dimension problems.

As a consequence, the application of the theoretically sim-

ple framework developed in Sect. 2 relies closely on an in-

formed definition of the problem. The dimensions of the ob-

servation and state spaces should be reduced to dampen the

numerical obstacles, but one shall keep resolutions physi-

cally relevant for the system we are analysing. By synthe-

sizing the recent literature on the subject, we show in the

following that approximations can be reasonably applied to

the full-resolution problem while not impacting the quality

of the marginalized inversion results. Applying the Monte

Carlo marginalized inversion is then technically feasible in

a problem defined with a reduced dimension from the full-

dimension problem.

3.1 Principle for problem reduction

3.1.1 Motivations and definition

In the observation space, more and more surface observa-

tion sites nowadays provide quasi-continuous measurements

(at least a few data points per minute in the data set we use;

Sasakawa et al., 2010; Winderlich et al., 2010). For long win-

dows of inversion at the regional scale (of a few weeks or

months), such a frequency of acquisition generates a num-

ber of data points technically impossible to assimilate all to-

gether in our framework. Concerning the fluxes, one shall

aim at a characterization of the fluxes on very fine pixels

and at a high temporal resolution. As the window of inver-

sion lengthens and the domain widens, the number of flux

unknowns grows dramatically.

In the inversion framework, the most straightforward way

of minimizing the dimension of a problem is to reduce the

dimensions of the observation and state spaces. Aggregating

components of the state space and sampling observations are

classically used for this purpose. In most studies, the reduc-

tion of the problem is carried out arbitrarily. However, ag-

gregation can generate large errors (Kaminski et al., 2001;

Bocquet et al., 2011), which would mitigate the benefits of

the Monte Carlo marginalized approach compared to more

classical ones applied in other atmospheric inversion stud-

ies with no aggregation (e.g. variational inversions; Courtier

et al., 1994; Bergamaschi et al., 2005; Pison et al., 2009).

Here, we propose a more objective way to do so following

recent literature.

Using the formalism from Bocquet et al. (2011), we aim

at defining a representation ω that encompasses the hori-

zontal and temporal resolution of the fluxes, the choice of

the regions of aggregation and the temporal sampling of the

observations. The representation ω is defined through two

operators 0ω and 3ω, which projects respectively the full-

resolution state and observation space to smaller ones. After

the state space “projection” with 0ω, the inversion applies

corrections on regions of aggregation with fixed emission

distributions, instead of on single pixels. The adjoint of this

operator,0T
ω, then redistributes total emissions on finer scales

with the same fixed emission distribution. The choice of 0ω
impacts both the state vector x and the observation operator

H. The observation sampling 3ω can consist in averaging or

picking one value per time step (chosen accordingly to the

physical resolution inquired into). For instance, one can de-

cide to average the observations by day in order to study the

synoptic variability of the atmosphere, related to the fluxes

at the mesoscale. The observation sampling applies to both

the observation vector yo and the observation operator H.

The observation operator H computes the contribution from

single sources to single observations. The adjoint of the ob-

servation sampling, 3T
ω, will then redistribute an average or

a sample for each chosen time step along this same time step.

The redistribution will follow the raw observed temporal pro-

file within the processed time step.

3.1.2 Mathematical formulation

At first glance, choosing the aggregation pattern and the sam-

pling protocol can be considered as two independent physical

problems. However, as they both influence the dimension of

the observation operator H, they cannot be fixed separately.

More explicitly, we can derive a formula which links 0ω and

3ω. Indeed, our final objective is to compute total posterior

fluxes for each aggregated region that are as close as possible

to the posterior fluxes from a full-resolution inversion aggre-

gated afterwards. That is to say, we want to confine the norm

of xa
ω−0ωx

a
t with xa

ω, the posterior state vector resolved in

the representation ω and xa
t the posterior state vector com-

puted with a full-resolution representation of the problem.

Algebraic manipulations lead to

xa
ω−0ωx

a
t = 0ωBEω(yo

−Hxb), (5)
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where

Eω =PωHT3T
ωS−1

ω 3ω−HTS−1, (6a)

S = R+HBHT, (6b)

Sω =3ω
{
R+H(Aω+PωBPω)H

T
}
3T
ω, (6c)

Pω = (0ω)
T0ω, (6d)

Aω = (I−Pω)xtx
T
t (I−Pω), (6e)

xt is the true state of the system, (6f)

I is the identity matrix. (6g)

In Eq. (5), R and B are the full-resolution matrices of the

error statistics.

For the aggregation errors to be limited, Eω (Eq. 6a) must

tend towards 0. Then, S (Eq. 6b) and Sω (Eq. 6c) must be as

close as possible to each other and the impact of Pω (Eq. 6d)

and of the sandwich product with 3ω, 3T
ω(·)3ω, must be as

small as possible. 0T
ω extrapolates the fluxes from the ag-

gregated regions to a finer resolution following an a priori

repartition. The matrix Pω then redistributes the fluxes over

a region with respect to the prior repartition, but keeping the

same total emissions on the region.

In Sect. 3.2 below, we explain how to reduce these terms.

The exact estimation of Eq. (5) is complicated and requires

extensive numerical resources (e.g. Wu et al., 2011). In the

following, we use physical considerations towards minimiz-

ing Eq. (5). The errors that are intrinsic to the aggregation

process and that are unavoidable are controlled so that the

benefit from the general marginalization is not wasted. We

show in Sect. 6.3 that the physical considerations for choos-

ing the representation ω in our case do not depreciate the in-

version results compared to what would have been obtained

with the exact resolution of Eq. (5).

Considering the computer resources we use, all the prin-

ciples we define are applied in order to limit the size of the

observation space (resp. the state space) to a dimension of

roughly 2000 (resp. 1500). For instance, in the mesoscale

Eurasian case study described in Sect. 5, these considera-

tions lead to the aggregation patterns displayed in Figs. 2 and

6. With these problem dimensions, the ensemble used in the

Monte Carlo sampling consists of 60 000 draws.

When the observation and the state space aggregation are

chosen, the operator H can be computed with the so-called

“response functions”, based on forward simulations of the

transport for each state component (Bousquet et al., 1999).

