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Abstract 41 

The GHG-CCI project is one of several projects of the European Space Agency’s (ESA) Climate Change 42 

Initiative (CCI). The goal of the CCI is to generate and deliver data sets of various satellite-derived Essential 43 

Climate Variables (ECVs) in line with GCOS (Global Climate Observing System) requirements. The “ECV 44 

Greenhouse Gases” (ECV GHG) is the global distribution of important climate relevant gases – atmospheric CO2 45 

and CH4 - with a quality sufficient to obtain information on regional CO2 and CH4 sources and sinks. Two 46 

satellite instruments deliver the main input data for GHG-CCI: SCIAMACHY/ENVISAT and TANSO-47 

FTS/GOSAT. The first order priority goal of GHG-CCI is the further development of retrieval algorithms for 48 

near-surface-sensitive column-averaged dry air mole fractions of CO2 and CH4, denoted XCO2 and XCH4, to 49 

meet the demanding user requirements. GHG-CCI focusses on four core data products: XCO2 from 50 

SCIAMACHY and TANSO and XCH4 from the same two sensors. For each of the four core data products at 51 

least two candidate retrieval algorithms have been independently further developed and the corresponding data 52 

products have been quality-assessed and inter-compared. This activity is referred to as “Round Robin” (RR) 53 

activity within the CCI. The main goal of the RR was to identify for each of the four core products which 54 

algorithms should be used to generate the Climate Research Data Package (CRDP). The CRDP will essentially 55 

be the first version of the ECV GHG. This manuscript gives an overview of the GHG-CCI RR and related 56 

activities.  This comprises the establishment of the user requirements, the improvement of the candidate retrieval 57 

algorithms and comparisons with ground-based observations and models. The manuscript summarizes the final 58 

RR algorithm selection decision and its justification. Comparison with ground-based Total Carbon Column 59 
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Observing Network (TCCON) data indicates that the “breakthrough” single measurement precision requirement 60 

has been met for SCIAMACHY and TANSO XCO2 (< 3 ppm) and TANSO XCH4 (< 17 ppb). The achieved 61 

relative accuracy for XCH4 is 3-15 ppb for SCIAMACHY and 2-8 ppb for TANSO depending on algorithm and  62 

time period. Meeting the 0.5 ppm systematic error requirement for XCO2 remains a challenge: approximately 1 63 

ppm has been achieved at the validation sites but also larger differences have been found in regions remote from 64 

TCCON. More research is needed to identify the causes for the observed differences. In this context GHG-CCI 65 

suggests taking advantage of the ensemble of existing data products, for example, via the EnseMble Median 66 

Algorithm (EMMA). 67 

 68 

Keywords: SCIAMACHY, GOSAT, Greenhouse gases, Carbon dioxide, Methane, Climate Change  69 

 70 

1. Introduction 71 

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas (GHG) contributing to 72 

global warming (Solomon et al., 2007). Despite its importance, our knowledge of the CO2 sources and 73 

sinks has significant gaps (e.g., Stephens et al., 2007, Canadell et al., 2010) and despite efforts to 74 

reduce CO2 emissions, atmospheric CO2 continues to increase at a rate of approximately 2 ppm/year 75 

(Figure 1 top panel; see also Schneising et al., 2011, and references given therein; for a detailed 76 

discussion of Fig. 1 see Sect. 4). An improved understanding of the CO2 sources and sinks is needed 77 

for reliable prediction of the future climate of our planet (Solomon et al., 2007).  This is also true for 78 

methane (CH4, Figure 1 bottom panel). Atmospheric methane levels increased until about the year 79 

2000, were rather stable during ~2000-2006, but started to increase again in recent years (Rigby et al., 80 

2008, Dlugokencky et al., 2009, Schneising et al., 2011, Frankenberg et al., 2011). Unfortunately, it is 81 

not well understood why methane was stable in the years before 2007 (e.g., Simpson et al., 2012) nor 82 

why it started to increase again at a rate of approximately 7-8 ppb/year (Schneising et al., 2011).  83 

Global satellite observations sensitive to near-surface CO2 and CH4 variations can contribute to a 84 

better understanding of the regional sources and sinks of these important greenhouse gases. 85 

Information on GHG surface fluxes (emissions and uptake) can be obtained by inverse modeling of 86 
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surface fluxes  (e.g., Chevallier et al., 2007, Bergamaschi et al., 2009), where satellite observations are 87 

compared with predictions of a (chemistry) transport model  (e.g., Figure 2) and satellite minus model 88 

mismatches are minimized by modifying the surface fluxes used by the model. This requires satellite 89 

retrievals to meet challenging requirements, as small errors of the satellite-retrieved atmospheric GHG 90 

distributions may result in large errors of the inferred GHG surface fluxes (e.g., Meirink et al., 2006, 91 

Chevallier et al., 2005). Instead of direct optimization of surface fluxes it is also possible to optimize 92 

(other) model parameters used to model the fluxes, as done in Carbon Cycle Data Assimilation 93 

Systems (CCDAS) (e.g., Kaminski et al., 2010, 2012) or other approaches (e.g., Bloom et al., 2010).  94 

The goal of the GHG-CCI project is to generate the Essential Climate Variable (ECV) Greenhouse 95 

Gases (GHG) as defined by GCOS (Global Climate Observing System): “Distribution of greenhouse 96 

gases, such as CO2 and CH4, of sufficient quality to estimate regional sources and sinks” (GCOS, 97 

2006). In order to get information on regional GHG sources and sinks, satellite measurements must be 98 

sensitive to near-surface GHG concentration variations.  Currently only two satellite instruments 99 

deliver (or have delivered until recently) measurements which fulfill this requirement: SCIAMACHY 100 

on ENVISAT (March 2002 – April 2012) (Bovensmann et al., 1999) and TANSO-FTS on-board 101 

GOSAT (launched in January 2009) (Kuze et al., 2009). Both instruments perform (or have 102 

performed) nadir observations of reflected solar radiation in the near-infrared/short-wave-infrared 103 

(NIR/SWIR) spectral region, covering the relevant absorption bands of CO2 and CH4. They also cover 104 

the O2 A-band spectral region to obtain “dry-air columns” needed for computing GHG dry-air column 105 

averaged mole fractions and/or to obtain information on clouds and aerosols. These two instruments 106 

are therefore the two core sensors used by GHG-CCI and the near-surface-sensitive column-averaged 107 

dry air mole fractions of atmospheric CO2 and CH4, denoted XCO2 (in ppm) and XCH4 (in ppb), are 108 

the core data products of GHG CCI. In addition, other sensors or viewing modes are also used (e.g., 109 

MIPAS/ENVISAT and SCIAMACHY solar occultation mode for stratospheric CH4 profiles and 110 

IASI/METOP for mid/upper tropospheric CO2 and CH4 columns) as they provide additional 111 

constraints for atmospheric layers above the planetary boundary layer. The focus of the first two years 112 
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of the GHG-CCI project (September 2010 – August 2012) was to develop existing retrieval algorithms 113 

further, in order to improve the accuracy of the retrieved GHG data products.  114 

The focus of GHG-CCI lies on ECV Core Algorithms (ECAs) and their core data products XCO2 and 115 

XCH4, which is also the focus of this manuscript. Other algorithms, referred to as Additional 116 

Constraints Algorithms (ACAs), are algorithms to retrieve CO2 and/or CH4 information from satellite 117 

data which have no or only little near surface sensitivity but are sensitive to GHG variations in upper 118 

layers (the ACAs are listed in Table 3 and further discussed in Section 6). 119 

Several existing candidate ECAs were selected at the outset of the project for ongoing development, 120 

and have been iteratively improved upon through the course of the algorithm inter-comparison and 121 

validation activity.  This activity is referred to as “Round Robin” (RR) exercise within the CCI.  122 

The goal of the RR was to determine which ECA performs best to generate a given GHG-CCI core 123 

data product. The selected ECAs will be used in the third year of this project to generate the Climate 124 

Research Data Package (CRDP), which will essentially be the first version of the ECV GHG. The 125 

description of the RR approach and its results is the focus of this manuscript. Note that previous 126 

publications focused on individual algorithms and their data product. Only recently have results 127 

obtained using different algorithms been compared, most notably by Oshchepkov et al., 2012, for 128 

TANSO/GOSAT XCO2.  This manuscript is therefore one of the first focusing on inter-comparisons. 129 

This manuscript is structured as follows: Section 2 presents an overview of the GHG-CCI project 130 

followed by a description of the user requirements in Section 3. In Section 4 the retrieval algorithms 131 

are briefly described. The main part of this manuscript is Section 5 where the RR approach and its 132 

main results are presented and discussed. Section 6 provides a short overview of the Additional 133 

Constraints Algorithms (ACAs) also used within GHG-CCI but not the focus of this manuscript. 134 

Section 7 gives a short overview of the Climate Research Data Package (CRDP) to be generated using 135 

the selected algorithms. A summary and conclusions are given in Section 8. 136 
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2. GHG-CCI project overview 137 

The GHG-CCI project covers all aspects needed to generate the ECV GHG and to assess its quality 138 

and usefulness. This includes the use of appropriate satellite instruments (primarily 139 

SCIAMACHY/ENVISAT and TANSO/GOSAT to generate global XCO2 and XCH4 time series), 140 

calibration aspects (related to "Level 0-1 processing", primarily for SCIAMACHY), and development 141 

and application of retrieval algorithms to convert the satellite-measured spectra into atmospheric CO2 142 

and CH4 information ("Level 1-2 processing"). Also included is the analysis of the resulting global 143 

data sets, including validation and user assessments, focusing on inverse modeling of regional surface 144 

fluxes (i.e., "Level 2-4 processing"). Note that the fluxes (Level 4 products) will most likely be 145 

derived from Level 2 data rather than from (spatio-temporally averaged and potentially gap-filled) 146 

Level 3 data products, as Level 2 data contain more information than those at Level 3 and usually 147 

benefit from better error characterization. 148 

Level 1 data (i.e., geolocated and calibrated radiances) are input data for CCI (i.e., Level 0-1 149 

processing is covered by other projects). SCIAMACHY Level 0-1 processing experts are part of the 150 

GHG-CCI team in order to provide expertise and to ensure that the findings of the study feed back to 151 

improve future Level 1 data products if necessary. Close links have been established with the GOSAT 152 

team at JAXA for GOSAT Level 1 data access, expertise and feedback.  153 

The SCIAMACHY and TANSO Level 1 data products are de-facto used as Fundamental Climate Data 154 

Records (FCDRs, see GCOS, 2006) despite the fact that no dedicated inter-calibration or merging 155 

efforts are currently foreseen. Consistency between the time series of the two GHG-CCI core satellites 156 

is addressed at the level of the Level 2 data products. Ideally, an ECV data product or Thematic 157 