3.2 Representation choice

3.2.1 Observation space sampling

The sandwich product with 3ω, 3T
ω(·)3ω, aggregates the er-

rors in the observation space and diffuses them back within

each aggregate along a prescribed temporal profile. For ex-

ample, it can typically compute the average error per day;

then, it allocates for each subdaily dimension an error pro-

portional to the contribution of the related component of yo

to the daily mean. However, a daily averaging would be dom-

inated by the outliers (e.g. singular spikes or night-time ob-

servations when the emissions remain confined close to the

surface due to weak vertical mixing) that are generally as-

sociated with very high observation errors (due to fine-scale

misrepresentations of the transport and erroneous night ver-

tical mixing). For this reason, we decide to define 3ω as

the sampling operator, which, for each day and observation

site, picks the component of the observation vector when the

daily minimum of concentrations within a planetary bound-

ary layer higher than 500 m is observed. Below this thresh-

old, the vertical mixing by the model is known to be possi-

bly erroneous (e.g. Berchet et al., 2013). The daily resolution

is chosen in order to keep a representation of the transport

relevant to the mesoscale expectations on flux characteriza-

tion. Higher time resolution would not improve the inversion

efficiency due to strong within-day temporal correlations of

errors (Berchet et al., 2013).

3.2.2 Observational constraints

One can notice that far from the observational constraints,

the atmospheric dispersion (depicted by the sandwich prod-

uct with H, H(·)HT) makes the potential errors negligible

compared to the errors generated in the areas close to the

stations. Indeed, gathering two close hotspots of emissions

thousands of kilometres away from the observation sites is

not problematic since the air masses coming from the two

spots will be well mixed. On the contrary, two hotspots that

are as distant from each other as the first two, but close to

an observation site, will generate plume-like air masses with

a very high sensitivity to the errors of mixing and transport

in the model. We use an estimation of the observation net-

work footprints (approximating HT) in order to fix the typi-

cal regions constrained by the network and avoid unfortunate

grouping. At this step, approximate footprints are preferred

to the heavy computation of the complete HT and are suffi-

cient for our physical considerations. Within the constrained

regions, we use a small spatial resolution for the fluxes and

the transport and fine aggregation patterns; outside of them,

we choose a coarse resolution and large aggregation patterns.

These guidelines for using footprints prior to an inversion can

be applied more systematically, as what is done in Thompson

and Stohl (2014). An illustration of aggregation patterns in

our case study can be looked at in Fig. 6.

3.2.3 Flux aggregation

Some terms in Eq. (5) are directly related to the aggrega-

tion of the fluxes. The term HAωHT in Eq. (6c) depicts

the aggregation errors coming from the uncertain distribu-

tion and temporal profile of the fluxes within each aggrega-

tion region, then transported to the observation sites. It must

be close to 0. In our application below, this is particularly
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important for hotspots of emissions, the locations of which

are poorly known. The term HPωBPωHT in Eq. (6c) must

be as close as possible to HBHT. The factors of divergence

between these two terms come from the areas that are not

well constrained by the observations. If, within a region of

aggregation, a part is upwind the observation sites, while the

other is not seen, then the aggregation errors will scatter on

the unseen part of the region. The main sources of errors

can then be separated into two different types: (1) the res-

olution/representation type, and (2) the constraint type.

The type-1 errors are mainly related to the resolution of

the observation operator. The models consider that the fluxes

and the simulated atmospheric mixing ratios are uniform on a

subgrid basis and neglects subgrid processes. This discretiza-

tion contributes to type-1 errors, as “representation” errors

(Tolk et al., 2008). Additionally, the distribution within each

aggregation region is fixed and subregion rescaling is forbid-

den. The fine resolution close to the observation network is

bound to confine type-1 errors (e.g. Wu et al., 2011). Ad-

ditionally, the representation error is critical for co-located

emissions, especially when the typical temporal and spatial

scales of these emissions are different. For instance, group-

ing hotspots from oil extraction emissions with widespread

wetland emissions that quickly vary in time is hazardous.

We then aggregate the emissions along their typical time

and space scale, hence according to the underlying physi-

cal process. An in-depth analysis of the footprints and the

small patterns of aggregation close to the observation sites

should limit the type-2 constraint errors. Areas under high

observational constraints should not be grouped with under-

constrained areas.

The resolution and aggregation choices can be computed

objectively, but at a very high cost and only within a frame-

work of prescribed frozen error matrices (Bocquet, 2009;

Wu et al., 2011; Koohkan et al., 2013). For our purpose, we

cannot afford such computation costs and rely on heuristic

choices: small resolution and aggregation patterns close to

the observation sites, aggregation by type of emission, sep-

aration of constrained/under-constrained areas by analysing

the footprints. These non-optimal subjective choices may

damp the efficiency of our method and must be carried out

cautiously. Nevertheless, in our case, checking our choices

after the computation shows that they did not have a critical

impact on the inversion results.

3.3 Numerical artefacts

In addition to the need of defining a well-sized problem,

smart adaptations can be applied to the computation of the

method in order to enhance the efficiency of the algorithm.

We face several sources of numerical artefacts in the compu-

tation of the method. In the quasi-Newtonian maximum like-

lihood algorithm, numerical artefacts are generated by the

under-constrained regions. After a few steps, the computed

gradient of the likelihood is dominated by these regions and

the algorithm stays stationary. This issue could be partly re-

lated to the under-optimality of the chosen representation ω

as suggested by the optimality criteria described in Bocquet

et al. (2011). The stagnation of the maximum likelihood al-

gorithm could then be used to detect too small regions of

aggregation.

The under-constrained regions perturbing the maximum

likelihood algorithm can be diagnosed using the diagonal

terms of the influence matrix KH (with K defined in Eq. (1)

and following Cardinali et al., 2004). This matrix represents

the sensitivity of the inversion to elementary changes in the

observations. Strong observation constraints are related to

high sensitivity. After stagnation, the regions with a diag-

nosed KH< 0.5 are flagged out and the algorithm is carried

on. This way, only the sufficiently constrained components of

the state vector are processed until the algorithm converges.

A third to half of the regions are flagged out this way in our

case study.

The detection of the misrepresentation of hotspot plumes

should also be enhanced. Despite the minimum daily sam-

pling and the fine resolution close to the observation network,

the plume issue can still generate strong temporal and spa-

tial mismatches. For example, a point source can influence

a station in the real world but not in the model because it

has been mis-located, and vice versa. This creates significant

differences between the simulated and the observed concen-

trations. The maximum likelihood algorithm attributes such

mismatches to prior errors and/or observation errors. High

diagnosed errors in the maximum likelihood algorithm are

then a criterion for plausible mismatches. We know such

plumes must be flagged out from the inversion to avoid ir-

relevant high influence from very local sources hard to rep-

resent. Since we notice that the observation and prior com-

puted errors seem to follow a Fischer–Snedecor distribution,

we choose to flag out the observations that are within the

95 % tail of the distribution.