Climate Data Record (TCDR) of a given quantity should be a single merged data record obtained from 158 

all available appropriate sensors such as SCIAMACHY and TANSO for satellite-derived XCO2. 159 

However, within the present initial stage of this project only first steps in this direction have been 160 

carried out (see Section 5). 161 

The ground-based validation of the “satellite-derived” XCO2 and XCH4 data products largely relies on 162 

the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2010, 2011a) as this network 163 
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has been designed and developed for this purpose. Methods to also use data from other sources in the 164 

future (e.g., NDACC (see Sussmann et al., 2013), GAW) are being developed in parallel. Aircraft 165 

observations, e.g., HIPPO (e.g., Wofsy, 2011, Wecht et al., 2012), are also interesting, but have not yet 166 

been used directly (indirectly some of these data have been used via the calibration of TCCON, see 167 

Sect. 5.2.1). 168 

A dedicated GHG-CCI Climate Research Group (CRG) has been set up to represent the users of the 169 

satellite-derived CO2 and CH4 data products and to provide expertise on inverse modeling of surface 170 

fluxes, CCDAS and other user related aspects. A strong link exists between GHG-CCI and the EU FP7 171 

GMES project MACC-II (Monitoring of Atmospheric Composition and Climate - Interim 172 

Implementation, http://www.gmes-atmosphere.eu/) that provides feedback on the data quality. 173 

Key activities carried out in the first two years of this project were the establishment of the user 174 

requirements (Section 3), the further development of retrieval algorithms (described briefly in Section 175 

4) and data processing and data analysis with the goal of identifying which algorithms perform best 176 

(“Round Robin” (RR)). The description of these RR activities and their results is the focus of this 177 

manuscript (Section 5). In the third year of this project the selected algorithms will be used to generate 178 

the CRDP (see Section 7), which will subsequently be validated and assessed by users. 179 

3. User requirements 180 

An important initial activity carried out in this project was the establishment of the user requirements. 181 

They have been formulated in detail in the GHG-CCI User Requirements Document (URD) (Buchwitz 182 

et al., 2011a). The requirements are based on peer-reviewed publications primarily prepared in the 183 

context of existing or planned satellite missions and GHG-CCI CRG user expertise and experience 184 

with existing satellite data.  185 

Most critical are the requirements on random and systematic errors listed in Table 1. The most 186 

challenging requirement is the one on biases for XCO2. The threshold requirement is 0.5 ppm because 187 

even errors of a few tenths of a ppm can result in large errors of the inferred CO2 surface fluxes when 188 

used as input data for inverse modeling schemes (e.g., Chevallier et al., 2005). However, to what 189 
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extent systematic errors result in biases of the inferred fluxes depends on the spatio-temporal pattern 190 

of the systematic errors. A global bias, even if considerably larger than the required 0.5 ppm, would 191 

not be critical because it can easily be detected and corrected ad hoc. Most critical are state-dependent 192 

systematic errors, which result in regional-scale (~1000 km) biases on medium time scales (~ 193 

monthly), because they will likely be missed by bias-correction schemes. As the overall impact of the 194 

atmospheric concentration error on the surface flux error depends on the spatio-temporal pattern of the 195 

concentration error, the values listed in Table 1 have to be interpreted with care. The requirements 196 

reflect what the GHG-CCI users would like to see achieved. The utility of the data can ultimately only 197 

be determined by careful analysis. The numbers listed in Table 1serve to give a rough indication of the 198 

required uncertainties but should not be over-interpreted.  199 

The requirements for XCH4 are also challenging but somewhat less demanding than those for XCO2. 200 

The main reason is that XCH4 is more variable compared to XCO2 relative to its background value on 201 

the spatio-temporal scales relevant for the satellite retrievals (e.g, Frankenberg et al., 2005, 2011, 202 

Meirink et al., 2006, Bergamaschi et al., 2009, Schneising et al., 2011, 2012). 203 

4. Retrieval algorithms 204 

In this section, a brief overview of each retrieval algorithm used for the GHG-CCI RR is given. The 205 

reader is referred to peer-reviewed publications for details. All algorithms used within the GHG-CCI 206 

RR are also described in the GHG-CCI Algorithm Theoretical Basis Document (ATBD) (Reuter et al., 207 

2012a). 208 

The ECV Core Algorithms (ECAs) generate one or more of the four GHG-CCI core data products, 209 

XCO2 (in ppm) and XCH4 (in ppb) from SCIAMACHY and TANSO (each of the four combinations is 210 

a separate product). An overview of these algorithms is given in Table 2 and briefly described in the 211 

following sub-sections. Results obtained with all ECAs are shown in Fig. 1: the top panel shows 212 

northern hemispheric (NH) time series of XCO2 and the bottom panel XCH4 time series.  As can be 213 

seen, the various XCO2 time series (generated with the various algorithms described in the following 214 

sub-sections) are similar but not exactly identical. There are clear differences, e.g., a difference of the 215 

seasonal cycle amplitude, between the two SCIAMACHY algorithms WFMD (Schneising et al., 2011, 216 
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Heymann et al., 2012b) and BESD (Reuter et al., 2011) likely due to sub-visual cirrus clouds not 217 

explicitly considered by WFMD. Differences are also due to the different spatial sampling of the 218 

various data products. From Figure 1 it can therefore typically not be concluded which data product is 219 

the most accurate. This requires, for example, a careful comparison with independent accurate ground-220 

based observations (see Section 5.2). However, one obvious problem can be identified: the 221 

SCIAMACHY XCH4 product generated with the IMAP algorithm (Frankenberg et al., 2011) suffers 222 

from a significant high bias (relative to several other TANSO/GOSAT XCH4 data products) during the 223 

year 2010 (highlighted by the dotted line). This problem is related to SCIAMACHY detector 224 

degradation issues which are not yet properly dealt with by the SCIAMACHY radiometric calibration 225 

nor compensated by the IMAP algorithm (note that the second SCIAMACHY XCH4 algorithm 226 

WFMD (Schneising et al., 2011) has not yet been applied to 2010 data; the WFMD time series covers 227 

only the years 2003-2009). As will be discussed in more detail below, the most challenging problems 228 

addressed within GHG-CCI are related to achieving the required accuracy: for XCO2 this is a 229 

challenge because of demanding user requirements and for XCH4 the most important challenge was to 230 

deal with the progressive SCIAMACHY detector degradation in the spectral region needed for 231 

methane retrieval which started in October 2005 (see Schneising et al., 2011, and Frankenberg et al., 232 

2011, for a detailed discussion). 233 

4.1 Full Physics (FP) and Proxy (PR) algorithms 234 

Within GHG-CCI, two types of ECAs can be distinguished: The “Full Physics” (FP) algorithms and 235 

the light path “Proxy” (PR) algorithms (see also Schepers et al., 2012).  236 

FP algorithms model all relevant physical effects such as scattering by aerosols and clouds and have 237 

corresponding elements as part of the state vector, which contains all parameters which are to be 238 

retrieved. The FP algorithms obtain the dry air column-averaged mole fraction (needed to compute the 239 

dry air column-averaged mole fractions of the GHG, i.e., XCO2 and/or XCH4) either from the 240 

retrieved surface pressure or using meteorological information.  241 
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The PR algorithms are based on computing the dry air column-averaged mole fraction using a 242 

“reference gas”, which has to be much less variable than the gas of interest on the relevant spatio-243 

temporal scales. The PR method is used for XCH4 retrieval using CO2 as a reference gas. The XCH4 is 244 

essentially obtained from computing the ratio of the retrieved CH4 column and the retrieved CO2 245 

column. The advantage of this method is that it is potentially very fast, accurate and robust (as several 246 

systematic errors cancel in the CH4/CO2 column ratio). The disadvantage is that a correction is needed 247 

for CO2 variability, typically based on a global model (see, e.g., Frankenberg et al., 2005, 2011, Parker 248 

et al., 2011, Schneising et al., 2009, 2011, Schepers et al., 2012). 249 

4.2 SCIAMACHY XCO2 algorithms 250 

The Weighting Function Modified (WFM) Differential Optical Absorption Spectroscopy (DOAS) 251 

algorithm (WFM-DOAS or WFMD) has been developed to retrieve vertical columns of several 252 

atmospheric gases including the GHGs discussed in this manuscript (Buchwitz et al., 2000).  During 253 

the last decade, this algorithm has been significantly improved and used to generate global multi-year 254 

XCO2 and XCH4 data sets from SCIAMACHY (Buchwitz et al., 2005, 2007; Schneising et al., 2008, 255 

2009). Within GHG-CCI, WFMD has been further improved and used to generate long-term 256 

consistent time series (Schneising et al., 2011, 2012, Heymann et al., 2012a, 2012b).  WFMD has been 257 

implemented as a fast look-up table (LUT) based retrieval scheme to avoid time consuming radiative 258 

transfer (RT) simulations. WFMD is a least-squares method using a single constant atmospheric prior 259 

(e.g., single constant CO2 and CH4 mixing ratio profiles, a single aerosol scenario, no clouds). WFMD 260 

can process one orbit of SCIAMACHY observations in a few minutes on a single workstation. 261 

Aerosols and cirrus clouds are only treated approximately by considering spectrally broad band effects 262 

by a low-order polynomial and by post-processing filtering. Overall, this results in small but 263 

significant biases, especially for XCO2 (Heymann et al., 2012a). Recently, an improved version of 264 

WFMD has been developed for SCIAMACHY XCO2 retrieval (Heymann et al., 2012b, see also 265 

Figure 2) and the XCO2 data set generated with this latest version has been used for the GHG-CCI RR. 266 

For SCIAMACHY XCH4 retrieval, the WFMD version described in Schneising et al., 2011, 2012, has 267 

been used (see below). 268 
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The Bremen Optimal Estimation DOAS (BESD) FP algorithm was specifically developed for accurate 269 

and precise SCIAMACHY XCO2 retrieval considering aerosols and clouds thereby overcoming 270 

limitations of the WFMD algorithm (Reuter et al., 2010, 2011). In contrast to WFMD, BESD is not 271 

based on a LUT scheme but uses on-line RT model simulations. BESD is therefore computationally 272 

much more demanding. Also, unlike WFMD, BESD is based on Optimal Estimation (OE, Rodgers, 273 

2000) and aerosol and cirrus parameters are state vector elements and retrieved in addition to XCO2. 274 

4.3 TANSO XCO2 algorithms 275 

Both GHG-CCI TANSO XCO2 retrieval algorithms are FP algorithms: the University of Leicester’s 276 

(UoL) OCO (Orbiting Carbon Observatory, Crisp et al., 2004) FP (“UoL-FP” or OCFP) algorithm 277 

(Cogan et al., 2012, Parker et al., 2011) and the RemoteC (or SRON Full Physics (SRFP)) algorithm 278 