4 Validation experiments

In Sect. 2, we described our modified atmospheric inversion

by marginalization. In Sect. 3, we proposed some essential

rules to follow in order to properly define the problem, so

that the rather simple theoretical framework is not hindered

by finite numerical resources. The marginalization method

has to be validated along objective criteria. In the following,

we summarize the general structure of the method in order

to identify the critical points to test in the method (Sect. 4.1).

We deduce from these points some OSSEs to carry out. In

Sect. 4.2, we define the scores according to which the method

will be evaluated.
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4.1 Required tests

4.1.1 Method summary

The method described in Sects. 2 and 3 is condensed in the

block diagram in Fig. 2. The marginalized inversion takes the

same input as any other atmospheric inversion: some atmo-

spheric measurements and prior maps of fluxes with specified

resolution and temporal profiles. In Sect. 3, we gave recom-

mendations on the processing of the “raw” inputs, so we get

an observation vector yo, a prior state vector xb and an ob-

servation operator H that are small enough to be computable

by the method. These highlights are mainly the sampling of

the observations per day (in accordance with our objective

of characterizing mesoscale fluxes in our case study) and

the aggregation of the fluxes by regions (based on physical

considerations and footprint analysis). The maximum like-

lihood algorithm processes yo, xb and H in order to find a

couple of optimal diagonal error matrices (Rmax,Bmax). This

maximum likelihood is found by a quasi-Newtonian descent

method. We then infer from (Rmax,Bmax) the approximate

χ2 shape of the distribution of all the possible error matrices

(R,B). We carry out a Monte Carlo sampling on these distri-

butions of errors and get an ensemble of posterior state vec-

tors (x̂a). The processing of this ensemble provides the final

output of the method: a tolerance interval TI68 of the pos-

terior state and the posterior correlations between the com-

ponents of the state space. The method also allows for the

explicit computation of the influence matrix KmaxH in order

to analyse the constrained regions of emissions only.

To summarize, the marginalized inversion processes two

vectors and one operator: yo, xb, and H, as any other atmo-

spheric inversion. The main difference with most other at-

mospheric inversions resides in the objective and automatic

computation of the influence of ill-specified error statistics,

in contrast with the traditional assigning of frozen error ma-

trices based on expert knowledge and with the more recent

online computations of error hyperparameters. Thus, we do

not have to inquire into the sensitivity of our method to the

prescribed spatial correlations of flux errors, or to the error

variances. Such a sensitivity is transposed to the choice of

the aggregation patterns and the sampling protocol, as de-

fined in Sect. 3.1. The chosen configuration of aggregation

and the sampling protocol are checked afterwards to be rel-

evant in our case study. OSSEs are then to be carried out to

evaluate the sensitivity of the method to yo, xb, H.

4.1.2 Test strategy

We assume that, in our case, the method is not sensitive to

errors in yo. Indeed, in all the following, we consider that the

measurement errors are negligible compared to transport er-

rors; this is true for surface sites that fulfil the World Meteo-

rological Organization’s strict recommendations for accuracy

and precision (WMO/GAW, 2011). This approximation does

not hold for satellite total column measurements, for which

the transport errors are smoothed over the vertical atmo-

spheric column, and the instrument errors are larger. In ad-

dition, representativeness errors may also impact yo. OSSEs

should account for these errors. However, OSSEs may face

difficulties in explicitly highlighting these errors. Therefore,

we do not perturb yo in order to represent the instrumental

uncertainties and representativeness errors in the OSSEs.

The OSSEs are then based on perturbations of xb and

H. The discrepancies between the background xb and the

“truth” xt are of two types: (1) the erroneous distribution

and temporal profile of the fluxes within aggregation regions,

and (2) incorrect total emissions by region. For example, in

Eurasia, the maps of the distribution of the wetlands differ

drastically from one database to another (Frey and Smith,

2007). Apart from the distribution, the amount of gas emit-

ted by each process is uncertain, due to mis-parametrizations

or, for anthropogenic emissions, mis-specified activity maps

(e.g. Rypdal and Winiwarter, 2001). The transport H differs

from the “true” transport mainly because of the resolution

of the model, the parametrization of subgrid processes (such

as vertical turbulent mixing in the planetary boundary layer

or deep convection), and the meteorological forcing fields

(which are not necessarily optimized for transport applica-

tions).

The main sources of errors in the inversion are then (1) a

wrong representation of the transport (highly dependent of

the transport model used, its resolution, its parametrization

and the exactitude of forcing wind fields), (2) an erroneous

distribution of the fluxes within aggregation regions (each

inventory and database has different statistical methods and

parameters to reproduce surface fluxes), and (3) incorrect to-

tal emissions by regions. In order to evaluate the impact of

each point on the inversion result, we carry out OSSEs with

perfect synthetic observations from a nature run (i.e. with

“true” emissions and “true” transport, as defined in the set-

up in Sect. 5). We test the ability of the marginalized inver-

sion to reproduce the “true” fluxes or, at least, to consistently

include the “truth” within the tolerance intervals. There are

eight possible combinations of correct or perturbed phases of

the three parameters. The “all true” combination is not rele-

vant: yo
−Hxb

= 0 and the maximum likelihood algorithm

is stationary. Seven combinations remain, detailed in Table 1.

We run the marginalized inversion for the seven OSSEs and

evaluate them along the scores defined in Sect. 4.2 below.

4.2 OSSE evaluation

4.2.1 Scoring system

We expect an atmospheric inversion to provide reliable

ranges of uncertainties for surface fluxes. That is to say,

for as many components of the state vector xi as possible,

the “truth” xt
i should be within the tolerance interval TI68,

[xlow
i ,x

high

i ] (defined in Sect. 2). In order to evaluate the
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Table 1. OSSEs summary. Three parameters of the inversion (subtotal masses emitted per regions, emission distribution and transport) can

be perturbed compared with the “truth”. The seven possible combinations are depicted by= and 6= signs for each parameter and each OSSE.

Every OSSE is evaluated along the scores defined in Sect. 4.2. The scores are given in percentages for the best correlation threshold for

grouping the state space components as presented in Sect. 4.2. The influence score must be as close to 100% as possible. The other two

scores must be as small as possible. The regions are grouped along a correlation criterion rmax (see Sect. 4.2); we present the scores only for

rmax with the best results. For OSSE 7, the scores are zeros for the fossil fuel regions because most of these regions were filtered out. The

few remaining ones are very well constrained.