(Butz et al., 2011). Both algorithms are based on adjusting parameters of a surface-atmosphere state 279 

vector and other parameters to the satellite observations, but differ in many details (different RT 280 

models, different inversion schemes (OE or Tikhonov-Phillips), different schemes for aerosol 281 

modeling and inversion, use of different pre-processing and post-processing steps, etc.) as discussed in 282 

Cogan et al., 2012, Parker et al., 2011, and Butz et al., 2011. 283 

4.4 SCIAMACHY XCH4 algorithms 284 

For SCIAMACHY XCH4 retrievals, PR algorithms are used: WFMD (Schneising et al., 2011, see 285 

above) and IMAP (Iterative Maximum A Posteriori) DOAS (Frankenberg et al., 2011). These 286 

algorithms were already well developed when GHG-CCI started but had essentially only been applied 287 

to retrieve XCH4 from the first three years of the ENVISAT mission (e.g., Schneising et al., 2008). 288 

Within GHG-CCI, this time series has been significantly extended. The key challenge was (and partly 289 

still is, see Figure 1) to deal with the significant detector degradation in the spectral region needed for 290 

methane retrievals after 2005 (see Frankenberg et al., 2011, and Schneising et al., 2011, for details). 291 
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4.5 TANSO XCH4 algorithms 292 

To overcome the key limitation of the XCH4 PR algorithms, namely the need to correct the retrieved 293 

XCH4 for CO2 variations using a model, FP algorithms are also used within GHG-CCI, but only for 294 

TANSO. TANSO has higher spectral resolution than SCIAMACHY which is exploited to also retrieve 295 

scattering parameters in addition to CH4. Two TANSO XCH4 FP retrieval algorithms are being used 296 

within GHG-CCI, which are also used for TANSO XCO2 retrieval (see above), OCFP (Parker et al., 297 

2011) and SRFP (Butz et al., 2011), in addition to the two PR algorithms OCPR (Parker et al., 2011) 298 

and SRPR (Schepers et al., 2012). 299 

5. Round Robin approach and results 300 

In this section an overview of the GHG-CCI Round Robin (RR) activities is given which have been 301 

carried out in the first two years of this project.  302 

5.1 Round Robin approach 303 

The ultimate goal of the GHG-CCI RR was to identify which algorithms and corresponding data 304 

products to use for generating the CRDP. This comprised the further development of existing retrieval 305 

algorithms with the goal of meeting the challenging user requirements, the application of these 306 

algorithms to generate global multi-year XCO2 and XCH4 sets, the comparison with ground-based 307 

reference data and inter-comparisons of the data products generated with the competing ECAs. 308 

The selection procedure for ECAs and ACAs is described in the GHG-CCI Round Robin Evaluation 309 

Protocol (RREP, Buchwitz et al., 2011b). Initially the plan was to develop a score-based selection 310 

scheme, i.e., to compute a single number for each algorithm / data product (the higher the number, the 311 

better the algorithm), mainly based on satellite – ground-based observation differences. However, this 312 

was not pursued because a scientifically sound basis for the classification could not be established. 313 

Instead a set of Figures of Merit (FoM), mostly based on differences between satellite and ground-314 

based observations, have been defined (see RREP, Buchwitz et al., 2011b) and evaluated. However, as 315 

explained in the RREP and also shown in this manuscript, the comparison with the ground-based 316 

observations is only one component for the final selection primarily because of the sparseness of the 317 
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ground-based network (see Section 5.2). Another major component of the selection procedure was the 318 

analysis of (global and regional) maps and time series, including comparisons with global state-of-the-319 

art models, and inter-comparisons of the data products generated with the different candidate 320 

algorithms. Note that “blind testing” has not been used as it would have been possible to identify the 321 

algorithms/products by using some of their characteristics such as averaging kernels and spatial 322 

coverage. Some key results of this RR activity are presented here including a summary of the main RR 323 

decision results given in Section 5.6 for ECAs and Section 6 for ACAs. 324 

According to the initial ESA specification of the CCI RR exercise it was required to evaluate 325 

“algorithms”. However, complex algorithms such as the ones used within GHG-CCI can hardly be 326 

evaluated, especially not in terms of identifying “the best one” in terms of smallest biases when 327 

applied to real data. Simulated retrievals have been performed (see, e.g., Buchwitz et al., 2011c, 328 

2012a, and references given therein) but only for the individual algorithms and not in a consistent 329 

manner. This would have been a major activity incompatible with the CCI schedule especially if the 330 

goal would have been to obtain a better understanding of the differences between the data products 331 

obtained from the real observations. In this context it has not been identified that any of the algorithms 332 

suffer from obvious shortcomings. All XCO2 algorithms, for example, use different approaches to 333 

mitigate biases due to scattering by aerosols and (thin) clouds, but it is virtually impossible to identify 334 

a priori, e.g., based on a description of the algorithms and the simulation results, which of the 335 

approaches will result in the smallest XCO2 or XCH4 biases when applied to real data.  336 

What has been evaluated in detail are the end products, i.e., the quality of the XCO2 and XCH4 data 337 

products. This means that primarily data products have been evaluated during RR but not algorithms. 338 

As shown in this manuscript, this is not a trivial task, e.g., due to the sparseness of the TCCON 339 

reference data. Therefore, as shown in this manuscript, the RR decisions are not only based on 340 

comparisons with TCCON. The satellite retrieval team focused on producing the best possible end 341 

products. Which input data to use and how to treat them, e.g., in a dedicated pre-processing step, has 342 

not been prescribed. Pre-processing steps may be critical for the quality of the end product. This is 343 

particularly true if the instrument shows significant degradation as is the case for SCIAMACHY after 344 
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2005 especially in the spectral region needed for methane retrieval. To deal with this, quite different 345 

approaches have been used by the two algorithms IMAP (Frankenberg et al., 2011) and WFMD 346 

(Schneising et al., 2011, 2012). For example, IMAP uses as input data spectra that have been 347 

specifically calibrated at SRON and IMAP also uses a single so-called “Dead and Bad detector Pixel 348 

Mask” (DBPM), needed to reject detector pixels which are not useful. In contrast, WFMD uses the 349 

official standard SCIAMACHY Level 1 data product with standard calibration and several DBPMs, 350 

each optimized for a certain time period, typically covering one or more years (see Schneising et al., 351 

2011, for details). 352 

Finally, it is important to highlight the preliminary nature of the RR. This is due to the fact that all 353 

Level 1 input data and retrieval algorithms are continuously being improved. An algorithm / data 354 

product currently identified to be the best one will not necessarily be the best one in the future. GHG-355 

CCI therefore needs to be flexible and will aim to consider this in future phases of the CCI. 356 

5.2 Comparison with ground-based (TCCON) observations 357 

5.2.1 TCCON data and error characteristics 358 

The most relevant ground-based observations for the validation of the satellite-derived XCO2 and 359 

XCH4 data products are the corresponding data products of the TCCON.  The TCCON data products 360 

have been obtained from the TCCON website (www.tccon.caltech.edu/; latest access Feb. 2012 using 361 

version GGG2009, i.e., not the latest version GGG2012, which was not available for the GHG-CCI 362 

Round Robin comparison) or have been provided by the TCCON PIs. The TCCON products have 363 

been calibrated to WMO/GAW in situ trace gas measurement scales using aircraft observations 364 

(Wunch et al., 2010, Deutscher et al., 2010, Geibel et al., 2012, Messerschmidt et al., 2012).  The best 365 

independent estimates of the TCCON inter-site comparability to date are provided by these 366 

independent aircraft calibration data.  While not exhaustive, these demonstrate consistency at the 0.1% 367 

level (1-sigma) for XCO2 (~0.4 ppm) and 0.2% for XCH4 (~4 ppb), with no obvious inter-hemispheric 368 

differences (Wunch et al., 2010).  Nevertheless, the TCCON team recognizes that inter-site 369 

comparability needs to be better characterized, especially for methane (e.g., at Darwin and 370 

Wollongong, not discussed in the references cited above), and work is in progress to achieve this. The 371 
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systematic and random errors of single TCCON data are therefore typically 0.4 ppm for XCO2 (1-372 

sigma) and 4 ppb (1-sigma) for XCH4 (Notholt et al., 2012, based on Wunch et al., 2010). Due to these 373 

errors of the TCCON data (but also for other reasons, e.g., non-perfect spatio-temporal co-location) 374 

the estimated systematic and random errors of the satellite retrievals as reported here have to be 375 

interpreted as upper limit estimates, i.e., the satellite data errors are likely smaller than reported here.  376 

5.2.2 Inter-comparison method 377 

Different inter-comparison methods have been used, e.g., to ensure robustness of the findings. In 378 

addition to the method used and results obtained by the validation team (Notholt et al., 2012), which 379 

are summarized in this manuscript, independent inter-comparisons of the satellite data products with 380 

TCCON have also been carried out by the satellite data product provider (Buchwitz et al., 2012a). The 381 

methods differ by various aspects such as investigated time period and direct comparison or 382 

comparison after transformation to common a priori profiles and application of averaging kernels. 383 

Each satellite data product provider performed an independent validation of his data product 384 

(considering averaging kernels or not) covering the entire time series (to the extent possible given the 385 

limitations of the TCCON data, see Tab. 4). In contrast, the validation team has applied the same 386 

method to all satellite data products and has, for a given product, only used a time period where data 387 

from all competing algorithms were available (SCIAMACHY: XCO2: 2006-2009; XCH4: 2003-2009, 388 

TANSO: mid 2009-2010). 389 

The method used by the validation team is based on a direct comparison of the co-located satellite and 390 

TCCON data products. No correction for different a priori profiles and averaging kernels has been 391 

applied. Note that it is not trivial to consider averaging kernels for the XCO2 and XCH4 satellite and 392 

TCCON retrievals as strictly speaking this requires a reliable estimate of the real atmospheric 393 

variability, which is unknown. This aspect is discussed in detail in Wunch et al., 2011b, where the 394 

impact of this correction for TANSO XCO2 is discussed at Lamont, USA, where the real variability of 395 

the CO2 profiles is obtained using regular aircraft and other observations.  For the global data sets this 396 

is not possible. Nevertheless, for some of the satellite products, averaging kernels have been applied 397 

by the satellite data provider. For example, Reuter et al., 2013, has applied individual averaging 398 
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kernels for all XCO2 products from SCIAMACHY and TANSO by adjusting all retrievals to a 399 

common a priori using the Simple Empirical CO2 Model (SECM) described in Reuter et al., 2012b. 400 

They found that the adjustments are typically a few tenth of a ppm. Reuter et al., 2012b, estimated the 401 

smoothing errors and found that it is typically 0.17 ppm for SCIAMACHY XCO2 and 0.05 ppm for 402 

TCCON XCO2. These results indicate that the impact of applying or not applying the averaging 403 

kernels for satellite – TCCON comparisons is small. The reason is that the averaging kernels of the 404 