OSSE 1 OSSE 2 OSSE 3 OSSE 4 OSSE 5 OSSE 6 OSSE 7

Inversion inputs:

x subtotals 6= = = 6= 6= = 6=

x distributions = 6= = 6= = 6= 6=

H = = 6= = 6= 6= 6=

Optimal rmax 0.5 0.5 0.5 0.5 0.6 0.5 0.4

Scores: ff wet ff wet ff wet ff wet ff wet ff wet ff wet

Relative score 79 94 16 27 40 84 3 66 30 117 20 93 0 112

Absolute score 9 16 2 11 36 24 1 27 18 40 37 30 0 15

Influence 63 56 39 37 45 30 37 28 46 58 32 32 13 33

ability of producing consistent fluxes, we define a relative

score zrel for each component of the state vector: (zrel)i =

2
|xa
i−x

t
i |

x
high

i −x
low
i

. Hereafter, all the scores will be expressed in per-

centages for better readability. Statistically, zrel has no upper

bound. Relative scores bigger than 100% are not statistically

inconsistent, but, for the method to be validated, we expect

that the proportion of state components with zrel < 100% is

dominant.

Furthermore, the atmospheric inversion is supposed to re-

veal pieces of information to the understanding of the sys-

tem. Then, we also expect that a correct relative score be-

low 100% is not reached by specifying huge tolerance in-

tervals. To evaluate the ability of the marginalization of get-

ting close to the reality, i.e. providing valuable information

on the state of the system, we define an absolute score zabs:

(zabs)i =

∣∣∣xa
i

xt
i

− 1

∣∣∣. The smaller the absolute score, the more

accurate the marginalized inversion.

An inversion also must be able to evaluate the observa-

tion constraints on the regions. An objective estimator of the

constraints on the regions is the influence matrix KH de-

fined in Sect. 3. The Kalman gain matrix depends on the

couple (R,B). Amongst all the Monte Carlo draws, we com-

pute the influence matrix KmaxH for the couple associated

with the maximum likelihood. The diagonal terms of this ma-

trix range from 0 to 1. They give for all components of the

state space the constraint given by the observations. We then

define the influence score: (zinfl)i = (KmaxH)i . The closer

these terms are to 100%, the more constraints the inversion

provides. We can then deduce the typical range of influence

of the observation sites and detect the blind spots of the used

network.

For each component i of the state space, we then have de-

fined three indicators:
(zrel)i = 2

|xa
i − x

t
i |

x
high

i − xlow
i

,

(zabs)i =

∣∣∣∣xa
i

xt
i

− 1

∣∣∣∣ ,
(zinfl)i = (KmaxH)i .

(7)

4.2.2 Posterior correlation processing

Another point most inversions do not compute explicitly and

objectively is the typical temporal and spatial scales the in-

version can differentiate in the fluxes, considering the atmo-

spheric transport and the density of the observations. Our

marginalized inversion gives access to an explicit matrix of

correlations as defined in Sect. 3. Strong positive and nega-

tive correlations between two components of the state space

indicate that the inversion cannot separate the contributions

from the two components. For example, air masses observed

at a station and coming from two regions upwind the station

will have a mixed atmospheric signal difficult to analyse. Co-

located emissions are also not necessarily differentiated in

the atmospheric signal. Moreover, in a regional framework,

when a model of limited area is coupled to lateral boundary

conditions (LBC), the inversion must explicitly alert on the

regions that cannot be separated from the boundary condi-

tions, i.e. from the baseline signal.

In the case of strong correlations between two components

of the state space in the posterior covariance matrix, we con-

sider that it is not relevant to try to infer specific information

for the two separate components. Then, we group the state

space components according to their posterior correlations.

We define a threshold of correlation rmax and associate cou-

ples of regions (i,j) within groups such that |ri,j |> rmax. If
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we prescribe rmax = 0, all the regions will be grouped; con-

versely, if rmax = 1, no group will be formed. The optimal

correlation threshold is not evident. We test the grouping for

all possible rmax values. We flag out from the processing of

the results all the groups, which include some contributions

from the LBC. Thus, from this post-processing, we only keep

the regions that are clearly constrained by the observation

sites, with no interference from the LBC. Moreover, we can

infer the spatial and temporal scale that the inversion can re-

solve from the grouping patterns.

In Table 1, the three scores defined in Eq. (7) are averaged

on the whole domain of interest for the optimal correlation

threshold rmax (as discussed in Sect. 6.1).

5 Set-up of the OSSEs

We compute the OSSEs that we described in Sect. 4 in a re-

alistic mesoscale case. We focus on a domain spanning over

Eurasia, from Scandinavia to Korea. At this scale, the air

masses’ residence time is typically of days to a few weeks.

This timescale is small compared to the 8–10-year lifetime

of methane in the atmosphere (mainly due to oxidation by

OH radicals; Dentener et al., 2003). Hence, the observation

operator can be considered linear. We apply the method on a

region characterized by significant fluxes, with collocation of

different sources with different emission timescales: Siberia.

We describe the region of interest and the chosen “truth” for

the experiments in Sect. 5.1. We use two transport models in

order to simulate atmospheric transport. The technical details

on these models are summarized in Sect. 5.2. In Sect. 5.3, we

explain how we choose and compute the synthetic observa-

tions for our experiments.

5.1 Virtual true state xt

5.1.1 State space components

In the region of interest, the emissions of methane are domi-

nated by wetland, anthropogenic (here, mainly related to the

oil and gas industry) and wildfire emissions. In Fig. 3, the

distributions of the wetlands and of the oil and gas indus-

try in the region are displayed. Anthropogenic emissions of

methane in the region are mainly hotspots related to the in-

tense oil and gas industry in the Siberian Lowlands and to the

leaks in the distribution system in population centres in the

south part of Siberia. Wetland emissions are mainly confined

in the lower part of Siberia in the west Siberian plain, half of

which is lower than 100 m above sea level.

The spatial distribution of the associated fluxes is de-

duced from the (1) EDGAR database v4.2 (http://edgar.jrc.

ec.europa.eu) for year 2008 for anthropogenic emissions,

(2) LPX-Bern v1.2 process model at a monthly scale for wet-

land emissions (Spahni et al., 2011), and (3) GFED database

at daily scale for wildfires (Giglio et al., 2009). The EDGAR

inventory uses economic activity maps by sectors and con-

volves them with emission factors estimated in laboratories

or with statistical studies (Olivier et al., 2005). LPX-Bern is

an update of process model LPJ-Bern (Spahni et al., 2011). It

includes a dynamical simulation of inundated wetland areas,

dynamic nitrogen cycle, and dynamic evolution of peatlands

(Spahni et al., 2013; Ringeval et al., 2014). The model uses

CRU TS 3.21 input data (temperature, precipitation rates,

cloud cover, wet days) and observed atmospheric CO2 for

each year for plant fertilization. GFED v4 is built from the

burnt-area satellite product (MCD64A1). CH4 emissions at

monthly and daily scales are deduced from the burnt areas us-

ing the Carnegie–Ames–Stanford Approach (CASA model;

Potter et al., 1993) and emission factors (van der Werf et al.,

2010). Wildfire emissions can be very strong and are punc-

tual in time and space; they are then difficult to analyse by the

inversion. Wildfires are included as inputs to the marginal-

ized inversion but are automatically filtered out during the

computation. In all the following, we evaluate the OSSEs

only in terms of anthropogenic and wetland emissions.

In addition, at the mesoscale, we use a CTM (see

Sect. 5.2.2) with a limited area domain. Initial and lateral

boundary conditions (IC and LBC) are then also to be op-

timized in the system to correct the atmospheric inflow in

the domain. Lateral concentrations are deduced from simu-

lations at the global scale by the general circulation model

LMDZ with the assimilation of surface observations outside

the domain of interest (Bousquet et al., 2006). We aggregate

the LBC along four horizontal components and two vertical

ones (1013–600 and 600–300 hPa).

5.1.2 Generation of a perturbed reference state xt

The EDGAR fluxes are given at the yearly scale and the

LPX fluxes are calculated at a monthly scale. Additionally,

LPX monthly fluxes exhibit smoothed patterns while wetland

emissions can vary drastically from a point to another. We

want the nature run for OSSEs to reproduce the potential spa-

tial and temporal variability of the emissions. To do so, we in-

tensify the spatial and temporal contrasts from the databases

to the nature run. We then compute the “true” state vector

xt by perturbing EDGAR emissions on a monthly basis and

LPX on a 10-day basis. That is to say xt
= α⊗ xdata, with

the vector α depicting the scaling factors by state space com-

ponent, ⊗ the point-wise multiplication operator and xdata

the emissions from the databases. The perturbations in α

from original EDGAR and LPX databases applied to get the

“truth” are scaling factors of up to 10. These scaling factors

could have been chosen randomly, but we prefer inferring

them with a raw expert-knowledge-based inversion using real

data. The purpose of using real data for computing xt is to

generate potentially realistic variations within the state space.

For both anthropogenic and wetland emissions, the scaling

factors can significantly differ from a period of inversion to

another. We can then evaluate the ability of the marginalized

inversion to catch quick variations. The distribution of the
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Figure 3. Topographic map of the domain of interest. The colour bar shows the altitude above sea level (from ETOPO1 database; Amante and

Eakins, 2009). Red dots (resp. orange triangle) depict hotspots of CH4 emissions (based on EDGAR v4.2 inventory; see Sect. 5.1) related to

oil welling and refineries (resp. gas extraction and leaks during distribution in population centres). Purple squares highlight the observation

site localization. Blueish shaded areas represent average inundated regions, wetlands and peatlands (from the Global Lakes and Wetlands

Database; Lehner and Döll, 2004)

scaling factors α is shown in Fig. 4. These factors are plausi-

ble, knowing the uncertainties on the wetland emissions and

gas leakage (e.g. Reshetnikov et al., 2000). Such target scal-

ing factors are at the edge of the validity of the Gaussian

assumption and of the positivity of methane fluxes. The abil-

ity of the marginalization to recover such correction factors

will prove its robustness.

As for anthropogenic and wetland emissions, we apply the

scaling factors α on the components of xt related to LBC by

periods of 10 days.

The OSSEs rely on xb perturbed from xt, or not. We ap-

ply two types of perturbations as summarized in Table 1. In

OSSE 1, 4, 5 and 7, we only implement prior fluxes with dif-

ferent total emissions on the regions of aggregation. We take

the emissions of the raw inventories as background to test the

ability of recovering “true” fluxes from realistic background

fluxes without assigning frozen prior errors. In OSSE 2, 4, 6

and 7, the distribution of the prior fluxes is modified from the

“truth”. We choose all flat flux distributions for each region

of aggregation as prior fluxes.

5.2 Simulation of the observation operator H

The observation operator H is deduced from simulations of

atmospheric transport. We use two different transport mod-

els in order to evaluate the impact of the transport on the

inversion. We define HFLEXPART with the Lagrangian dis-

persion model FLEXPART and HCHIMERE with the Eulerian

chemistry-transport model CHIMERE. Any transport model

can be considered at some point biased compared with the re-

ality. Confronting the results from FLEXPART to those from

CHIMERE will allow us to test the robustness of our method

to the biases.

5.2.1 The Lagrangian model: FLEXPART

With the Lagrangian dispersion model FLEXPART (Stohl

et al., 2005), we can compute the footprints of the observa-

tions, hence HT
FLEXPART. We use FLEXPART version 8.2.3

to compute numerous back trajectories of virtual particles

from the observation sites. The model is forced by the Euro-

pean Centre for Medium-range Weather Forecast (ECMWF)

ERA-Interim data at a horizontal resolution of 1◦× 1◦, with

60 vertical levels and 3 h temporal resolution (Uppala et al.,

2005). Virtual particles are released in a 3-D box centred

around each observation site with a 10-day lifetime back-

wards in time. The footprints are computed on a 0.5◦× 0.5◦

horizontal grid, following the method of Lin et al. (2003),

taking the boundary layer height at each particle location into

account. The footprints only have to be convolved with the

emission fields in order to get simulated concentrations at the

observation sites. The method for computing the footprints
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Figure 4. Distribution of the scaling factors applied to the emission

databases in order to compute the “truth”. All the emission compo-

nents of the state vector have been included in the histogram. The

selection of the scaling factor distribution is detailed in Sect. 5.1.

considers that only the particles within the boundary layer are

influenced by surface emissions and that the boundary layer

is well-enough mixed to be considered as uniform. The uni-

form vertical mixing of the mixing layer can generate a bias

on the surface-simulated concentrations. Such a bias is criti-

cal in the classical inversion framework and consequently in

the one we describe since all the uncertainties are considered

unbiased.