TCCON and the satellite data are close to unity and the resulting smoothing error is therefore typically 405 

quite small, especially for XCO2. For methane the (relative) smoothing errors are somewhat larger, as 406 

methane is more variable. For example, Parker et al., 2011, found that “the mean smoothing error 407 

difference included in the GOSAT to TCCON comparisons can account for 15.7 to 17.4 ppb for the 408 

northerly sites and for 1.1 ppb at the lowest latitude site”. For the SCIAMACHY XCH4 validation 409 

results presented in Schneising et al., 2012, it has been found that applying averaging kernels (by 410 

using TM5 model profiles as a common a priori)  leads to adjustments of 0.4% (approx. 7 ppb). 411 

Overall it has been found that the validation results obtained by the validation team (Notholt et al., 412 

2012)  and the satellite data provider (Buchwitz et al., 2012a), where averaging kernels have been 413 

applied for at least some of the products, agree well, especially for XCO2 (Buchwitz et al., 2012b). 414 

The comparison of the various methods used to quantify random and systematic errors of the satellite 415 

products (Buchwitz et al., 2012b) indicates that the RR validation results are robust.  416 

In the following, the results obtained by the validation team are presented. Detailed results will be 417 

reported elsewhere (Dils et al., manuscript in preparation, preliminary title: “The Greenhouse Gas 418 

Climate Change Initiative (GHG-CCI): Comparative validation of SCIAMACHY and TANSO-FTS 419 

CO2 and CH4 retrieval algorithm products with measurements from the TCCON network”). Therefore 420 

we here give only a short overview highlighting major findings. 421 

For each product and each TCCON site a number of Figures of Merit (FoMs) have been computed by 422 

the validation team. Key results are shown in Fig. 3 for XCO2 and Fig. 4 for XCH4., discussed in detail 423 

in dedicated sub-sections below. Shown are comparisons of the four GHG-CCI core data products 424 

generated with two or more of the candidate algorithms at the 10 TCCON sites listed in Table 4. The 425 
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results shown in Figs. 3 and 4 have been generated using a spatio-temporal co-location criterion of 2 426 

hours and 500 km (for alternative co-location criteria see Notholt et al., 2012). Several numerical 427 

values are given, which are also listed in Table 5, computed from satellite minus TCCON differences 428 

for each single satellite retrieval and the corresponding TCCON mean value.  On the left hand side of 429 

Figs. 3 and 4 the mean satellite-TCCON differences are shown for each of the 10 TCCON sites and all 430 

four core data products and their corresponding ECAs. For each ECA the standard deviation of the 431 

station-to-station bias has been computed (“StdDev”) and the total number of co-located satellite 432 

retrievals used for comparison (“N”). The standard deviation of the station-to-station bias is 433 

interpreted as a relevant measure of the systematic error (“relative accuracy” or “relative bias”). The 434 

standard deviation is more relevant to characterize systematic errors compared to, for example, the 435 

mean difference. Most critical is to achieve high “relative accuracy” (or low “relative bias”) not 436 

necessarily high “absolute accuracy” (although this would of course be better). For example, a 437 

constant offset of the satellite data would not be critical if the data are being used for surface flux 438 

inverse modeling (see Section 3) and this is considered by computing the standard deviation. On the 439 

right hand side of Figs. 3 and 4 the standard deviations of the satellite-TCCON differences are shown 440 

for each TCCON site. They are a measure of the random error (scatter) of the satellite retrievals. The 441 

corresponding mean value over all TCCON sites is used to characterize the mean random error (or 442 

“precision”) of the corresponding satellite data product. In the following, Figs. 3 and 4 are discussed in 443 

more detail for each of the products. 444 

5.2.3 Satellite XCO2 comparisons with TCCON 445 

The comparison of the two SCIAMACHY XCO2 retrieval algorithms WFMD and BESD with 446 

TCCON shows the following (Figure 3, top half): BESD has typically lower systematic errors (0.7 447 

ppm) compared to WFMD (1.3 ppm) and also a higher precision (2.3 ppm compared to 5.1 ppm). 448 

Ultimately it can be expected that the biases of BESD will be even lower as it has been identified (not 449 

shown) that the BESD RR data set suffers from problems related to the SCIAMACHY Level 1 data 450 

product used (version 7 consolidation level u, “L1v7u”). This data product was used because it was the 451 

latest version available when the final RR data set had to be generated and because it also covers the 452 
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time period after 2009. The previous Level 1 version 6 (L1v6), used by WFMD, does not suffer from 453 

these problems but is only available until the end of 2009, where the WFMD data set ends. It has been 454 

found that BESD retrievals for selected months using the improved new version L1v7w have much 455 

lower biases especially because the many outliers caused by the L1v7u spectra are not present any 456 

more (not shown). It is therefore necessary and planned to reprocess the entire SCIAMACHY data set 457 

with BESD using L1v7w, e.g., for the generation of the CRDP. A potentially important pro for 458 

WFMD for certain applications is the much larger number of data points. 459 

The comparison of the two TANSO XCO2 retrieval algorithms OCFP and SRFP with TCCON shows 460 

the following (Figure 3, bottom half): The biases depend on site and are typically in the range +/- 1 461 

ppm. They are very similar for both algorithms. This is also true for the standard deviation of the 462 

difference between the TANSO and TCCON estimates, which is typically in the range 2-3 ppm. The 463 

number of co-locations is also nearly identical for both algorithms but varies significantly from site to 464 

site, which is true for all comparisons shown in Figs. 3 and 4. 465 

As shown in Table 5, the precision requirement for XCO2 is met by all algorithms. WFMD meets the 466 

threshold requirement and the other algorithms including BESD even meet the breakthrough 467 

requirement. The challenging 0.5 ppm bias requirement has however not yet been met but several 468 

algorithms achieve a performance close to the threshold requirement (0.6-0.9 ppm, depending on 469 

algorithm). 470 

5.2.4 Satellite XCH4 comparisons with TCCON 471 

The comparison of the two SCIAMACHY XCH4 retrieval algorithms WFMD and IMAP with 472 

TCCON shows the following (Figure 4, top half): Overall, the systematic differences with respect to 473 

TCCON vary from site to site from nearly 0 ppb at Lamont to 20-30 ppb at the southern hemisphere 474 

(SH) sites Darwin, Wollongong, and Lauder, but are very similar for WFMD and IMAP. The reason 475 

for the large differences at these SH sites have not yet been identified. This is probably not due to the 476 

TCCON reference data as these differences are larger than the estimated TCCON inter-site 477 

comparability (see Sect. 5.2.1) and also the comparison with TANSO XCH4 (see below) does not 478 

show this type of systematic deviation (the OCFP results however also show a low bias at the SH sites 479 
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compared to the northern sites esp. at Darwin). Agreement is within +/- 10 ppb if these SH sites are 480 

excluded. In order to obtain an estimate of the relative biases (i.e., considering that an overall offset is 481 

not critical), the standard deviation of the station-to-station biases has been computed: it amounts to 11 482 

ppb for WFMD and 15 ppb for IMAP. The standard deviation of the satellite-TCCON differences, 483 

which is a measure of the single measurement precision (1-sigma), is on average 82 ppb for WFMD 484 

and 50 ppb for IMAP. Because nearly all TCCON sites started operation after 2005 (see Table 4), i.e., 485 

after the loss of important SCIAMACHY methane detector pixels due to detector degradation, the 486 

values listed for SCIAMACHY in Figure 4 are not representative for the years 2003-2005. Until the 487 

end of 2005 the performance was much better and the corresponding values are listed in curved 488 

brackets in Table 5. A possible explanation for the larger scatter (worse precision) of WFMD after 489 

2005 is that WFMD is an unconstrained least-squares algorithm whereas IMAP is based on Optimal 490 

Estimation and uses detailed CH4 information (as a function of latitude, altitude and time but not 491 

longitude) from a global model as a priori information. This raises the question why the precision of 492 

the two data products is similar for 2003-2005. This could be related to the fact that only a single 493 

DBPM is used by IMAP whereas WFMD has used a DBPM optimized for 2003-2005. Another 494 

possible explanation could be the use of differently calibrated input data. As shown in Fig. 4, the 495 

number of satellite soundings used varies significantly from site to site, but overall is very similar for 496 

WFMD (N=37628) and IMAP (39489) (at least at TCCON sites, for other locations this may not be 497 

true, see Figures 9 and 10). 498 

The comparison of the four TANSO XCH4 retrieval algorithms (OCPR, OCFP, SRPR, SRFP) with 499 

TCCON shows the following (Figure 4, bottom half): The biases depend on the TCCON site but are in 500 

the range +/- 15 ppb. The estimated relative bias is best for OCPR (2 ppb) and worst for OCFP (8 501 

ppb). OCPR has the largest number of data points (followed by SRPR). The number of data points is 502 

higher for the PR algorithms (OCPR and SRPR) compared to the FP algorithms (OCFP and SRFP). 503 

The FP algorithm with the lowest relative bias is SRFP (3 ppb). The PR algorithm with the lowest 504 

relative bias is OCPR (2 ppb). The standard deviation of the satellite – TCCON differences are nearly 505 

identical for all four algorithms.  506 
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As shown in Table 5, the SCIAMACHY XCH4 product for 2003-2005 meets the threshold precision 507 

requirement (but not for 2006 and later years due to the detector degradation). In contrast, the TANSO 508 

XCH4 has a much higher precision and even the breakthrough precision requirement is met by all 509 

algorithms. All TANSO XCH4 algorithms meet the relative accuracy (relative bias) user requirement - 510 

some are close to or even better than the goal requirement. For SCIAMACHY this is only true for 511 

2003-2005. 512 

Concerning the final RR algorithm selection decision, it is important not to over-interpret the 513 

numerical values listed in Table 5 due to the sparseness of the TCCON sites. For this and other 514 

reasons, the TCCON comparisons presented and discussed in this section are only one key component 515 

of the GHG-CCI RR activities. Therefore, more comparisons have been conducted, for XCO2 and 516 

XCH4, as described in the following. 517 

5.3 Inter-comparison of XCO2 data products 518 

Within GHG-CCI two algorithms have been further developed to retrieve XCO2 from SCIAMACHY, 519 

namely WFMD and BESD, and two algorithms to retrieve XCO2 from TANSO, namely OCFP and 520 

SRFP. In addition, there are three non-European TANSO algorithms presented and discussed in the 521 

peer-reviewed  literature whose data products have also been used for comparison: (i) the official 522 

operational TANSO algorithm  (v02.xx) developed at the National Institute for Environmental Studies 523 

(NIES) in Japan (Yoshida et al., 2011; in the following referred to as “NIES” algorithm), (ii) a 524 

scientific algorithm called PPDF (Pathlength Probability Density Function) also developed at NIES 525 

(Bril et al., 2007, Oshchepkov et al., 2008, 2009, 2011, 2012), and (iii) NASA/JPL’s ACOS 526 

(Atmospheric CO2 Observations from Space) v2.9 algorithm (O’Dell et al., 2012, Crisp et al., 2012).  527 