FLEXPART can easily compute an estimation of the ad-

joint of the full-resolution observation operator before choos-

ing the representation ω. Hence, despite the expectable bi-

ases, we use this model to estimate the footprints of the net-

work and deduce the aggregation patterns needed to compute

HCHIMERE. This same model FLEXPART may also be used

to compute explicitly and rigorously the representation ω ac-

cording to objective criteria (Koohkan and Bocquet, 2012).

5.2.2 The Eulerian model: CHIMERE

Using the Eulerian mesoscale chemistry transport model

CHIMERE (Vautard et al., 2001; Menut et al., 2013) con-

strained by non-hydrostatic meteorological fields, we explic-

itly define the observation operator HCHIMERE by computing

the forward atmospheric transport from the emission aggre-

gated regions (defined according to Sect. 3 criteria) to the

observation sites. This model was developed in a framework

of air quality simulations (Schmidt et al., 2001; Pison et al.,

2007) but is also used for greenhouse gas studies (Broquet

Table 2. Eurasian site characteristics (Sect. 5.3). The altitudes of the

sites are given as metres above sea level (a.s.l.) and the inlet height

is in metres above ground level (a.g.l.).

Station ID Location Inlet

Lon. Lat. Alt. height

(◦ E) (◦ N) (m a.s.l) (m a.g.l.)

Azovo AZV 73.03 54.71 100 50

Berezorechka BRZ 84.33 56.15 150 80

Demyanskoe DEM 70.87 59.79 75 63

Igrim IGR 64.42 63.19 25 47

Karasevoe KRS 82.42 58.25 50 67

Noyabrsk NOY 75.78 63.43 100 43

Pallas PAL 24.12 67.97 560 5

Shangdianzi SDZ 117.12 40.65 287 0

Tae-ahn Peninsula TAP 126.12 36.72 20 0

Ulaan Uul UUM 11.08 44.45 914 0

Vaganovo VGN 62.32 54.50 200 85

Yakutsk YAK 129.36 62.09 210 77

Zotino ZOT 89.35 60.80 104 301

et al., 2011; Berchet et al., 2013). We use a quasi-regular

horizontal grid zoomed near the observation sites after the

considerations of Sect. 3. The domain of interest is of limited

area and spans over the mainland of the Eurasian continent

(see Fig. 3). The average side length of the grid cells near the

stations is 25 km, while it spans over 150 km away from the

observation sites. The 3-D-domain roughly embraces all the

troposphere, from the surface to 300 hPa (∼ 9000 m), with

29 layers geometrically spaced. The model time step varies

dynamically from 4 to 6 min depending on the maximum

wind speed in the domain. The model is an offline model

which needs meteorological fields as forcing. The forcing

fields are deduced from interpolated meteorological fields

from ECMWF with a horizontal resolution of 0.5◦×0.5◦ ev-

ery 3 h.

5.3 Synthetic observations yo

We compute the nature run, i.e. the synthetic observations,

from the “true” state vector, with the CTM CHIMERE.

That is to say, in all the following, we consider that yo
=

HCHIMEREx
t. The site and date of available observations

are chosen according to the operated observation sites in

the region. Thirteen Eurasian surface sites have been se-

lected. These sites are maintained by NIES (Tsukuba, Japan;

Sasakawa et al., 2010), IAO (Tomsk, Russian Federation),

MPI (Iena, Germany; Winderlich et al., 2010), NOAA-ESRL

(Boulder, United States of America; Dlugokencky et al.,

2009), and KMA (Seoul, Korea). The description of the sites

is given in Table 2. The observation sites do not carry out

measurements all year-round due to logistical issues and in-

strument dysfunctions. In order to reproduce this sampling

bias, we generate synthetic observations only when real mea-

surements are available from January to December 2010.
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6 Results and discussion

After the description of the set-up in Sect. 5, we now

have a “true” state xt and some reference observations yo.

We also have two observation operators HCHIMERE and

HFLEXPART and several possible prior fluxes xb as inputs for

the marginalized inversion developed in Sect. 2. In order to

evaluate the method, we now carry out the OSSEs described

in Table 1 following the complete procedure in Fig. 2. In

Sect. 6.1, we examine the average robustness of the method.

Then, in Sect. 6.2, we explore the spatial efficiency of the

marginalized inversion in our case study. In Sect. 6.3, we dis-

cuss the enhancement provided by our method compared to

the classical Bayesian framework, despite some limitations.

6.1 Robustness of the method

6.1.1 Impact of the correlation processing

The marginalization should consistently reproduce the na-

ture run in the OSSEs or, at least, it should detect its inabil-

ity in characterizing the fluxes from the given atmospheric

constraints. As detailed in Sect. 4.2, the aggregation regions

may have strong posterior correlations after the marginal-

ized inversions. This denotes the difficulties that the inver-

sion encounters in separating some emissions. The aggre-

gation regions can be grouped along correlation thresholds

rmax arbitrarily chosen in order to explicitly take the emis-

sion dipoles into account. In Fig. 5, we plot the profiles of

the scores defined in Sect. 4.2 along the possible correlation

thresholds rmax for grouping the regions. Specifying a corre-

lation threshold rmax allows identifying the typical temporal

and spatial scales that the inversion can separate. In the case

of a limited domain CTM, the influence of the LBC and of

the inside fluxes can be mis-separated. The correlations take

this issue into account and the correlation threshold specifies

the tolerance to such mis-separations.

For all OSSEs, the influence score zinfl increases with rmax.

In the correlation processing after the computation of the

marginalized inversion, the threshold rmax depicts the de-

gree of tolerance to mis-separation between inside fluxes

and LBC. The higher the threshold of tolerance rmax, the

fewer inside fluxes are considered inseparable from the LBC.

Hence, fewer aggregation regions are eliminated from the in-

version and more fluxes are corrected by the inversion. As the

number of constraints increases, we notice that the absolute

and relative scores, zabs and zrel, also tend to increase with

rmax. That is to say, if we only try to get average information

on big under-resolved regions, the posterior fluxes can be ex-

pected to be closer to the “truth”. On the contrary, if we try

to process too much spatial information from the inversion,

we must expect more discrepancies with the “truth”.

In particular, in Fig. 5, one can notice some outlier peaks

for low rmax. For low rmax, very few regions are computed

in the inversion. The peaks are created by the regions that

are not any more considered as mis-separated from the LBC

when rmax increases. For some OSSEs, these newly com-

puted regions have very wrong scores and dominate upon

the other few, computed regions. For this reason, one should

be very careful in the chosen correlation threshold. In order

to avoid the score instability, the optimum threshold should

be chosen higher than 0.4. Above 0.5, in our mesoscale case

study, as described above, the inversion is limited by the tem-

poral and spacial variability of the fluxes to optimize and by

the transport biases. Then, it cannot reach the requirement of

consistent reproduced fluxes.

One should find a balance between the physical scales one

wants to separate and the consistency of the results. In Ta-

ble 1, we summarize the scores of every OSSE for a chosen

correlation threshold with respect to result consistency.

6.1.2 Hotspots and large-area emissions

Both in Table 1 and Fig. 5, looking at a given correlation

threshold rmax, one would expect influence, relative and ab-

solute scores that get worse when the inversion condition de-

grades.

The fossil fuel influence score follows this trend: the more

perturbed the transport and the prior fluxes are, the more state

space components are considered un-invertible. The hotspot

regions of emissions are broadly filtered out and the remain-

ing regions can be well characterized by the inversion even

with wrong distribution and transport patterns. Some effects

in the degrading conditions of the inversion can however

compensate each other. For example, the absolute scores of

OSSEs 5 and 7 are better than the one of OSSEs 3 and 6.

The situation for wetland emissions is different. These

emissions are smoother than oil and gas emissions and are

then not excluded because of wrong transport or distribu-

tions. For this reason, the influence score does not exhibit

a clear trend with degrading inversion conditions. For wet-

land regions, transport seems to be the predominant factor

of errors. OSSEs 3, 5, 6 and 7 do not consistently repro-

duce the “truth” with relative scores higher than 100 % when

rmax ≥ 0.4. These discrepancies can be attributed to the very

high variability prescribed in the “true” wetland emissions.

An erroneous transport will fail in detecting brutal changes

of emissions at the synoptic scale. The wetland emissions

should then be grouped temporally and spatially in order to

average the point releases of methane.

The erroneous tolerance intervals can also be attributed

to the biased transport in FLEXPART compared with

CHIMERE. Since we filtered out most of the plumes with

spatial and temporal mismatches with the observations, the

horizontal biases in the transport are confined. Concerning

the vertical bias, a wrong simulated vertical mixing in the

planetary boundary will affect all the fluxes. This bias will

then have an impact on the atmospheric concentrations that is

relatively smoothed, uniform and constant. Therefore, an ac-

curate detection of such a bias is very difficult. Any inversion
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(a) Fossil fuels

(b) Wetlands

Figure 5. Score comparison on fossil fuel (up) and wetland (bottom) regions for all OSSEs along correlation thresholds rmax of region

grouping (see details in Sect. 4.2). Left: influence correlation zinfl profile. Centre: relative score zrel correlation profile. Right: absolute score

zabs correlation profile. The red arrows depict the direction from lowest scores to best ones. The blue arrows denote the direction of grouping,

from all grouped (“G”, rmax = 0) to all separated (“S”, rmax = 1). The OSSEs are indexed along Table 1 numbering. Thin (resp. thick) lines

stand for correct (resp. perturbed) subtotal emissions. Green (resp. brown) lines depict correct (resp. perturbed) emission distributions. Solid

(resp. dotted) lines represent correct (resp. perturbed) transport. As in Sect. 4.2, the scores are noted in percentages.

relies on the unbiased assumption of the errors. The inver-

sion will attribute the biases to the flux for wetland regions,

impacting the result of the inversion. As other inversions, de-

spite the marginalization, it appears that the results on wet-

land regions may be sensitive to vertical transport biases in

the models (see discussion in Sect. 6.3.2).

Thus, the marginalized inversion seems to be sensitive to

transport biases and to fluxes varying too quickly, as any

other inversions. Nevertheless, post-processing is made pos-

sible by the explicit and objective computation of the pos-

terior covariances and of the influence matrix. This post-

processing proves that the atmospheric inversion is not able

to inquire into very fine scales in our case study. The corre-

lation grouping of indifferentiable regions allows for an ac-

curate analysis of the best possible signal detectable by the

inversion. In the following, we take a correlation threshold

of 0.5 as a good balance between sufficient constraints on

the system and consistent posterior fluxes.

6.2 Spatial evaluation

We have chosen a threshold of correlation grouping the re-

gions so that the averaged scores on the whole domain of in-

terest are optimal. The scores are not uniformly distributed.

In Fig. 6, the distributions of the three scores are displayed

for fossil fuel regions and wetlands for OSSE 1 (transport
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(a) Fossil fuels (b) Wetlands

Figure 6. Map of the average scores as defined in Sect. 4.2 for OSSE 1 (see Table 1) projected on the aggregation grid defined in Sect. 3.

Top: influence score zinfl. Middle: relative score zrel. Bottom: absolute score zabs. The colour maps have been chosen so that redder regions

correspond to better scores (denoted by 	 and ⊕ symbols). The resolution and physical projection of the maps are the same as in Fig. 3.

and distribution of the fluxes same as the “truth”, perturbed

masses by regions; see Table 1). We choose the “easiest”

OSSE configuration in order to evaluate the behaviour of

the marginalized inversion in the best configuration possible,

thus getting the upper bound for the expectable quality of the

results. Any more realistic set-up likely gives results that are

not as good. In the figure, the scores are projected on the ag-

gregation grid built on the considerations in Sect. 3. Most of

the observation sites are located in the centre of the domain

(see Fig. 3). Then, the influence score is on average better

close to the core of the network for the wetlands. For the

fossil fuel regions, the influence score is relatively high also

upwind the monitoring network (dominant winds blow from

west to east in the region). In addition to the network density,

the inversion suffers from mis-separation of side regions and

LBC. For this reason, side regions tend to be less constrained

than centre ones. However, one can notice in both wetland

and fossil fuel maps that some centre regions are, in general,

significantly less constrained than the core of the domain.

These are regions of very high and dense emissions close

to the observation sites (< 500 km). The air masses coming

from these regions to the observation sites are plume-shaped

air masses. The inversion has troubles in assimilating single

plumes. In Sect. 3, filters have been implemented in order to

detect these problematic regions. The marginalized inversion

effectively filtered out these regions.

The absolute and relative scores also show unexpected pat-

terns. The regions of Scandinavia and China own some of

the best absolute and relative scores. These two side regions

are filtered out most of the time because of strong corre-

lations with the LBC components of the state space (con-

firmed by their low influence score). Consequently, when not

filtered out, these regions are very well and unambiguously

constrained, thus the good relative and absolute scores. For

the rest of the domain, the scores are mostly the better, the

closer to the observation network.