The global XCO2 data products from all 7 algorithms have been inter-compared within GHG-CCI 528 

(Reuter et al. 2013, Buchwitz et al., 2012a). The analysis revealed the following: The various satellite 529 

XCO2 data products all capture the expected large scale variations of atmospheric CO2 such as the 530 

time dependent north-south gradient (Figures 5 and 6, discussed below) and the CO2 increase and 531 

seasonal cycle (Figure 1) but exhibit differences in the spatio-temporal pattern which – depending on 532 

region and time – may exceed the relative bias user requirement of 0.5 ppm.  533 
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Typical examples are shown in Figures 5 and 6. Figure 5 shows comparisons of the four GHG-CCI 534 

XCO2 algorithms (BESD, WFMD, SRFP, OCFP). Figure 6 shows the GHG-CCI algorithms as well as 535 

the three non-European algorithms mentioned above (ACOS (v2.9), PPDF (NIES PPDF-D), and NIES 536 

(v02.xx)) for the two months September 2009 and May 2010. Also shown is the ensemble data 537 

product generated with the EnseMble Median Algorithm (EMMA) algorithm, discussed below, 538 

TCCON XCO2, and XCO2 from NOAA’s CO2 assimilation system CarbonTracker (CT) (Peters et al., 539 

2007). As can be seen, all satellite retrieval algorithms capture the north-south XCO2 gradient, which 540 

is significantly different for the two months shown, in good to reasonable agreement with TCCON and 541 

CarbonTracker (Figure 6). As can also be seen, differences between the data products often exceed 0.5 542 

ppm, particularly at locations remote from TCCON sites (e.g., Sahara, South America, Africa). As 543 

discussed in Section 5.2, it appears virtually impossible to use TCCON to determine which algorithm 544 

performs best, at least for TANSO. For SCIAMACHY it has been shown that BESD outperforms 545 

WFMD in terms of single measurement precision and bias not however in terms of number of 546 

observations, which is significantly higher for WFMD. It is also likely that a “best data product” for 547 

all conditions does not exist at present as each retrieval algorithm is expected to have its strengths and 548 

weaknesses. Therefore, which algorithm performs best may depend on the spatio-temporal interval of 549 

interest. Clearly, more research is needed to understand the differences between the various XCO2 data 550 

sets shown in Figures 5 and 6. One approach to further assess the relative quality of the various 551 

satellite-derived global XCO2 data sets is to compare them with their median. This approach is 552 

presented in the following section. 553 

5.3.1 Comparison with ensemble median (EMMA) 554 

In this section we aim at answering two related questions: (i) How to determine which data product is 555 

likely “the best”, if the largest differences are at locations remote from validation sites? (ii) Which data 556 

product should be used for inverse modeling of surface fluxes if all products differ and if it is not clear 557 

which product would give the most reliable results? To answer these questions we use the median of 558 

the various XCO2 products. The situation appears to be similar to that for climate modeling: it is not 559 

clear which “model” is the best and (remote from validation sites) there is no truth to compare with. A 560 
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promising approach to deal with this is to make use of the fact that several state-of-the-art algorithms 561 

and corresponding XCO2 data products are available, i.e., an ensemble of data products, which can be 562 

exploited. This is the underlying idea of the EnseMble Median Algorithm (EMMA, Reuter et al., 563 

2013). As described in more detail below and in Reuter et al., 2013, EMMA computes the median of 564 

an ensemble of individual XCO2 data products, which can be used for comparison with the individual 565 

data products, e.g., to identify outliers. However, the EMMA XCO2 product has also been generated to 566 

be useful as a stand-alone XCO2 data product for inverse modeling and other applications.  567 

The strength of using an ensemble of satellite data products was highlighted at the end of the first year 568 

of the GHG-CCI project (Buchwitz et al., 2011c), when biases (0.5%) between Bialystok TCCON 569 

XCO2 and co-incident satellite data were identified in the majority of algorithms participating in the 570 

GHG-CCI. This bias occurred due to an empirical correction of known magnitude, to account for a 571 

laser-sampling bias in the FTS data before September 21, 2009, inadvertently being applied in the 572 

wrong direction. A bias in XCH4 in the early part of the Bialystok time series that occurred due to 573 

missing fits in one of the CH4 micro-windows was also brought to light by comparisons to the 574 

ensemble of satellite retrievals. The identification and quantification of these biases would most likely 575 

not have been possible with a single algorithm / data product, due to difficulty in proving that such 576 

relatively small differences are not due to possible retrieval algorithm issues. 577 

A detailed description of EMMA is presented in Reuter at al., 2013. Therefore here only a short 578 

overview is given. The presented version of EMMA (v1.3a) uses the 7 individual satellite XCO2 579 

products shown in Figs. 6 and 7 and generates a Level 2 product (i.e., a product containing the XCO2 580 

of the individual satellite soundings including uncertainty estimate and other information such as 581 

averaging kernels) using the median in each 10ox10o monthly grid cell (“voxel”). In short, EMMA 582 

works as follows: For each voxel, the mean XCO2 value is computed for each of the 7 individual data 583 

products. The median of the 7 mean values determines which of the individual satellite Level 2 data 584 

products is used for the EMMA data product for that voxel (if a certain voxel is not covered by all 7 585 

data products, a smaller number of data products is used). Using the median has several advantages 586 

compared to, for example, using the mean value. A key aspect is that the median is robust with respect 587 
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to outliers. Using the median essentially removes outliers. This is of critical importance as each of the 588 

individual data products appears to suffer from outliers but where they appear and when is not known 589 

a priori and depends on the algorithm. Of at least equal importance is that the GHG-CCI users need a 590 

Level 2 data product (individual soundings) and not a Level 3 data product (e.g., gridded monthly 591 

averages). Furthermore, the use of an ensemble of data products possibly permits the generation of 592 

more reliable uncertainty estimates, obtained from a combination of the ensemble scatter and the 593 

reported uncertainties of the individual algorithms (which are primarily estimates of the random 594 

uncertainty). This would in particular be important to get a handle on the systematic error component 595 

of the uncertainty, which is very difficult (if not impossible) to reliably quantify for each algorithm 596 

individually. For an ensemble, this would strictly speaking require that the median is bias free which is 597 

unlikely to be the case. Nevertheless, the spatio-temporal intervals where the various data products 598 

disagree are very likely intervals where the data products need to be used with care. In any case, 599 

reliable XCO2 error estimates of the satellite retrievals are of critical importance for the user of the 600 

GHG-CCI atmospheric data products. 601 

Figures such as Figure 6 also permits the determination of which of the data sets agree and which 602 

disagree. For example, the EMMA product, but also most of the individual TANSO products and 603 

SCIAMACHY/BESD, agree well or at least reasonably with each other as well as with TCCON and 604 

CarbonTracker (see green and yellow smileys), whereas this is not always true for the two very fast 605 

algorithms WFMD and PPDF (see red smileys). Figure 7 shows pie charts indicating the overall 606 

agreement and disagreement of each of the individual algorithms with the median. The results are 607 

consistent with the already reported findings, e.g., better performance of BESD compared to WFMD 608 

and similar performance of the TANSO XCO2 algorithms. 609 

A large number of other comparisons of the individual data products and the EMMA product with 610 

TCCON but also with CarbonTracker have been carried out. Figure 8 shows, as an example, a 611 

comparison of the amplitude of the XCO2 seasonal cycle. As can be seen, all satellite data shown 612 

suggest that the seasonal cycle is underestimated by CarbonTracker by ~1.5 +/- 0.5 ppm peak-to-peak. 613 

Using only a single data product it would be difficult to “prove” that such a relatively small difference 614 



 
24 

 

(~0.3% of the total column) is significant and not caused by or at least significantly influenced by 615 

retrieval issues (see, e.g., the discussion given in Schneising et al., 2011, on this topic). Using an 616 

ensemble of data products based on more than one satellite and using several essentially independent 617 

algorithms allows one to draw more confident conclusions with respect to the interpretation of satellite 618 

– model XCO2 differences than would be possible using a single data product only. Within GHG-CCI 619 

it is therefore planned to continue the efforts on EMMA in addition to further developing the 620 

individual algorithms. 621 

5.4 Inter-comparison of SCIAMACHY XCH4 data products 622 

The multi-year global retrievals obtained from the two SCIAMACHY XCH4 algorithms, WFMD and 623 

IMAP, have been compared with one another. Figure 9 shows, as a typical example, a comparison of 624 

one month (August 2005) of the global WFMD and IMAP data products (Figure 10 shows the 625 

corresponding results for July 2009; results for other months are shown in Buchwitz et al., 2012a). As 626 

can be seen, the monthly XCH4 maps generated with the two algorithms show – depending on region - 627 

similar but also significantly different patterns. Both maps show higher methane concentrations over 628 

the Northern Hemisphere (NH), where most of the methane sources are located, compared to the 629 

Southern Hemisphere (SH). Both data sets agree reasonably well (within typically +/- 10 ppb) over 630 

most parts of the SH land areas but over some areas WFMD XCH4 can be up to  approximately 20 ppb 631 

higher. Over the NH the situation appears to be more complex. Both data sets show elevated methane 632 

over large parts of China, south-east Asia and India, but the patterns are not identical, with WFMD 633 

being higher over south-east Asia and lower over parts of India compared to IMAP. WFMD and 634 

IMAP not only use differently calibrated input data (standard versus non-standard calibration) and 635 

different retrieval methods (least squares versus OE), but also different post-processing quality 636 

filtering schemes. The latter is reflected by differences in spatial coverage (e.g., WFMD methane is 637 

not restricted to land observations only) and number of retrievals over a given region (see right hand 638 

side panels of Figure 9). The data density differs significantly depending on region. Typically WFMD 639 

has many more data points over the Sahara and other areas in the ~10o-40oN latitude range but also 640 

over mid/northern Australia and the mid/western part of the US, whereas IMAP has higher data 641 
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density over South America and mid/high northern latitudes. Large differences between the two data 642 

sets are also visible over large parts of northern Africa, where IMAP methane is higher (by approx. 40 643 

ppb) and Greenland, where WFMD methane is higher (by approx. 40 ppb). The reasons for the 644 

differences have not yet been identified. It has also not yet been assessed to what extent inferred 645 

regional methane fluxes would differ depending on which data set is used as input data for inverse 646 

modeling of regional methane fluxes. Significant differences can be expected as the regional 647 

differences exceed the bias threshold requirement of less than 10 ppb. The discussion also shows that 648 

depending on region the differences can be significantly larger than the estimated biases listed in Table 649 

5, which are based on the analysis of the satellite data at TCCON sites only. Clearly, more research is 650 

needed to understand the differences between the two SCIAMACHY methane data sets discussed in 651 

this section. 652 

5.5 Inter-comparison of TANSO XCH4 data products 653 

Within GHG-CCI, four TANSO XCH4 retrieval algorithms have been further developed and used to 654 

generate global data sets which have been inter-compared and compared with TCCON retrievals and 655 

global model data (Buchwitz et al., 2012a). The four retrieval algorithms are the FP and PR algorithms 656 

developed by SRON (SRFP, SRPR) and Univ. Leicester (UoL; OCFP and OCPR algorithms).  657 

For the PR algorithms, which are based on the retrieval of ratios of the CH4 to CO2 columns, followed 658 

by a model-based CO2 correction to compute XCH4, the column ratios have been compared as well as 659 

the final XCH4 product. As expected, it has been found that the agreement between the ratios is 660 

typically somewhat better compared to the XCH4 products due to differences between the model-based 661 

CO2 correction as used by SRON and UoL (see Buchwitz et al., 2012a, for details). Overall and in line 662 

with the discussion presented in Section 5.2, it has been found that the two PR products agree nearly 663 

equally well with the TCCON ground-based observations. A direct comparison of the two data 664 

products at TCCON sites is also shown in Figure 11 indicating agreement within typically 10 ppb (1-665 

sigma).  Nevertheless, inspection of global maps also reveals significant differences, depending on 666 

region and time. Qualitatively, this is similar to the results found for the SCIAMACHY data sets 667 

discussed in the previous section, but the differences shown in Figure 11 for TANSO are significantly 668 
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smaller compared to the differences for SCIAMACHY shown in Figures 9 and 10. Figure11 shows a 669 

global OCPR-SRPR methane difference map for July 2009. As can be seen, the differences may 670 

exceed 5 ppb (breakthrough requirement) or even 10 ppb (threshold requirement) over certain 671 

extended regions such as India. Comparisons between the two FP TANSO XCH4 data products OCFP 672 

and SRFP have also been carried out. Using SRFP, two years of global TANSO data have been 673 

retrieved but the comparison had to be limited to TCCON sites only because of limitations of the 674 

OCFP data set which is not yet available globally. It has been found that the inter-station bias is 675 

smaller for SRFP (~4 ppb) compared to OCFP (~8 ppb) and that the scatter of the SRFP data is 676 

somewhat smaller compared to the OCFP (14 ppb versus 16 ppb). These findings are consistent with 677 

the results presented in Table 5 but have been derived independently (see Buchwitz et al., 2012a).  It 678 

has also been found that the agreement between the two PR algorithms is significantly better than the 679 

agreement between the two FP algorithms. This may be due to the fact that PR algorithms are simpler 680 

but may also indicate that at the current stage of development the PR algorithms are more mature (note 681 

that they also deliver much more data points, see Section 5.2). 682 

5.6  Algorithm selection results 683 

The main goal of the RR exercise was to determine which satellite retrieval algorithms to use to 684 

generate the CRDP. Based on the results presented and discussed in the previous sections, algorithms 685 

have been selected. The selection results are presented in the following sub-sections. 686 

5.6.1 Selection results: SCIAMACHY and GOSAT XCO2 687 

Within GHG-CCI, two SCIAMACHY and two TANSO XCO2 algorithms have been further 688 

developed and the corresponding data products have been inter-compared. They have also been 689 

compared with three other TANSO XCO2 data products generated outside of this project: with the two 690 

TANSO XCO2 products generated at NIES, Japan, (i.e., the operational TANSO product (Yoshida et 691 

al., 2011) and the scientific PPDF product (Oshchepkov et al., 2011)) and with the NASA ACOS team 692 

product (O’Dell et al., 2012, Crisp et al., 2012). Analysis of all seven products indicates that the 693 

precision requirement has been met, but not the very demanding bias requirement of less than 0.5 ppm 694 
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(approximately 1 ppm has been achieved at TCCON sites). Clearly, more work on the individual 695 

retrieval algorithms is required to achieve this goal and it has been decided to continue with all 696 

algorithms. A possible exception is the fast SCIAMACHY XCO2 WFMD algorithm, which shows a 697 

reduced data quality in terms of precision and biases compared to the computationally much more 698 

demanding BESD algorithm. On the other hand the WFMD product has significantly (3-4 times) more 699 

data points compared to BESD and therefore much better coverage compared to any of the other data 700 

products including BESD. GHG-CCI aims at taking advantage of the fact that an ensemble of state-of-701 

the-art data products exists which can be exploited. To this end, the EnseMble Median Algorithm 702 

(EMMA) has been developed (Reuter et al., 2013). EMMA generates a Level 2 XCO2 product using 703 

the median of the individual data products thereby largely eliminating outliers of the data products 704 

generated with the individual algorithms. EMMA may also improve the error characterization using 705 

the ensemble scatter. Preliminary analysis indicates that EMMA outperforms each of the individual 706 

algorithms. EMMA also permits the identification of potential weaknesses of the individual 707 

algorithms, which can be used to improve the individual algorithms. Taking this into account, it has 708 

been decided to proceed with all satellite XCO2 algorithms and to add the EMMA data product to the 709 

GHG-CCI product portfolio.  710 

5.6.2 Selection results: SCIAMACHY XCH4 711 

Data products generated with two algorithms have been assessed: WFMD (Schneising et al., 2011, 712 

2012) and IMAP (Frankenberg et al., 2011). Comparison with ground-based TCCON observations 713 

revealed that both data products are very similar with respect to biases. This is also true for the 714 

estimated single measurement precisions for the time period 2003-2005, when the SCIAMACHY 715 

detector did not yet suffer from major degradation in the spectral region needed for methane retrieval. 716 

After 2005, the WFMD methane shows a larger scatter (~80 ppb) compared to IMAP (~50 ppb). Both 717 

data products have to be used with care for the time after 2005 due to potential bias issues related to 718 

detector degradation as indicated by the TCCON comparison at southern hemisphere TCCON sites, 719 

where both data products show a low bias of 20-30 ppb depending on FTS site. Considering only this 720 
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analysis, one would conclude that both data products are essentially equivalent and one may therefore 721 

select one of them. Analysis of spatially resolved global methane distributions as generated by the two 722 

algorithms however shows significant differences, depending on region and time, which are larger 723 

than the required maximum bias of 10 ppb, i.e., are significant for regional-scale methane surface flux 724 

inversions. Due to the lack of appropriate reference data such as TCCON, it was not yet possible to 725 

determine which of the two data products is the most accurate. Therefore, it has been decided to 726 

proceed with both algorithms and to contribute with both alternative data products to the CRDP 727 

pointing out the strength and weaknesses of the two approaches. Users will be encouraged to use both 728 

data sets, to determine to what extent their findings depend on the data product used, and to report 729 

these findings to the GHG-CCI retrieval experts. 730 

5.6.3 Selection results: TANSO XCH4 731 

Four algorithms and their corresponding data products have been evaluated: OCFP and OCPR (Parker 732 

et al., 2011) and SRFP and SRPR (Butz et al., 2011). All data products show very similar biases and 733 

scatter when compared with ground-based TCCON observations. The number of data points is 734 

however significantly higher for the “Proxy” (PR) algorithms compared to the “Full Physics” (FP) 735 

algorithms and the agreement between the two PR data products is better than for the FP products, 736 

indicating a higher level of maturity of the (simpler) PR algorithms. Note that the SCIAMACHY 737 

XCH4 algorithms, WFMD and IMAP, are also PR algorithms and that the FP algorithms are relatively 738 

new and currently in their early stages of development. Overall, the OCPR algorithm shows a slightly 739 

better performance compared to SRPR (primarily in terms of number of data points at TCCON sites). 740 

It has therefore been decided to continue with OCPR within GHG-CCI. The PR XCH4 algorithms 741 

depend on a CO2 correction using model data. The long-term goal of GHG-CCI is to use a FP 742 

algorithm that is independent of a CO2 model. Because the SRFP algorithm shows a somewhat better 743 

performance compared to the OCFP algorithm (e.g., lower station-to-station biases at TCCON 744 

sites), it has been decided to continue with the SRFP algorithm, despite the lower number of data 745 

points compared to OCFP. In summary, four TANSO XCH4 algorithms have been evaluated as part of 746 
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the GHG-CCI RR and two of these algorithms have been selected for further use within GHG-CCI: 747 

OCPR and SRFP. 748 

6. Additional Constraints Algorithms (ACAs) 749 

The Additional Constraints Algorithms (ACAs) are algorithms to retrieve CO2 and/or CH4 information 750 

for layers above the planetary boundary layer. ACAs are applied to several satellite instruments. An 751 

overview of the ACAs used within GHG-CCI is given in Table 3. As the ACAs are not the focus of 752 

this manuscript the reader is referred to the references listed in Table 3 (including caption) for details 753 

on each of these algorithms and corresponding data products. 754 

For ACAs only one algorithm per data product has been considered within GHG-CCI, i.e., ACAs are 755 

also being further developed but not in competition and not by covering all aspects (e.g., no dedicated 756 

validation). For ACAs a number of criteria have been defined which need to be fulfilled to contribute 757 

to the CRDP but detailed user requirements have not been formulated. 758 

Only a limited assessment of the data products generated with ACAs has been conducted during the 759 

initial phase of GHG-CCI described in this manuscript because the focus was on ECAs. However, for 760 

each of the ACAs listed in Table 3 it has been determined if the selection criteria specified in the 761 

Round Robin Evaluation Procedure (RREP, Buchwitz et al., 2011b) have been met. The RREP defines 762 

11 criteria for ACAs which need to be fulfilled for a given ACA to contribute to the CRDP. The 763 

criteria are mostly qualitative and refer to a required minimum level of documentation, error analysis 764 

and related auxiliary information. All ACA products are potentially useful for GHG-CCI climate 765 

applications as they deliver additional information on CO2 and/or CH4 thereby providing potentially 766 

important constraints when used, for example, within an appropriate inverse modeling framework to 767 

derive regional surface fluxes from the satellite observations. However, no detailed user requirements 768 

are currently available, no dedicated validation has been performed within GHG-CCI and it has also 769 

not been assessed to what extent the existing products are useful or not useful for GHG surface flux 770 

inverse modeling. More research is needed to assess the usefulness of these data products for climate 771 
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relevant applications. It has been identified that all ACAs fulfill the requirements listed in the RREP 772 

and that all ACA products can therefore be included in the CRDP.  773 

7. Climate Research Data Package (CRDP) 774 

The goal of the GHG-CCI RR was to decide which algorithms to use to generate the CRDP. It is 775 

planned to generate the CRDP during September 2012 to March 2013. Table 6 presents an overview 776 

of the planned content of the CRDP in terms of data products and their spatio-temporal coverage. The 777 

CRDP will contain all relevant information needed for inverse modeling such as single observation 778 

uncertainties, a priori profiles and averaging kernels. The CRDP will be validated during March-May 779 

2013 and subsequently evaluated by the GHG-CCI users (June-August 2013). By the end of August, 780 

the CRDP along with the corresponding documentation will be made publicly available via the GHG-781 