6.3 Limitations and benefits

6.3.1 Promising computation of the uncertainties

The marginalized inversion provides an objectified quantifi-

cation of the errors in the inversion system. With the Monte

Carlo approach we implemented, we are able to consistently

take the sources of uncertainties in the inversion process

into account, especially those from the prescribed error co-

variance matrices. As evaluated through OSSEs, the method

proved to consistently catch “true” fluxes on average in the

particular Siberian set-up. Moreover, the Siberian set-up is
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a difficult case study for atmospheric inversions, with co-

located intense fluxes that vary at temporal and spatial scales

smaller than the mesoscale. The processing of hotspots, criti-

cal in most inversion configurations, is consistently managed

through filters on the plume-shaped air masses. An in-depth

analysis of the temporal variability of the fluxes is carried out

in a sister publication with the Siberian set-up and real ob-

servations (Berchet et al., 2014). Additionally, as a compar-

ison, we carried out the same OSSEs on the same particular

Siberian set-up, but with expert-knowledge frozen error ma-

trices (diagonal matrices with the same representation ω as

for the other OSSEs). The correlation profiles and the spatial

structures of the scores with the expert-knowledge matrices

are not shown because the general patterns are very similar

to what is described for the marginalized inversion. Though

similar in patterns, the values of the scores are significantly

depreciated from the marginalized inversion to the expert-

knowledge one. The expert-knowledge relative and abso-

lute scores are several times bigger than the ones from the

marginalized inversion, thus statistically incompatible with

the “truth”.

The marginalized inversion explicitly and objectively

computes the posterior covariance matrix and the influence

matrix. The physical interpretation of the inversion results

are then enhanced by a clear analysis of the observation con-

straints to the fluxes. The processing of the posterior correla-

tions makes the detection of the dipoles and of indistinguish-

able regions possible. The influence of the lateral boundary

conditions, specific to the mesoscale and to the use of limited

area CTMs, is estimated. Thus, the regions upwind the obser-

vation sites and mixed with lateral air masses can be excluded

from the inversion. From the correlations, the grouping of re-

gions gives an estimate of the typical spatial and temporal

scale the method can compute. In our case, with few and dis-

tant observation sites, the groups of regions cover very large

areas. Thus, a grid-point high-resolution inversion would not

have given deep insights into the fluxes we are looking at.

The reduced problem approach described in Sect. 3 is then

relevant when computed cautiously.

6.3.2 Subjective choices and biases

Despite all these benefits compared with the classical

Bayesian framework, our method still has limitations. The

technical implementation of the method needs extensive

computation power and memory requirements. For this rea-

son, we have to drastically reduce the size of the problem

to solve. The size reduction relies on rigorous considerations

that are difficult to formulate analytically. Therefore, we ap-

plied heuristic principles in order to choose the aggregation

patterns of the observations and the fluxes. This subjective

procedure can modify the results of the inversion and must be

carried out very cautiously. The way we group the regions af-

ter the marginalized inversion in order to physically interpret

the results is also subjective. We choose a correlation thresh-

old of 0.5 in order to counterbalance the need of useful con-

straints from the inversion and the requirements of consis-

tently reproducing the “true” fluxes. Other thresholds could

have been chosen and the typical distinguishable temporal

and spatial scales would slightly differ from one threshold to

another. But, in any chosen correlation threshold, we notice

that most aggregation regions are grouped within bigger en-

sembles, suggesting that the chosen aggregation patterns are

small enough to have reduced impact on the inversion post-

processed results.

The marginalized inversion suffers from transport biases

as any other inversion. However, the maximum likelihood al-

gorithm considers the biases as random errors and includes

them into the error matrix Rmax. The biases are then taken

into account in the marginalized inversion, though as ran-

dom errors. Biases can be represented, or at least detected,

with non-diagonal matrices as suggested by Berchet et al.

(2013), but a non-diagonal framework would make the com-

putation of the marginalized inversion critically complicated.

Despite the implicit inclusion of the biases as random error

in Rmax, we reduced the impact of the horizontal transport

biases through filters on the plume-shaped air masses. The

vertical biases are smoother and more difficult to detect. This

issue must be inquired into in further works. Biases can be

studied through marginalizations on the input vectors (e.g.

Bocquet, 2011). Coupled marginalizations on the input vec-

tors and on the error statistics would provide a more complete

view on atmospheric inversion uncertainties.

7 Conclusions

At the mesoscale, inconsistencies between inversion config-

urations appear in the classical Bayesian framework. One of

the main sources of inconsistencies is the specification of the

error matrices and the non-inclusion of the tenacious uncer-

tainties on these matrices. Synthesizing the recent literature,

we developed an updated Bayesian method of inversion from

the classical Bayesian framework based on a marginalization

on the error matrices and on an objectified specification of

the probability density function of the error matrices. This

new method makes the comprehensive inclusion of the im-

pact of ill-specified uncertainty matrices possible for the first

time, to our knowledge, in atmospheric inversion. In prin-

ciple, this method needs very high computation power and

memory resources. To avoid technical limitations, we reduce

the size of the problem by aggregating the fluxes by region,

following objective principles for reducing aggregation er-

rors. We test this method through OSSEs on methane in a do-

main of interest spanning over Eurasia with significant emis-

sions of different types and different time and space scales.

The OSSEs are based on synthetic observations generated

from a nature run. We evaluate the consistency and robust-

ness of the method on OSSEs with inversion configurations

from the more favourable to the most disadvantageous one
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(perturbed atmospheric transport, flat flux distribution and

wrong total masses). The method produces very consistent

and satisfactory results. In most cases, the tolerance intervals

given by the inversion include the “true” fluxes and the re-

sults remain close to the “truth”. The method also provides

an explicit computation of the constraints on the regions and

allows flagging out regions critically mis-separated from the

lateral boundary condition. We hence have developed a ro-

bust and objectified method able to consistently catch “true”

greenhouse gas emissions at the mesoscale and to explic-

itly group the regions that are physically un-distinguishable

with the atmospheric signal only. In addition, we developed

a method that explicitly produces posterior tolerance inter-

vals on the optimal distinguishable time and space flux scales

and that computes the observation network influence on the

fluxes.

The robustness of our method on the Siberian case with a

biased transport proves that it can be generically applied to

other mesoscale frameworks. The high spatial and temporal

variability of the fluxes in Siberia ensures the possibility of

using the system in an “easier” inversion set-up. Actual ob-

servations from the sites we used for the validation of the

method are exploited in further steps of our work in order to

quantify the “real” methane fluxes in the Siberian Lowlands

(Berchet et al., 2014).
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