CCI website. 782 

8. Summary and conclusions 783 

An overview of the main activities and results achieved during the first two years of the GHG-CCI 784 

project of ESA’s Climate Change Initiative (CCI) has been presented, focusing on the CCI “Round 785 

Robin” (RR) exercise. The goal of CCI is to generate a number of Essential Climate Variables (ECVs) 786 

in-line with GCOS (Global Climate Observing System) requirements and guidelines using European 787 

Earth observation data and data from ESA Third Party Missions (TPM) such as GOSAT. To achieve 788 

this, several existing state-of-the-art retrieval algorithms for retrieving XCO2 and XCH4 from 789 

SCIAMACHY/ENVISAT and TANSO/GOSAT nadir radiance spectra have been further improved in 790 

order to meet challenging requirements for the targeted regional CO2 and CH4 surface flux 791 

(source/sink) application as defined by the GHG-CCI Climate Research Group (CRG). The ultimate 792 

goal of the RR was to identify and select the best algorithms to be used for generating the Climate 793 

Research Data Package (CRDP), which will essentially be the first version of the CCI ECV GHG data 794 

base. In addition, retrieval algorithms for a number of other satellite instruments such as IASI and 795 

MIPAS have also been further developed, but not in competition. 796 
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Substantial progress has been made during the first two years (September 2010 – August 2012) of the 797 

GHG-CCI project. For example, longer XCO2 and XCH4 time series have been generated from 798 

SCIAMACHY with improved data quality and better error characterization (Reuter et al., 2011, 799 

Frankenberg et al., 2011, Schneising et al., 2011, 2012, Heymann et al., 2012a, 2012b). The same is 800 

true for TANSO (Butz et al., 2011, Parker et al., 2011, Schepers et al., 2012, Cogan et al., 2012). 801 

Several retrieval algorithms have been further developed in competition during the GHG-CCI RR and 802 

used to generate global multi-year data sets of XCO2 and XCH4 from SCIAMACHY and TANSO. 803 

The data products have been evaluated by comparison with ground-based TCCON observations, by 804 

inter-comparisons of the data products generated with the different candidate algorithms, and by 805 

comparisons with other data sets including global models. Due to the sparseness of the TCCON 806 

network it was not planned to base the algorithm selection decision only on satellite – TCCON 807 

comparisons. It has been found that nearly all candidate algorithms produce data with very similar 808 

quality at TCCON sites, i.e., show similar satellite – TCCON differences. Significant differences have 809 

however been found remote from TCCON when comparing the global data sets, e.g., when comparing 810 

global maps. Depending on region and time, it has been found that the differences may exceed the 811 

systematic error requirements of less than 0.5 ppm for XCO2 and 10 ppb for XCH4. It has been 812 

identified that more research is needed in order to understand the differences between the various data 813 

sets. It was therefore not possible for all products to clearly identify which of the candidate algorithms 814 

performs best. The goal of the RR was to identify which of the competing algorithms to use for the 815 

CRDP. The selected algorithms are listed in Table 6. A summary of the RR algorithm selection 816 

decision and justification is given in Section 5.6 for the GHG-CCI ECV core data products and in 817 

Section 6 for additional products generated with algorithms not in competition during the RR phase.  818 

The climate and inverse modeling community requires long-term datasets of near-surface-sensitive 819 

CO2 and CH4 observations that are as accurate and precise as possible. The goal of GHG-CCI is to 820 

build up such a time series starting with SCIAMACHY/ENVISAT (March 2002 – April 2012) and 821 

being continued with GOSAT (launch 2009) and future GHG satellite missions such as OCO-2 822 

(Boesch et al., 2011), Sentinel-5-Precursor (Butz et al., 2012) and potentially  CarbonSat 823 
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(Bovensmann et al., 2010). As shown in this manuscript, significant progress has been made to 824 

achieve this goal, but more work is needed in order to meet the demanding user requirements for as 825 

many conditions as possible. 826 
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 1140 

11. Tables 1141 

 1142 

Table 1: GHG-CCI XCO2 and XCH4 random and systematic uncertainty requirements for 1143 

measurements over land. Abbreviations: G=Goal requirement (the maximum that needs to be 1144 

achieved; better performance likely not needed as other errors (e.g., modelling errors) will dominate), 1145 

B=Breakthrough requirement (“good” performance somewhere between G and T), T=Threshold 1146 

requirement (the minimum that needs to be achieved for the specified application, here: global 1147 

regional-scale surface flux inverse modelling). See also main text for a detailed explanation. From 1148 

GHG-CCI User Requirements Document (URD, Buchwitz et al., 2011a). 1149 

Requirements for regional CO2 and CH4 source/sink determination 

using SCIAMACHY/ENVISAT and TANSO/GOSAT 

 

Parameter 

 

Requirement 

type 

Random error  

Systematic error 

 

Stability Single 

observation 

10002 km2, 

monthly 

XCO2 G < 1 ppm < 0.3 ppm < 0.2 ppm (absolute) 
As systematic error but 

per year 

 B < 3 ppm < 1.0 ppm < 0.3 ppm (relative) -“- 

 T < 8 ppm < 1.3 ppm < 0.5 ppm (relative) -“- 

XCH4 G < 9 ppb < 3 ppb < 1 ppb (absolute) 
As systematic error but 

per year 

 B < 17 ppb < 5 ppb < 5 ppb (relative)  -“- 

 T < 34 ppb < 11 ppb < 10 ppb (relative) -“- 

 1150 

 1151 

  1152 
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 1153 

Table 2: Overview GHG-CCI ECV Core Algorithms (ECAs). Details on each of these algorithms are 1154 

also given in the GHG-CCI ATBD (Reuter et al., 2012a) and in Buchwitz et al., 2012a. Column 1155 

“Algorithm short name” lists the GHG-CCI algorithm identifiers (names in brackets are names (also) 1156 

used in the literature (see column “References”)). 1157 

GHG-CCI ECV Core Algorithms (ECAs) 

Algorithm ID Data product Sensor Algorithm short name References 

CO2_SCI_WFMD XCO2 
SCIAMACHY/ 

ENVISAT 
WFMD (WFM-DOAS) 

Schneising et al.2011, 2012; 

Heymann et al., 2012b 

CO2_SCI_BESD XCO2 SCIAMACHY BESD Reuter et al., 2010, 2011 

CO2_GOS_OCFP XCO2 TANSO/GOSAT OCFP (UoL-FP) Cogan et al., 2012 

CO2_GOS_SRFP XCO2 TANSO/GOSAT SRFP (RemoteC)  Butz et al., 2011 

CH4_SCI_WFMD XCH4 SCIAMACHY WFMD (WFM-DOAS) Schneising et al.,2010, 2011 

CH4_SCI_IMAP XCH4 SCIAMACHY IMAP Frankenberg et al., 2011 

CH4_GOS_OCFP XCH4 TANSO/GOSAT OCFP  Parker et al., 2011 

CH4_GOS_OCPR XCH4 TANSO/GOSAT OCPR Parker et al., 2011 

CH4_GOS_SRFP XCH4 TANSO/GOSAT SRFP Butz et al., 2011 

CH4_GOS_SRPR XCH4 TANSO/GOSAT SRPR Schepers et al., 2012 

  1158 
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 1159 

Table 3: Overview GHG-CCI Additional Constraints Algorithms (ACAs). (*) Note that 1160 

CO2_SCI_ONPD is a new algorithm “similar” as the one described in Noël et al., 2011, which has 1161 

been added in the 2nd year of GHG-CCI. Details on each of these algorithms are also given in the 1162 

GHG-CCI ATBD (Reuter et al., 2012a) and in Buchwitz et al., 2012a. 1163 

GHG-CCI Additional Constraints Algorithms (ACAs) 

Algorithm ID Data product Sensor Algorithm References 

CO2_AIR_NLIS Mid/upper trop. column AIRS NLIS Crevoisier et al., 2004 

CO2_IAS_NLIS Mid/upper trop. column IASI NLIS Crevoisier et al., 2009a 

CO2_ACE_CLRS Upper trop. / strat. profile ACE-FTS CLRS Foucher et al., 2009 

CO2_SCI_ONPD Stratospheric profile SCIAMACHY ONPD (Noël et al., 2011) (*) 

CH4_IAS_NLIS Upper trop. / strat. profile IASI NLIS Crevoisier et al., 2009b 

CH4_MIP_IMK Upper trop. / strat. profile MIPAS KIT/IMK MIPAS von Clarmann et al., 2009 

CH4_SCI_ONPD Stratospheric profile SCIAMACHY ONPD Noël et al., 2011 
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 1167 

Table 4: TCCON sites as used for the validation of the satellite-derived XCH4 and XCO2 Round 1168 

Robin (RR) data products by the GHG-CCI validation team (from Notholt et al., 2012). 1169 

TCCON validation sites used for GHG-CCI Round Robin 
Name ID Latitude 

[deg] 

Longitude 

[deg] 

Altitude 

[km] 

Time coverage 

MM/YYYY-MM/YYYY 

 Bialystok BIA 53.231 23.025 0.183 03/2009 - 03/2011 

 Bremen BRE 53.104 8.850 0.027 01/2009 - 12/2010 

 Karlsruhe KAR 49.102 8.440 0.110 04/2010 - 05/2011 

 Orleans ORL 47.965 2.113 0.132 08/2009 - 11/2010 

 Garmisch GAR 47.476 11.063 0.744 05/2009 - 12/2010 

 ParkFalls PAR 45.945 -90.273 0.442 06/2004 - 04/2011 

 Lamont LAM 36.604 -97.486 0.320 07/2008 - 05/2011 

 Darwin DAR -12.425 130.891 0.030 08/2005 - 02/2011 

 Wollongong WOL -34.406 150.879 0.030 06/2008 - 03/2011 

 Lauder LAU -45.050 169.680 0.370 06/2004 - 06/2011 
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 1173 

Table 5: Estimated precision and biases of the satellite XCO2 (top) and XCH4 (bottom) GHG-CCI 1174 

core data products retrieved with ECAs obtained from comparisons with ground-based TCCON 1175 

retrievals (see Figure 3 and 4 for details). *) The exact version number for BESD is v01.00.01. 1176 

Numbers in curved brackets are for SCIAMACHY methane retrievals during 2003-2005, i.e., before 1177 

significant detector degradation of the methane channel: values from Buchwitz et al., 2012a, are 1178 

indicated by #) and value from Schneising et al., 2012, is indicated by §). Values in square brackets for 1179 

SCIAMACHY methane retrieval are from Buchwitz et al., 2012a, based on an analysis of all available 1180 

retrievals (all years) and using a different assessment method. Also listed are the GHG-CCI user 1181 

requirements as given the GHG-CCI User Requirements Document (URD (Buchwitz et al., 2011a), 1182 

see also Table 1, e.g., for the explanation of T, B, G).  1183 

Comparison of GHG-CCI core data products (ECAs) with TCCON 

XCO2 [ppm] 

Algorithm Sensor Estimated precision 

single observation 

Estimated relative 

biases 

Number of 

satellite obs. 

WFMD v2.2 SCIAMACHY 5.1 1.3 30752 
BESD v1 *) SCIAMACHY 2.3 0.7 9467 
OCFP v3.0 TANSO 2.7 0.6 2830 
SRFP v1.1 TANSO 2.8 0.9 2558 

Required (URD): < 8(T), 3(B), 1(G) < 0.5(T), 0.3(B), 0.2(G)  - 
XCH4 [ppb] 

Algorithm Sensor Estimated precision 

single observation 

Estimated relative 

biases 

Number of 

satellite obs. 

WFMD v2.3 SCIAMACHY 82 (~30#)) 11 (~3§)) [4-12#)] 37628 
IMAP v6.0 SCIAMACHY 50 (~30#)) 15  [4-13#)] 39489 
OCFP v3.2 TANSO 16 8 3176 
SRFP v1.1 TANSO 15 3 2558 
OCPR v3.2 TANSO 13 2 7323 
SRPR v1.1 TANSO 14 3 4900 

Required (URD): < 34(T), 17(B), 9(G) < 10(T), 5(B), 3(G) - 
 1184 
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 1186 

Table 6: Overview of the planned content of the GHG-CCI CRDP. §) see Table 2 and Table 3, *) may 1187 

end later, +) may start earlier, #) mainly high latitudes. Products: (1) mid/upper tropospheric columns, 1188 

(2) (primarily) stratospheric vertical profiles. 1189 

Planned content of the GHG-CCI Climate Research Data Package (CRDP) 

Data products generated with ECV Core Algorithms (ECAs) 

Product ID Product 

(Level 2, 

mixing ratios) 

Algorithm §) Coverage Comment 

XCO2_SCIA XCO2 BESD Global, land, 2003-2010*) - 

XCO2_GOSAT XCO2 OCFP and SRFP Global, mid 2009-2010*) 2 alternative products 

XCO2_EMMA XCO2 EMMA Global, mid 2009-2010*) 
Merged SCIA and 

GOSAT 

XCH4_SCIA XCH4 IMAP and WFMD Global, 2003-2010*) 2 alternative products 

XCH4_GOSAT XCH4 SRFP and OCPR Global, mid 2009-2010*) 2 alternative products 

Data products generated with Additional Constraints Algorithms (ACAs) 

Product ID Product 

(Level 2, 

mixing ratios) 

Algorithm §) Coverage Comment 

CO2_AIRS CO2 (1) NLIS Tropics, 2003-2007 - 

CO2_IASI CO2 (1) NLIS Tropics, 2007-2010*) - 

CH4_IASI CH4 (1) NLIS Tropics, 2007-2010*) - 

CH4_SCIA_OCC CH4 (2) ONPD NH mid/high lat., 2003-2010*) - 

CO2_SCI_OCC CO2 (2) ONPD NH mid/high lat., 2003-2010*) - 

CH4_MIPAS CH4 (2) KIT/IMK MIPAS Global, 2005+)-2010*) - 

CO2_ACEFTS CO2 (2) CLRS Global#), 2004-2010*) - 
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 1192 

12. Figures 1193 

 1194 

Figure 1: Top: Northern hemispheric monthly mean XCO2 time series retrieved from 1195 

SCIAMACHY/ENVISAT (algorithms: WFMD and BESD) and TANSO/GOSAT (algorithms: SRFP 1196 

and OCFP) satellite data. Shown are monthly mean values for the 0o-60oN latitude range. Clearly 1197 

visible is the CO2 increase primarily caused by the burning of fossil fuels and the seasonal cycle 1198 

primarily caused by uptake and release of CO2 by the terrestrial biosphere. Bottom: As top panel but 1199 

for XCH4 (algorithms: SCIAMACHY: WFMD and IMAP, TANSO: SRFP, SRPR, OCFP, OCPR). 1200 

The seasonal cycle of methane is primarily due to wetland emissions, which are largest in summer / 1201 

early autumn, when soils are warm and humid. Also clearly visible is the not yet well understood 1202 

recent methane increase. For a color version of this figure please have a look at the on-line version of 1203 

this publication.  1204 

 1205 
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 1207 

 1208 

Figure 2: Global XCO2 maps from SCIAMACHY (left) and CarbonTracker (right) for two seasons 1209 

(April-June, top, and July-September, bottom) and two years (2003 and 2009). The CarbonTracker 1210 

model data have been sampled according to the SCIAMACHY measurements and the SCIAMACHY 1211 

averaging kernels have been applied to CarbonTracker. Figure adapted from Heymann et al., 2012b.  1212 

For a color version of this figure please have a look at the on-line version of this publication. 1213 
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 1220 

Figure 3: Comparison of the GHG-CCI core ECV XCO2 data products from 1221 

SCIAMACHY/ENVISAT (top half, i.e., first 3 panels) and TANSO/GOSAT (bottom half) with 1222 

TCCON ground-based observations (see Table 4 for details on the TCCON sites). Shown are the mean 1223 

difference (“Mean” in ppm) with respect to TCCON (left), the standard deviation of the difference 1224 

(right), and the number of co-locations (middle). A 500 km / 2 hour spatio-temporal co-location 1225 

criterion has been used to compute the satellite – TCCON differences. The numerical values listed are: 1226 

Left: “StdDev” is the standard deviation of the mean differences as obtained at the TCCON sites, i.e., 1227 

a measure of the station-to-station bias, and can be interpreted as relative accuracy (relative bias) of 1228 

the satellite retrievals. “N” is the number of satellite data used for comparison (only those data points 1229 

are shown where at least 10 satellite observations are available for a given site). Right: “Mean” is the 1230 

mean value of the standard deviations show by the symbols and is a measure of the achieved overall 1231 

precision. Note that the number of co-locations is significantly different for the different TCCON sites, 1232 

e.g., due to clouds. For a color version of this figure please have a look at the on-line version of this 1233 

publication. 1234 
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 1237 

 1238 
 1239 

Figure 4: As Fig. 3 but for the GHG-CCI XCH4 data products. 1240 
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 1243 

 1244 

Figure 5: Maps of monthly mean XCO2 at 10ox10o resolution as obtained using different GHG-CCI 1245 

retrieval  algorithms: WFMD and BESD for SCIAMACHY, OCFP and SRFP for TANSO and 1246 

SCIAMACHY and TANSO merged using EMMA for September 2009 (left) and May 2012 (right). 1247 

For a color version of this figure please have a look at the on-line version of this publication. 1248 
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 1253 

Figure 6: Comparison matrix of monthly XCO2 maps for September 2009 (top (a)) and May 2010 1254 

(bottom (b)) generated using several individual satellite retrieval algorithms: BESD and WFMD for 1255 

SCIAMACHY and SRFP, ACOS, OCFP, PPDF, NIES for TANSO. The EMMA data product has 1256 

been generated from the ensemble of the individual SCIAMACHY and TANSO XCO2 data products 1257 

(see main text for details). Also shown is XCO2 from TCCON and NOAA’s CarbonTracker (CT, 1258 

v2011). The diagonal elements show the monthly XCO2 maps (using color bar “mean”). The above 1259 

diagonal elements show the XCO2 differences for all combinations (color bar “difference”). The below 1260 

diagonal elements show the numerical values of the Root Mean Square Difference (RMSD) as well as 1261 

color coded smileys of the RMSD (green: RMSD < 1.2 ppm, red: RMSD > 2.4 ppm, otherwise 1262 

yellow). For a color version of this figure please have a look at the on-line version of this publication. 1263 
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 1266 

Figure 7: Pie charts showing the agreement (left) and disagreement (right) with the EMMA median 1267 

obtained using the listed satellite XCO2 data products. The figure has been obtained using the EMMA 1268 

Level 3 data product (10ox10o, monthly = 1 voxel). For each voxel the mean XCO2 value for each 1269 

algorithm has been computed and the median using all algorithms. The “Agreement with the Median” 1270 

(left) has been computed as follows: For algorithm i the number of voxels which agree with the 1271 

median within 0.2 ppm have been counted (= Ni). 100% corresponds to the sum of these numbers (N = 1272 

Σi Ni). The percentages shown are Ni/N*100%. The percentages of “Potential Outliers” (right) have 1273 

been calculated using the same method except that all voxels have been counted where the differences 1274 

to the median are larger than 2 ppm.  As can be seen from the left figure, the data product which 1275 

agrees best with the median is the ACOS product (v2.9, 21% agreement) followed by the similar 1276 

OCFP algorithm (19% agreement). The largest number of potential outliers have the data products 1277 

generated with the two very fast algorithms WFMD (32%) and PPDF (16%). For a color version of 1278 

this figure please have a look at the on-line version of this publication. 1279 
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 1284 

Figure 8: Comparison of the XCO2 seasonal cycle amplitude (peak-to-peak) of the individual XCO2 1285 

algorithms and EMMA with TCCON (left) and CarbonTracker (v2011) (right). The figure has been 1286 

adapted from Reuter et al., 2013, where results for all investigated XCO2 data products are shown, i.e., 1287 

including WFMD and PPDF, not shown here as their error bars do not indicate good enough 1288 

agreement with TCCON. As can be seen, all XCO2 satellite data suggest that the amplitude of the CO2 1289 

seasonal cycle is underestimated by CarbonTracker by approximately 1.5+/-0.5 ppm peak-to-peak. For 1290 

a color version of this figure please have a look at the on-line version of this publication. 1291 
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 1295 

Figure 9: Comparison of two SCIAMACHY XCH4 data products retrieved using WFMD (top) and 1296 

IMAP (middle) for August 2005. Global maps of the retrieved XCH4 are shown on the left and the 1297 

number of retrievals per 5ox5o grid cell on the right. The WFMD-IMAP difference is shown in the 1298 

bottom row. Listed in the bottom left are the following parameters: d: mean difference (-2.12 ppb), s: 1299 

standard deviation of the difference (18.53 ppb), r: linear correlation coefficient (0.75). For a color 1300 

version of this figure please have a look at the on-line version of this publication. 1301 
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 1304 

Figure 10: As Fig. 9 but for July 2009. 1305 
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 1310 

Figure 11: Comparison of the two GHG-CCI TANSO XCH4 PR data products retrieved using the 1311 

OCPR and SRPR retrieval algorithms. Left: Percentage XCH4 difference OCPR-SRPR for July 2009. 1312 

Right: Scatter plot of 6751 co-located OCPR versus SRPR retrievals at TCCON sites. The standard 1313 

deviation of the difference is 10 ppb (1-sigma) and the linear correlation coefficient is 0.91. For a color 1314 

version of this figure please have a look at the on-line version of this publication. 1315 
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